essay example 2 - pbworksmintlinz.pbworks.com/w/file/fetch/103621953/essay example 2.pdf ·...

27
1 The Teaching of Geometry for 11 to 16 Year Olds in Ontario and England, with Reference to Curriculum and Textbooks

Upload: phamliem

Post on 26-Aug-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

1    

 

 

 

 

 

 

 

 

The  Teaching  of  Geometry  for  11  to  16  Year  Olds  in  Ontario  and  England,  with  Reference  to  Curriculum  and  Textbooks  

 

 

 

 

 

 

 

 

 

 

 

 

2    

This  essay  is  a  comparative  analysis  of  the  education  system  of  England  with  the  

district  of  Ontario  in  Canada  with  particular  reference  to  the  teaching  of  geometry.    I  shall  

begin  by  focussing  on  the  assumptions  made  by  both  regions  in  how  students  learn  to  

reason  geometrically.    An  emphasis  is  placed  on  the  use  of  instructional  tools  which  are  

explored  from  the  perspective  of  curriculum  and  a  textbook  analysis  for  each  region.      

Literature  Review  

This  review  will  introduce  the  van  Hiele  levels  used  by  educators  as  a  framework  for  

developing  instructional  tools  (O’Shea,  2003).  The  model  is  placed  in  a  historical  context  by  

introducing  Piaget’s  theory  as  it  has  heavily  influenced  the  van  Hieles’.    This  is  followed  by  a  

review  of  relevant  instructional  tools  used  in  the  teaching  of  geometry.  

Piaget  and  Van  Hiele.    Piaget’s  theory  on  conceptualisation  of  geometrical  ideas  is  

constructivist  and  has  two  major  themes.    Firstly,  experience  is  interpreted  and  is  

dependent  on  the  way  a  student  internalises  and  thinks  about  geometry.    It  is  not  simply  a  

““reading  off”  of  the  spatial  environment””  (Clements,  2001,  p152)  and  is  dependent  on  the  

previous  experiences  of  the  student  in  relation  to  the  specific  geometric  concept.    Cognitive  

strategies  and  knowledge  acquired  are  therefore  actively  constructed  by  prior  active  

manipulation  of  that  geometric  environment  (Bereiter,  1985,  Scardamalia  &  Bereiter,  1983;  

Wittrock,  1974).    Secondly,  geometrical  knowledge  builds  in  stages  which  are  logical  and  not  

historical.    A  student  begins  with  scribbles  and  progresses  to  recognition  of  topological  

properties  of  shapes  (e.g.  enclosure).    The  student  then  moves  to  a  projective  stage  where  a  

differentiation  is  developed  between  these  topological  shapes  and  Euclidean  shapes  and  

finally  the  student  is  able  to  draw  Euclidean  shapes  like  triangles  (Piaget  &  Inhelder,  1956).    

Piaget  argued  that  students  are  not  influenced  by  instruction,  that  their  cognitive  levels  are  

a  function  of  the  development  of  their  mental  structures  (Piaget  cited  in  Lehrer,  Jenkins,  &  

Osana,  1998)  and  this  progression  is  a  biological  one  and  not  related  to  the  learning  process  

(Choi-­‐Koh,  1999).    Four  factors  of  development  involved  in  this  biological  process  are  the  

maturity  of  the  student,  his/her  physical  and  social  experiences,  and  finally  the  ability  to  be  

able  to  integrate  these  three  factors  into  a  coherent  whole,  known  as  equilibration  

(Gallagher,  2002).  

3    

Dina  van  Hiele-­‐Geldof  and  Pierre  van  Hiele  were  husband  and  wife  and  introduced  their  

theory  in  their  doctoral  dissertations  in  1957  at  Utrecht  University.    Van  Hiele  theory  is  

based  on  the  notion  that  students  pass  through  stages  of  development  by  progressing  from  

primitive  levels  of  thought  to  more  sophisticated  forms  in  relation  to  geometrical  reasoning  

(Van  Hiele,  1984).    The  model  proposes  that  geometry  learning  is  a  discontinuous  process  

which  requires  students  to  display  different  levels  of  thinking  and  because  of  this,  the  five  

levels  of  progression  for  a  student  are  hierarchical,  in  sequence,  and  are  disjoint.    The  model  

implicitly  integrates  the  previous  concepts  associated  with  level(s)  of  thinking  as  a  student  

progresses  to  more  sophisticated  thinking  levels.    Each  level  has  its  own  specific  language  

which  a  teacher  must  be  able  to  understand  if  they  are  to  identify  which  level  a  student  has  

attained  (ibid.).    Building  on  Piaget’s  constructivist  model,  the  van  Hieles  differ  in  that  

learning  becomes  a  process  by  which  to  gain  acquisition  of  new  geometrical  knowledge  and  

is  not  age-­‐dependent  (Jaime  and  Gutierrez,  1995).    Instruction  from  a  teacher  (aided  with  

instructional  tools)  heavily  influences  the  way  students  conceptualise  and  organise  

geometry  and  the  design  of  instruction  must  be  specific  to  the  respective  developmental  

level  for  each  student  (Crowley,  1987).    The  first  level  of  recognition  involves  a  purely  visual  

interpretation  and  figures  are  not  differentiated  by  individual  parts  or  their  properties  but  

rather  seen  as  a  whole.    For  example  a  triangle  is  seen  as  not  having  three  sides  or  its  angles  

adding  up  to  180  degrees  but  rather  as  a  ‘raw’  figure.    Geometric  concepts  therefore  are  

viewed  as  “total  entities  rather  than  having  components  or  attributes”  (ibid.,  p2).    Students  

at  this  level  can  even  reproduce  shapes  but  do  not  exhibit  any  real  understanding  of  the  

shape,  for  example  a  student  could  reproduce  a  square  having  seen  it  but  would  not  be  able  

to  distinguish  that  each  angle  is  a  right  angle.    Students  can  also  use  geometric  vocabulary  

such  as  recognise  a  square  after  seeing  it.    The  second  level  of  analysis  involves  the  student  

reasoning  about  basic  concepts  through  looking  at  figures.    They  may  colour  the  same  

angles  of  an  isosceles  and,  using  an  inductive  process,  be  able  to  generalise  characteristics  

about  this  figure.    In  line  with  Piaget’s  notion  of  equilibration,  students  at  this  level  are  

unable  to  make  connections  with  neither  multiple  figures  nor  the  relationship  between  

properties  of  figures.    Definitions  at  this  level  are  not  understood.    At  the  next  level  of  

informal  deduction,  students  start  understanding  the  properties  of  concepts,  build  abstract  

definitions,  and  start  seeing  the  variance  and  invariance  between  shapes.    For  example,  a  

student  can  recognise  that  a  square  is  a  type  of  rectangle  because  it  shares  all  its  properties.    

4    

Inductive  and  deductive  techniques  are  mixed  at  this  informal  stage  and  formal  proofs  can  

be  followed  but  not  constructed.    It  should  be  noted  that  this  third  level  is  mostly  the  stage  

at  which  current  secondary  schools  work  to  (ibid.).    The  penultimate  level  is  that  of  formal  

deduction  and  at  this  stage  students  can  work  formally  within  an  axiomatic  system  including  

proving  and  understanding  the  intra-­‐relationships  within  this  system.  The  final  stage  of  

rigour  involves  being  able  to  work  in  different  axiomatic  systems  (i.e.  non-­‐Euclidean  

geometries),  which  can  be  compared  and  geometries  can  be  seen  in  the  abstract.        

Research  on  the  van  Hiele  model  of  understanding  has  led  to  a  confirmation  in  its  

hierarchical  nature  (Fuys,  Geddes,  &  Tischler,  1988;  Usiskin,  1982).    Usiskin  investigated  the  

predictability  of  the  levels  for  geometric  achievement  and  found  a  significant  correlation  

while  Fuys  et.  al.  used  a  working  model  for  the  van  Hiele  levels  and  found  a  match  with  

student  activity.    The  writing  of  formal  proof  related  with  the  deductive  process,  as  well  as  

development  within  geometry  in  general  with  respect  to  van  Hiele  levels,  has  further  helped  

in  its  corroboration  (Bobango,  1988,  De  Villiers,  1999).    The  discrete  nature  of  the  levels  and  

their  application  to  geometry  as  a  whole  has  led  to  criticisms  of  the  model.    Scholars  have  

argued  that  students  show  signs  of  thinking  at  more  than  one  level  in  the  same  or  different  

tasks  and  in  different  contexts,  although  one  level  of  thinking  may  predominate  (Gutiérrez,  

Jaime,  &  Fortuny,  1991;  Lehrer,  Jenkins  &  Osana,  1998).    They  either  used  assessment  in  the  

form  of  written  tests  (  Gutierrez  &  Jaime,  1987;  Mayberry,  1983;  Usiskin,  1982)  or  

interviews  to  ascertain  the  thinking  level  displayed  (Burger  &  Shaughnessy,  1986;  Fuys  et  al.,  

1988).    In  both  cases  a  large  number  of  students  displayed  the  presence  of  other  levels  in  

their  answers.    Burger  and  Shaughnessy  postulated  that  this  was  due  to  students  being  in  

transition  between  the  levels  while  Fuys  et  al.  went  further  to  indicate  that  students  were  at  

two  levels  simultaneously  and  both  levels  were  predominant  in  the  student’s  thinking.    

Students  were  also  found  to  be  at  different  levels  depending  on  the  specific  content  area  of  

geometry  being  studied  (Mayberry,  1981).    Further,  the  prerequisite  understanding  of  

previous  levels  has  been  called  into  question  with  Lawrie  (1999)  finding  that  high-­‐level  

students  misinterpreted  first  and  second  level  test  items.  

Instructional  tools.    Geometry  teaching  takes  place  through  a  combination  of  verbal  

language,  mathematical  symbolism  (formal  or  informal)  and  through  visual  forms  (e.g.  

diagrams).    In  the  literature  this  is  referred  to  as  a  multimodal  discourse  (Duval,  2000;  

5    

Morgan,  1995;  1996;  2006;  O’Halloran,  2003).    In  this  review  I  will  concentrate  on  the  visual  

forms  of  teaching  through  outlining  the  use  of  diagrams,  manipulatives,  and  virtual  

manipulatives  in  dynamic  geometry  software.    According  to  Nesher  and  Kilpatrick  geometry  

learning  begins  when  students  understand  the  physical  world  around  them  and  continues  to  

a  high-­‐level  through  inductive  processes  or  within  deductive  systems  (Nesher  &  Kilpatrick,  

1990).    Most  students  at  school  are  unable  to  progress  to  the  last  two  van  Hiele  levels  of  

understanding  (Crowley,  1987)  and  so  I  will  concentrate  on  these  concrete  tools  used  to  

promote  the  lower  levels  of  thinking.  

Diagrams.    Research  has  shown  that  considering  spatial,  visual  and  kinaesthetic  

approaches  to  learning  mathematics  helps  students  to  make  links  between  these  

representations  and  their  underlying  concepts  (Bryant,  2009;  Goldin,  1998).    Moreover  

Alshwaikh  (2009)  argues  there  is  consensus  that  diagrams  are  important  in  teaching  

mathematics  mainly  in  “visualisation,  mathematical  thinking  and  problem  solving”  (ibid.,  

p2).    He  has  offered  a  simple  framework  for  distinguishing  different  types  of  diagrams;  offer-­‐

labels  type  and  demand-­‐labels  type.    Offer-­‐labels  do  not  ask  for  any  mathematical  activity  to  

be  carried  out  by  the  student  and  express  either  “geometrical  relationships  or  specific  

quantities”  (ibid.,  p3).      

 

 Figure  1:    Offer-­‐labels  expressing  geometrical  relationships  (ibid.)          

 Figure  2:    Offer-­‐labels  expressing  specific  quantities  (ibid.)    

6    

Demand-­‐labels  require  mathematical  action  to  be  carried  out  by  the  student  finding  either  

unknown  quantities  such  as  ‘c’  in  figure  3  or  “variable  names”  (ibid.)  such  as  finding  x,  y  and  

z  in  figure  4.      

 

 Figure  3:    Demand-­‐labels:  Unknown  quantities                                          Figure  4:    Demand-­‐labels:  Variable  

names  (ibid.)    Although  diagrams  are  seen  as  an  integral  part  of  geometry  teaching,  they  do  have  their  

drawbacks.    A  theory  of  internal  representation  argues  that  students  combine  all  mental  

pictures  and  properties  associated  with  the  concept  to  create  a  ‘concept  image’  (Vinner  &  

Hershkowitz,  1980).    Further  it  is  argued  that  concept  images  are  the  staple  of  student’s  

reasoning  rather  than  definitions  of  these  concepts  (Clements,  2001).    In  this  context  

diagrams  can  pose  significant  difficulty  for  a  student,  who  may  fail  to  understand  that  

drawings  do  not  necessarily  represent  all  the  information  about  its  representation  (Parzysz,  

1988).    A  simple  example  could  be  a  drawing  of  a  rectangle  which  does  not  give  information  

that  the  angles  are  equal  or  the  sides  are  parallel.    A  student  must  be  familiar  with  the  

properties  of  the  shape  to  be  able  to  understand  that  a  diagram  is  not  a  literal  translation  of  

the  object’s  properties  and  implied  concepts.    In  relation  to  test  items  on  proof,  students  

were  unable  to  differentiate  essential  and  unessential  characteristics  of  a  diagram  

(Clements  &  Battista,  1992).    The  concrete  nature  of  diagrams  is  only  useful  therefore  if  a  

student  is  able  to  understand  the  concepts  associated  with  the  diagram  which  may  not  be  

specifically  stated  and  recognise  what  information  is  relevant  to  the  task.    This  is  in  line  with  

van  Hiele  in  that  students’  progress  through  the  first  three  levels  by  developing  their  

understanding  of  concepts  with  the  use  of  visual  aids.    The  concrete  nature  of  diagrams  for  

the  van  Hieles  help  students  progress  through  levels  of  understanding  in  an  inductive  

manner,  which  eventually  progresses  to  deductive  thought  and  then  formal  rigour.    O’Toole  

highlights  how  “pure  logic  is  abstract,  but  geometry  makes  logic  concrete  by  applying  the  

7    

thinking  to  diagrams”  (O’Toole,  1941,  p.  319).    It  should  be  noted  that  more  recent  research  

has  argued  there  are  several  types  of  concrete  knowledge  and  the  more  advanced  of  these  

integrates  concreteness  and  abstraction  (Clements,  1999).    

Manipulatives.    Manipulatives  can  be  defined  as  a  tactile  instructional  tool  which  

gives  the  student  a  better  opportunity  to  perceive  a  mathematical  concept  (Clements  and  

Battista,  1992).    Examples  of  manipulatives  include  tangrams,  cubes,  spinners,  etc.  and  they  

are  physically  ‘manipulated’  to  better  grasp  concepts  associated  with  a  specific  task.    An  

example  could  be  using  a  tangram  and  fitting  smaller  shapes  into  a  bigger  shape,  thus  

learning  to  appreciate  that  a  shape  can  be  split  into  parts  and  mathematical  operations  can  

take  place  on  these  smaller  parts.    Manipulatives  provide  a  hands-­‐on  activity  for  the  student  

to  link  what  they  are  doing  with  abstract  geometric  concepts  (Clements,  2001)  by  not  only  

seeing  mathematics  but  by  also  providing  a  kinaesthetic  element  to  the  learning  process.    

The  use  of  manipulatives  intimately  relates  with  real-­‐world  application  by  introducing  

physical  objects  as  a  means  to  create  more  ‘meaning’  for  a  student.    Manipulatives  allow  

students  to  experiment  and  discover  relationships,  construct  their  own  knowledge  of  

geometry  and  be  able  to  apply  their  understandings  in  real-­‐world  settings  (Daniels,  Hyde,  

and  Zemelman,  1993).    Research  has  found  manipulatives  encourage  students  to  participate  

in  mathematics,  raise  their  self-­‐confidence,  and  improve  their  understanding  of  geometry  

(Ernest,  1994).  Furthermore,  manipulatives  were  found  to  help  students  make  the  jump  

from  concrete  notions  to  more  abstract  ways  of  thinking  (Hartshorn  &  Boren,  1990).    

Students  with  large  addition  problems  were  found  to  perform  better  with  manipulatives  

than  students  without  them  (Carpenter  &  Moser,  1982;  Steffe  &  Johnson,  1970).    Increase  in  

mathematics  achievement  with  the  use  of  manipulatives  was  found  by  Suydam  &  Higgins  

(1977)  while  Sowell’s  meta-­‐analysis  into  60  studies  found  long-­‐term  use  of  manipulatives  

was  more  beneficial  than  short-­‐term  use  (1989).    Further  Sowell  found  student  attitudes  

improved  with  use  of  manipulatives  (ibid.).    Manipulatives  were  also  found  to  have  a  

positive  effect  on  student  achievement  compared  to  traditional  instruction  (Ruzic  and  

O’Connell,  2001).  Criticisms  of  manipulatives  stem  from  the  notion  that  promoting  ‘deep’  

learning  is  not  guaranteed  by  manipulatives  (Baroody,  1989).    Students  may  use  

manipulatives  in  a  rote  manner  to  memorise  procedures  and  then  reproduce  them  without  

understanding  the  underlying  concepts  (Clements,  2000).      

8    

Dynamic  Geometry  Software.    Dynamic  geometry  software  (DGS)  provides  a  

medium  for  the  learning  of  Euclidean  geometry  in  which  students  are  able,  through  “direct  

manipulation”  (Laborde  &  Laborde,  2008,  p31)  to  operate  on  theoretical  geometric  objects  

in  a  “physical  sense”  (Laborde,  1995,  p242)  as  diagrams  on  a  computer  screen.    DGS  in  the  

simplest  sense  is  used  as  a  means  to  create  constructions  which  replace  the  pencil  and  

paper  method  of  construction.    However,  a  study  into  undergraduate  mathematics  

concluded  that  doing  mathematics  in  the  traditional  manner  leads  to  one  understanding  it  

(Povey  &  Ransom,  2000)  and  decontextualizes  acquired  knowledge  in  geometry  (Baki,  Kosa,  

&  Guven,  2011).    In  contrast  the  notion  of  “situated  abstractions”  was  introduced  by  Noss  

and  Hoyles  (1996)  where  computer  environments  provide  an  acceptable  model  for  learning  

in  which  the  original  mathematical  concepts  are  “preserved  and  extended  by  the  learners”  

(ibid.,  p125).    

Users  begin  with  creating  a  set  of  independent,  freely  existing  objects-­‐  usually  points,  and  

then  proceed  by  further  constructing  objects  that  are  dependent  on  the  former  with  respect  

to  geometric  relationships  (Gonzalez-­‐Lopez,  2001).    The  power  of  DGS  lies  in  the  specific  

context  of  its  ‘dragging’  feature  (Goldenberg  &  Cuoco,  1998)  which  allows  students  to  

explore  the  dynamic  behaviour  of  a  construction  by  moving  it  (Kortenkamp,  1999).    They  

can  observe  variant  and  invariant  aspects  of  a  diagram  under  dragging  and  gain  insight  into  

the  particular  construction  through  this  feature  (ibid.).    Further  dragging  allows  students  to  

observe  and  manipulate  many  examples  and  they  obtain  immediate  feedback  which  cannot  

be  obtained  by  paper  and  pencil  teaching  (Marrades  &  Gutierrez,  2000).    DGS  can  be  used  in  

promoting  explorations  which  aid  in  the  conjecturing  process  (Baki,  2005).    This  view  is  

further  supported  by  Hoyles  (1998)  who  argues  that  DGS  allows  the  student  to  make  

justifications  and  explanations  termed  “proof  by  explanation”  (Hanna,  1989).    She  argues  

that  DGS  helps  students  make  the  transition  from  looking  at  particular  cases  to  the  general,  

through  manipulations  which  can  be  easily  seen  on  the  computer  screen  (DiSessa,  Hoyles,  &  

Noss,  1995).    The  link  therefore  towards  higher  forms  of  van  Hiele  thinking  levels  which  

require  formal  mathematics  can  be  seen  to  be  promoted  by  DGS.    Baccaglini-­‐Frank  and  

Mariotti  (2010)  argue  that  students  can  pass  “from  the  phenomenological  world  to  the  

mathematical  world”  (ibid.,  p227)  of  formal  rigour  through  DGS  which  can  act  as  a  

“potential  bridge”  (ibid.).    A  detailed  study  found  a  better  grasp  in  the  ability  to  visualise  the  

9    

geometrical  character  of  a  figure,  a  tangible  understanding  of  the  meaning  of  a  theorem,  

and  clarity  in  what  should  be  proved  when  students  used  DGS  (Nomura  &  Nohda,  1999,  

p93).    The  pitfalls  of  DGS  have  been  highlighted  however  with  the  main  criticism  being  that  

DGS  is  used  simply  as  a  verifying  tool,  and  not  for  problem-­‐solving  (Hölzl,  2001).    

Corroborating  the  limited  use  of  DGS,  another  study  found  “the  software  was  mainly  used  

as  an  amplifier  for  visualizing  properties”  (Laborde,  2001,  p92)  and  students  didn’t  use  the  

software  as  a  tool  for  solving  the  task  (ibid.).    The  highlighted  need  for  teacher-­‐input  

therefore  is  a  crucial  factor  in  determining  the  effective  use  of  DGS  with  teachers  needing  to  

“carefully  design  tasks  aimed  at  exploring  and  conjecturing”  (Jones,  2000,  p81).      

Comparative  Analysis  

This  analysis  begins  by  providing  a  framework  which  is  then  used  to  assess  

curriculum  and  textbooks  for  each  region,  which  are  considered  separately  in  terms  of  

instructional  tools.    

Framework.    The  loose  framework  which  I  have  chosen  to  work  from  is  a  cube  (Bray,  

Adamson,  &  Mason,  2007)  with  three  faces  representing  three  different  aspects  of  

comparative  education.      

Figure  5:    Bray  and  Thomas  Cube  (ibid.,  p9)    

10    

The  top  face  represents  different  demographic  groups,  for  example  age  group,  sex,  etc.    The  

front  face  represents  the  geographical  location  such  as  countries,  districts,  etc.  and  the  side  

face  represents  aspects  of  education  and  society  like  curriculum,  political  change,  etc.    The  

aim  in  using  this  cube  is  to  focus  on  specific  aspects  of  each  face  and  as  result  a  unit  cube  

within  the  whole  cube  is  the  area  which  is  specific  to  a  comparative  study.    The  example  

given  in  the  diagram  is  the  entire  population  of  two  states  being  compared  in  relation  to  

their  respective  curriculums.    I  have  chosen  to  use  this  cube  in  conjunction  with  Bereday’s  

model  where  the  central  theme  is  the  idea  of  establishing  a  “tertium  comparationis”  

(Bereday,  1964,  p9)  which  is  a  comparison  with  respect  to  stated  criteria  that  is  common  in  

the  things  compared  and  this  is  known  as  a  juxtaposition.      

Figure  6:  Bereday’s  Model  for  Comparative  Studies  (Bray  et.  al.,  2007,  p86)  

I  have  chosen  to  compare  the  education  system  of  Ontario,  Canada  with  that  of  England.    

Canada  does  not  have  a  national  curriculum  and  each  state  is  responsible  for  managing  its  

own  educational  provision.    Although  with  respect  to  the  Bray  and  Thomas  cube,  it  outlines  

comparing  geographically,  like  with  like,  I  have  chosen  to  avoid  the  “notion  of  one  country,  

one  system”  (ibid.,  p123).    I  chose  England  instead  of  the  UK  because  the  other  countries  

have  “their  own  systems  of  education”  (ibid.,  p138).    I  have  decided  to  compare  the  two  

11    

regions  using  one  central  theme,  instructional  tools,  which  will  be  my  term  of  comparison  

(Bereday,  1964)  but  from  two  different  perspectives  of  curriculum  and  textbook  content  

(the  side  face  of  the  cube).    I  believe  that  looking  at  the  macro  (curriculum)  and  the  micro  

(textbooks)  may  help  to  provide  a  better  perspective  in  understanding  how  these  systems  

compare  in  terms  of  instructional  tools.    Ontario  has  two  systems  which  run  alongside  each  

other,  a  Francophone  (French-­‐speaking  schools)  and  an  Anglophone  system  (English-­‐

speaking  schools).    Post-­‐1997  curricula  were  developed  separately  for  the  two  systems  

(Ontario  Ministry  of  Education  (MoE),  1997))  so  I  have  chosen  to  analyse  the  Anglophone  

education  provision.    Furthermore,  I  have  chosen  to  compare  the  secondary  school  age  

group  in  both  regions.  The  English  curriculum  for  secondary  school  is  split  into  Key  Stage  3  

which  covers  11-­‐14  year  olds,  and  Key  Stage  4  which  covers  14-­‐16  year  olds  (Department  for  

Education  and  Employment  (DfEE),  1999(a)).    The  Ontario  curriculum  has  separate  

curriculums  for  the  elementary  years,  which  covers  5-­‐13  year  olds  and  then  students  move  

to  upper  secondary  school  to  complete  their  final  four  years  (MoE,  2005).      

 

For  the  textbook  analysis  I  have  chosen  to  compare  year  9  from  both  regions  as  it  covers  the  

same  age  group  (13-­‐14  year-­‐olds).    For  the  English  system  it  covers  the  intermediate  year  of  

secondary  schooling  and  the  first  year  of  upper  secondary  school  in  Ontario.    The  textbook  

analysis  corresponds  with  the  analysis  of  the  English  1999  National  Curriculum  and  so  

accordingly  Key  Maths  93  Revised  (KMR)  published  by  Nelson  Thornes  was  chosen  on  the  

basis  that  it  was  the  “best-­‐selling”  (Fujita  &  Jones,  2002,  p80)  textbook  for  2001.    For  the  

Ontario  Curriculum,  the  MoE  publishes  a  recommended  list  of  textbooks  known  as  the  

“Trillium  List”  (Ontario  Ministry  of  Education,  2013)  and  the  textbook  I  have  chosen,  

Principles  of  Mathematics  9  (PoM),  is  included  in  this  list.    The  two  systems  have  different  

policies  when  it  comes  to  streaming,  with  it  being  prominent  in  England,  and  having  been  

abolished  at  grade  9  in  1995  in  Ontario  (Robertson,  Cowell,  &  Olson,  1998).    PoM  for  

Ontario  covers  students  of  all  abilities,  while  KMR  for  the  top  strand  was  chosen  for  England  

to  allow  a  comparison  to  correspond  to  the  opportunity  for  the  ‘full’  curriculum  to  be  

covered  in  each  of  the  textbooks.    The  geometry  sections  of  each  textbook  will  be  compared  

with  a  focus  on  instructional  tools,  that  of  diagrams,  manipulatives  and  DGS.      

 

12    

Geometry  Curriculum  Comparison.    Curriculum  has  different  meanings  in  different  

contexts  (Beauchamp,  1982;  Jackson,  1992;  Walker,  2002)  for  which  reason  I  have  chosen  to  

specifically  define  the  concept.    Curriculum  can  be  seen  as  providing  a  “specific  set  of  

instructional  materials  that  order  content”  (Clements,  2007,  p36)  and  can  be  seen  as  an  

“available  curriculum”  (ibid.).    This  view  of  curriculum  is  in  contrast  to  the  ideal,  adopted,  

implemented,  achieved,  or  tested  curriculum  (ibid.)  and  my  aim  is  to  look  at  curriculum  

purely  in  terms  of  potentially  implemented.    I  have  chosen  to  use  the  English  1999  National  

Curriculum  because  it  is  more  detailed  than  the  2007  curriculum.    Further  the  2007  

curriculum  contained  additional  elements  of  the  “development  and  role  of  mathematics  in  

society”  (Brown,  2011,  p158)  however  due  to  the  lack  of  teacher  knowledge  coupled  with  

no  examining  of  this  knowledge,  “there  are  few  signs  of  it  yet  in  classrooms”  (ibid.).          

 

Van  Hiele’s  theory  of  progressive  geometrical  learning  is  evident  in  both  England  and  

Ontario’s  design  of  their  curriculum.    Ontario  and  generally  North  America  has  been  

influenced  by  the  National  Council  of  Teachers  in  Mathematics  (NCTM)  (O’Shea,  2003)  

which  holds  that  students  in  secondary  school  make  a  transition  from  induction  to  

deduction,  in  line  with  van  Hiele  (NCTM,  2000).    They  further  go  on  to  recognise  a  

progression  through  a  hierarchy  of  levels  in  relation  to  the  development  of  geometric  ideas  

(NCTM,  1989).    The  English  system  at  the  primary  level  made  use  of  van  Hiele  in  the  

National  Numeracy  Strategy  (DfEE,  1999(b))  and  is  evident  in  secondary  level  mainly  in  how  

the  attainment  levels  are  defined.    The  van  Hiele  levels  are  distributed  over  eight  attainment  

levels.    The  first  van  Hiele  level  is  ignored  as  an  assumption  is  made  that  this  level  has  been  

achieved  at  primary  school  and  students  at  the  outset  are  expected  to  “describe  the  

properties”  (DfEE,  1999(a),  p91)  of  2D  and  3D  shapes.    The  final  attainment  level  for  

exceptional  performance  goes  beyond  analysis  and  informal  deduction  towards  formal  

deduction.    Students  are  expected  at  this  level  to  “use  the  conditions  for  congruent  triangles  

in  formal  geometric  proofs”  (ibid.)  and  this  corresponds  to  the  fourth  van  Hiele  level.    The  

levels  in  between  correspond  to  the  second  and  then  third  level  of  van  Hiele.    Students  are  

expected  to  build  their  understanding  of  properties  of  shapes,  for  example  “reflective  

symmetry  of  2D  shapes”  (ibid.,  p91)  to  understanding  concepts  like  “congruence  and  

mathematical  similarity”  (ibid.,  p92).  

 

13    

Instructional  Tools.    Both  curricula  in  relation  to  instructional  tools  make  specific  

reference  to  diagrams.    At  both  key  stages,  the  English  curriculum  argues  students  should  be  

able  to  use  “geometrical  diagrams  and  related  explanatory  text”  (Department  for  Education  

and  Skills  ((DfES),  2004,  p63)  to  communicate  mathematically.  Furthermore,  students  must  

be  able  to  “interpret,  discuss  and  synthesise  geometrical  information”  (ibid.,  p63)  presented  

to  them  in  different  mathematical  forms  such  as  diagrams.    The  Ontario  curriculum  places  

diagrams  (and  other  mathematical  forms)  in  a  context  where  they  are  used  to  “pose  

questions  about  geometric  relationships,  investigate  them,  and  present  their  findings”  

(MoE,  2005,  p37).    Diagrams  therefore  are  seen  by  both  regions  to  promote  learning,  where  

the  English  take  a  more  generic  view  and  see  diagrams  as  a  means  of  mathematical  

communication;  Ontarians  see  it  to  be  used  specifically  in  conjunction  with  investigation.    

Through  this  way  of  analysing  mathematics,  students  can  “broaden  their  understanding  of  

the  relationships  among  the  properties”  (ibid.,  p10).    Ontario’s  understanding  of  the  use  of  

diagrams  is  related  to  the  perception  of  how  students  learn  effectively.    The  assumption  is  

that  students  need  to  be  given  “opportunities  to  investigate  ideas  and  concepts”  (ibid.,  p4)  

and  then  through  guidance  gain  insight  into  the  “abstract  mathematics  involved”  (ibid.).      

 

The  specific  use  of  DGS  is  outlined  in  both  curricula,  but  whereas  the  English  mention  it  

largely  in  generic  terms  of  ICT  with  a  reference  to  manipulating  geometrical  

representations,  the  Ontarians  refer  to  it  more  extensively  in  relation  to  geometry  teaching  

(see  appendix).    In  the  section  where  it  highlights  how  students  should  be  taught  

knowledge,  skills,  and  understanding,  the  National  Curriculum  outlines  the  use  of  

“appropriate  ICT….  and  knowing  when  it  is  not  appropriate  to  use  a  particular  form  of  

technology”  (DfES,  2004,  p69).    In  the  brackets  there  is  a  mention  of  geometry  packages;  

however  this  is  the  only  reference  in  relation  to  DGS  in  the  whole  document.    The  general  

use  of  ICT  is  more  detailed  in  this  document,  with  it  being  seen  as  a  medium  “to  overcome  

difficulties  in  thinking  and  working  in  the  abstract”  (DfEE,  1999(a),  p82).    ICT  is  seen  as  

supporting  students  learning  in  all  subjects  at  Key  Stages  3  and  4  (ibid.)  and  should  be  used  

to  “refine  their  work  and  enhance  its  quality  and  accuracy”  (ibid.).    An  attempt  should  also  

be  made  to  reflect  “critically”  (ibid.)  as  work  progresses.    The  National  Curriculum  therefore  

generally  outlines  the  importance  of  the  use  of  ICT  and  comments  made  can  be  extended  to  

be  applicable  to  the  use  of  DGS  for  geometry  teaching.    However  within  the  specification  for  

14    

geometry  teaching  in  Key  stage  3  and  Foundation  Key  stage  4  there  are  only  two  mentions  

of  the  use  of  ICT,  one  in  relation  to  problem-­‐solving  and  the  other  related  to  loci  (the  higher  

course  has  just  one  mention).    So  although  the  importance  of  ICT  is  stated,  the  instructional  

way  in  which  ICT  and  more  specifically  DGS  can  be  used  is  highlighted  in  a  minimal  way.    The  

curriculum  outlines  the  requirement  of  constructions  by  hand  with  instruments  and  there  is  

no  mention  of  ICT  to  be  used  in  conjunction  with  this  way  of  constructing  (ibid.).    The  

Ontario  Curriculum  seems  to  place  a  lot  more  importance  on  the  use  of  technology  and  

more  specifically  DGS.    Students  at  the  outset  are  required  to  have  the  ability  “to  use  

technology  effectively”  (MoE,  2005,  p3)  and  highlights  how  with  the  advent  of  technology  in  

classrooms  “previously  time-­‐consuming”  (ibid.)  problems  can  now  be  easily  solved  with  

students  being  focused  on  the  “underlying  concepts”  (ibid.).    In  fact  the  Ontario  Curriculum  

goes  on  to  elaborate  the  use  of  DGS  by  students  working  with  “pre-­‐made  sketches”  (ibid.,  

p14)  meaning  their  work  will  be  orientated  towards  manipulation  of  the  sketch  rather  than  

mindlessly  “inputting  of  data  or  the  designing  of  the  sketch”  (ibid.).      Furthermore,  within  

the  programme  of  study,  I  counted  over  ten  references  to  the  use  of  DGS  in  relation  to  sub-­‐

topics  in  geometry  for  grades  9  and  10  written  in  the  context  of  investigations  being  carried  

out  and  pre-­‐made  sketches  being  used  (see  appendix).      

 

Manipulatives  are  treated  by  the  English  Curriculum  in  a  similar  way  to  DGS,  in  that  there  is  

no  specific  mention  of  how  they  can  be  used  in  the  classroom.    However  there  is  a  general  

statement  encouraging  their  application.    The  curriculum  states  that  students  should  be  

able  to  “do  practical  work  with  geometrical  objects  to  develop  their  ability  to  visualise  these  

objects  and  work  with  them  mentally”  (DfES,  2004,  p69).    So  manipulatives  are  seen  as  a  

tool  to  promote  the  ‘inner  eye’  of  the  student  through  practical  work  however  a  student  

must  “distinguish  between  practical  demonstrations  and  proof”  (ibid.,  p56).    Within  the  

specification  for  both  key  stages,  there  is  a  reference  to  being  able  to  “construct  cubes,  

regular  tetrahedra,  square-­‐based  pyramids  and  other  3-­‐D  shapes  from  given  information”  

(ibid.,  p65).    However  there  is  no  mention  of  whether  manipulatives  could  or  should  be  

used,  implying  this  is  a  requirement  for  accurately  sketching  these  shapes  onto  paper.    In  

relation  to  finding  the  volume  of  cuboids,  the  curriculum  outlines  how  students  need  to  

appreciate  a  “connection  to  counting  cubes”  (ibid.)  and  although  manipulatives  are  not  

highlighted  this  requirement  certainly  allows  the  use  of  this  instructional  tool.    The  Ontario  

15    

curriculum  is  much  more  concise  and  clear  about  the  use  of  manipulatives  and  again  there  is  

influence  from  NCTM.    It  defines  them  in  clear  terms  as  “concrete  learning  tools  to  make  

models  of  mathematical  ideas”  (MoE,  2005,  p15)  and  sees  their  use  as  promoting  the  

observation  of  relationships,  making  connections  between  the  concrete  and  abstract  and  

evaluating  and  communicating  reasoning  (ibid.).    The  Ontario  Curriculum  highlights  how  

manipulatives  are  “necessary  tools”  (ibid.,  p23)  for  effective  learning  and  how  they  provide  

a  medium  for  exploring  abstract  mathematical  ideas  through  “varied,  concrete,  tactile,  and  

visually  rich  ways”  (ibid.).    The  document  further  elaborates  how  teachers  can  understand  

students’  thinking  through  “analysing  students’  concrete  representations  of  mathematical  

concepts”  (ibid.)  and  listening  to  their  reasoning.    Within  the  specification,  the  use  of  

manipulatives  is  highlighted  in  relation  to  the  sub-­‐topics  of  geometry  with  seven  references  

(see  appendix).    Further  examples  of  manipulatives  are  given  such  as  “paper-­‐folding”  (ibid.,  

p37)  for  identifying  the  properties  of  polygons  and  using  “toothpicks”  (ibid.,  p36)  for  

determining  the  maximum  area  of  a  rectangle  given  a  perimeter.      

 

Textbook  analysis.    PoM  is  a  larger  book  with  dimensions  21cm  by  26cm  compared  

to  KMR  (which  has  dimensions  17cm  by  24cm)  and  a  surface  area  which  is  34%  bigger  on  

each  page.    PoM  also  coupled  with  this,  has  over  50%  more  pages  than  KMR  which  suggests  

there  is  significantly  more  mathematics  coverage  in  this  Canadian  book.    PoM  and  KMR  have  

similar  proportions  of  the  whole  text  dedicated  to  geometry,  39%  and  37%  respectively,  

however  because  PoM  is  a  larger  book  this  suggests  it  either  covers  more  geometry  than  

KMR  or  more  thoroughly  covers  the  same  or  less  amount  of  geometry.    Both  books  have  

been  published  in  colour  with  PoM  dedicating  the  last  four  chapters  out  of  nine  to  different  

areas  of  geometry.    KMR’s  coverage  is  more  fragmented  with  geometry  being  covered  in  

seven  of  sixteen  chapters  in  an  episodic  manner  throughout  the  book.    The  chapters  are  

significantly  shorter  in  KMR  with  the  longest  geometry-­‐related  chapter  being  28  pages;  in  

contrast  PoM  has  66  pages.    PoM  has  specific  learning  aims  outlined  at  the  beginning  of  

each  chapter  (e.g.  Dearling  et.  al.,  2006,  p360)  while  KMR  does  not.    Both  textbooks’  

chapters  are  split  into  sub-­‐sections  exploring  geometric  concepts  in  a  piecemeal  fashion.    

KMR  provides  mathematical  concepts  and  theorems  with  worked  examples  at  the  beginning  

of  each  chapter  and  then  prior  to  when  the  students  need  to  use  the  concept  in  application  

to  problems  (Baker,  Hogan,  Job  &  Verity,  2001,  p47  and  p112).    This  approach  is  somewhat  

16    

been  criticised  in  that  students  are  not  encouraged  to  understand  the  fundamentals  of  

concepts,  but  rather  they  are  just  “merely  stated  rather  than  developed”  (Fujita  &  Jones,  

2002,  p82).    In  line  with  the  Ontarian  curriculum  aim  that  students  learn  best  by  

investigating,  PoM  introduces  new  topics  in  investigations  needed  to  be  carried  out  by  the  

student  and  introduces  concepts  in  the  context  of  an  investigation  (e.g.  Dearling  et.  al.,  

2006,  p436).    This  is  coupled  with  concepts  introduced  through  worked  examples  similar  to  

KMR  (ibid.,  p414).    Mathematics  encouraging  Informal  deduction,  the  third  van  Hiele  level  is  

not  easily  identified  in  KMR  as  I  was  unable  to  find  any  questions  or  methods  encouraging  

the  use  of  inductive  or  deductive  informal  reasoning.    KMR  corresponds  to  the  first  two  van  

Hiele  levels,  promoting  memorisation  and  the  application  of  mathematical  properties  and  

concepts  in  a  “narrative  block,  with  examples  and  then  exercises”  (Fujita  &  Jones,  2003,  p5-­‐

p6).    Mathematical  concepts  and  demands  made  from  the  student  are  “always  closed”  

(Haggarty  &  Pepin,  2002,  p579)  and  “help  pupils  achieve  fluency  in  the  use  of  routine  skills  

through  repeated  practice  in  exercises”  (ibid.,  p586-­‐p587).    In  contrast  PoM  couples  the  

KMR  setup,  usually  early  in  the  chapters,  with  encouraging  students  towards  developing  

inductive  and  deductive  techniques.    The  main  medium  is  through  the  idea  of  students’  

conjecturing  mathematical  generalisations  and  then  testing  these  conjectures  by  attempting  

to  find  a  counter-­‐example  (e.g.  Dearling  et.  al.,  2006,  p397).  Furthermore,  through  an  

investigative  approach  promoting  students  to  make  hypothesis  and  then  test  them,  PoM  

encourages  exploration  of  mathematical  concepts  and  allow  students  to  ‘discover’  

mathematical  relationships  (e.g.  ibid.,  p384).              

 

Instructional  tools.    In  line  with  the  simple  distinction  for  classifying  different  types  

of  diagrams,  I  counted  the  different  types  of  offer-­‐labels  and  demand-­‐labels  and  worked  

them  out  individually  as  a  proportion  of  the  total  diagrams  in  the  geometry  sections  in  each  

of  the  textbooks  (Table  1).    I  found  there  were  a  larger  proportion  of  offer-­‐labels  in  PoM  

(27%)  compared  to  KMR  (20%)  suggesting  there  was  more  information  given  to  students  in  

visual  form  as  a  total  proportion  of  diagrams  with  respect  to  geometry.    The  proportion  of  

demand-­‐labels  shows  that  KMR  makes  more  use  of  these  types  of  diagrams  with  a  large  

proportion  (80%)  dominating  the  textbook.    PoM  in  comparison  has  73%  which  although  still  

a  large  proportion,  is  less  than  KMR.    A  breakdown  of  demand-­‐labels  reveals  an  interesting  

17    

finding  that  PoM  has  over  a  third  of  demand-­‐labels  asking  for  variable  names  while  just  

under  two-­‐thirds  are  asking  for  unknown  quantities.      

 

Figure  7:  Example  of  a  demand-­‐label  asking  for  variable-­‐names  in  PoM  (p382).    KMR  in  comparison  has  less  than  a  tenth  of  demand-­‐labels  asking  for  variable  names  with  

the  majority,  over  90%  being  dedicated  to  unknown  quantities.      

 

Figure  8:  Typical  demand-­‐label  in  KMR  (p112).    This  corroborates  the  finding  that  “UK  mathematics  textbooks  are  designed  around  a  set  of  

exercises”  (Fujita  and  Jones,  2002,  p82)  and  further  elaborates  that  these  exercises  are  

18    

often  in  relation  to  finding  an  unknown,  rather  than  looking  for  multiple  variables  which  

requires  a  deeper  understanding  of  geometrical  concepts  and  theorems.      

  Diagrams     Offer-­‐labels   Demand-­‐labels     Geometrical  

Relationships  Specific  

Quantities  Unknown  Quantities  

Variable  Names  

Principles  of  Maths  9   17%   10%   46%   27%  Key  Maths  Revised  93   13%   7%   73%   7%  Table  1:  Distribution  of  different  types  of  diagrams.    Out  of  the  demand-­‐labels  asking  for  variable  names  in  PoM,  a  significant  proportion  (12%)  

required  the  student  (through  investigation)  to  think  inductively  and  deductively  and  in  

generic  terms  through  experimentation  and  conjecturing  (e.g.  Dearling  et.  al.,  2006,  p382).  

 

 Figure  9:  Diagram  related  to  conjecturing  in  PoM  (p435).    In  contrast  all  of  the  questions  requiring  variable  names  were  simply  an  extension  of  

unknown  quantities  and  required  finding  multiple  unknowns  in  KMR.    The  lack  of  analytic  

thought  required  for  geometry  in  KMR  was  surprising  and  corroborates  Healy  and  Hoyles  

(1999)  in  that  UK  textbooks  focus  on  “calculation  and  the  production  of  specific  (usually  

numerical)  results”  (cited  in  Fujita  &  Jones,  2002,  p82).  

 

In  terms  of  manipulatives,  both  textbooks  refer  to  the  use  of  this  tool,  with  PoM  making  five  

references  and  KMS  with  just  two.    PoM  however  does  use  manipulatives  in  a  more  

effective  way,  for  example  by  encouraging  the  use  of  geoboards  (Dearling  et.  al.,  2006,  

p478),  investigating  rectangles  with  toothpicks  (p481),  constructing  prisms  from  square  

cubes  (p491),  and  using  tennis  balls  for  understanding  spheres  (p462).    KMR  on  the  other  

hand  doesn’t  actually  promote  the  use  of  manipulatives  in  exploring  mathematical  

19    

concepts,  but  instead  demands  the  student  to  simply  build  them.    Once  the  manipulative  is  

made,  the  exercise  ends  and  it  is  questionable  as  to  the  usefulness  of  these  manipulatives.    

The  two  occasions  they  are  mentioned  requires  the  building  of  a  presentation  box  with  

specified  features  (Baker  et.  al.,  2001,  p119)  and  building  a  shape  sorter  (p353).      

 

The  use  of  DGS  in  each  of  the  textbooks  is  very  clear-­‐cut  in  that  KMR  has  no  mention  

including  no  reference  to  the  use  of  ICT  in  general,  while  PoM  has  over  19  separate  

occasions  where  this  tool  is  encouraged  to  be  used.    PoM  also  features  (p525-­‐p531)  a  

‘basics’  guide  to  using  Geometer’s  Sketchpad  (GS).    The  references  in  exercises  made  to  

using  GS  covers  the  depth  and  breadth  of  its  use  from  its  basic  use  in  exploring  

constructions  (p375-­‐p376)  and  shapes  such  as  polygons  (p386-­‐p388)  or  quadrilaterals  

(p402)  to  investigating  cones  (p450),  spheres  (p461),  area  (p479-­‐p480)  and  volume  (p468-­‐

p469).    Exercises  involving  GS  are  also  present  in  PoM  with  an  emphasis  on  using  this  tool  to  

hypothesise  and  test  conjectures  to  aid  students  in  making  the  step  to  more  formalised  

thinking  (e.g.  p365-­‐366).    PoM  also  doesn’t  compromise  making  constructions  by  hand  with  

over  ten  references  (e.g.  constructing  polygons,  p385).    KMR  on  the  other  hand  encourages  

the  use  of  constructions  made  by  hand  (in  line  with  the  curriculum)  but  “there  is  no  

explanation  of  how  to  use  a  protractor”  (Haggarty  and  Pepin,  2002,  p582)  or  any  other  tools  

in  a  geometry  set.      

 Conclusion  

 The  curriculum  analysis  shows  that  instructional  tools  used  to  promote  the  lower  

levels  of  van  Hiele  levels  are  better  utilised  in  the  Ontario  system  in  that  they  are  clearly  

defined  and  used  in  a  more  productive  manner.    Manipulatives  and  DGS  are  explained  in  

terms  of  how  they  facilitate  the  learning  process  and  then  are  linked  with  the  Programme  of  

Study  through  many  examples  of  how  they  may  be  used  (see  appendix).    The  English  

curriculum  on  the  other  hand  although  clearly  defines  diagrams  and  outlines  how  their  use  

promotes  learning,  are  lacking  in  in  defining  and  utilising  manipulatives  and  DGS.    The  

National  Curriculum  fails  to  provide  practical  ways  in  which  concrete  instructional  tools  can  

be  used  and  this  is  reflected  in  the  lack  of  DGS,  manipulatives  that  explore  mathematical  

concepts,  and  diagrams  which  encourage  abstract  thinking  in  KMS.    Concepts  are  simply  

given  as  a  fact  which  needs  to  be  learned  to  be  able  to  complete  ‘closed’  questions.    This  

20    

“approach  that  emphasizes  computation,  rules,  and  procedures,  at  the  expense  of  depth  of  

understanding,  is  disadvantageous  to  students,  primarily  because  it  encourages  learning  

that  is  inflexible,  school-­‐bound,  and  of  limited  use”  (Boaler,  1998,  p60).    PoM  on  the  other  

hand  utilises  the  use  of  complex  diagrams,  not  only  building  manipulatives  but  using  them  in  

a  lateral  manner  to  investigate  relationships,  and  DGS  which  encourages  the  exploration  of  

concepts  via  pre-­‐made  sketches.    Further  it  promotes  the  third  van  Hiele  level  through  

exercises  which  promote  inductive  and  deductive  arguments  at  an  informal  level.    Overall,  

although  developing  abstract  mathematic  concepts  is  an  aim  in  the  National  Curriculum,  the  

English  system  is  unable  to  move  beyond  the  first  two  levels  of  van  Hiele  in  application  to  

the  textbook  analysis.    Ontario  has  a  recommended  reading  list  defined  by  MoE  which  

better  correlates  to  teaching  in  line  with  the  curricular  aims  that  is  better  realised  in  PoM.    

Lessons  from  both  systems  show  that  for  concrete  instructional  tools  to  be  better  realised  in  

geometry  teaching,  curriculum  should  clearly  define  them  and  then  instruct  on  why  and  

how  they  should  be  used  in  the  classroom.    Further  providing  a  relevant  context  in  their  use  

is  advantageous  to  localising  their  use  in  the  classroom.    The  Ontario  system  uses  a  context  

of  investigation  which  allows  students  to  experience  the  exploration  of  mathematical  ideas  

and  concepts  in  a  fashion  which  suits  their  age-­‐group.    In  relation  to  textbooks,  there  is  a  

case  for  the  English  Education  Department  providing  a  recommended  reading  list  which  

would  allow  a  correlation  of  curricular  goals  with  content  taught.      

 

 

 

 

 

 

 

 

 

 

 

 

 

21    

Appendix  

  ENGLAND   ONTARIO,  CANADA                              

GENERAL  COMMENTS  

The  English  Curriculum  clearly  appreciates  the  need  for  students  to  be  able  to  interpret  and  understand  diagrams  and  places  it  as  an  essential  tool  in  the  teaching  of  geometry.    Unlike  Ontario  however,  there  are  no  definitions  or  explanation  of  the  different  ways  in  which  manipulatives  and  DGS  can  be  used  to  promote  learning.    Further  throughout  the  Programme  of  Study  for  both  key  stages  there  is  minimal  reference  in  providing  specific  examples  of  how  these  tools  can  be  used  in  conjunction  with  what  is  being  taught.      

The  Ontario  Curriculum  places  importance  on  the  use  of  these  instructional  tools.    Diagrams  are  placed  in  the  context  of  promoting  an  investigative  approach,  and  are  defined  as  a  type  of  “mathematical  model”  (MoE,  2005,  p62)  which  gives  a  description  of  a  situation.    Manipulatives  are  also  clearly  defined  and  are  seen  as  “concrete  learning  tools”  (p15)  and  in  conjunction  with  DGS  are  emphasised  with  specific  ways  that  they  can  promote  learning.    Manipulatives  are  seen  to  encourage  the  recognition  of  patterns  and  relationships,  link  the  concrete  with  the  abstract,  be  self-­‐critical  on  their  reasoning,  improve  memory  and  effectively  communicate  reasoning  to  others  (p15).    DGS  in  a  similar  fashion  is  seen  as  a  problem-­‐solving  tool  which  can  be  used  to  reduce  mechanical  activities  and  speed  up  learning  in  comparison  to  the  paper-­‐and-­‐pencil  method  (p14).      Further  Geometer’s  Sketchpad  is  introduced  as  the  sole  DGS  application  which  should  be  used  in  classrooms.    Throughout  the  Programme  of  Study  there  are  numerous  references  to  how  diagrams,  manipulatives,  and  DGS  can  be  used  to  promote  specific  geometrical  concepts.      

       

THE  USE  OF  DIAGRAMS  

Being  able  to  draw  diagrams  on  paper  and  using  ICT  (DfEE,  1999,  p41).  Presenting,  organising  and  explaining  diagrams  (p49).  Interpreting  diagrams  and  drawing  conclusions  (p41).  Effectively  using  diagrams  as  a  medium  for  appreciating  mathematics,  communicating  and  gaining  a  perspective  on  a  problem.    (p65).  

Using  diagrams  to  express  mathematical  ideas  (p16).  Using  diagrams  to  pose  questions  about  geometric  relationships,  investigating  them  and  presenting  findings  (p37).  Using  diagrams  to  promote  problem-­‐solving  strategies  (p13).  Using  diagrams  to  solve  problems  with  respect  to  parallel  lines  with  a  transversal  (p45).    

           

THE  USE  OF  MANIPULATIVES  

Only  reference  in  relation  to  doing  practical  work  with  geometrical  objects  to  develop  ability  to  visualise  these  objects  mentally  (DfES,  2004,  p69).      

Ability  to  be  able  to  select  appropriate  manipulatives  to  perform  particular  mathematical  tasks,  to  investigate  mathematical  ideas,  and  to  solve  problems  (p14).  Manipulatives  are  necessary  tools  for  supporting  effective  learning  and  are  a  valuable  aid  to  teachers  (p23).  Determining  the  maximum  area  of  a  rectangle  with  a  given  perimeter  by  using  geoboards  and  toothpicks  (p36).  Using  concrete  materials  to  investigate  the  

22    

effect  of  varying  the  dimensions  on  the  surface  area  of  square-­‐based  prisms  and  cylinders,  given  a  fixed  surface  area  (p36).  Using  concrete  materials  to  investigate  the  formulas  for  the  volume  of  a  pyramid,  a  cone,  and  a  sphere  (p37).  Using  concrete  materials  to  investigate  and  describe  the  properties  and  relationships  of  the  interior  and  exterior  angles  of  triangles,  quadrilaterals,  and  other  polygons  (p37).  Using  paper-­‐folding  to  investigate  the  properties  of  polygons  (p37).    

                           

THE  USE  OF  DYNAMIC  GEOMETRY  SOFTWARE  

Using  dynamic  geometry  packages  to  manipulate  geometrical  configurations  (DfEE,  1999,  p8).                    

Use  pre-­‐made  sketches  when  using  DGS  to  manipulate  data  rather  than  simply  inputting  data  or  designing  a  sketch  (p14).  Representing  mathematical  ideas  and  modelling  situations  using  DGS  (p16).  Using  DGS  to  express  and  organise  ideas  and  mathematical  thinking  using  oral,  visual,  and  written  forms  (p21).  DGS  can  be  used  to  support  various  methods  of  inquiry  in  mathematics  (p28).  Using  DGS  to  collect  data  which  can  then  be  tabulated  and  graphed  (p33).  Verify  parallel  and  perpendicular  lines  using  DGS  (p35).  Verify  through  investigation  with  DGS,  geometric  properties  and  relationships  involving  two-­‐dimensional  shapes  (p36).  Determining  the  maximum  area  of  a  rectangle  with  a  given  perimeter  by  using  DGS  (p36).  Using  DGS  to  investigate  and  describe  the  properties  and  relationships  of  the  interior  and  exterior  angles  of  triangles,  quadrilaterals,  and  other  polygons  (p37).  Using  DGS  to  investigate  the  properties  of  polygons  (p37).  Using  DGS  to  pose  questions  about  geometric  relationships,  investigating  them  and  presenting  findings  (p37).  Using  DGS  to  verify  a  geometric  statement  by  scientific  induction  or  falsify  through  a  counter-­‐example  (P37).  Using  DGS  to  develop  a  formula  for  the  midpoint  of  a  line  segment  (p49).  Using  DGS  to  develop  a  formula  for  the  length  of  a  line  segment  (p49).  Using  DGS  to  investigate  some  characteristics  and  properties  of  geometric  figures  (p49).  Using  DGS  to  investigate  the  similarity  of  triangles  (p51).    

TABLE  2:  Differences  in  curricula  with  respect  to  concrete  instructional  tools.  

23    

References  

Alshwaikh, J. (2009). Diagrams as interaction: The interpersonal (meta) function of geometrical diagrams. Proceedings of the British Society for Research into Learning Mathematics, 29(1), 1-6.

Baccaglini-Frank, A. & Mariotti. M. A. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225–253.

Baker, D., Hogan, P., Job, B. & Verity, I. P. (2001). Key maths 93 revised. Cheltenham: Nelson Thornes.

Baki, A. (2005). Archimedes with Cabri: Visualization and experimental verification of mathematical ideas. International Journal of Computers for Mathematical Learning, 10(3), 259–270.

Baki, A., Kosa, T. & Guven, B. (2011). A comparative study of the effects of using dynamic geometry software and physical manipulatives on the spatial visualisation skills of pre-service mathematics teachers. British Journal of Educational Technology, 42(2), 291–310.

Baroody, A. J. (1989) Manipulatives don’t come with guarantees, Arithmetic Teacher, 37(2), 4-5.

Beauchamp, G. A. (1982). Curriculum theory: Meaning, development, and use. Theory Into Practice, 21(1), 23–27.

Bereday, G. Z. F. (1964): Comparative methods in education. New York: Holt, Rinehart and Winston.

Bereiter, C. (1985). Toward a solution of the learning paradox. Review of Educational Research, 55(2), 201–226.

Boaler, J. (1998). Open and closed mathematics: Student experiences and understandings. Journal for Research in Mathematics Education , Vol. 29, No. 1, pp. 41-62. Reston, VA: National Council of Teachers of Mathematics.

Bobango, J. C. (1988).Van Hiele levels of geometric thought and student achievement in standard content and proof writing: The effect of phase-based instruction. Dissertation Abstracts International, 48, 1-238. (Doctoral dissertation, Pennsylvania State University).

Bray, M., Adamson, B. & Mason, M. (2007). Comparative education research: Approaches and methods. Hong Kong : Springer.

Brown, M. (2011). Going back or going forward? Tensions in the formulation of a new National Curriculum in mathematics. Curriculum Journal, 22(2), 151–165.

Burger, W. F. & Shaughnessy, J. M. (1986). Characterizing the van Hiele levels of development in geometry. Journal for Research in Mathematics Education, 31–48.

Carpenter, T. P. & Moser, J. M. (1982). The development of addition and subtraction problem-solving skills. Addition and Subtraction: A Cognitive Perspective, 9–24.

Choi-Koh, S. S. (1999). A student’s learning of geometry using the computer. The Journal of Educational Research, 92(5), 301–311.

Clements, D. H. (1999). Teaching length measurement: Research challenges. School Science and Mathematics, 99(1), 5–11.

Clements, D. H. (2000). “Concrete” Manipulatives, Concrete Ideas. Contemporary Issues in Early Childhood, 1(1), 45–60.

24    

Clements, D. H. (2001), Teaching and learning geometry. In J. Kilparick (Ed), Research Companion to the NCTM Standards for Mathematics. Reston, VA: National Council for Teachers of Mathematics.

Clements, D. H. (2007). Curriculum research: Toward a framework for “research-based curricula”. Journal for Research in Mathematics Education, 38(1), 35–70.

Clements, D. H. & Battista, M. T. (1992). Geometry and spatial reasoning. Handbook of Research on Mathematics Teaching and Learning: A Project of the National Council of Teachers of Mathematics, 420-464. New York: Macmillan Publishing Company Incorporated.

Crowley, M. L. (1987). The van Hiele model of the development of geometric thought. Learning and Teaching Geometry, K-12, 1–16.

Daniels, H., Hyde, A. & Zemelman, S. (1993). Best practice: New standards for teaching and learning in America's schools (2nd Edition). Portsmouth, NH: Heinemann. Dearling, C., Erdman, W., Ferneyhough, F., McCudden, B., McLaren, F., Meisel, R. & Speijer, J. (2006). Principles of mathematics 9. Toronto: McGraw-Hill Ryerson. Department for Education and Employment & Qualifications and Curriculum Authority, (1999a), Mathematics: The National Curriculum for England. London: Her Majesty’s Stationery Office.

Department for Education and Employment & Qualifications and Curriculum Authority. (1999b). The National Numeracy Strategy: framework for teaching mathematics from Reception to Year 6. London: Her Majesty’s Stationery Office.

Department for Education and Skills & Qualifications and Curriculum Authority. (2004). The National Curriculum: Handbook for secondary teachers in England. London: Her Majesty’s Stationery Office.

De Villiers, M. (1999), Rethinking proof with Geometer's Sketchpad. Emeryville, CA: Key Curriculum Press.

DiSessa, A., Hoyles, C. & Noss, R. (1995). Computers and exploratory learning. Berlin: Springer.

Duval, R. (2000). Basic issues for research in mathematics education. In Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 1, 55-69.

Ernest, P. S. (1994). Evaluation of the effectiveness and implementation of a math manipulatives project. Paper presented at the Annual Meeting of Mid-South Educational Research Association, 1-17. Retrieved from http://www.eric.ed.gov/PDFS/ED391675.pdf.

Fujita, T. & Jones, K. (2002). Opportunities for the development of geometrical reasoning in current textbooks in the UK and Japan. Proceedings of the British Society for Research into Learning Mathematics, 22(3), 79–84.

Fujita, T. & Jones, K. (2003). Interpretations of National Curricula: the case of geometry in Japan and the UK. Proceedings of the British Educational Research Association Annual Conference 2003, 1-10. Retrieved from http://eprints.soton.ac.uk/14686/.

Fuys, D., Geddes, D. & Tischler, R. (1988). The van Hiele model of thinking in geometry among adolescents. Journal for Research in Mathematics Education. Monograph, 3, 1-196

Gallagher, J. (2002). The learning theory of Piaget & Inhelder. Austin, TX: PRO-ED Publishing.

Goldenberg, E. P. & Cuoco, A. A. (1998). What is dynamic geometry? Designing Learning Environments for Developing Understanding of Geometry and Space, 351–368.

Goldin, G. A. (1998). Representational systems, learning, and problem solving in mathematics. The Journal of Mathematical Behavior, 17(2), 137–165.

25    

Gutiérrez, A. & Jaime, A. (1987). Estudio de las características de los niveles de van Hiele [Study of the characteristics of the van Hiele levels]. In Proceedings of the 11th Conference of the International Group for the Psychology of Mathematics, 3, 131-137.

Gutiérrez, A., Jaime, A. & Fortuny, J. M. (1991). An alternative paradigm to evaluate the acquisition of the van Hiele levels. Journal for Research in Mathematics Education, 22(3), 237–251.

Haggarty, L. & Pepin, B. (2002). An investigation of mathematics textbooks and their use in English, French and German Classrooms: who gets an opportunity to learn what? British Educational Research Journal, 28(4), 567–590.

Hanna, G. (1989). Proofs that prove and proofs that explain. In Proceedings of the 13th Conference of the International Group for the Psychology of Mathematics Education, 2, 45–51.

Hartshorn, R. & Boren, S. (1990). Experiential learning of mathematics: Using manipulatives. Charleston, West Virginia: ERIC Clearinghouse on Rural Education and Small Schools, Appalachia Educational Laboratory.

Healy, L. & Hoyles, C. (1999). Students’ performance in proving: competence or curriculum? European Research in Mathematics Education, 1, 153-167.

Hölzl, R. (2001). Using dynamic geometry software to add contrast to geometric situations–a case study. International Journal of Computers for Mathematical Learning, 6(1), 63–86.

Hoyles, C. & Jones, K. (1998). Proof in dynamic geometry contexts. Perspectives on the Teaching of Geometry for the 21st Century, 121-128. Dordrecht, Netherlands: Kluwer.

Jackson, P. W. (1992). Conceptions of curriculum and curriculum specialists. Handbook of Research on Curriculum, 3–40. Toronto: Maxwell Macmillan Canada.

Jaime, A. & Gutierrez, A. (1995). Guidelines for teaching plane isometries in secondary school. The Mathematics Teacher, 88(7), 591-597.

Jones, K. (2000). Providing a foundation for deductive reasoning: students’ interpretations when using Dynamic Geometry software and their evolving mathematical explanations. Educational Studies in Mathematics, 44(1-2), 55–85.

Kortenkamp, U. H. (1999). Foundations of dynamic geometry. PhD dissertation. Zürich, Switzerland: Swiss Federal Institute of Technology. Retrieved from http://kortenkamps.net/papers/1999/diss.pdf.

Laborde, C. (2001). The use of new technologies as a vehicle for restructuring teachers’ mathematics. Making Sense of Mathematics Teacher Education, 87–109.

Laborde, C., & Laborde, J. (2008). The development of a dynamical geometry environment. Research on Technology and the Learning and Teaching of Mathematics, 2, 31–52.

Laborde, J. (1995). What about a learning environment where Euclidean concepts are manipulated with a mouse? In Computers and Exploratory Learning. 241–262. Berlin: Springer Verlag.

Lawrie, C. (1999). An investigation into the assessment of students’ van Hiele levels of understanding in geometry. New South Wales: University of New England.

Lehrer, R., Jenkins, M. & Osana, H. (1998). Longitudinal study of children’s reasoning about space and geometry. Designing Learning Environments for Developing Understanding of Geometry and Space, 1, 137–167.

26    

Marrades, R. & Gutierrez, A. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics, 44(1), 87–125.

Mayberry, J. (1981). Investigation of the van Hiele levels of geometric thought in undergraduate preservice teachers. Athens, GA: University Microfilms International.

Mayberry, J. (1983). The van Hiele levels of geometric thought in undergraduate preservice teachers. Journal for Research in Mathematics Education, 14(1), 58–69.

Morgan, C. R. (1995). An analysis of the discourse of written reports of investigative work in GCSE mathematics. London: Institute of Education (University of London).

Morgan, C. R. (1996). “ The language of mathematics”: towards a critical analysis of mathematics texts. For the Learning of Mathematics, 16(3), 2–10.

Morgan, C. R. (2006). What does social semiotics have to offer mathematics education research? Educational Studies in Mathematics, 61(2), 219–245.

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.

National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.

Nesher, P. & Kilpatrick, J. (1990). Mathematics and cognition: A research synthesis by the International Group for the Psychology of Mathematics Education. Cambridge: Cambridge University Press.

Nomura, T. & Nohda, N. (1999). The effects of Cabri-geometry for exploring geometry in the classroom. In Proceedings of the 4th Asian Technology Conference on Mathematics. Guangzhou, China.

Noss, R. & Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and computers. Dordrecht: Kluwer Academic Publishers.

Nunes, T., Bryant, P. & Watson, A. (2009). Key understandings in mathematics learning paper 5: Understanding space and its representation in mathematics. London: Nuffield Foundation. Available at: www.nuffieldfoundation.org.

O’Halloran, K. L. (2003). Educational implications of mathematics as a multisemiotic discourse. Educational perspectives on mathematics as semiosis: From thinking to interpreting to knowing, 185–214.

Ontario Ministry of Education and Training (1997). The Ontario curriculum grades 1-8: Language. Toronto: Publications Ontario. Retrieved from www.edu.gov.on.ca. Ontario Ministry of Education. (2005). The Ontario curriculum grades 9 and 10. Toronto: Publications Ontario. Retrieved from www.edu.gov.on.ca.

Ontario Ministry of Education (2013). Trillium List. In Teachers. Retrieved June 23, 2013, from http://www.edu.gov.on.ca/trilliumlist. O’Toole, A. L. (1941): College geometry for secondary school teachers, The American Mathematical Monthly,48(5), 319-326. O’Shea, T. (2003). The Canadian mathematics curriculum from new math to the NCTM standards. In NCTM’s Mathematics History Volume. Reston, VA: National Council of Teachers of Mathematics.

Parzysz, B. (1988), Knowing vs seeing. Problems in the plane representation of space geometry figures, Educational Studies in Mathematics, 19(1), 79-92.

27    

Piaget, J. & Inhelder, B. (1956). The child’s concept of space. London: Routledge & Kegan Paul.

Povey, H. & Ransom, M. (2000). Some undergraduate students’ perceptions of using technology for mathematics: Tales of resistance. International Journal of Computers for Mathematical Learning, 5(1), 47–63.

Robertson, C. L., Cowell, B. & Olson, J. (1998). A case study of integration and destreaming: teachers and students in an Ontario secondary school respond. Journal of Curriculum Studies, 30(6), 691–717.

Oldknow, A. (2001). Teaching and Learning Geometry 11-19. London: Royal Society/Joint Mathematical Council.

Ruzic, R. & O’Connell, K. (2001). “Manipulatives” enhancement literature review. National Center on Accessing the General Curriculum. Retrieved on July 1, 2013, from http://www.cast.org/ncac/Manipulatives1666.cfm.

Scardamalia, M. & Bereiter, C. (1983). Child as co-investigator: Helping children gain insight into their own mental processes. Leaning and motivation in the classroom, 61-82.

Sowell, E. J. (1989). Effects of manipulative materials in mathematics instruction. Journal for Research in Mathematics Education, 20(5), 498–505.

Steffe, L. P. & Johnson, D. C. (1970). Problem solving performances of first-grade children. Journal for Research in Mathematics Education, 2(1), 50-64.

Suydam, M. N. & Higgins, J. L. (1977). Activity-based learning in elementary school mathematics: Recommendations from Research. Columbus, OH: ERIC Center for Science, Mathematics, and Environmental Education, College of Education, Ohio State University.

Usiskin, Z. (1982). Van Hiele levels and achievement in secondary school geometry. Chicago, IL: University of Chicago.

Van Hiele, P. (1984). The child’s thought and geometry. English translation of selected writings of Dina van Hiele-Geldof and Pierre M. van Hiele. Washington D.C.: NSF.

Vinner, S. & Hershkowitz, R. (1980). Concept images and common cognitive paths in the development of some simple geometrical concepts. In Proceedings of the 4th International Conference for the Psychology of Mathematics Education, 177–184.

Walker, D. F. (2002). Fundamentals of curriculum: Passion and professionalism. Mahwah, NJ: Lawrence Erlbaum Associates Incorporated Publishers.

Wittrock, M. (1974). Learning as a generative process. Educational Psychologist, 11(2), 87-95.