evaluation of earthquake resistance of non-ductile reinforced concrete building located in...

114
การประเมินกาลังต้านทานแผ่นดินไหวของอาคารคอนกรีตเสริมเหล็ก ปราศจากความเหนียวที่ตั ้งอยู ่ในเขตพื ้นที่เสี่ยงภัยของประเทศไทย นายเทวา บึทเนอร์ นางสาวบุญศิริ เพิ ่มสุวรรณ ปริญญานิพนธ์เล่มนี ้เป็นส่วนหนึ ่งของการศึกษาตามหลักสูตรวิศวกรรมศาสตรบัณฑิต สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยบูรพา ปีการศึกษา 2556

Upload: apirakq

Post on 06-Nov-2015

11 views

Category:

Documents


3 download

DESCRIPTION

This study emphasized to investigate the earthquake force resistance of non-ductile reinforced concrete building which constructed in Thailand. The 3-story RC building was adopted to evaluate the earthquake resistance capacity when it subjected to earthquake force. A 3-story RC building is assumed to locate in three intensity levels of Thailand’s hazard area, surveillance zone, first zone and second zone. The RC frame was modeled as a two-dimensional. The moment-rotation relationship consists of yielding moment, capping moment and capping rotation obtained in plastic hinge model are determined from Ibarra and Krawinkler (2005). The capacity curve indicated that the 3-story RC building remains elastic behavior when the earthquake force regarded as base shear subjected to the building not more than 16000 kilogram forces and it can resist the maximum base shear in inelastic range around 19000 kilogram forces before collapse. When the building subjected to the earthquake forces from three intensity levels of Thailand’s hazard area, although the global behavior the building remain elastic but also the damage due to concrete crushing and/or rebar yielding are occurred in local behavior of beam and column.

TRANSCRIPT

  • 2556

  • EVALUATION OF EARTHQUAKE RESISTANCE OF NON-DUCTILE REINFORCED CONCRETE BUILDING

    LOCATED IN THAILANDS HAZARD AREA

    TEWA BUETTNER

    BUNSIRI PERMSUWAN

    This thesis is part of the Bachelor of Engineering course. Department of Civil Engineering, Faculty of Engineering

    Burapha University 2013

  • II

    3 3 1 2 3 (pushover analysis) 3 3 (.. 2550) 3 1 15224.48 4.74 2 14315.26 4.34 7837.67 2.35 3 19688.38 18.73 3 3 3 : , , ,

    ,

  • III

    Abstract

    This study emphasized to investigate the earthquake force resistance of non-ductile reinforced concrete building which constructed in Thailand. The 3-story RC building was adopted to evaluate the earthquake resistance capacity when it subjected to earthquake force. A 3-story RC building is assumed to locate in three intensity levels of Thailands hazard area, surveillance zone, first zone and second zone. The RC frame was modeled as a two-dimensional. The moment-rotation relationship consists of yielding moment, capping moment and capping rotation obtained in plastic hinge model are determined from Ibarra and Krawinkler (2005). The capacity curve indicated that the 3-story RC building remains elastic behavior when the earthquake force regarded as base shear subjected to the building not more than 16000 kilogram forces and it can resist the maximum base shear in inelastic range around 19000 kilogram forces before collapse. When the building subjected to the earthquake forces from three intensity levels of Thailands hazard area, although the global behavior the building remain elastic but also the damage due to concrete crushing and/or rebar yielding are occurred in local behavior of beam and column. Keywords : Nonlinear static procedure, pushover analysis, plastic hinge, Thailands hazard

    area

  • IV

    . . .

  • V

    ..................................................................................................................... ............... II Abstract..................................................................................................................................... III ..................................................................................................................... IV ....................................................................................................................................... V .................................................................................................................................. VII ............................................................................................................................. X 1 1.1 .................................................................................. 1 1.2 ..................................................................................... 2 1.3 .................................................................................................. 2 1.4 .................................................................................... 2 2 2.1 ................................................. 3 2.2 Plastic hinge............................................................................... 4 2.3 Sway mechanism 9 2.4 Capacity design................................................ 10 2.5 Flexural Over-strength.......................................................................................... 14 2.6 ......................... 15 2.7 ..... 22 2.8 ............. 29 2.9 ................................................................................................. 37

  • VI

    ()

    3 3.1 ....................................................................................... 39 3.2 ............................................................................................ 47 3.3 ............................................................................ 55 4 4.1 .................................. 61 4.2 ..... 65 4.3 1............ 68 4.4 2............ 71 5 5.1 ................................................................................................... 74 5.2 ....................................................................................................... 75 ......................................................................................................................... 76 ......................................................................................................................... 77 . Moment Chord rotation.................... 79 . ............... 89 ...................................................................................................... 94

  • VII

    2.1 1 ............ 4 2.2 ......................................................................................... 5 2.3 . 6 2.4 .............................. 7 2.5 plastic hinge........ 8 2.6 .......... 11 2.7 ........ 11 2.8 Beam sidesway mechanism Column sidesway mechanism 12 2.9 ............................................................ 12 2.10 ... .................. 16 2.11 - ......................................... 17 2.12 Bauschinger ......................................................... 17 2.13 R-5 ( l/d = 2.75)............................. 18 2.15 19 2.16 ................................................................................. 20 2.17 .................................................................. 21 2.18 -...................... 21 2.19 .......................................... 22 2.20 .................................................. 27 3.1 3 ................................................................................................... 40 3.2 1................................................................................................ 41 3.3 ............................................................................................ 42 3.4 2................................................................................................ 43 3.5 3................................................................................................ 44 3.6 ........................................................................................ 45 3.7 ............................................................................ 46

  • VIII

    ()

    3.8 ............................................................................. 46 3.9 ....................................................................... 47 3.10 SD30............................................. 48 3.11 SR24............................................. 49 3.12 GB3.................................................................................. 50 3.13 B2..................................................................................... 50 3.14 B4..................................................................................... 51 3.15 - 2......................................................... 51 3.16 2 - 3............................................................. 52 3.17 3-...................................................... 53 3.18 .............................................................. 53 3.19 ................................................................... 54 3.20 ............................................... 54 3.21 Dead load................................................... 55 3.22 Live load.................................................... 56 3.23 Super Impose Dead load............................ 56 3.24 ....... 59 3.25 1............... 60 3.26 2............... 60 4.1 .............................................................................. 62 4.2 ............................................................ 64 4.4 ....................................... 65 4.5 ........................................ 66 4.6 ....................... 67 4.7 1............................................... 68 4.8 1................................................ 69 4.9 1............................... 70

  • IX

    ()

    4.10 2................................................ 71 4.11 2................................................. 72 4.12 2................................ 73

  • X

    2.1 ..................................... 14 3.1 ............................... 57 3.2 (Base Shear)...................................................................................... 57 3.3 58 3.4 58 1 3.5 59 2

  • 1

    1.1 17 2538

    () 2537 5.1 25 50 12 2538 7 - 250

    (.. 2550) Pushover Analysis

  • 2

    1.2 -

    -

    1.3 - 3 2

    -

    - 1 2 (..2550)

    - Frame 2 - Pushover Analysis SAP2000 V.15.0.0

    1.4 - 3

    - 3

    - 3

  • 2

    2.1

    (Ground motion) (Damping) (Elastic Response Spectrum) 2.1 1 (Elastic)

  • 4

    2.1 1

    (Elastic) (Inelastic) ( )

    2.2 Plastic hinge

  • 5

    (Ductility ratio) 2.2

    my

    (2.1)

    m ()

    y

    2.2

    (Flexural mode) plastic hinge 2.3

  • 6

    2.3 2 2.2.1 A

    Fe (Kinetic Energy) (absorb) (Potential energy) 2.4

    2.2.2 B

    = Fi Fe (absorb)

  • 7

    (dissipate) (Plastic hinge) 2.5 plastic hinge

    2.4 ( : , : )

    2.2 plastic

    hinge (Curvature ductility) 2.5

    m

    y

    (2.2)

    ()

    1

    3 / 1 0.5 /1

    p pl l l l

    (2.3)

    plastic hinge l

    plastic hinge

  • 8

    0.08 0.15p b yl d fl ( MPa , 1 ) (2.4)

    2.5 plastic hinge plastic hinge (Ductile flexural yielding) crushing (shear failure) (bond pull-out failure) crushing plastic hinge (Cyclic loops) 2.5 1 2.5 - (Elasto-plastic)

  • 9

    2.3 Sway mechanism

    2.6 2.7 plastic hinge

    plastic hinge 3 plastic hinge 2 2.8 plastic hinge Beam sidesway mechanism Beam hinge mechanism plastic hinge Column sidesway mechanism Column hinge mechanism

    Beam sidesway mechanism plastic hinge Column sidesway mechanism plastic hinge plastic hinge column sidesway mechanism (curvature ductility) beam sway mechanism beam sway mechanism beam sidesway mechanism

    Column sidesway mechanism soft-story mechanism beam sidesway mechanism plastic hinge capacity design approach

  • 10

    2.4 Capacity design plastic hinge

    plastic hinge - (Weak beam-strong column)

    2.4.1 1 (Design flexural capacity

    strength reduction factor ) ( 2.6 2.7)

    2.4.2 2

    plastic hinge plastic hinge ACI 2.9 Capacity design method Prof. Paulay, Pristley and Park Canturbury

    1 2

    2

    n n ue

    M M W L

    LV

    (2.5)

    1nM 2nM uW L

  • 11

    2.6 2.7

  • 12

    2.8 Beam sidesway mechanism Column sidesway mechanism

    2.9

    2.4.3 3

    plastic hinge ACI (Special moment resisting frame)

  • 13

    6

    5c gM M

    (2.6)

    cM

    gM

    c gM M (2.7)

    2.4.4 4

    (Confinement) (Buckling) ACI

    2.4.5 5 plastic hinge

    plastic hinge -

  • 14

    2.5 Flexural Over-strength plastic hinge

    flexural over-strength flexural over-strength ( ) nominal strength ( )

    0 0 nM M (2.8) over-strength factor

    plastic hinge

    2.5.1 SR24, SD30, SD40 1 2.1

    Steel grade

    (ksc) (ksc) AIT

    % SR24 2,400 3,600 50 SD30 3,000 3,870 29 SD40 4,000 4,800 20

    2.5.2 (T-beam action)

    2.5.3 strain hardening 2.5.4 (confinement)

  • 15

    2.6 2.6.1

    (a/d) a/d (flexure-dominated beams) a/d (Shear-dominated beams)

    - (Flexure-dominated beams) 2.10 ... a/d = 4.5

    (stiffness) 5 stiffness reload Bauschinger effect 2.11 2.12 buckling

    - (Shear-dominated beams) 2.13 2.14 ...

    a/d =2.75 ( R-5) a/d = 4.41 ( R-6) R-5 R-6 R-5 R-6 stiffness reload R-6 R-5 stiffness reload

  • 16

    2.15 () 15d Sliding shear failure a/d

    2.10 ...

  • 17

    2.11 -

    2.12 Bauschinger

  • 18

    2.13 R-5 ( l/d = 2.75)

    2.14 R-6 ( l/d = 4.46)

  • 19

    2.15 2.6.2

    crush P- effect

  • 20

    2.16

    2.6.3

    () unbalanced moment unbalancedmoment unbalanced moment 16

    1 2 j y ys sV A f A f H (2.9)

    joint shear failure joint shear failure 90 2.17 (Bond failure) (slip)

  • 21

    bond pull-outfailure joint shear failure bond pull-out failure 2.18 joint shear failure bond pull-out failure capacity design -

    2.17

    2.18 -

  • 22

    2.7 (nM )

    yM , y , /c yM M , ,cap pl , pc , , c c capping

    /c yM M pc sK cK ,/ /s e y cap pl c y yK K M M M ( / ) /c e y pc c yK K M M yM cM capping hysteretic strength hysteretic stiffness

    2.19

    - nyM M

    u s udk

  • 23

    (equivalent rectangular stress distribution) Whitney 0.85 'cf 1c

    1 uk d 1 0.85 280'c kscf (2.10)

    1' 280

    0.85 0.0570

    cf

    280 560'cksc kscf (2.11)

    1 0.65 560'c kscf (2.12) sf s sE yf sE

    =

    0.85 'c s sabf A f (2.13)

    0.85 '

    s s

    c

    A f

    f ba (2.14)

    ( nM )

    T C ( udj ) 2

    ad

    T

  • 24

    2

    n u s s

    aT j d A f dM

    (2.15)

    C

    2

    0.85 'n u ca

    C j d ab dM f

    (2.16)

    ( Modulus of Rupture : 2.0 'r cff kg/cm

    2) (section uncracked) (strain distribution) a 2.14 2.15 2.16 nM

    1 0.59'

    sn s s

    c

    fM A f d

    f

    2 1 0.59

    '

    cs

    c

    ff

    fbd

    (2.17)

    sAbd

    bd (yielding failure) s y sf

    yf ( 5600 kg/cm2 ACI ...) 2.14 2.15 s yf f

    0.85 ' 0.85 '

    ys s

    c c

    fA fd

    f b fa

    cm (2.18)

  • 25

    2

    n u s y

    aT j d A f dM

    kg-cm (2.19)

    1 0.59'

    y

    n s y

    c

    fA f d

    fM

    kg-cm (2.20)

    2 1 0.59'

    y

    n y

    c

    ff

    fM bd

    kg-cm (2.21)

    n s y uf j dM A 2n ubdM R kg-cm (2.22)

    1 0.59'

    y

    u

    c

    f

    fj

    1 0.59'

    y

    u y

    c

    ff

    fR

    (crushing failure) u 0.003 mm/mm sf s y

    = 0.85 'c s sab A ff = s sE bd (2.23)

    1 1 uc k da

    /s u d c c (2.21)

    1/ 0.85 'u s cE fm 2 0

    u um k mk

    2

    2 2u

    m mmpk

    (2.24)

  • 26

    uc k d s (2.23) (2.15) (balanced failure) u = 0.003 mm/mm s = y s yf f

    b b

    b ( balanced steel ratio )

    bc 0.003u mm/mm s y

    /

    0.003

    y s b

    b

    f E d c

    c

    0.003

    0.003b

    y

    s

    df

    E

    c

    10.003

    0.003b

    y

    s

    df

    E

    a

    10.85 ' 0.003

    0.003 /

    cb

    y y s

    f

    f f E

    (2.25)

    62.04 10sE kg/kg

    10.85 ' 6,120

    6,120

    cb

    y y

    f

    f f

    (2.26)

    2

    bn s y

    aA f dM

    2 1 0.59

    '

    y

    n b y b

    c

    fM bd f

    f

    kg-cm (2.27)

  • 27

    -

    Interaction Diagram

    eh ,

    0.85 '

    y

    c

    fm

    f , tm 2.20 nP

    n nM Pe (2.28)

    2.20

  • 28

    pc

    1.02(0.76)(0.031) (0.02 40 ) 0.10vpc sh (2.29) v ( / ' )g cP A f

    sh

    cM

    0.01 '/ (1.25)(0.89) (0.91) units c

    c fv

    c yM M (2.30) ,( / ' )sh y w cf f v ( / ' )g cP A f 'cf MPa

    unitc 1 'cf yf MPa 6.9 ksi y yield ,

    , , ,y y f y b y s (2.31) ,y f yield ,y b yield ,y s yield ,cap pl ,cap pl plastic rotation capacity

    0.01 ' 0.10.43 10.0

    , 0.12(1 0.55 )(0.16) (0.02 40 ) (0.54) (0.66) (2.27)units c nc f Sv

    cap pl sl sha (2.32)

  • 29

    sla = 1

    sla = 0

    v ( / ' )g cP A f

    nS 'cf

    sh ,cap pl

    unitc 1 'cf yf MPa 6.9 ksi

    2.8 .. 2550 5 (3) .. 2522 8 (3) .. 2522 ( 3) .. 2543 29 32 33 41 42 43 1 49 (.. 2540) .. 2522 2 1

  • 30

    2 3 (1) 1 () () () () () () () () () (2) 2 () () () ()

  • 31

    () () () () () 4 3 (Limited Ductility) 6 (.. 2527) .. 2522 5 6 6

  • 32

    (1)

    V = ZIKCSW

    V Z 7 I 8 K C 11 S 12 W 25 (2) ()

    Ft = 0.07 TV

    Ft 0.25 V T 0.7 Ft 0 ()

    1

    ( )t x xx n

    i i

    i

    V F w hF

    wh

    tF xF x

  • 33

    T 10

    V ,x iw w x i ,x ih h x i

    i = 1 x = 1

    1

    n

    i i

    i

    wh

    1 n

    n 7 (Z) 1 0.19 2 0.38 8 (I)

    I

    (1) 3 (2) (3)

    1.50 1.25 1.00

  • 34

    9 (K) K

    (1) (Shear Wall) (Braced Frame) (2) (Ductile Moment-Resisting Frame) (3) () 25 () () (Rigidity) (4) K C 0.12 0.25 () (1) (2) (3) (4)

    1.33

    0.67

    0.80

    2.5

    1.0

    10 (T) (1)

    0.09 nhTD

  • 35

    (2)

    T = 0.10 N

    nh

    D N 11 (C)

    1C =

    15 T

    0.12 0.12 12 (S)

    S (1) (2) (3) (4)

    1.0 1.2 1.5 2.5

    (Shale) 60 60

  • 36

    9 (Undrained Shear Strength) 24 (2,400 ) 9 C S 0.14 0.14 0.26 0.26 13 (Story Drift) 6 (1) (2) 0.5 14 : 49 (.. 2540) .. 2522

  • 37

    2.9 Krawinkler Seneviratna (1998) 2, 5, 10, 20, 30 40 2 8 4 ( Northridge) 9 FEMA 273 5 5 5 Williams Albermani (2003) 3, 6, 10 (Nonlinear Static Procedure, NSP) FEMA 356 MPA NL RHA FEMA 356 MPA MPA FEMA 356 NL RHA Chintanapakdee Chopra (2003) 3, 6, 9, 12, 15 18 1, 1.5, 2, 4 6 20 MPA NL RHA

  • 38

    MPA NL RHA 2 3 NL RHA MPA 30 (Response Spectrum Analysis , RSA) (Elastic) (Underrestimate) ()

  • 3

    3

    SAP2000 1 2 ..2550

    3.1 3.1.1

    - 3 12.85 m - 200 kg./m.2

    - ACI 318-89

    - 10 cm - 3 GB3, B2 B4 0.20.4m 3.6

    - 3 - 2 0.30.3m 2- 3 0.250.25m 3 - 0.20.2m 3.7

  • 40

    3.1 3

  • 41

    3.2 1

  • 42

    3.3

  • 43

    3.4 2

  • 44

    3.5 3

  • 45

    3.6

  • 46

    3.7

    3.8

  • 47

    3.1.2 - 210 kg/cm2

    - 2 SR24 SD30 2,400 kg/cm2 3,000 kg/cm2

    3.2 3.2.1

    3.9

  • 48

    3.10 SD30

  • 49

    3.11 SR24

  • 50

    \ 3.2.2 ( Section Properties) - (Frame Properties)

    3.12 GB3

    3.13 B2

  • 51

    3.14 B4

    3.15 - 2

  • 52

    3.16 2 - 3

  • 53

    3.17 3-

    3.18

  • 54

    3.2.3 (hinge Properties)

    3.19

    3.20

  • 55

    3.3 3.3.1 200 kg/m2 3.21 , 3.22 3.23

    3.21 Dead load

  • 56

    3.22 Live load

    3.23 Super Impose Dead load

  • 57

    3.3.2 ..2550

    - 3.1 ( W )

    (kg)

    3,168 2,304 11,520 0 116 17,108

    3 6,600 2,304 11,520 4,800 240 25,464 2 6,600 2,304 11,520 4,800 375 25,599

    5,808 2,304 11,520 4,800 476 24,908 1 5,808 2,304 11,520 4,800 476 24,908

    117,987 (Base Shear)

    V ZIKCSW 3.2 (Base Shear)

    zone Z I K C S W(kg) V(kg) 0.19 1 1 0.12 1.2 117987 3138

    1 0.19 1 1 0.12 2.5 117987 5829 2 0.38 1 1 0.12 1 117987 5380

  • 58

    -

    1

    ( )t x xx n

    i i

    i

    V F w hF

    wh

    3.3 ( xF )

    ( )xh m ( )xw kg x xh w ( )tF kg ( )V kg ( )xF kg

    11.65 17,108 199,308 0 3,266 971 3 8.65 25,464 220,264 0 3,266 1,074 2 5.65 25,599 144,634 0 3,266 705

    2.95 24,908 73,479 0 3,266 358 1 0.25 24,908 6,227 0 3,266 30

    3.4 ( xF ) 1

    ( )xh m ( )xw kg x xh w ( )tF kg ( )V kg ( )xF kg 11.65 17,108 199,308 0 6,066 1,804

    3 8.65 25,464 220,264 0 6,066 1,994 2 5.65 25,599 144,634 0 6,066 1,309

    2.95 24,908 73,479 0 6,066 665 1 0.25 24,908 6,227 0 6,066 56

  • 59

    3.5 ( xF ) 2

    3.24

    ( )xh m ( )xw kg x xh w ( )tF kg ( )V kg ( )xF kg 11.65 17,108 199,308 0 5,599 1,655

    3 8.65 25,464 220,264 0 5,599 1,840 2 5.65 25,599 144,634 0 5,599 1,208

    2.95 24,908 73,479 0 5,599 614 1 0.25 24,908 6,227 0 5,599 52

  • 60

    3.25 1

    3.26 2

  • 4

    1 2 Pushover Analysis (Capacity Curve)

    4.1 4.1.1 (Capacity curve) 4.1 19,688.38 kgf

    18.73 cm 1 15,224.48 kgf 4.74 cm 2 14,315.26 kgf 4.34 cm 7,837.67 kgf 2.35 cm

  • 62

    4.1

    4.1.2 ( Plastic hinges mechanism )

    - Yield (Y) - Immediate Occupancy (IO)

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    18000

    20000

    22000

    0 10 20 30 40 50 60 70 80 90

    Base

    Reac

    tion (

    kgf)

    Displacement (cm)

    Pushover Curve

    1

    2

    (2.35,7837.67)

    (4.34,14315.26) (4.74,15224.48) ()

    ()

    () ()

  • 63

    - Life Safety (LS) 75%

    - Collapse Prevention (CP) 90%

    - Failure (F)

    4.1 4.2 4.48 cm () 14,766.41 kgf 1 Y IO 2 IO 3 Y Elastic

    6.73 cm () 17,898.18 kgf 1 2 Y IO 3 IO Yield Elastic

    18.73 cm () 19,688.38 kgf 1 3 Y IO LS F 2 IO LS Y 1 IO LS 2 IO Inelastic

    23.92 cm () 19,428.76 kgf 1 Y IO F 2 LS F 3 IO Y 1 IO , LS F Y 2 IO Inelastic

  • 64

    () ()

    () ()

    Yield Immediate Occupancy Live Safety Collapse Prevention Failure

    4.2

  • 65

    4.2 4.2.1 (Capacity curve) 1 2 3 30 kg 358 kg 705 kg 1,074 kg 971 kg 4.4 7,837.67 kgf 2.35 cm 4.5

    4.4

  • 66

    4.5

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    18000

    20000

    22000

    0 10 20 30 40 50 60 70 80 90

    Base

    Reac

    tion (

    kgf)

    Displacement (cm)

    Pushover Curve

    (2.35,7837.67)

  • 67

    4.2.2 (Plastic hinges mechanism) 4.5 4.6 () 1 2 3 Y IO

    () ()

    () ()

    Yield Immediate Occupancy Live Safety Collapse Prevention Failure

    4.6

  • 68

    4.3 1 4.3.1 (Capacity Curve)

    1 1 2 3 56 kg 665 kg 1,309 kg 1,994 kg 1,804 kg 4.7 15,224.48 kgf 4.74 cm 4.8

    4.7 1

  • 69

    4.8 1

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    18000

    20000

    22000

    0 10 20 30 40 50 60 70 80 90

    Base

    Reac

    tion (

    kgf)

    Displacement (cm)

    Pushover Curve

    1 (4.74,15224.48)

  • 70

    4.2.2 (Plastic hinges mechanism) 4.8 4.9

    () 1 2 3 Y IO

    () ()

    () ()

    Yield Immediate Occupancy Live Safety Collapse Prevention Failure

    4.9 1

  • 71

    4.4 2 4.4.1 (Capacity Curve)

    2 1 2 3 52 kg 614 kg 1,208 kg 1,840 kg 1,665 kg 4.10 14,315.26 kgf 4.34 cm 4.11

    4.10 2

  • 72

    4.11 2

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    18000

    20000

    22000

    0 10 20 30 40 50 60 70 80 90

    Base

    Reac

    tion (

    kgf)

    Displacement (cm)

    Pushover Curve

    2

    (4.34,14315.26)

  • 73

    4.4.2 (Plastic hinges mechanism) 4.11 4.12

    () 1 2 3 Y IO

    () ()

    () ()

    Yield Immediate Occupancy Live Safety Collapse Prevention Failure

    4.12 2

  • 5

    3 Pushover Analysis

    5.1 5.1.1 (Earthquake intensity)

    - 1 (Base Shear) 5,829 kgf

    - 2 (Base Shear) 5,380 kgf

    - (Base Shear) 3,138 kgf

    1

    5.1.2 (Performance of reinforced concrete frames)

    - 19,688.38 kgf 18.73 cm

    - 1 15,224.48 kgf 4.74 cm

    - 2 14,315.26 kgf 4.34 cm

    - 7,837.67 kgf 2.35 cm

    1 2

  • 75

    5.1.3 ( Plastic hinges mechanism ) - 1 2 1 2 3 Yield (Y) Immediate Occupancy (IO)

    5.2 - 1 2

    -

    - (S) (S)

    - (..2550)

  • [1.] , .. 2550 [2.] , , .. 2546 [3.] , , 2541 [4.] , , 5 .. 2554 [5.] Curtis B Haselton and Gregory G. Deierlein, Assessing Seismic Collapse Safety of Modern Reinforce Concrete Moment Frame Buildings, Department of Civil and Environmental Engineering Stanford University, 2007

  • 77

    1. 82/3 5 20260 E-mail [email protected] 2. 90 11 27260 E-mail [email protected]

  • .

    Moment Chord rotation

  • 80

    Moment Chord rotation

    GB3 ( Single reinforcement )

    b = 20 cm , h = 40 cm , d = 36.3 cm , 'd = 3.7 cm , 1 = 0.85

    'cf = 210 kg/cm2 210 9.81 20.6

    100

    Mpa

    yf = 3,000 kg/cm2 3,000 9.81 294.3

    100

    Mpa

    22 0.64 0.0014

    20 20

    shsh

    A

    sb

    23 1.23.39

    4sA

    cm2 ,

    22 1.2' 2.26

    4sA

    cm2

    0.85 'cC f ba 0.85 210 20 a

    s yT A f 3.39 3000 10,170 kg

    T C ; 101700.85 210 20

    a

    = 2.85 cm

    2n

    aM T d

    2.8510170 36.32

    354,679 kg-cm

    3,547 3547 kg-m

    0.9 3,547y nM M = 3,192 kg-m

    3,192 9.81

    1,000yM

    31.32 kN-m

  • 81

    'g c

    Pv

    A f 0

    20 40 210

    = 0 ; 0P kg

    0.01 '1.25 (0.89) (0.91) unit c

    c fvc

    y

    M

    M

    0 0.01(1)(20.6)31.32 1.25 (0.89) (0.91)cM = 38.39 kN-m

    cM = 38.39 1,000

    9.81

    = 3,914 kg-m

    ,cap pl

    0.01 ' 0.010.43 10.0

    , 0.12(1 0.55 )(0.16) (0.02 40 ) (0.54) (0.66) (2.27)units c nc f sv

    cap pl sl sha

    0 0.43 0.01(1)(20.6) 0.01(21.44) 10.0(0.0078)0.12(1 0.55(1))(0.16) (0.02 40(0.0014) (0.54) (0.66) (2.27)

    0.0237 redians

    pc

    1.02(0.76)(0.031) (0.02 40 ) 0.10vpc sh

    0 1.02(0.76)(0.031) (0.02 40(0.0014)) 0.10

    0.0549 redians 0.10

    ,cap pl pc = 0.0237 + 0.0549 = 0.0786 redians

    1 Moment Chord rotation GB3

    Point Moment ( kg-m ) Chord rotation ( redians ) A 0 0 B 3,192 0 C 3,914 0.0237 D 0 0.0786 E 0 0.0786

  • 82

    B2 ( Double reinforcement )

    b = 20 cm , h = 40 cm , d = 36.1 cm , 'd = 3.9 cm , 1 = 0.85

    'cf = 210 kg/cm2 210 9.81 20.6

    100

    Mpa

    yf = 3,000 kg/cm2 3,000 9.81 294.3

    100

    Mpa

    22 0.64 0.0014

    20 20

    shsh

    A

    sb

    22 1.64.02

    4sA

    cm2 ,

    22 1.6' 4.02

    4sA

    cm2

    1

    6,120 '

    1.7 '

    s s y

    c

    A A fR

    f b

    6,120 4.02 4.02 3,000

    1.7 210 20 0.85

    = 2.07

    1

    6,120 ' '

    0.85 '

    s

    c

    d A

    f b

    6,120 3.9 4.02

    0.85 210 20 0.85

    = 31.62

    2c R R 22.07 2.07 31.62 = 3.92 cm

    1a c = 0.853.92 = 3.33 cm

    '' 0.003s s

    c df E

    c

    63.92 3.9 0.003 2.04 103.92

    = 31.22 kg/cm2

    0.85 ' ' '( ')2

    n c s s

    aM f ba d A f d d

    3.330.85 210 20 3.33 36.1 4.02 31.22 36.1 3.92

    413,408 kg-cm

    4,134 kg-m

  • 83

    0.9 4,134y nM M = 3,721 kg-m

    3,721 9.81

    1,000yM

    36.50 kN-m

    'g c

    Pv

    A f 0

    20 40 210

    = 0 ; 0P kg

    0.01 '1.25 (0.89) (0.91) unit c

    c fvc

    y

    M

    M

    0 0.01(1)(20.6)36.50 1.25 (0.89) (0.91)cM = 44.75 kN-m

    cM = 44.75 1,000

    9.81

    = 4,561 kg-m

    ,cap pl

    0.01 ' 0.010.43 10.0

    , 0.12(1 0.55 )(0.16) (0.02 40 ) (0.54) (0.66) (2.27)units c nc f sv

    cap pl sl sha

    0 0.43 0.01(1)(20.6) 0.01(21.44) 10.0(0.0111)0.12(1 0.55(1))(0.16) (0.02 40(0.0014) (0.54) (0.66) (2.27)

    0.0243 redians

    pc

    1.02(0.76)(0.031) (0.02 40 ) 0.10vpc sh

    0 1.02(0.76)(0.031) (0.02 40(0.0014)) 0.10

    0.0549 redians 0.10

    ,cap pl pc = 0.0243 + 0.0549 = 0.0792 redians

  • 84

    2 Moment Chord rotation B2

    Point Moment ( kg-m ) Chord rotation ( redians ) A 0 0 B 3,721 0 C 4,561 0.0243 D 0 0.0792 E 0 0.0792

    C5A

    b = 20 cm , h = 20 cm , d = 20 3.9 = 16.1 cm , 'd = 3.9 cm

    'cf = 210 kg/cm2 210 9.81 20.6

    100

    Mpa

    yf = 3,000 kg/cm2 3,000 9.81 294.3

    100

    Mpa

    22 0.64 0.0014

    20 20

    shsh

    A

    sb

    1

    0.003

    0.003b

    y

    s

    da k

    f

    E

    6

    0.85 0.003 16.1

    30000.003

    2.04 10

    = 9.18 cm

    0.85 'b b cP a f b = 9.180.8521020 = 32,773 kg

    0.85 ' '( ')2

    '

    bc b y s

    b

    b

    af a b d f A d d

    eP

    29.180.85 210 9.18 20 16.1 3,000 2 1.6 (16.1 3.9)2 4

    '32,773

    be

  • 85

    'be = 16 cm

    ( ')'

    2b b

    d de e

    16.1 3.916

    2

    = 9.9 cm

    0.85 '

    y

    c

    fm

    f 3,000

    0.85 210

    = 16.8

    9.9

    20

    e

    h = 0.495

    24 1.64

    20 16.1

    = 0.025

    16.8 0.025m = 0.42

    0.495eh , 0.336m 1

    1

    0.43

    3

  • 86

    1 0.43'

    n

    c

    P

    bhf

    nP = 0.432020210 = 36,120 kg

    n nM Pe = 36,1200.099 = 3,576 kg-m

    y nM M = 0.93,576 = 3,218 kg-m

    3,218 9.81

    1,000yM

    = 31.57 kN-m

    9,589

    ' 20 20 210g c

    Pv

    A f

    = 0.11 ; 9,859P kg

    0.01 '1.25 (0.89) (0.91) unit c

    c fvc

    y

    M

    M

    0.11 0.01(1)(20.6)31.57 1.25 (0.85) (0.91)cM = 38.21 kN-m

    cM = 38.21 1,000

    9.81

    = 3,895 kg-m

    ,cap pl

    0.01 ' 0.010.43 10.0

    , 0.12(1 0.55 )(0.16) (0.02 40 ) (0.54) (0.66) (2.27)units c nc f sv

    cap pl sl sha

    0.11 0.43 0.01(1)(20.6) 0.01(21.44) 10.0(0.025)0.12(1 0.55(1))(0.16) (0.02 40(0.0014) (0.54) (0.66) (2.27)

    0.0223 redians

    pc

    1.02(0.76)(0.031) (0.02 40 ) 0.10vpc sh

    0.11 1.02(0.76)(0.031) (0.02 40(0.0014)) 0.10

    0.0374 redians 0.10

  • 87

    ,cap pl pc = 0.0223 + 0.0374 = 0.0597 redians

    3 Moment Chord rotation C5A

    Point Moment ( kg-m ) Chord rotation ( redians ) A 0 0 B 3,218 0 C 3,895 0.0223 D 0 0.0597 E 0 0.0597

    4 yM , y , cM , ,cap pl , ,cap pl pl

    Column yM

    (kg-m) y

    (radians) cM

    (kg-m) ,cap pl

    (radians) ,cap pl pl

    (radians) GB3 3,192 0 3,914 0.0237 0.0786 B2 3,721 0 4,561 0.0243 0.0792 B4 6,773 0 8,304 0.0257 0.0806

  • 88

    5 yM , y , cM , ,cap pl , ,cap pl pl

    Column yM

    (kg-m) y

    (radians) cM

    (kg-m) ,cap pl

    (radians) ,cap pl pl

    (radians) C5-A 3,218 0 3,895 0.0223 0.0597 C5-B 3,218 0 3,828 0.0169 0.0391 C5-C 3,218 0 3,868 0.0200 0.0504 C5-D 3,218 0 3,904 0.0230 0.0629 C4-A 6,233 0 7,468 0.0174 0.0407 C4-B 6,233 0 7,361 0.0138 0.0289 C4-C 6,233 0 7,421 0.0157 0.0350 C4-D 6,233 0 7,421 0.0157 0.0350 C3-A 7,709 0 9,212 0.0267 0.0674 C3-B 7,709 0 9,084 0.0214 0.0482 C3-C 7,709 0 9,159 0.0243 0.0585 C3-D 7,709 0 9,255 0.0287 0.0755 C2-A 7,709 0 9,116 0.0226 0.0524 C2-B 7,709 0 8,979 0.0178 0.0368 C2-C1 7,709 0 9,148 0.0239 0.0569 C2-C2 7,709 0 9,137 0.0235 0.0554 C2-D 7,709 0 9,223 0.0272 0.0693 C1-A 7,709 0 9,010 0.0188 0.0398 C1-B 7,709 0 8,844 0.0140 0.0261 C1-C 7,709 0 9,021 0.0192 0.0410 C1-D 7,709 0 9,159 0.0243 0.0585

  • .

  • 90

    (Base Shear)

    V ZIKCSW

    - ( Z ) Z = 0.19 1 Z = 0.19 2 Z = 0.38

    - ( I ) I = 1.00

    - ( K ) K = 1.00

    - ( C )

    ( T )

    0.09 nhTD

    0.09 11.650.30

    12.00T s

    1

    C = 15 T

    1C = 0.122

    15 0.30

    0.12 0.12 C = 0.12

  • 91

    - ( S ) S = 1.2 1 S = 2.5 2 S = 1.0

    - (W)

    6 ( W )

    (kg)

    3,168 2,304 11,520 0 116 17,108

    3 6,600 2,304 11,520 4,800 240 25,464 2 6,600 2,304 11,520 4,800 375 25,599

    5,808 2,304 11,520 4,800 476 24,908 1 5,808 2,304 11,520 4,800 476 24,908

    117,987

    V ZIKCSW 7 (Base Shear)

    zone Z I K C S W(kg) V(kg) 0.19 1 1 0.12 1.2 117987 3138

    1 0.19 1 1 0.12 2.5 117987 5829 2 0.38 1 1 0.12 1 117987 5380

  • 92

    0.07 tF TV tF 0.25V T 0.7 tF 0 tF = 0 ( T = 0.3 < 0.7 )

    - ( xF )

    1

    ( )t x xx n

    i i

    i

    V F w hF

    wh

    8 ( xF )

    ( )xh m ( )xw kg x xh w ( )tF kg ( )V kg ( )xF kg

    11.65 17,108 199,308 0 3,266 971 3 8.65 25,464 220,264 0 3,266 1,074 2 5.65 25,599 144,634 0 3,266 705

    2.95 24,908 73,479 0 3,266 358 1 0.25 24,908 6,227 0 3,266 30

  • 93

    9 ( xF ) 1

    10 ( xF ) 2

    ( )xh m ( )xw kg x xh w ( )tF kg ( )V kg ( )xF kg 11.65 17,108 199,308 0 6,066 1,804

    3 8.65 25,464 220,264 0 6,066 1,994 2 5.65 25,599 144,634 0 6,066 1,309

    2.95 24,908 73,479 0 6,066 665 1 0.25 24,908 6,227 0 6,066 56

    ( )xh m ( )xw kg x xh w ( )tF kg ( )V kg ( )xF kg 11.65 17,108 199,308 0 5,599 1,655

    3 8.65 25,464 220,264 0 5,599 1,840 2 5.65 25,599 144,634 0 5,599 1,208

    2.95 24,908 73,479 0 5,599 614 1 0.25 24,908 6,227 0 5,599 52

  • EVALUATION OF EARTHQUAKE RESISTANCE OF NON-DUCTILE REINFORCED CONCRETE BUILDING LOCATED IN THAILANDS HAZARD

    AREA

    .

    3 3 1 2 3 (pushover analysis) 3 3 (.. 2550) 3 1 15224.48 4.74 2 14315.26 4.34 7837.67 2.35 3 19688.38 18.73 3 3

  • 95

    3

    Abstract This study emphasized to investigate the earthquake force resistance of non-ductile

    reinforced concrete building which constructed in Thailand. The 3-story RC building was adopted to evaluate the earthquake resistance capacity when it subjected to earthquake force. A 3-story RC building is assumed to locate in three intensity levels of Thailands hazard area, surveillance zone, first zone and second zone. The RC frame was modeled as a two-dimensional. The moment-rotation relationship consists of yielding moment, capping moment and capping rotation obtained in plastic hinge model are determined from Ibarra and Krawinkler (2005). The capacity curve indicated that the 3-story RC building remains elastic behavior when the earthquake force regarded as base shear subjected to the building not more than 16000 kilogram forces and it can resist the maximum base shear in inelastic range around 19000 kilogram forces before collapse. When the building subjected to the earthquake forces from three intensity levels of Thailands hazard area, although the global behavior the building remain elastic but also the damage due to concrete crushing and/or rebar yielding are occurred in local behavior of beam and column.

  • 96

    1.)

    17 2538 () 2537 5.1 25 50 12 2538 7 - 250

    ( . . 2550) Pushover Analysis

    2.)

    3 SAP2000 1 2 ..2550

  • 97

    2.1 3 12.85 m 200 kg./m.2 ACI 318-89 10 cm

    2.2

    2.2.1 yM , y ,

    /c yM M , ,cap pl , pc , , c pc

    1.02(0.76)(0.031) (0.02 40 ) 0.10vpc sh

    cM 0.01 '

    / (1.25)(0.89) (0.91) units cc fv

    c yM M y

    , , ,y y f y b y s ,cap pl

    0.43

    ,

    0.01 ' 0.1 10.0

    0.12(1 0.55 )(0.16) (0.02 40 )

    (0.54) (0.66) (2.27)units c n

    v

    cap pl sl sh

    c f S

    a

  • 98

    2.2.2 ..2550

    - (Base Shear)

    V ZIKCSW -

    1

    ( )t x xx n

    i i

    i

    V F w hF

    wh

    3.) 3.1

    19,688.38 kgf 18.73 cm 1 15,224.48 kgf 4.74 cm 2 14,315.26 kgf 4.34 cm

    7,837.67 kgf 2.35 cm

    3.2 (Plastic hinges mechanism )

    4.48 cm () 14,766.41 kgf 1 Y IO 2 IO 3 Y Elastic

    6.73 cm ()

  • 99

    17,898.18 kgf 1 2 Y IO 3 IO Yield Elastic

    18.73 cm () 19,688.38 kgf 1 3 Y IO LS F 2 IO LS Y 1 IO LS 2 IO Inelastic

    23.92 cm () 19,428.76 kgf 1 Y IO F 2 LS F 3 IO Y 1 IO , LS F Y 2 IO Inelastic

    ()

    ()

    ()

  • 100

    ()

    3.3 () 1 2 3 Y IO

    3.4 1

    () 1 2 3 Y IO

    1 3.5 2

    () 1 2 3 Y IO

  • 101

    2

    4) 4.1 (Earthquake intensity) 1 4.2 (Performance of

    reinforced concrete frames) 1 2 4.3 ( Plastic hinges mechanism )

    5) - 1 2

    -

    - (S) (S)

  • 102

    - (..2550)

    [1.] , .. 2550 [2.] , , .. 2546 [3.] , , 2541 [4.] , , 5 .. 2554 [5.] Curtis B Haselton and Gregory G. Deierlein, Assessing Seismic Collapse Safety of Modern Reinforce Concrete Moment Frame Buildings, Department of Civil and Environmental Engineering Stanford University, 2007

    1).pdf2).pdf3).pdf4).pdf5).pdf6).pdf7) 1.pdf8) 2.pdf9) 3.pdf10) 4.pdf11) 5.pdf12).pdf13).pdf14)().pdf15)().pdf16)(1).pdf17)(2).pdf