f k d s w h u 7 f r q wur o r i k | g ud x olf v | vwhp v · 7 14 14 14 g luhfwlr q d o fr q wur o...

113

Upload: others

Post on 17-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

FKDSWHU 7Frqwuro ri K|gudxolf V|vwhpv

Wkh sxusrvh ri frqwuro hohphqwv lq d k|gudxolf v|vwhp lv wr frqwuro rxwsxw yduldeohvri wkh v|vwhp 0 yhorflwlhv/ wrutxhv/ irufhv ru srzhu1 Lq d k|gudxolf v|vwhp vshhglv xvxdoo| frqwuroohg/ zkhuhdv rxwsxw irufhv dqg wrutxhv duh wkh uhvxowv ri h{whuqdoordglqj rq wkh v|vwhp/ khqfh suhvvxuhv lq wkh v|vwhp duh edfn h�hfwv ri wkhvh ordgv1Lq wkh pdmrulw| ri k|gudxolf v|vwhpv zrunlqj suhvvxuh lv qrw frqwuroohg/ exw lwvpdjqlwxgh lv olplwhg e| phdqv ri vxlwdeoh ydoyhv1 Lq wklv zd| pd{lpxp irufhvdqg wrutxhv dfwlqj rq wkh v|vwhp duh dovr olplwhg/ zklfk surylghv surwhfwlrq iurph{fhvvlyh ordgv1Wkh vshhg ri d k|gudxolf prwru ru d f|olqghu lv d ixqfwlrq ri wkh rz gholyhuhg wrwkh prwru ru wkh f|olqghu1 Wkh gholyhu| ri wkh xlg fdq eh ydulhg e| xvlqj yduldeohglvsodfhphqw sxpsv dqg2ru rz frqwuro ydoyhv1K|gudxolf v|vwhpv zlwk d ydoyh rz frqwuro xvxdoo| xvh jhqhudwruv zklfk surylghfrqvwdqw rz gholyhu| +h1j1 d �{hg glvsodfhphqw slvwrq sxps ru d jhdu sxps, dqgd v|vwhp ri ydoyhv zklfk e|sdvv dq| h{fhvv xlg gholyhuhg e| wkh jhqhudwru wr wkhuhvhuyrlu1 Wkxv frqwuro ri rz lq wkh v|vwhp lv rewdlqhg zlwk d shqdow| ri srzhuorvvhv1Lq wkh k|gudxolf v|vwhpv zlwk d sxps2prwru rz frqwuro/ pdwfklqj wkh jhqhud0wru +sxps, dqg rxwsxw ghylfh +prwru, rz fdsdflwlhv lv dfklhyhg e| d fkdqjh riglvsodfhphqw ri hlwkhu rqh ru erwk xqlwv/ wkxv srzhu orvvhv duh plqlplvhg1Lq erwk w|shv ri yhorflw| frqwuro/ dgglwlrqdo ydoyhv duh xvhg wr dgmxvw rwkhu rshudwlqjyduldeohv dqg sdudphwhuv ri d v|vwhp/ wkxv k|gudxolf ydoyhv duh dq lqwhjudo sduw rihyhu| k|gudxolf v|vwhp1

714 Frqwuro ydoyhvLq k|gudxolf v|vwhpv frqwuro ydoyhv duh xvhg wr frqwuro wkh ohyho ri hqhuj|/ wkh udwh rihqhuj| wudqvihu dqg wkh gluhfwlrq ri hqhuj| rz1 Wkh frqwuro ixqfwlrqv duh rewdlqhge| yduldwlrq ri rz duhdv lq ydoyhv e| phdqv ri prylqj frqwuro hohphqwv1 Lq pdqxdoo|frqwuroohg ydoyhv wkh rz duhd lv dgmxvwhg e| wkh rshudwru/ zkhuhdv lq slorw rshudwhgru vhoi0frqwuroohg ydoyhv wkh rz duhd lv dgmxvwhg e| d prylqj frqwuro hohphqw lquhvsrqvh wr wkh irufhv dfwlqj xsrq lw1 Rqh ri wkhvh irufhv pxvw eh ghshqghqw rq wkhfrqwuroohg k|gudxolf yduldeoh +h1j1 suhvvxuh/ rz udwh,1Ixqfwlrqdoo|/ zh fdq glvwlqjxlvk irxu jurxsv ri frqwuro ydoyhv=� Ydoyhv frqwuroolqj gluhfwlrq ri xlg rz 0 gluhfwlrqdo frqwuro ydoyhv/ fkhfn ydoyhv/

vwrs ydoyhv dqg orjlf ydoyhv1 Gluhfwlrqdo frqwuro ydoyhv mrlq ru vhsdudwh xlg rz;3

Page 2: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Frqwuro ydoyhv ;4

sdwkv lq d v|vwhp1 Fkhfn ydoyhv olplw xlg rz wr rqo| rqh gluhfwlrq1 Vwrs ydoyhvduh xvhg wr forvh ru rshq xlg sdwkv lq d v|vwhp1

� Ydoyhv frqwuroolqj v|vwhp suhvvxuh 0 fdq eh fodvvl�hg lqwr wzr w|shv/ suhvvxuh olp0lwlqj ydoyhv dqg suhvvxuh frqwuro ydoyhv1 Suhvvxuh olplwlqj ydoyhv uhdfw wr fkdqjhvlq xsvwuhdp suhvvxuh/ h1j1 uholhi ydoyhv ru suhvvxuh vdihw| ydoyhv1 Suhvvxuh frqwuroydoyhv uhdfw wr fkdqjhv lq grzq vwuhdp suhvvxuh/ h1j1 suhvvxuh uhgxflqj ydoyhv>pdlqwdlq frqvwdqw suhvvxuh gl�huhqfh ehwzhhq wzr eudqfkhv ri d flufxlw/ h1j1 gli0ihuhqwldo suhvvxuh ydoyhv> ru pdlqwdlq frqvwdqw udwlr ri xsvwuhdp wr grzqvwuhdpsuhvvxuhv/ h1j1 sursruwlrqdo suhvvxuh ydoyhv1

� Ydoyhv frqwuroolqj xlg rz udwh 0 fdq eh fodvvl�hg lqwr wzr w|shv/ uhvwulfwruydoyhv dqg rz frqwuro ydoyhv1 Iorz wkurxjk wkh uhvwulfwru ydoyh lv ghshqghqwrq d suhvvxuh gl�huhqwldo dfurvv wkh ydoyh1 Iorz frqwuro ydoyhv pdlqwdlq/ gxh wrsuhvvxuh frpshqvdwlrq/ frqvwdqw rz udwh zklfk lv lqghshqghqw ri v|vwhp suhvvxuhfkdqjhv1 Iorz glylghuv glylgh ru frpelqh rz dw frqvwdqw udwlr lq ydulrxv rzeudqfkhv ri wkh v|vwhp lqghshqghqwo| ri ordgv lq sduwlfxodu rz eudqfkhv1 Iorzixvh ydoyhv forvh wkh rz sdwk zkhq wkh pdjqlwxgh ri rz wkurxjk wkh ydoyhh{fhhgv vrph vhw ydoxh1

� Rwkhu ydoyhv 0 suhvvxuh vzlwfkhv/ k|gudxolf wlphuv1Iurp d ghvljq srlqw ri ylhz/ prylqj frqwuro hohphqwv duh fodvvl�hg lqwr wkh iroorzlqjpdlq w|shv= edoo/ vsrro/ srsshw/ qhhgoh dqg phpeudqh1 Frqwuro ydoyhv fdq dovr ehfodvvl�hg rq wkh edvlv ri prxqwlqj= lq0olqh/ vxesodwh prxqwhg/ vwdfn0prxqwhg rufduwulgjh w|sh1Pdqxidfwxuhuv ri k|gudxolf frqwuro ydoyhv xvxdoo| vxsso| gdwd rq ydoyh ghvljq ghwdlov/udqjh ri ydoyh vl}hv dqg pd{lpxp rshudwlqj sdudphwhuv + rz/ suhvvxuh,1 Wkh ixqf0wlrq ri wkh ydoyh lv xvxdoo| uhsuhvhqwhg judsklfdoo| xvlqj d vwdqgdug v|pero/ ydoyhvl}h lv xvxdoo| gh�qhg e| wkh vl}h ri sruwv dqg pd{lpxp shuplvvleoh suhvvxuh1 Vh0ohfwlrq ri ydoyhv lv xvxdoo| edvhg rq rz0suhvvxuh fkdudfwhulvwlfv ri wkh ydoyh/ zklfkvkrz ghshqghqfh ri wkh suhvvxuh ru lwv gurs rq wkh udwh ri xlg rz wkurxjk wkhydoyh/ dqg rq ydoyh frqwuro fkdudfwhulvwlfv zklfk vkrz fkdqjhv ri wkh pdlq k|gudxolfsdudphwhu lq d ixqfwlrq ri wkh frqwuro sdudphwhu171414 Frqwuro ri gluhfwlrq ri xlg rz7141414 Gluhfwlrqdo frqwuro ydoyhv +GFY,Wkh pdlq ixqfwlrq ri gluhfwlrqdo frqwuro ydoyhv lv wr frqwuro vwduw/ vwrs dqg wkhgluhfwlrq ri xlg rz lq d flufxlw e| rshqlqj ru forvlqj rz sdvvdjhv wkurxjk wkhydoyh1 Ydulrxv frpelqdwlrqv ri frqqhfwlqj rz sdvvdjhv duh dfklhyhg e| fkdqjlqj wkhsrvlwlrq ri d prydeoh frqwuro hohphqw/ xvxdoo| d vsrro ru d srsshw/ zklfk frqqhfwlqohw dqg rxwohw sruwv1 Qrzdgd|v vsrro w|sh gluhfwlrqdo frqwuro ydoyhv duh prvwfrpprqo| xvhg dowkrxjk srsshw w|sh ydoyhv duh djdlq jdlqlqj lqfuhdvlqj dffhswdqfh1Vsrro w|sh/ gluhfwlrqdo frqwuro ydoyhv duh fodvvl�hg dffruglqj wr=� Qxpehu ri rz sdwkv 0 l1h1 ghshqglqj rq wkh qxpehu ri ydoyh sruwv1 Prvw

frpprqo| xvhg ydoyhv kdyh wzr/ wkuhh dqg irxu rz sdwkv +zd|v,1

Page 3: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

;5 Frqwuro ri K|gudxolf V|vwhpv

� Qxpehu ri vsrro srvlwlrqv 0 hdfk vsrro srvlwlrq jlyhv gl�huhqw rz sdwkv wkurxjkwkh ydoyh1 Frpprqo| xvhg ydoyhv kdyh hlwkhu wzr ru wkuhh srvlwlrqv1

� Phwkrg ri dfwxdwlrq 0 zh pd| glvwlqjxlvk ehwzhhq gluhfw dqg lqgluhfw/ slorw rs0hudwhg/ ydoyhv1 Wkh w|sh ri ydoyh frqwuro lv sulpdulo| glfwdwhg e| wkh pdjqlwxghri uhtxluhg frqwuro irufh/ wkxv lw ghshqgv rq wkh vl}h ri wkh ydoyh1

Wkh qxpehu ri rz sdwkv wkurxjk d ydoyh dqg wkh qxpehu ri frqwuro vsrro srvlwlrqvlv ghqrwhg e| d qxpehu/ h1j1 irxu zd|v/ wkuhh srvlwlrq gluhfwlrqdo frqwuro ydoyh+GFY, zloo eh ghqrwhg 726/ �j1 761Lq vrph/ h1j1 pdqxdoo| rshudwhg/ gluhfwlrqdo frqwuro ydoyhv wkh vsrro fdq eh srvl0wlrqhg dq|zkhuh ehwzhhq olplwlqj srvlwlrqv wkxv doorzlqj sduwldo rshqlqj ri wkh rzsdwkv1 Vxfk ydoyhv ehkdyh dv yduldeoh uhvwulfwru ydoyhv dqg surylgh vrph frqwuro ri rz udwh dqg suhvvxuh ri wkh rxwsxw ghylfhv +h1j1 ydoyhv xvhg rq pdqxdoo| rshudwhgedfn0krhv/ wuhqfk gljjhuv,1Lq khdy|/ xvxdoo| preloh pdfklqhu|/ k|gudxolf v|vwhpv riwhq lqfrusrudwh vshfldo ydoyheorfnv zklfk doorz frqwuro ri d qxpehu ri rxwsxw ghylfhv +h1j1 edfnkrh rshudwlrqri gljjlqj/ vohzlqj/ fudeelqj hwf1,1 Vxfk ydoyh eorfnv frqwdlq d qxpehu ri frqwurovsrrov +xvxdoo| 6 ru 9, lqwhjudwhg lq d vlqjoh ydoyh erg|/ d frpprq vxsso| sruw dqgd qxpehu ri suhvvxuh uholhi ydoyhv1 Hdfk vhfwlrq ri wkh eorfn kdv d fkhfn ydoyh wrsuhyhqw lqwhudfwlrq ehwzhhq gl�huhqw eudqfkhv ri wkh ydoyh1Lw pxvw eh vwuhvvhg wkdw d fruuhfwo| ghvljqhg dqg pdqxidfwxuhg gluhfwlrqdo frqwuroydoyh +wklv dovr dssolhv wr suhvvxuh dqg rz frqwuro ydoyhv, vkrxog eh ghvljqhg lqvxfk d zd| wkdw vwdwlf irufhv +d{ldo dqg udgldo,/ uhvxowlqj iurp k|gurvwdwlf suhvvxuhv/dqg k|gurg|qdplf irufhv + rz irufhv,/ uhvxowlqj iurp fkdqjhv lq prphqwxp ri xlg/duh frpshqvdwhg wr plqlpl}h wkhlu h�hfw rq prydeoh frqwuro hohphqwv +h1j1 vsrro,1Lq dgglwlrq/ ydoyh ghvljq vkrxog plqlpl}h iulfwlrq ehwzhhq wkh frqwuro hohphqw dqgydoyh erg| dqg dvvxuh plqlpxp lqwhuqdo ohdndjh1

P

B

T

A21 0

A B

P T

21 0

Ilj1 761 Judsklf v|pero dqg vfkhpdwlf gudzlqj ri irxu0zd|/ wkuhh srvlwlrq gluhf0wlrqdo frqwuro ydoyh

Page 4: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Frqwuro ydoyhv ;6

Wkh ghvljq ri d frqwuro ydoyh vwduwv zlwk wkh fdofxodwlrq ri rz udwhv wkurxjk wkhydoyh iru ydulrxv srvlwlrqv ri wkh frqwuro hohphqw/ dqg fdofxodwlrq ri vwdwlf dqg k|0gurg|qdplf irufhv dfwlqj rq wkh frqwuro hohphqw1 Fdofxodwlrq ri wkh irufhv dfwlqjrq wkh frqwuro hohphqw duh vshfldoo| lpsruwdqw zkhq wkh frqwuro hohphqw lv wr ehrshudwhg gluhfwo|1 Irufhv dfwlqj rq ydoyh frqwuro hohphqwv duh=� Iulfwlrq irufhv ehwzhhq frqwuro hohphqwv dqg ydoyh erglhv dqg iulfwlrq ri h{whuqdo

vhdov +lq gluhfwlrqdo frqwuro ydoyhv vhdov duh qrw xvhg/ wkh pdjqlwxgh ri lqwhuqdoohdndjh lv olplwhg e| forvh fohdudqfhv ehwzhhq prylqj sduwv,1 Fdofxodwlrq ri iulf0wlrq irufhv lv gl!fxow dv wkh| duh qrw hdvlo| gh�qhg dqg lw lv gl!fxow wr ghwhuplqhzkhwkhu ylvfrxv iulfwlrq +Qhzwrqldq, ru gu| iulfwlrq +Frxorpe, lv suhvhqw1

� Irufhv gxh wr k|gurvwdwlf suhvvxuh1 Wkhvh irufhv duh edodqfhg lq gluhfwlrqdo frq0wuro ydoyhv xvlqj vsrrov dv frqwuro hohphqwv exw wkh| duh gl!fxow ru lpsrvvleohwr edodqfh iru rwkhu w|shv ri frqwuro hohphqwv1 Edodqflqj ri d{ldo irufh lv re0wdlqhg e| vkdslqj wkh frqwuro hohphqw lq vxfk d zd| wkdw wkh vxp ri wkh irufhvgxh wr suhvvxuhv dfwlqj rq wkh frqwuro hohphqw lv }hur1 Wkh udgldo irufhv gxh wrxqhtxdo glvwulexwlrq ri suhvvxuh durxqg wkh flufxpihuhqfh ri wkh frqwuro hohphqwduh uhgxfhg e| surylvlrq ri flufxpihuhqwldo uholhylqj jurryhv1

� K|gurg|qdplf irufhv1 Wkh k|gurg|qdplf irufhv/ dovr fdoohg rz irufhv/ duhfdxvhg e| fkdqjhv ri prphqwxp ri wkh xlg gxulqj sdvvdjh wkurxjk wkh ydoyh1Prphqwxp fkdqjh lv fdxvhg e| yduldwlrq ri rz yhorflw| gxh wr rz uhvwulfwlrqdqg fkdqjh lq rz gluhfwlrq1 Iorz irufhv duh fodvvl�hg dv hlwkhu vwdwlf ru g|0qdplf1 Wkh h�hfw ri vwdwlf rz irufhv rq wkh vsrro lv vlplodu wr wkh dfwlrq ri dvsulqj zklfk pryhv wkh vsrro lqwr �vwrs rz � srvlwlrq1 Iru h{dpsoh/ zkhq wkhgluhfwlrqdo frqwuro ydoyh lv rqo| sduwldoo| rshq wkh vwdwlf rz irufhv zloo dfw rqwkh vsrro lq wkh gluhfwlrq zklfk zloo fdxvh wkh vsrro wr vwrs wkh rz wkurxjkwkh ydoyh1 Wkh h�hfw ri g|qdplf rz irufhv lv vlplodu wr dq dgglwlrqdo ylvfrxvgdpslqj1 K|gurg|qdplf irufhv fdq eh uhgxfhg e| vxlwdeo| vkdshg vsrrov1

Iulfwlrq/ k|gurvwdwlf dqg k|gurg|qdplf irufhv fdq uhdfk odujh ydoxhv zkhq v|vwhpsuhvvxuhv dqg rz udwhv duh kljk/ lq vxfk fdvhv lqgluhfw dfwxdwlqj ri wkh frqwuro vsrrolv xvhg/ h1j1 k|gudxolf slorw1Wkh uhfhqw ghyhorsphqwv lq ghvljq ri gluhfwlrqdo frqwuro ydoyhv ohg wr wkh h{sdqvlrq riduhdv ri wkhlu dssolfdwlrq1 Qhz sursruwlrqdo gluhfwlrqdo frqwuro ydoyhv dqg gluhfwlrqdovhuyrydoyhv zhuh ghyhorshg zklfk/ lq dgglwlrq wr frqwuroolqj wkh gluhfwlrq ri rz/dovr frqwuro rwkhu rz sdudphwhuv=� Sursruwlrqdo gluhfwlrqdo frqwuro ydoyhv frqwuro wkh rz udwh lq sursruwlrq wr ydoyh

frqwuro lqsxw1 Sursruwlrqdo ydoyhv duh xvhg wr uhprwho| frqwuro vshhg dqg wkh gl0uhfwlrq ri prwlrq ri k|gudxolf prwruv dqg dfwxdwruv1 Xvxdoo| sursruwlrqdo ydoyhvduh wzr0vwdjh/ slorw rshudwhg ydoyhv1 Wkh frqwuro lqsxw lv dq hohfwulfdo vljqdo wrwkh slorw dqg wkh ydoyh rxwsxw lv d k|gudxolf vljqdo + xlg rz udwh,1 Vrph ri wkhvhydoyhv lqfrusrudwh ihhgedfn frqwuro ri vsrro srvlwlrq dqg wkxv surylgh d kljko|dffxudwh frqwuro ri rz udwh1

� Gluhfwlrqdo vhuyrydoyhv duh ydoyhv zklfk surylgh d odujh rxwsxw vljqdo + rz udwh/suhvvxuh, lq uhvsrqvh wr d vpdoo/ xvxdoo| hohfwulfdo/ lqsxw vljqdo1 Dv wkhvh ydoyhv

Page 5: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

;7 Frqwuro ri K|gudxolf V|vwhpv

lqfrusrudwh ihhgedfn orrsv +srvlwlrqv/ yhorflw| dqg2ru irufh, wkh| fdq eh xvhg wrsurylgh rxwsxw vljqdov zklfk duh lqghshqghqw ri h{whuqdo glvwxuedqfhv1

Wkh sursruwlrqdo frqwuro ydoyhv/ zklfk duh vlpsohu lq ghvljq wkdq vhuyrfrqwuro ydoyhvdqg kdyh uhodwlyho| orz vhqvlwlylw| wr frqwdplqdwlrq/ duh jdlqlqj hyhu lqfuhdvlqjdffhswdqfh lq erwk preloh dqg lqgxvwuldo k|gudxolf v|vwhpv17141415 Qrq0uhwxuq ydoyhv +Fkhfn ydoyhv/ vkxwwoh ydoyhv/ suh�oo ydoyhv,D vlpsoh qrq0uhwxuq ydoyh doorzv iuhh rz ri xlg lq rqh gluhfwlrq dqg vwrsv wkh rzlq wkh uhyhuvh gluhfwlrq +lw lv d sdvvlyh ghylfh 0 qr h{whuqdo frqwuro lv uhtxluhg,/ �j1771 D vsulqj lq wkh fkhfn ydoyh kdv xvxdoo| orz vwl�qhvv dqg wkh suhvvxuh gl�huhqwldo�sr qhfhvvdu| wr rshq wkh ydoyh ghshqgv rq lqlwldo vsulqj irufh Ir dqg dfwlyh vxuidfhdS� ri wkh ydoyh=

�sr @ Ir@dS� +714,Yroxphwulf rz udwh wkurxjk wkh ydoyh lq wkh qrplqdo udqjh +T � T?, fdq ehh{suhvvhg dv iroorzv=

T @ N+�s��sS�,s�s +715,

zkhuh=�s 0 suhvvxuh gl�huhqfh dfurvv ydoyhN 0 frqvwdqw ghshqghqw rq ydoyh ghvljq/ vsulqj frqvwdqw dqg xlg ylvfrvlw|

Zkhq rz wkurxjk wkh ydoyh lv odujhu wkdq wkh qrplqdo TS�/ l1h1 zkhq wkh ydoyh lvixoo| rshq/ wklv htxdwlrq ehfrphv=

T @ N+�s� ��sS�,s�s +716,

zkhuh=�sS� 0 suhvvxuh gl�huhqfh dw zklfk ydoyh lv ixoo| rshq

Fkhfn ydoyh rz0suhvvxuh fkdudfwhulvwlfv duh vkrzq lq �j1 77f1 Lw vkrxog eh qrwhgwkdw zkhq qrplqdo rz udwh TS� lv h{fhhghg wkh fkhfn ydoyh dfwv dv d uhvwulfwruydoyh1Fkhfn ydoyhv pd| shuirup ydulrxv ixqfwlrqv lq k|gudxolf v|vwhpv/ �j1 781 Wkxv/ dfkhfn ydoyh lqvwdoohg lq d gholyhu| olqh ri d sxps zloo surwhfw wkh sxps iurp h{fhvvlyhsuhvvxuh ruljlqdwhg lq wkh v|vwhp/ dqg lq pxowl0sxps v|vwhpv/ fkhfn ydoyhv dvvxuhfruuhfw gluhfwlrq ri xlg rz1 D fkhfn ydoyh lqvwdoohg lq wkh uhwxuq olqh vhuyhv dvd edfn0suhvvxuh ydoyh/ l1h1 lw pdlqwdlqv wkh uhtxluhg suhvvxuh rq wkh uhwxuq vlghri wkh flufxlw +wkhuh duh ydulrxv uhdvrqv zk| wklv frxog eh dgydqwdjhrxv/ lq prvwfdvhv zh duh frqfhuqhg zlwk d txlhw rshudwlrq ri wkh rxwsxw ghylfh +h1j1 prwru, dqgsuhyhqwlrq ri pryhphqw ri wkh dfwxdwru zkhq lw lv lq wkh uhvw srvlwlrq,1

Page 6: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Frqwuro ydoyhv ;8

∆p

Q

Fsach

Q

Fs

∆p

∆pch

∆p1

Qch Q

a) b)

c)

Ilj1 771 Fkhfn ydoyh= d1 vfkhpdwlf gudzlqj e1 judsklf v|pero/ f1 rz fkdudfwhulvwlf

1 1

2

3

Ilj1 781 Dssolfdwlrq ri fkhfn ydoyhv lq d sxps flufxlw1 4 0 vxfwlrq olqh/ 5 0 gholyhu|olqh/ 6 0 uhwxuq olqh

Wkh uhdo lpsruwdqfh ri fkhfn ydoyhv lv ylvleoh zkhq wkh| duh frpelqhg zlwk rwkhufrpsrqhqwv 0 prwruv/ f|olqghuv/ dqg gluhfwlrqdo/ rz dqg suhvvxuh frqwuro ydoyhv1Wklv lv looxvwudwhg e| d v|vwhp vkrzq lq �j1 79 lq zklfk wkh v|vwhp ri fkhfn ydoyhvvhuyhv dv d uhfwl�hu iru wkh rz frqwuro ydoyh1 Zh fdq vhh/ wkdw rz wkurxjk wkh rz frqwuro ydoyh kdv wkh vdph gluhfwlrq luuhvshfwlyh ri zkhwkhu wkh rz lv iurp Dru D4 gluhfwlrq1

D slorw rshudwhg fkhfn ydoyh/ �j1 7:/ doorzv rz lq erwk gluhfwlrqv/ wkh slorw oliwv wkh rz eorfnlqj hohphqw +edoo/ srsshw, dqg doorzv xlg rz lq wkh gluhfwlrq rssrvlwhwr wkh gluhfwlrq ri iuhh rz1

Page 7: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

;9 Frqwuro ri K|gudxolf V|vwhpv

A1

B B1

A

Ilj1 791 Uhfwl�hu iru wkh rz frqwuro ydoyh

∆p

px

Qp Q, p±p∆

Q, p

px

Ilj1 7:1 Slorw rshudwhg fkhfn ydoyh= d1 judsklf v|pero e1 vfkhpdwlf gudzlqj

71415 Frqwuro ri xlg suhvvxuhSuhvvxuh frqwuro ydoyhv fdq eh eurdgo| fodvvl�hg dv vdihw| ydoyhv/ uholhi ydoyhv/ ydoyhvfrqwuroolqj wkh vhtxhqfh ri rshudwlrq +h1j1 vhtxhqfh ydoyhv, dqg suhvvxuh uhgxflqj/gl�huhqwldo dqg sursruwlrqdo ydoyhv1 Suhvvxuh frqwuro ydoyhv duh hlwkhu gluhfw dfwlqjru slorw rshudwhg1 Lq wkh gluhfw dfwlqj ydoyhv frqwuroohg suhvvxuh dfwv gluhfwo| rq wkhprydeoh hohphqw frqwuroolqj wkh suhvvxuh/ vxfk ydoyhv duh riwhq fdoohg vlqjoh0vwdjhydoyhv1 Lq wkh wzr0vwdjh/ ru slorw rshudwhg ydoyhv/ wkh frqwuro vljqdo +suhvvxuh ruirufh, dfwv gluhfwo| rq wkh prydeoh hohphqw ri wkh slorw ydoyh +�uvw vwdjh, zklfk df0wxdwhv wkh hohphqw frqwuroolqj wkh v|vwhp*v suhvvxuh +vhfrqg vwdjh,1 Ydulrxv suhvvxuhfrqwuro ydoyhv duh glvfxvvhg ehorz1 H{dpsohv ri dqdo|vlv ri vwhdg|0vwdwh fkdudfwhu0lvwlfv ri gluhfw dqg slorw0rshudwhg uholhi ydoyhv duh jlyhq ehorz ^<`1 Rwkhu suhvvxuhfrqwuro ydoyhv fdq eh dqdo|vhg lq d vlplodu zd|17141514 Vdihw| dqg uholhi ydoyhvVdihw| dqg uholhi ydoyhv kdyh dq dqdorjrxv sulqflsoh ri rshudwlrq/ wkhlu sxusrvh lvwr surwhfw d v|vwhp iurp dq lqfuhdvh ri suhvvxuh deryh d vhw ydoxh1 Wkhlu ixqfwlrqvduh/ krzhyhu/ gl�huhqw= d vdihw| ydoyh lv lqdfwlyh gxulqj qrupdo rshudwlrq ri d v|v0

Page 8: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Frqwuro ydoyhv ;:

whp dqg rshqv rqo| lq h{fhswlrqdo flufxpvwdqfhv/ d uholhi ydoyh pd| eh rshudwlqjlqwhuplwwhqwo| iru d orqj shulrg ri wlph1 Wkxv/ wkh uholhi ydoyh pxvw phhw vrphzkdwgl�huhqw uhtxluhphqwv ri dffxudf| ri frqwuro/ g|qdplf ehkdylrxu hwf1

Q1

Qrv

Q2 12

Qrv

Qrv

Q2

Q1

Ilj1 7;1 Gluhfw dfwlqj uholhi ydoyh= d1 judsklf v|pero e1 vfkhpdwlf gudzlqjWkh vdihw| dqg uholhi ydoyhv duh lqfrusrudwhg lq d v|vwhp lq sdudooho +whh0mxqfwlrq,zlwk wkh vrxufh ri k|gudxolf hqhuj| +sxps,/ wkxv zkhq wkh vhw suhvvxuh sf lv h{fhhghgwkh ryhuvxsso| +frpsuhvvlelolw|, rz lv gluhfwhg wr wkh uhvhuyrlu1Vlqjoh0vwdjh uholhi ydoyh D vfkhpdwlf gudzlqj ri d vlqjoh0vwdjh +gluhfw dfwlqj,uholhi ydoyh lv vkrzq lq �j1 7;/ lw hvvhqwldoo| frqvlvwv ri vsulqj 5 zklfk ordgv srsshw41 Iorz wkurxjk wkh ydoyh=

To� @ N�d+{,u5s

� +717,

zkhuh=s 0 v|vwhp suhvvxuhN� 0 rz frh!flhqwd+{, 0 rz duhd +ixqfwlrq ri srsshw glvsodfhphqw {,Irufh edodqfh=

Dos� �To�yo frv+!, @ Nr+{. {f, +718,zkhuh=yo 0 dq dyhudjh rz yhorflw| wkurxjk wkh ydoyh rshqlqj1Zh vxevwlwxwh iru yo @ To�@d+{, dqg rewdlq htxdwlrq=

Dos� 5 ^N�d+{,`2 frv+!,d+{, s @ Nr+{. {f, +719,

zkhuh=

Page 9: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

;; Frqwuro ri K|gudxolf V|vwhpvNr 0 vsulqj vwl�qhvv{ 0 srsshw glvsodfhphqw +phdvxuhg iurp forvhg srvlwlrq,{f 0 lqlwldo frpsuhvvlrq ri vsulqjDo 0 vhdw duhd p2> Do @ �g2o

7 zkhuh= go srsshw vhdw gldphwhu! 0 rz dqjoh5� 0 vhdw dqjoh +frqlfdo srsshw,1

wkh vhfrqg whup +ohiw kdqg vlgh, lq wkh deryh htxdwlrq uhsuhvhqwv wkh vwhdg|0vwdwh rz irufh1 Wkh pdjqlwxgh ri wkh rz irufh ghshqgv rq wkh ghvljq ri wkh ydoyh dqg rz frqglwlrqv1 Vxevwlwxwlqj wkh dssur{lpdwh h{suhvvlrq iru wkh rz duhd wkurxjkwkh ydoyh d+{, @ �go vlq+�,{ dqg dvvxplqj wkdw ! � �/ wkhq=

s @ Nr+{. {f,Do � 5N2��go vlq+5�,{ +71:,

dqg

To� @ N��go vlq+�,{� 5Nr+{. {f,�+Do �N2��go vlq+5�,{,

��*2+71;,

Zlwk wkh lqfuhdvh ri To� wkh srsshw glvsodfhphqw { zloo dovr lqfuhdvh dqg frqvh0txhqwo| suhvvxuh s zloo ulvh1 Wkh suhvvxuh lqfuhdvh fdq eh nhsw vpdoo li wkh iroorzlqjfrqglwlrqv duh vdwlv�hg=

{ � {f +71<,N2��go vlq+5�,{ � Do +7143,

Ydoyh fudfnlqj suhvvxuh sf lv jlyhq e|=

sf @ Nr{fD +7144,

Gluhfw dfwlqj vdihw| dqg uholhi ydoyhv duh qrw vxlwdeoh iru kljk suhvvxuh/ kljk rzk|gudxolf v|vwhpv gxh wr odujh irufhv dfwlqj rq wkh frqwuro hohphqw +edoo/ vsrro rusrsshw,1 Wkh odujh irufh uhtxluhv wkdw vwl�qhvv ri wkh vsulqj/ wkxv dovr vsulqj pdvv/pxvw eh odujh1 Lq dgglwlrq/ gxh wr k|gurg|qdplf irufhv/ wkh frqwuro hohphqw pd| ehvxemhfwhg wr kljk iuhtxhqf| yleudwlrqv1Slorw0rshudwhg uholhi ydoyh Dq lqgluhfw dfwlqj/ wzr0vwdjh/ slorw rshudwhg vdihw|dqg uholhi ydoyhv dyrlg wkhvh sureohpv1 Wkh sulqflsoh ri rshudwlrq ri d slorw rshudwhgydoyh lv vkrzq lq �j1 7<1Zkhq v|vwhp suhvvxuh h{fhhgv wkh vhw ydoxh/ wkh irufh dfwlqj rq srsshw 4 zloo frp0suhvv vsulqj 5/ wkh srsshw zloo oliw r� wkh vhdw dqg zloo doorz xlg wr sdvv wr wkh

Page 10: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Frqwuro ydoyhv ;<

12 34 a3

a1 a2A

Q1

Q2Qrv

Q1 Q2

Qrv

Ilj1 7<1 Slorw rshudwhg uholhi ydoyh= d1 judsklf v|pero e1 vfkhpdwlf gudzlqj

uhvhuyrlu1 Wklv lv dffrpsdqlhg e| d suhvvxuh gurs lq fkdpehu D zklfk fdxvhv oliwlqjri wkh pdlq srsshw 61 Iorz udwh wkurxjk slorw ydoyh 4 dqg pdlq ydoyh 6 duh=

TR� @ N��d�+{�,u5s�

� +7145,

To� @ N�2d2+{2,u5s

� +7146,

dovr rz Tf wkurxjk wkh frqwuro rul�fh lv=

TJ @ N��d�v

5+s� s�,� +7147,

zkhuh=TR�>To�>TJ 0 rz wkurxjk slorw/ pdlq ydoyhv dqg wkh rul�fhs�> s 0 suhvvxuh lq fkdpehu D dqg v|vwhp suhvvxuhd�+{4,> d2+{5,> d� 0 rz duhd ri wkh slorw srsshw/ pdlq srsshw dqg wkh rul�fhNr�>Nr2 0 vsulqj vwl�qhvv 0 slorw dqg pdlq vwdjh{�> {2 0 glvsodfhphqwv ri slorw dqg pdlq srsshwv{�f> {2f 0 lqlwldo frpsuhvvlrq ri slorw dqg pdlq vsulqjvN��>N�2>N�� 0 rz frh!flhqwv 0 slorw/ pdlq ydoyh dqg wkh rul�fhVwhdg|0vwdwh edodqfhv ri irufhv dfwlqj rq hdfk srsshw duh=

s�DR � �TR�yR frv+!�, @ Nr�+{�f . {�, +7148,+s� s�,Do � �To�yo frv+!2, @ Nr2+{2f . {2, +7149,

zkhuh=!�> !2 0 rz dqjohvyR> yo 0 dyhudjh rz yhorflwlhv wkurxjk wkh slorw dqg pdlq ydoyhv

Page 11: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

<3 Frqwuro ri K|gudxolf V|vwhpv

Wkh slorw srsshw vhdw duhd dqg wkh pdlq srsshw vhdw duhd duh uhvshfwlyho|=

DR @ �g2�7 zkhuh g� 0 slorw srsshw vhdw gldphwhu +714:,

Do @ �g27 zkhuh g 0 pdlq srsshw vhdw gldphwhu1 +714;,

Wkh dssur{lpdwh rz duhdv iru wkh slorw dqg wkh pdlq ydoyhv duh=

d�+{�, @ �g� vlq+��,{�d2+{2, @ �g vlq+�2,{2

zkhuh=��> �2 0 srsshwv kdoi dqjohvZh pd| dvvxph wkdw dqjohv ��+{2, @ !� dqg �2+{2, @ !2 wkhq vxevwlwxwlqj iru TR�dqg wkh rz duhdv lq wkh htxdwlrq iru irufh edodqfh zh rewdlq=

s� �DR �N2���g� vlq+5��,{�� @ Nr�+{� . {�f, +714<,dqg li zh dvvxph=

DR Ny2��g� vlq+5��,{� +7153,wkhq wkh suhvvxuh lq fkdpehu D fdq eh dssur{lpdwhg e| wkh h{suhvvlrq=

s� @ Nr�{�fDR

�4 . {�

{�f�

+7154, rz wkurxjk wkh slorw dqg wkh rul�fh/ dqg dv TR� @ TJ/ wkhq v|vwhp suhvvxuh lvhtxdo wr=

N��d�+{�,u5s�

� @ N��d�v

5+s� s�,� +7155,

s @ s�%4 .

�N���g� vlq+��,{�N��d�

�2&+7156,

dqg vxevwlwxwlqj iru suhvvxuh s�> ht1 +7154, lq wkh deryh htxdwlrqv zh rewdlq

s @ Nr�{�fDR

�4 . {�

{�f�%

4 .�N���g� vlq+��,{�

N��d��2&

+7157,

Page 12: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Frqwuro ydoyhv <4

dqg li

{�{�f � 4 +7158,

N���g� vlq+��,{�N��d� � 4 +7159,

wkhq

s @ Nr�{�fDR

+715:,

Wkxv/ suhvvxuh vhw e| wkh slorw rshudwhg uholhi ydoyh lv hvvhqwldoo| ghshqghqw rqo| rqwkh fkdudfwhulvwlfv ri wkh slorw ydoyh1 Wr dvvxuh {� � {�f slorw rzTR� vkrxog eh nhswdw plqlpxp1 Iorz frh!flhqwv ydu| zlwk wkh Uh|qrog*v qxpehu Uh/ krzhyhu whvwvvkrzhg wkdw dw orz ydoxhv ri Uh wkh rz frh!flhqwv duh dssur{lpdwho| sursruwlrqdowr wkh vtxduh ri Uh dqg dw odujhu ydoxhv ri Uh wkh rz frh!flhqwv duh hvvhqwldoo|frqvwdqw ^<`1 Wkxv wkh huuru lv vpdoo zkhq wkh rz udwhv wkurxjk wkh rul�fhv duhuhodwlyho| odujh1Li zh dvvxph wkh ydoyh wr eh lq d vwhdg|0vwdwh/ dqg frqvlghu wkh edodqfh ri irufhvrq wkh slorw dqg pdlq srsshwv wkhq/ ljqrulqj rz irufhv/ zh rewdlq wkh iroorzlqjhtxdwlrq iru suhvvxuh s dw zklfk wkh pdlq ydoyh zloo rshq=

s @ Nr�{�fDR

. Nr�{�DR

. Nr2{2fDo

+715;,

Dv wkh �uvw whup lq wkh deryh htxdwlrq kdv d pxfk odujhu ydoxh wkdq wkh rwkhu wzrwhupv/ wkxv lw ghwhuplqhv suhvvxuh dw zklfk wkh ydoyh zloo rshq 0 zklfk lv lghqwlfdowr suhvvxuh ghwhuplqhg iurp wkh hduolhu dqdo|vlv1 Wkxv wkh rshqlqj suhvvxuh ri wkhydoyh fdq eh dgmxvwhg e| vhohfwlqj d vxlwdeoh ydoxh ri Nr� dqg {�f iru wkh vsulqj riwkh slorw vwdjh1Iorz0suhvvxuh fkdudfwhulvwlfv ri wkh pdlq ydoyh dqg wkh gluhfw dfwlqj ydoyh duh dqdo0rjrxv1 Krzhyhu/ dv wkh vsulqj ri wkh pdlq srsshw kdv vpdoo vwl�qhvv/ wkh judglhqwri wkh suhvvxuh lv vpdoo dqg wkxv suhvvxuh grhv qrw fkdqjh pxfk zlwk wkh lqfuhdvhri rz wkrxjk wkh ydoyh1D w|slfdo s @ i+T, fkdudfwhulvwlf ri d wzr0vwdjh/ slorw rshudwhg/ ydoyh lv vkrzq lq�j1 831 Wkh wkuhh uhjlrqv ri ydoyh rshudwlrq duh=Uhjlrq L zkhq To� ? T6�?/ rffxuuhqfh ri d ohdndjh rz gxh wr ghfuhdvlqj forvlqjirufh rq wkh srsshw1Uhjlrq LL zkhq T6�? � To� � T? wkh rz lv ohvv wkdq qrplqdo dqg wkh ydoyh kdvolqhdu fkdudfwhulvwlf1Uhjlrq LLL zkhq To� A T?/ wkh pdlq srsshw lv ixoo| glvsodfhg/ wkxv wkh ydoyhehkdyhv dv d �{hg uhvwulfwru/ dqg suhvvxuh s lv d sduderolf ixqfwlrq ri rz To�1

Page 13: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

<5 Frqwuro ri K|gudxolf V|vwhpv

p0

Qrv

p

0 Qmin Qn

∆p

I IIIII

Ilj1 831 Slorw rshudwhg uholhi ydoyh 0 vwdwlf rz fkdudfwhulvwlf s @ i+T,

Uholhi ydoyhv duh vrphwlphv htxlsshg zlwk d vrohqrlg frqwuro ydoyh zklfk doorzvuhprwh frqwuro ri wkh ydoyh +hlwkhu yhqwlqj ru forvlqj,1 D uhodwlyho| qhz ghyhorsphqwri wkh sursruwlrqdo suhvvxuh uholhi ydoyh surylghv phdqv ri vwhsohvv/ uhprwh frqwurori v|vwhp suhvvxuh1 Wkh ydoyh ixqfwlrq lv vlplodu wr d slorw rshudwhg ydoyh/ krzhyhu/wkh slorw vsulqj lv uhsodfhg zlwk d sursruwlrqdo vrohqrlg1 V|vwhp suhvvxuh lv vhw e|dgmxvwlqj vrohqrlg fxuuhqw1

7141515 Vhtxhqfh ydoyhv

D vhtxhqfh ydoyh pdlqwdlqv uhtxluhg xsvwuhdp suhvvxuh lq wkh v|vwhp lqghshqghqwo|ri wkh suhvvxuh grzqvwuhdp ri wkh ydoyh1 Wkh sulpdu| ixqfwlrq ri vhtxhqfh ydoyhv lvwr lvrodwh vrph sduw ri d k|gudxolf flufxlw zklfk kdv sulrulw| lq xlg gholyhu|1 Zkhq rz ghpdqg ri wkh sulrulw| flufxlw kdv ehhq vdwlv�hg/ wkh vhtxhqfh ydoyh rshqv dqggluhfwv vxusoxv xlg wr rwkhu sduwv ri wkh flufxlw1 Ghvljq dqg sulqflsoh ri rshudwlrqri vhtxhqfh ydoyhv duh yhu| vlplodu wr wkrvh ri uholhi ydoyhv/ wkh rqo| gl�huhqfh lvwkdw zkhuhdv d uholhi ydoyh rshqv d xlg sdwk wr wkh uhvhuyrlu/ d vhtxhqfh ydoyhvglvfkdujhv xlg wr rwkhu sduwv ri wkh v|vwhp1 Judsklfdo v|pero dqg vfkhpdwlf ri dgluhfw0dfwlqj/ lqwhuqdoo| slorwhg/ vhtxhqfh ydoyh duh vkrzq lq �j1 841

p

p1p

p

p

Q1

Q Q2p

p1

A

Fs

Ilj1 841 Vhtxhqfh ydoyh= d1 judsklf v|pero/ e1 vfkhpdwlf gudzlqj

Page 14: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Frqwuro ydoyhv <6

Dv rwkhu suhvvxuh frqwuro ydoyhv/ vhtxhqfh ydoyhv fdq eh frqvwuxfwhg dv hlwkhu vlqjoh0vwdjh/ gluhfw dfwlqj ydoyhv ru wzr0vwdjh/ slorw rshudwhg/ ydoyhv1 D vhtxhqfh ydoyh lvqrupdoo| d forvhg ydoyh/ dqg lw doorzv xlg rz rqo| lq rqh gluhfwlrq1Wkh edodqfh ri irufhv dfwlqj rq wkh frqwuro hohphqw/ zklfk ljqruhv k|gurg|qdplfdqg iulfwlrq irufhv/ lv=

sD� Ir @ 3 +715<,zkhuh=

D 0 duhd ri wkh slvwrqIr 0 vsulqj irufh

wkxv wkh vhfrqgdu| flufxlw lv vxssolhg zkhq suhvvxuh s lq sulpdu| flufxlw lv kljkhuru htxdo wr=

s @ IrD @ frqvw= +7163,

D vhtxhqfh ydoyh fdq eh frqwuroohg hlwkhu lqwhuqdoo| ru h{whuqdoo|1 Dq lqwhuqdoo|frqwuroohg ydoyh dvvxuhv wkdw wkh sulrulw| flufxlw uhdfkhv d suhghwhuplqhg suhvvxuhehiruh xlg lv sdvvhg wr wkh rwkhu sduw ri wkh v|vwhp1 H{whuqdoo| frqwuroohg vhtxhqfhydoyhv zloo ohw xlg sdvv ehwzhhq gl�huhqw eudqfkhv ri wkh v|vwhp lq uhvsrqvh wr wkhsuhvvxuh vljqdo iurp vrph rwkhu sduw ri wkh flufxlw 0 wkxv lw lv srvvleoh wr frqwuro wkhvhtxhqfh ri rshudwlrq ri ydulrxv eudqfkhv ri wkh flufxlw17141516 Xqordglqj ydoyhvWkh ghvljq ri xqordglqj ydoyhv lv vlplodu wr wkh ghvljq ri dq h{whuqdoo| slorwhg vh0txhqfh ydoyh1 Krzhyhu/ wkh ixqfwlrq ri dq xqordglqj ydoyh lv gl�huhqw iurp wkhixqfwlrq ri d vhtxhqfh ydoyh1 Zkhuhdv d vhtxhqfh ydoyh doorzv xlg wr sdvv ehwzhhqwzr eudqfkhv ri d v|vwhp/ wkh ixqfwlrq ri dq xqordglqj ydoyh lv wr sdvv xlg wr wkhuhvhuyrlu 0 dw yhu| orz suhvvxuh gurs dfurvv wkh ydoyh 0 dqg wkxv wr uhgxfh suhvvxuhlq wkh frqwuroohg sduw ri wkh flufxlw wr doprvw wkh uhvhuyrlu suhvvxuh/ �j1 851 Wkh vh0txhqfh ydoyh doorzv e|0sdvv ri xlg wr wkh uhvhuyrlu zkhq slorw suhvvxuh s% lv htxdoru kljkhu wkdq=

s% @ IrD @ frqvw= +7164,

zkhuh=D 0 duhd ri wkh slvwrqIr 0 vsulqj irufh

W|slfdoo|/ xqordglqj ydoyhv duh xvhg lq dffxpxodwru flufxlwv/ lq zklfk wkh| uhgluhfwsxps rz wr wkh uhvhuyrlu zkhq wkh dffxpxodwru lv ixoo| fkdujhg/ �j1 86d1 Dqrwkhudssolfdwlrq ri xqordglqj ydoyhv lv lq vr0fdoohg �kljk0orz� gxdo sxps v|vwhpv lq zklfk xlg lv lqlwldoo| gholyhuhg wr wkh flufxlw e| erwk sxpsv1 Zkhq wkh v|vwhp suhvvxuh

Page 15: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

<7 Frqwuro ri K|gudxolf V|vwhpv

p

pTp

pT

xx

Q

Q p

A

Fs

Ilj1 851 Suhvvxuh xqordglqj ydoyh= d1 judsklf v|pero e1 vfkhpdwlf gudzlqj

lqfuhdvhv deryh wkh xqordglqj ydoyh vhwwlqj wkh rz iurp d orz suhvvxuh/ kljk rzgholyhu|/ sxps lv gluhfwhg wr wkh uhvhuyrlu dqg ixuwkhu vxsso| ri xlg wr wkh flufxlwlv rqo| e| d kljk suhvvxuh/ orz gholyhu| sxps/ �j1 86e1 Lw vkrxog eh dgghg wkdw dqh{whuqdoo| yhqwhg suhvvxuh uholhi ydoyh zloo shuirup d vlplodu ixqfwlrq1

a) b)

Ilj1 861 V|vwhpv hpsor|lqj xqordglqj ydoyhv= d1 dffxpxodwru v|vwhp/ e1 gxdosxpslqj v|vwhp

7141517 Frxqwhuedodqfh ydoyhvWkh sulpdu| ixqfwlrq ri frxqwhuedodqfh ydoyhv lv wr frqwuro wkh pryhphqw ri dfwx0dwruv vxemhfwhg wr h{whuqdo/ xvxdoo| judylw|/ ordgv1 Frxqwhuedodqfh ydoyhv fdq ehhlwkhu lqwhuqdoo| ru h{whuqdoo| frqwuroohg1 �j1 871 Lqwhuqdoo| frqwuroohg +slorwhg,frxqwhuedodqfh ydoyhv ixqfwlrq lq d vlplodu zd| wr vhtxhqfh ydoyhv 0 krzhyhu wkhlughvljq lv gl�huhqw dv wkh| pxvw dvvxuh vwdwlf ordg kroglqj fdsdelolw| dqg fruuhfw g|0qdplf fkdudfwhulvwlfv1 Wkh h{whuqdoo| frqwuroohg frxqwhuedodqfh ydoyhv doorz ordgpryhphqw lq uhvsrqvh wr vrph suhghwhuplqhg slorw suhvvxuh dw vrph rwkhu srlqw lqwkh flufxlw1 Dq| whqghqf| iru d ordg wr uxq0dzd| zloo orzhu wkh slorw suhvvxuh dwwkdw srlqw dqg zloo uhvxow lq d judgxdo forvlqj ri wkh frxqwhuedodqfh ydoyh1 Forvlqjri wkh frxqwhuedodqfh ydoyh zloo uhgxfh vshhg ri wkh ordg dqg wkxv uhvwruh wkh slorwsuhvvxuh wr lwv ruljlqdo ydoxh1

Page 16: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Frqwuro ydoyhv <8

AB

X

A

B

X

Ilj1 871 Frxqwhuedodqfh ydoyh= d1 judsklf v|pero/ e1 vfkhpdwlf gudzlqj

W|slfdo dssolfdwlrq ri frxqwhuedodqfh ydoyhv lq d k|gudxolf ox!qj +oliwlqj, v|vwhp lvvkrzq lq �j1 881

Cylinder 1 Cylinder 2

1

2

3

4

5

6

6

7 7

5

p1

p11 p12

pp

p2

Ilj1 881 K|gudxolf ox!qj v|vwhp xvlqj frxqwhuedodqfh ydoyhv +lwhp 9,

7141518 Suhvvxuh gl�huhqwldo ydoyhWkh ixqfwlrq ri d gl�huhqwldo ydoyh lv wr pdlqwdlq d frqvwdqw gl�huhqfh ehwzhhqsuhvvxuhv xsvwuhdp dqg grzqvwuhdp ri wkh ydoyh1 Suhvvxuh gl�huhqwldo ydoyhv duh xvhgwr pdlqwdlq d suhghwhuplqhg suhvvxuh gl�huhqfh lq ydulrxv eudqfkhv ri d k|gudxolfv|vwhp1 Judsklfdo v|pero dqg d vfkhpdwlf ri wkh ydoyh lv vkrzq lq �j1 891Wkh edodqfh ri irufhv dfwlqj rq wkh frqwuro hohphqw/ zklfk ljqruhv k|gurg|qdplfdqg iulfwlrq irufhv/ lv=

Page 17: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

<9 Frqwuro ri K|gudxolf V|vwhpv

s�D� s2D� Ir @ 3 +7165,zkhuh=

D 0 duhd ri wkh slvwrqIr 0 vsulqj irufh

wkxv=

�s @ s� � s2 @ IrD @ frqvw= +7166,

Wkh suhvvxuh0 rz fkdudfwhulvwlfv ri d suhvvxuh gl�huhqwldo ydoyh duh dqdorjrxv wrwkrvh ri d uholhi ydoyh/ zlwk suhvvxuh gl�huhqfh �s uhsodflqj suhvvxuh s1

A Fs

p1

p2

p1

p2

Ilj1 891 Suhvvxuh gl�huhqwldo ydoyh= d1 judsklf v|pero/ e1 vfkhpdwlf gudzlqj

7141519 Suhvvxuh sursruwlrqdo ydoyhvD suhvvxuh sursruwlrqdo ydoyh pdlqwdlqv d frqvwdqw udwlr ri suhvvxuhv ehwzhhq xs0vwuhdp dqg grzqvwuhdp sduwv ri d k|gudxolf flufxlw1 Wkh ydoyhv fdq eh frqwuroohghlwkhu lqwhuqdoo| ru h{whuqdoo|1 D vfkhpdwlf ri wkh ydoyh dqg d judsklf v|pero lvvkrzq lq �j1 8:1 Wkh edodqfh ri irufhv dfwlqj rq wkh frqwuro hohphqw/ zklfk ljqruhvk|gurg|qdplf dqg iulfwlrq irufhv/ lv=

s�D� � s2D2 @ 3 +7167,zkhuh D� dqg D2 duh hqg duhdv ri wkh slvwrq1 Wkxv=

s2s� @ D�

D2@ frqvw= +7168,

714151: Suhvvxuh uhgxflqj ydoyhvD suhvvxuh uhgxflqj ydoyh pdlqwdlqv d ghvluhg suhvvxuh grzqvwuhdp ri wkh ydoyh zklfklv lqghshqghqw ri wkh xsvwuhdp suhvvxuh1 Wkh frqwuroohg/ grzqvwuhdp suhvvxuh s2 lv

Page 18: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Frqwuro ydoyhv <:

p1

p2

p1

p2

A1

A2

Ilj1 8:1 Suhvvxuh sursruwlrqdo ydoyh= d1 judsklf v|pero/ e1 vfkhpdwlf gudzlqj

dozd|v orzhu/ ru dw prvw/ htxdo wr xsvwuhdp suhvvxuh s�1 Suhvvxuh uhgxflqj ydoyhv duhxvhg/ iru h{dpsoh/ wr surylgh vxsso| wr orz suhvvxuh dfwxdwruv iurp d kljk suhvvxuhv|vwhp1 Suhvvxuh uhgxflqj ydoyhv duh hlwkhu uhvwulfwru/ �j1 8;d ru e|0sdvv w|sh �j8;e ) f1

p1

p2

p1

p2

p1

p2

a) c)b)

Ilj1 8;1 Suhvvxuh uhgxflqj ydoyh= d1 uhvwulfwru w|sh/ e1 e|0sdvv w|sh/ f1 e|0sdvvw|sh zlwk uhwxuq fkhfn ydoyh

D e|0sdvv w|sh uhgxflqj ydoyh surylghv dgglwlrqdo surwhfwlrq djdlqvw h{fhvvlyh suhv0vxuh lq wkh v|vwhp1 Li suhvvxuh s2 h{fhhgv wkh vhw ydoxh wkh frqwuro hohphqw zloo ehglvsodfhg ixuwkhu dqg xlg iurp wkh kljk suhvvxuh olqh zloo glvfkdujh wr wkh uhvhu0yrlu1 Suhvvxuh uhgxflqj ydoyhv duh lqvwdoohg lq vhulhv/ wkxv wkh| doorz xlg rz rqo|lq rqh gluhfwlrq1 Wr doorz uhyhuvh gluhfwlrq ri rz wkurxjk wkh ydoyh dq lqwhjudofkhfn ydoyh lv lqvwdoohg lq sdudooho wr wkh ydoyh/ �j1 8;f vkrzv d judsklf v|pero rivxfk d ydoyh1D gluhfw dfwlqj suhvvxuh uhgxflqj ydoyh lv vkrzq lq �j1 8<1 D suhvvxuh uhgxflqjydoyh lv qrupdoo| rshq dqg kdv d plqlpxp suhvvxuh wkuhvkrog ehorz zklfk lw fdqqrweh dgmxvwhg1 D vlpsol�hg htxdwlrq iru wkh edodqfh ri irufhv dfwlqj rq wkh frqwurohohphqw/ zklfk ljqruhv k|gurg|qdplf dqg iulfwlrq irufhv/ lv=

s2D� Ir @ 3 +7169,dqg

Page 19: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

<; Frqwuro ri K|gudxolf V|vwhpv

p1

p2

Ql

Fs

A

Ilj1 8<1 D gluhfw dfwlqj suhvvxuh uhgxflqj ydoyh

s2 @ IrD @ frqvw= +716:,

Wkxv/ suhvvxuh s2 grhv qrw ghshqg rq suhvvxuh s� exw lv rqo| ghshqghqw rq wkh udwlrri wkh vsulqj irufh wr wkh dfwlyh duhd ri wkh frqwuro hohphqw1Vlploduo| wr wkh rwkhu suhvvxuh frqwuro ydoyhv/ suhvvxuh uhgxflqj ydoyhv duh pdqxidf0wxuhg dovr dv slorw rshudwhg ydoyhv/ �j1 931

p1

p2

Qpl

Fs

Pilot poppetMain spool

Orifice

Ilj1 931 D slorw rshudwhg suhvvxuh uhgxflqj ydoyh

71416 Frqwuroolqj xlg rz udwhIoxlg rz udwh lv frqwuroohg e| rz frqwuro ydoyhv/ zklfk rshudwh rq wkh sulqflsoh rihlwkhu uhvwulfwlqj xlg rz e| phdqv ri vxlwdeo| frqwuroohg rul�fhv ru e| glyhuwlqjvxusoxv xlg wr wkh uhvhuyrlu1 Iorz frqwuro ydoyhv doorz vwhsohvv vshhg frqwuro rirxwsxw ghylfhv/ l1h1 prwruv dqg dfwxdwruv1Iorz wkurxjk wkh frqwuro rul�fh fdq eh ghvfulehg/ lq wkh fdvh ri odplqdu rz/ e|Kdjhq0Srlvhxlooh* htxdwlrq=

Page 20: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Frqwuro ydoyhv <<

T @ N,d_�s +716;,dqg zkhq wkh rz lv wxuexohqw e| htxdwlrq=

T @ N|d_�s? +716<,zkhuh=

�s 0 gl�huhqfh ehwzhhq suhvvxuh ehiruh dqg diwhu wkh rul�fhd_ 0 rul�fh rz duhd

N,> N| 0 odplqdu dqg wxuexohqw rz frh!flhqwvIorz frh!flhqw N, iru d jlyhq rul�fh gldphwhu g dqg ohqjwk ri rz sdwk o/ ghshqgvrq xlg g|qdplf ylvfrvlw| �=

N, @ g265�o +7173,

zkhuhdv rz frh!flhqw N| iru wxuexohqw rz lv lqghshqghqw ri ylvfrvlw| dqg lv htxdowr=

N| @u 5�� +7174,

zkhuh=� 0 rz orvv frh!flhqw� 0 xlg ghqvlw|

Iru wkh pdmrulw| ri uhvwulfwru ydoyhv zh pd|/ zkhq rz lv wxuexohqw/ dvvxph q @ 3=8dqg frh!flhqw � @ 4=5 � 4=9 +iru dq rul�fh zklfk gldphwhu lv htxdo wr lwv ohqjwkzh pd| dvvxph � @ 4=;,1 Wkh ydoxh ri frh!flhqw N| lv sudfwlfdoo| lqghshqghqw rirul�fh vl}h dqg suhvvxuh dqg lv rqo| voljkwo| lq xhqfhg e| xlg ylvfrvlw|1 Krzhyhu/wkh vkdsh ri dq rul�fh kdv d vwurqj h�hfw rq wkh ydoxh ri �/ ^7`1 Ydoyhv frqwuroolqj xlg rz fdq eh glylghg lqwr wzr pdlq w|shv=� Uhvwulfwru ydoyhv 0 wkh pdjqlwxgh ri rz udwh wkurxjk wkh ydoyh lv suhvvxuh gh0

shqghqw1 Wkxv/ dw d frqvwdqw vl}h ri wkh frqwuro rul�fh/ wkh rz udwh ydulhv zlwkfkdqjhv ri suhvvxuh gurs dfurvv wkh ydoyh1

� Iorz frqwuro ydoyhv 0 wkh pdjqlwxgh ri rz wkurxjk wkh ydoyh lv lqghshqghqw risuhvvxuh1 Suhvvxuh fkdqjhv duh frpshqvdwhg iru e| dq dgglwlrqdo yduldeoh rul�fhwkxv/ iru d jlyhq vhwwlqj ri wkh ydoyh/ suhvvxuh yduldwlrqv kdyh d plqlpdo h�hfwrq wkh rz udwh wkurxjk wkh ydoyh1 Wr holplqdwh wkh h�hfwv ri ylvfrvlw| fkdqjhvwkhvh ydoyhv fdq eh ghvljqhg wr kdyh whpshudwxuh frpshqvdwlrq1

Wkh rz frqwuro ydoyhv fdq eh ixuwkhu fodvvl�hg dv uhvwulfwru rz frqwuro ydoyhv+wzr zd|v,/ e|0sdvv rz frqwuro ydoyhv +wkuhh zd|v, dqg rz glylglqj ydoyhv + rzv|qfkurql}lqj ydoyhv,1

Page 21: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

433 Frqwuro ri K|gudxolf V|vwhpv

7141614 Uhvwulfwru ydoyhvUhvwulfwru ydoyhv duh ghylfhv zklfk frqwuro wkh rz udwh e| uhvwulfwlqj wkh rz duhd1Iorz udwh wkurxjk wkhvh ydoyhv lv suhvvxuh vhqvlwlyh ehfdxvh/ dv suhvvxuh gurs dfurvvuhvwulfwlrq ydulhv zlwk vxsso| dqg ordg suhvvxuhv/ wkh rz udwh wkurxjk wkh ydoyhdovr ydulhv1Lq jhqhudo/ uhvwulfwru ydoyhv pd| eh fodvvl�hg dv odplqdu w|sh ydoyhv lq zklfk wkh rz uhjlph lv odplqdu �j1 94e dqg wxuexohqw w|sh ydoyhv lq zklfk wkh rz uhjlph lvlq wxuexohqw udqjh/ �j1 94d1 Wklv glylvlrq lv rqo| qrwlrqdo dqg lv lqwhqghg wr lqgl0fdwh wkh lpsruwdqfh ri xlg ylvfrvlw| rq ydoyh rshudwlrq1 Lq sudfwlfh/ frqvwuxfwlrqri ydoyhv lv vxfk wkdw lw lv gl!fxow wr lghqwli| zkhwkhu rz lv sxuho| odplqdu ru wxu0exohqw1 Wkh udqjh ri suhvvxuh gursv dqg rzv lq w|slfdo k|gudxolf v|vwhpv jhqhudoo|jhqhudwh wxuexohqw rz frqglwlrqv lq uhvwulfwru ydoyhv1

∆p

p+∆p

∆p

p+∆p Q

p

Q

p

p

Q Q

p

Ilj1 941 Uhvwulfwru ydoyhv= d1 wxuexohqw rz e1 odplqdu rzWkh prvw frpprqo| xvhg dgmxvwdeoh uhvwulfwru ydoyhv duh qhhgoh ydoyhv1 Qrq0dgmxvwdeohydoyhv duh fdoohg �{hg uhvwulfwruv1Vrph dgmxvwdeoh uhvwulfwru ydoyhv duh frqvwuxfwhg wr wkurwwoh wkh rz rqo| lq rqhgluhfwlrq dqg wr doorz iuhh rz lq wkh uhyhuvh gluhfwlrq1 Wklv lv rewdlqhg e| lqfoxglqjd fkhfn ydoyh lq d rz sdwk sdudooho wr wkh uhvwulfwru1Iljxuh 95d vkrzv w|slfdo suhvvxuh0 rz fkdudfwhulvwlfv T @ i+�s, ri d uhvwulfwruydoyh/ iru ydulrxv rul�fh duhdv d_1Iorz fkdudfwhulvwlfv doorz ghwhuplqdwlrq ri h�hfwv ri fkdqjh lq suhvvxuh gurs �sdfurvv wkh ydoyh rq rz udwh �T wkurxjk wkh ydoyh1 Iljxuh 95e vkrzv frqwurofkdudfwhulvwlfv ri d ydoyh zklfk gh�qh fkdqjhv lq rz wkurxjk wkh ydoyh lq d ixqfwlrqri rul�fh rshqlqj T @ i+d_, dw gl�huhqw frqvwdqw suhvvxuh gursv dfurvv wkh ydoyh1Lw fdq eh vhhq wkdw wkhvh fkdudfwhulvwlfv duh olqhdu dqg wkhlu judglhqw ghshqgv rqsuhvvxuh gurs �s dfurvv wkh ydoyh1 Lq sudfwlfh rwkhu frqwuro fkdudfwhulvwlfv duh dovrxvhg vkrzlqj/ iru h{dpsoh/ ghshqghqfh ri rz T rq glvsodfhphqw ri wkh frqwurohohphqw +h1j1 qhhgoh,17141615 Iorz frqwuro ydoyhvUhvwulfwru ydoyhv zklfk duh frqvwuxfwhg lq vxfk d zd| wkdw suhvvxuh gl�huhqfh dfurvvfrqwuro rul�fh lv pdlqwdlqhg frqvwdqw/ lqghshqghqw ri suhvvxuh fkdqjhv dw wkh hqwu|dqg wkh rxwohw sruw ri wkh ydoyh/ duh fdoohg rz frqwuro ydoyhv ru rz uhjxodwruv1

Page 22: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Frqwuro ydoyhv 434

Ehfdxvh rz fkdudfwhulvwlfv ri wkhvh ydoyhv duh uhodwlyho| lqvhqvlwlyh wr fkdqjhv lqvxsso| ru ordg suhvvxuhv wkh| duh uhihuuhg wr dv �suhvvxuh frpshqvdwhg� rz frqwuroydoyhv1 Wkhvh ydoyhv duh xvhg lq v|vwhpv zklfk uhtxluh frqvwdqw rz gholyhu| wrdfwxdwruv/ wkxv pdlqwdlqlqj wkhlu frqvwdqw vshhg lqghshqghqw ri ordg yduldwlrqv1Wkhuh duh wzr edvlf w|shv ri rz frqwuro ydoyhv= uhvwulfwru w|sh +wzr0zd|, dqg e|0sdvv w|sh +wkuhh0zd|,1Uhvwulfwru w|sh rz frqwuro ydoyhv1 Wkh uhvwulfwru w|sh rz frqwuro ydoyhlv d frpelqdwlrq ri d rz uhvwulfwru dqg suhvvxuh gl�huhqwldo ydoyh1 Vfkhpdwlfv dqgjudsklfdo v|perov ri erwk w|shv ri wkh uhvwulfwru rz frqwuro ydoyh duh vkrzq lq �jv196 dqg 971Wkh ixqfwlrq ri wkh suhvvxuh gl�huhqwldo ydoyh lv wr pdlqwdlq frqvwdqw suhvvxuh gl�hu0hqfh dfurvv wkh rz uhvwulfwru/ lqghshqghqw ri suhvvxuhv dw wkh lqohw dqg wkh rxwsxwsruwv ri wkh ydoyh1 Xqghu vxfk dq duudqjhphqw/ rz wkurxjk wkh ydoyh lv d ixqf0wlrq ri wkh rz duhd ri wkh uhvwulfwru1 Iorz wkurxjk wkhvh ydoyhv fdq eh hlwkhu ri�{hg ydoxh ru/ li wkh rz duhd ri wkh rz uhvwulfwru fdq eh ydulhg +qhhgoh ydoyh,/ dg0

Q1''

Q2''

Q2'

Q1'

∆p1 ∆p2 ∆p1

∆Q'

∆Q''

Q admax

ad1

ad2>ad1

ad3>ad2 Q

ad

∆p4>∆p3

∆p3>∆p2

∆p2>∆p1

∆p1

Ilj1 951 Iorz fkdudfwhulvwlfv ri uhvwulfwru ydoyhv= d1 rz 0 suhvvxuh e1 rz 0 rul�fhduhd

p1 p2

Q

p1

p2

Ilj1 961 Uhvwulfwru w|sh rz frqwuro ydoyhv 0 lqohw suhvvxuh frqwuro

Page 23: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

435 Frqwuro ri K|gudxolf V|vwhpv

p1

p2

Q

p1

p2

Ilj1 971 Uhvwulfwru w|sh rz frqwuro ydoyhv 0 rxwohw suhvvxuh frqwuro

mxvwdeoh ydoxh1 Wkh ydoyhv duh frqvwuxfwhg lq wzr yhuvlrqv= hlwkhu rqh lq zklfk wkhgl�huhqwldo ydoyh frpshqvdwhv iru yduldwlrqv ri lqohw suhvvxuh ru rqh lq zklfk wkh gli0ihuhqwldo ydoyh frpshqvdwhv iru yduldwlrqv ri rxwohw suhvvxuh1 Lw pxvw eh vwuhvvhg wkdwdv h{fhvv rz xsvwuhdp ri wkh ydoyh pxvw eh gxpshg wr wkh uhvhuyrlu dw pd{lpxpsuhvvxuh xsvwuhdp ri wkh ydoyh/ wkxv uhvwulfwru w|sh rz frqwuro ydoyh fdq eh xvhgrqo| lq d v|vwhp zlwk d suhvvxuh vrxufh +wkxv wkh| fdq qrw eh gluhfwo| frqqhfwhg wrd srvlwlyh glvsodfhphqw sxps 0 zklfk lv d rz vrxufh,1Vwdwlf shuirupdqfh ri d uhvwulfwru w|sh ydoyh zlwk dq lqohw suhvvxuh frpshqvdwru/ l1h1zlwk wkh gl�huhqwldo ydoyh sodfhg xsvwuhdp ri wkh dgmxvwdeoh rul�fh/ fdq eh ghwhu0plqhg e| dqdo|vlv ri rzv dqg suhvvxuhv lq wkh ydoyh1 Iorz T wkurxjk +dgmxvwdeoh,uhvwulfwru/ �j1 98=

T @ N�d_v

5+s� � s2,� +7175,

zkhuh=N� 0 rz frh!flhqw +wxuexohqw rz,d_ 0 rz duhds� 0 suhvvxuh lq ydoyh fkdpehus2 0 rxwohw suhvvxuh1

Iorz TS wkurxjk yduldeoh uhvwulfwru lqwr frqwuro fkdpehu +gl�huhqwldo ydoyh,=

TS @ N�SdS+{,v

5+s� � s�,� +7176,

zkhuh=N�S 0 rz frh!flhqw +wxuexohqw rz,

dS+{, 0 rz duhd +ixqfwlrq ri vsrro glvsodfhphqw {,s� 0 lqohw suhvvxuh

Irufh edodqfh rq wkh vsrro=

Page 24: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Frqwuro ydoyhv 436

DS+s� � s2, . �TSyS frv+!, @ Nr+{� . {, +7177,zkhuh=

DS 0 vsrro hqg duhdyS 0 dyhudjh rz yhorflw| wkurxjk wkh vsrro ydoyh> yS @ TS

dS+{,Nr 0 vsulqj vwl�qhvv! 0 mhw dqjoh> ! @ 9<{� 0 lqlwldo vsulqj gh hfwlrq zkhq ydoyh lv forvhg{ 0 vsulqj gh hfwlrq iurp forvhg srvlwlrq1

Dvvxplqj qr lqwhuqdo ohdndjh wkhq T @ TS/ wkhq=

N�d_v

5+s� � s2,� @ N�SdS+{,

v5+s� � s�,

� +7178,

dqg uhduudqjlqj=

s+s� � s�, @ N�d_N�SdS+{,

s+s� � s2, +7179,

wkhq wkh htxdwlrq iru rz udwh wkurxjk wkh gl�huhqwldo ydoyh/ vhh ht1 +7176,/ ehfrphv=

TS @ N�SdS+{, N�d_N�SdS+{,

u5�s+s� � s2, @ N�d_

v5+s� � s2,

� +717:,

p1

p2

p3∆p=p3 -p2Q

ac(x)

ad

Ks

Ac

Qc

Ilj1 981 Uhvwulfwru w|sh rz frqwuro ydoyh

Page 25: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

437 Frqwuro ri K|gudxolf V|vwhpv

dqg li zh vxevwlwxwh wkh deryh iru TS lq wkh htxdwlrq iru irufh edodqfh/ ht1 +7177,/dqg wdnh lqwr frqvlghudwlrq wkdw=

yS @ TSdS+{, +717;,

zh rewdlq=

DS+s� � s2, . �+N�d_

v5+s� � s2,

�,2 frv+!,

dS+{, @ Nr+{� . {, +717<,

wkxv

s� � s2 @ Nr+{� . {,DS . 5+N�d_,2 frv+!,dS+{,

+7183,

dqg �qdoo| xvlqj ht1 +7175, rz T lv=

T @ TS @ N�d_

yxxxxxw5�Nr{�DS

4 . {{�

4 . 5N2�d2_ frv+!,DSdS+{,

+7184,

Zkhq ydoyh ghvljq lv vxfk/ wkdw iroorzlqj frqglwlrqv duh phw=

{{� � 4 +7185,

5N2�d2_ frv+!, � DSdS+{,wkhq htxdwlrq iru rz wkurxjk wkh ydoyh lv htxdo wr=

T @N�d_v

5�Nr{�DS

+7186,

W|slfdo rz fkdudfwhulvwlfv ri ydoyh T @ i+s� � s2, iru ydulrxv vhwwlqjv ri rz duhdd_ ri wkh dgmxvwdeoh uhvwulfwru duh vkrzq lq �j1 991 Lw fdq eh vhhq wkdw wkh ydoyhshuirupv lwv ixqfwlrq zkhq s� � s2 A �s_> zkhuh �s_ lv suhvvxuh gurs dfurvv wkhydoyh/ xvxdoo| �s_ lv lq wkh udqjh 3=5� 4=3 PSd1 Wkh rz judglhqw lv d phdvxuh riwkh frqwuro huuru1Wkxv/ xqghu dvvxphg frqglwlrqv/ wkh rz lv hvvhqwldoo| qrw d�hfwhg e| yduldwlrq lqsuhvvxuhv s� dqg s21 Krzhyhu/ lw pxvw eh vdlg wkdw rz frh!flhqw N� lv d�hfwhg wr

Page 26: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Frqwuro ydoyhv 438

vrph ghjuhh e| fkdqjhv lq xlg ylvfrvlw| dqg wkh duhd ri rz1 Xvh ri d vkdus0hgjhgrul�fh uhgxfhv juhdwo| wkh lq xhqfh ri ylvfrvlw| yduldwlrqv1 Lq rwkhu w|sh ri rul�fhv+h1j1 vorw w|sh, el0phwdo lqvhuwv duh xvhg wr ydu| wkh rz duhd ri wkh dgmxvwdeohuhvwulfwru dv d ixqfwlrq ri whpshudwxuh/ wkxv lqgluhfwo| frpshqvdwlqj iru ylvfrvlw|fkdqjhv1 Vlplodu dqdo|vlv fdq eh pdgh iru d rz frqwuro ydoyh zlwk d gl�huhqwldosuhvvxuh ydoyh zklfk lv sodfhg grzqvwuhdp ri d uhvwulfwru1E|0sdvv rz frqwuro ydoyhv E|0sdvv rz frqwuro ydoyhv frqvlvw ri d rz uhvwulf0wru/ zklfk fdq eh hlwkhu dgmxvwdeoh ru �{hg/ dqg d gl�huhqwldo suhvvxuh frqwuro ydoyhfrqqhfwhg lq sdudooho/ �j1 9:1 Lqsxw rz T� lv glylghg lqwr wzr sdwkv 0 rz T zklfklv gluhfwhg wr wkh v|vwhp dqg e|sdvv rz To zklfk uhwxuqv wr wkh uhvhuyrlu1 Iorzwkurxjk wkh ydoyh lv uhjxodwhg zkhq wkh iroorzlqj frqglwlrqv duh vdwlv�hg=

T� A T l1h1 To @ T� �T A 3 +7187,

zkhuh To lv e|0sdvv rz wr uhvhuyrlu1Zkhq suhvvxuh gurs dfurvv wkh dgmxvwdeoh rul�fh �s @ frqvw=/ rz T kdv d frqvwdqwydoxh lqghshqghqw ri suhvvxuh s21 E|0sdvv rz frqwuro ydoyhv/ ehfdxvh wkh| uhpryhh{fhvv rz wr wkh uhvhuyrlu/ fdq eh frqqhfwhg gluhfwo| wr d rz vrxufh +l1h1 srvlwlyhglvsodfhphqw sxps,1 Krzhyhu/ dv yduldwlrq ri suhvvxuh s2 zloo uhvxow lq fkdqjlqjydoxhv ri gholyhu| suhvvxuh s�/ gholyhu| +sxps, suhvvxuh s� pxvw eh olplwhg e| duholhi ydoyh1 Wkh dgydqwdjh ri e|0sdvv rz frqwuro ydoyhv ryhu uhvwulfwru w|sh ydoyhvlv orzhu hqhuj| zdvwh dv h{fhvv xlg lv glvfkdujhg dw suhvvxuh s2 .�s � so udwkhuwkdq dw uholhi ydoyh suhvvxuh1E|sdvv frqwuro ydoyhv duh xvhg lq vrph v|vwhpv wr surylgh sulrulw| rz wr d sduwri wkh v|vwhp1 Wkh ydoyh surylghv d frqvwdqw rz udwh wr wkh sulpdu| flufxlw ri

Q

ad1

ad4

ad3

ad2

p1-p2∆pd

∆Q

Ilj1 991 Iorz0suhvvxuh fkdudfwhulvwlfv ri uhvwulfwru w|sh rz frqwuro ydoyhv/ d_ 0 rzduhd

Page 27: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

439 Frqwuro ri K|gudxolf V|vwhpv

p1

p2

pT

QT

Q1

Q

p2

pTQT

Q

p1

Q1

a Fs

Ilj1 9:1 E|0sdvv rz frqwuro ydoyh

wkh v|vwhp dqg gluhfw xlg wr wkh vhfrqgdu| flufxlw rqo| zkhq rz ghpdqg ri wkhsulpdu| v|vwhp lv vdwlv�hg17141616 Iorz glylglqj ydoyhvLq pdq| k|gudxolf v|vwhpv zh pxvw dvvxuh wkh vdph vshhg ri wzr dfwxdwruv ru prwruvlqghshqghqwo| ri wkhlu ordgv1 Ydoyhv zklfk surylgh wklv ixqfwlrq duh rz glylghuvzklfk vsolw lqsxw rz/ dffruglqj wr vrph udwlr/ lqwr wzr rz sdwkv lqghshqghqw risuhvvxuhv lq hdfk rz sdwk1 Iorz glylghuv zklfk surylgh htxdo rz wr hdfk rz sdwkduh fdoohg rz v|qfkurql}huv1 Iorz v|qfkurql}huv fdq eh ghvljqhg wr v|qfkurql}hhlwkhu lq rqh rz gluhfwlrq ru lq erwk gluhfwlrqv1

pQ=Q1+Q2

Q2Q1

p

Q2Q1

Q=Q1+Q2

p1' p2'

p1 p2

af1

af2

ac1

ac2

Ilj1 9;1 Iorz glylghu

Ilj1 9; vkrzv wkh judsklf v|pero dqg vfkhpdwlf ri d rz glylghu1 Hdfk rz eudqfkri wkh rz glylghu kdv d �{hg rul�fh +rul�fhv ds� dqg ds2, dqg yduldeoh frqwurorul�fhv dS� dqg dS21 Ohw dvvxph wkdw duhdv ri rul�fhv ds� dqg ds2 duh htxdo1 Irufhvdfwlqj rq wkh frqwuro vsrro pxvw eh lq edodqfh/ dv hqg duhdv ri wkh vsrro duh lghqwlfdodqg duhdv ds� dqg ds2 duh htxdo/ wkxv suhvvxuhv lq erwk fkdpehuv pxvw eh htxdo=

s�� @ s�2 +7188,

Page 28: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Vshhg frqwuro flufxlwv xvlqj rz frqwuro ydoyhv 43:zkhuh=s��> s�2 0 suhvvxuhv lq ohiw dqg uljkw fkdpehuv/ �j1 9;

Li ordg suhvvxuhv s� dqg s2 duh htxdo wkhq suhvvxuh gl�huhqwldov pxvw dovr eh htxdo=�sS� @ s�� � s� +7189,�sS2 @ s�2 � s2 +718:,

zkhuh=s�cs2 0 ordg suhvvxuhv1

Wkxv/ li duhdv ri rul�fhv dS� dqg dS2 duh htxdo/ suhvvxuh gl�huhqwldov wkurxjk hdfkeudqfk ri wkh rz glylghu duh +dvvxplqj iru vlpsolflw| odplqdu rzv wkurxjk rul�fhv,htxdo wr=

s� s� @ �ss� .�sS� @ T�Us�

. T�US�

@ T��US� .Us�

Us�US�

�+718;,

s� s2 @ �ss2 .�sS2 @ T2Us2

. T2US2

@ T2�US2 .Us2

Us2US2

zkhuh=�ss�>�ss2 0 suhvvxuh gl�huhqwldov 0 �{hg rul�fhv�sS�>�sS2 0 suhvvxuh gl�huhqwldov 0 yduldeoh rul�fhvUs�>Us2 0 rz uhvlvwdqfh frh!flhqwv 0 �{hg rul�fhvUS�> US2 0 rz uhvlvwdqfh frh!flhqwv 0 yduldeoh rul�fhv

dqg rzv wkurxjk wzr eudqfkhv duh wkhq htxdo

T� @ T2 +718<,Li ordg suhvvxuh lq rqh eudqfk lv orzhu/ h1j1 s2 ? s�> wklv fdxvhv d gl�huhqfh lqsuhvvxuh gl�huhqwldov=

�sS2 A �sS� +7193,dqg rz T2 lq uljkw kdqg vlgh zloo lqfuhdvh/ T2 A T�1 Kljkhu rxw rz iurp uljkwkdqg fkdpehu zloo uhgxfh suhvvxuh s�2/ s�2 ? s��1 Wkh gl�huhqfh ri suhvvxuhv s�� dqg s�2fdxvhv wkh vsrro wr vkliw wr wkh uljkw 0 �j1 9;/ wkxv lqfuhdvlqj duhd ri frqwuro rul�fhdS� dqg forvlqj frqwuro rul�fh dS21 Lqfuhdvhg suhvvxuh orvv wkurxjk rul�fh dS2 fdxvhvuhgxfwlrq ri rz T2 xqwlo rzv lq erwk eudqfkhv duh djdlq htxdo1 Iorz glylghuv fdqvsolw lqsxw rz lq d ghvluhg udwlr glfwdwhg e| duhdv ri �{hg rul�fhv ds� dqg ds21

715 Vshhg frqwuro flufxlwv xvlqj rz frqwuro ydoyhvFrqwuro ri vshhg ri prwruv dqg dfwxdwruv e| phdqv ri rz frqwuro ydoyhv lv edvhgrq yduldwlrq ri uhvlvwdqfh wr rz lq wkh v|vwhp1 Wklv lv dfklhyhg e| fkdqjlqj rz

Page 29: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

43; Frqwuro ri K|gudxolf V|vwhpv

uhvwulfwlrq lq gholyhu| ru uhwxuq olqh ri dq dfwxdwru ru prwru/ ru e| fkdqjlqj wkh rzuhvlvwdqfh ri wkh eudqfk olqh zklfk frqqhfwv wkh gholyhu| olqh zlwk wkh uhvhuyrlu1 Lqvxfk v|vwhpv vshhg ri wkh rxwsxw ghylfh lv glfwdwhg e| wkh udwh ri sxps rz zklfklv uhdfklqj wkh rxwsxw ghylfh/ wkh vxusoxv rz lv uhwxuqhg wr wkh uhvhuyrlu yld d uholhiydoyh ru d e|0sdvv ghylfh1 Wkhvh w|shv ri vshhg frqwuro duh wkxv fkdudfwhulvhg e|lqkhuhqw srzhu orvv gxh wr gholehudwh glyhuvlrq ri vrph xlg wr wkh uhvhuyrlu dw ixoov|vwhp suhvvxuh +uhvwulfwru w|sh ydoyhv, dqg dw dssur{lpdwho| ordg suhvvxuh +e|0sdvvw|sh ydoyhv,1

71514 Vhuldo frqwuro

Vshhg ri dfwxdwruv +prwruv ru f|olqghuv, fdq eh frqwuroohg xvlqj d phwhu0lq ru phwhu0rxw flufxlw duudqjhphqw1 D vlpsol�hg vfkhpdwlf ri d phwhu0lq vshhg frqwuro zklfkxvhv wkurwwolqj lq wkh gholyhu| olqh ri wkh prwru ru dfwxdwru lv vkrzq lq �j1 9<d1Wkh suhvvxuh uholhi pdlqwdlqv frqvwdqw suhvvxuh lq wkh gholyhu| olqh/ dqg wkh uhtxluhgvshhg ri wkh prwru lv rewdlqhg e| vxlwdeoh dgmxvwphqw ri wkh uhvwulfwru ydoyh1 Wkh�{hg glvsodfhphqw sxps rshudwhv dw frqvwdqw/ pd{lpxp srzhu +pd{lpxp sxps rz dw pd{lpxp suhvvxuh, dqg zkhq wkh prwru lv vwrsshg/ v|vwhp h!flhqf| wkhqehlqj }hur/ wkh wrwdo lqsxw srzhu lv zdvwhg wkurxjk wkh uholhi ydoyh1 Dq dgglwlrqdoihdwxuh ri wkh phwhu0lq frqwuro lv wkdw vshhg frqwuro lv ghshqghqw rq wkh ordg dfwlqjrq wkh prwru1 Wr vwdelol}h prwru vshhg dw wkh ghvluhg ohyho wkh uhvwulfwru ydoyh fdqeh uhsodfhg e| d uhvwulfwru w|sh rz frqwuro ydoyh/ �j1 9<e1

a)

d)c)

b)

Ilj1 9<1 Phwhu0lq dqg phwhu0rxw frqwuro ri d k|gudxolf prwru

Page 30: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Vshhg frqwuro flufxlwv xvlqj rz frqwuro ydoyhv 43<

Vshhg ri dq rxwsxw ghylfh zklfk lv frqwuroohg e| sodflqj d uhvwulfwru ydoyh ru uh0vwulfwru w|sh rz frqwuro ydoyh rq wkh uhwxuq vlgh ri d prwru ru dfwxdwru lv fdoohg dphwhu0rxw frqwuro/ �j1 9<f ) g1Dv idu dv srzhu orvvhv duh frqfhuqhg phwhu0lq dqg phwhu0rxw v|vwhpv duh htxlydohqw/wkh| rqo| gl�hu lq rshudwlrq fkdudfwhulvwlfv1 Wkh dgydqwdjh ri phwhu0lq v|vwhpv/xvlqj hlwkhu d uhvwulfwru ydoyh ru uhvwulfwru w|sh rz frqwuro ydoyh/ lv wkdw dv wkhk|gudxolf ordg rq wkh prwru2dfwxdwru lv ghshqghqw vroho| rq dq h{whuqdo ordg +dv�s6lv rqo| d ixqfwlrq ri wkh ordg rq wkh prwru, wkh prwru lv ohvv ordghg1 Rq wkh rwkhukdqg/ lq wkh phwhu0rxw v|vwhp/ wkh dgydqwdjh lv jrrg frqwuro ryhu prwru2dfwxdwrueudnlqj1 D vlpsol�hg dqdo|vlv iru phwhu0lq/ phwhu0rxw flufxlwv xvlqj olqhdu dfwxdwruvdqg iru e|0sdvv vshhg frqwuro ri k|gudxolf prwruv duh suhvhqwhg ehorz17151414 Phwhu0lqIljxuh :3 vkrzv phwhu0lq frqwuro ri d k|gudxolf dfwxdwru1 Irufh ghyhorshg e| wkhdfwxdwru lv htxdo wr=

I @ Ds� �Dose +7194,zkhuh=D>Do 0 duhdv ri slvwrq khdg dqg dqqxoxvs�> se 0 gholyhu| dqg dqqxoxv suhvvxuh

dqg dvvxplqj suhvvxuh se lq wkh dqqxoxv vlgh ri dfwxdwru lv se @ sA @ 3/ wkhq irufhghyhorshg e| wkh dfwxdwru lv=

I * Ds� +7195,

Ar

Q

p2

pT

p4≅ pT

p

p3

F

A

v

Ilj1 :31 Phwhu0lq frqwuro ri d k|gudxolf f|olqghu

Page 31: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

443 Frqwuro ri K|gudxolf V|vwhpv

Iorz udwh T wkurxjk wkh ydoyh fdq eh h{suhvvhg lq jhqhudo dv T @ �-�s?/ rz orvv

frh!flhqw U lv gh�qhg dv iroorzv=

U, @ 4N,d� iru odplqdu rz +7196,

ru

U| @ 4N|d� iru wxuexohqw rz +7197,

zkhuh d� lv ydoyh rz duhd dqg rz frh!flhqwv N, dqg N| zhuh suhylrxvo| gh�qhgxvlqj ht1 +7173, dqg ht1 +7174,1Wr vlpsoli| vxevhtxhqw dqdo|vlv zh dvvxph d odplqdu rz wkurxjk wkh ydoyh dowkrxjk rz wkurxjk ydoyh lv xvxdoo| wxuexohqw/ wkxv dvvxplqj odplqdu rz +q @ 4, dqgs2 * s +d yhu| orz suhvvxuh gurs wkurxjk wkh gluhfwlrqdo frqwuro ydoyh, rz udwhwkurxjk wkh ydoyh lv =

T @ 4U+s� s�, @

s� ID

U @ sD� IUD +7198,

zkhuh U lv wkh odplqdu rz uhvlvwdqfh frh!flhqw1 Yhorflw| ri wkh slvwrq/ fdofxodwhgxvlqj htxdwlrq y @ T

D / lv d ixqfwlrq ri ordg I =

y @s� I

DUD +7199,

Yduldwlrq ri slvwrq yhorflw| y zlwk ordg I fdq eh ghwhuplqhg e| gl�huhqwldwlqj wkhderyh htxdwlrq=

gygI @ � 4

D2U +719:,dqg wkh uhodwlyh yduldwlrq ri y lv rewdlqhg iurp=

gygI

4y @ � 4

D2UUD

s� ID

+719;,

gygI

4y @ � 4

D+s� s�, +719<,

Wkxv/ wr plqlpl}h wkh h�hfw ri fkdqjhv ri h{whuqdo ordg rq wkh vshhg ri wkh slvwrqhlwkhu slvwrq duhd D ru suhvvxuh gl�huhqwldo +s� s�, vkrxog eh odujh1 Li zh frqvlghu

Page 32: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Vshhg frqwuro flufxlwv xvlqj rz frqwuro ydoyhv 444

ohdndjh lq wkh f|olqghu/ dqg dvvxph odplqdu ohdndjh frh!flhqw U�/ wkhq ohdndjh rzlv htxdo wr=

T, @ s�U�

@ IDU�

+71:3,zkhuh=

U� 0 ohdndjh uhvlvwdqfh frhh�flhqw 0 odplqdudqg qhw rz lqwr wkh f|olqghu lv=

T@ @ T�T, +71:4,

T@ @s� I

DU � I

DU�+71:5,

Dfwxdo yhorflw| ri wkh slvwrq lv wkhq=

y@ @s� I

DU � I

DU�D @ s

DU �I

D2U �I

D2U�+71:6,

Wr �qg wkh h�hfw irufh I rq slvwrq yhorflw| y@ zh gl�huhqwldwh y@ lq uhvshfw wr Idqg rewdlq=

gy@gI @ � 4

D2� 4U . 4

U�

dqg uhodwlyh fkdqjh ri y@ lv wkhuhiruh=gy@gI

4y@ @ �4

D�s� U�U.U�

�� s�

Iru

U� @,4 +ohvv ohdndjh, U�U� .U @, 4 +71:7,

wkh uhodwlyh fkdqjh ri y@ lv wkh vdph dv iru wkh f|olqghu zlwkrxw ohdndjh/ ht1 +719<,1Vlplodu h�hfw lv rewdlqhg zkhq U kdv yhu| orz ydoxh +ydoyh ixoo| rshq,1 Wkh slvwrqzloo vwrs zkhq

s� U�U� .U

�@ s� +71:8,

Page 33: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

445 Frqwuro ri K|gudxolf V|vwhpv

l1h1 zkhq vxsso| suhvvxuh s lv=

s � U� .UU�

s� @ U� .UU�

ID

7151415 Phwhu0rxwPhwhu0rxw frqwuro ri d k|gudxolf dfwxdwru lv vkrzq lq �j1 :41 Dvvxplqj f|olqghusuhvvxuh s� lv htxdo wr sxps suhvvxuh s dqg wkh odplqdu rz wkurxjk wkh uhvwulfwruydoyh/ zh rewdlq wkh iroorzlqj htxdwlrq iru slvwrq irufh=

I @ D+s� � se, @ Ds�Dose +71:9,wkxv suhvvxuh lq wkh dqqxoxv yroxph ri wkh f|olqghu lv=

se @ sD� IDo

+71::,Iorz udwh wkurxjk wkh uhvwulfwru ydoyh lv rewdlqhg iurp=

T @ +se � s�, 4U +71:;,dqg li zh dvvxph wkdw s� @ sA dqg uhvhuyrlu suhvvxuh sA @ 3 wkhq rz udwh wkurxjkwkh ydoyh lv htxdo wr=

T @ seU +71:<,

dqg xvlqj ht1 +71::, lq deryh rz udwh wkurxjk wkh ydoyh lv=

T @ sD� IDoU +71;3,

Wkxv wkh htxdwlrqv iru rz T wkurxjk wkh ydoyh duh vlplodu iru erwk w|shv ri frqwuro1Lq idfw/ iru d grxeoh urg f|olqghu lq zklfk D @ Do/ htxdwlrq iru wkh rz udwh lv wkhvdph dv iru wkh phwhu0lq v|vwhp1 Wkh gl�huhqfh ehwzhhq wkhvh wzr prghv ri frqwurolv wkdw lq wkh phwhu0rxw frqwuro/ zkhq wkh ordg fkdqjhv lwv gluhfwlrq wu|lqj wr h{whqgwkh slvwrq/ wkhuh lv vx!flhqw suhvvxuh lq wkh dqqxoxv wr suhyhqw ordg uxqqlqj0dzd|1Suhvvxuh lq wkh dqqxoxv/ zkhq wkh ordg lv wu|lqj wr h{whqg wkh slvwrq/ lv jhqhudwhgzkhq rz T wkurxjk wkh uhvwulfwru ydoyh lv=

T ? T�DoD +71;4,

zkhuh=T� 0 suhvvxuh lq dfwxdwru khdg yroxph

Page 34: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Vshhg frqwuro flufxlwv xvlqj rz frqwuro ydoyhv 446

A

F

p4

p3 ≅ p

p

p1 ≅ pT

pT

Q

A r

v

Ilj1 :41 Phwhu0rxw frqwuro ri d k|gudxolf f|olqghu

wkhq suhvvxuh lq wkh dqqxoxv yroxph lv htxdo wr=

se @ sD. IDo

+71;5,

Fduh vkrxog eh wdnhq wr surwhfw wkh dfwxdwru iurp h{fhvvlyh suhvvxuh lq wkh dqqxoxvzklfk pd| rffxu zkhq wkh uhvwulfwru ydoyh lv forvhg wrr pxfk +wklv fdq eh grqh e|olplwlqj suhvvxuh lq wkh khdg yroxph ri wkh dfwxdwru,1 Wkh uhodwlyh fkdqjh ri slvwrqvshhg y lq uhvshfw wr dssolhg irufh I lv wkh vdph dv iru wkh phwhu0lq v|vwhp171515 Sdudooho frqwuroD vlpsol�hg gldjudp ri d sdudooho +e|0sdvv, frqwuro flufxlw lv vkrzq lq �j1 :51 IorzTR gholyhuhg e| wkh sxps lv glylghg lqwr rz T6 lqwr wkh prwru dqg wkh e|0sdvv rz T_ wr wkh uhvhuyrlu1 Wkh suhvvxuh uholhi lv forvhg gxulqj qrupdo rshudwlrq ri wkhv|vwhp/ wkxv lw rshudwhv dv d vdihw| ydoyh1

TR @ T6 .T_ +71;6,ru

T6 @ TR �T_ +71;7,Zkhq sxps rz TR lv frqvwdqw/ zh pd| fkdqjh rz T6 e| fkdqjlqj e|0sdvv rzT_1 Dvvxplqj wkdw wkh rz T_ wkurxjk wkh uhvwulfwru ydoyh lv odplqdu/ wkhq=

T_ @N,d_+s� � se, @ s� � seU +71;8,

Page 35: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

447 Frqwuro ri K|gudxolf V|vwhpvzkhuh=

N, 0 rz frh�flhqw 0 odplqdud_ 0 rul�fh duhdU 0 rz uhvlvwdqfh frh!flhqw 0 odplqdu/ U @ 4

N,d_dqg dv se * 3 wkhq T_ lv htxdo wr=

T_ @ s�U +71;9,

Iorz T_ iru d jlyhq vhwwlqj ri rz duhd d_ lv ghshqghqw rq wkh suhvvxuh gl�huhqfh+s� � se, ru vlpso| s� zkhq zh dvvxph se * 3/ l1h1 rq wkh ordg ri wkh prwru1 Zhpd| frqwuro wkh vshhg ri wkh prwru e| rshqlqj2forvlqj wkh uhvwulfwru ydoyh +fkdqjlqjd_ dqg wkhuhiruh fkdqjlqj U,1 Rq wkh rwkhu kdqg li wkh uhvwulfwru lv qrw suhvvxuhfrpshqvdwhg +flufxlw �j1 :5d,/ fkdqjh ri prwru ordg dw d jlyhq vhwwlqj ri wkh ydoyh/zloo dovr fkdqjh wkh vshhg ri wkh prwru dv=

s� @ WY� +71;:,

zkhuh=W 0 prwru ordg wrutxhY� 0 prwru xqlw glvsodfhphqw

wkhq=

T_ @ WY�U +71;;,

Shuiruplqj vlplodu dqdo|vlv wr wkhvh iru rwkhu w|shv ri frqwurov/ dqg djdlq dvvxplqjodplqdu rz wkurxjk wkh ydoyh/ zh rewdlq wkh htxdwlrq iru prwru rz T6=

T6 @ TR �WY�U +71;<,

dqg wkxv prwru vshhg lv htxdo wr=

$ @ T6Y� @ TR

Y� �W

Y 2�U@ TRY�U� W

Y 2�U+71<3,

Wkh htxdwlrq iru yduldwlrq ri prwru vshhg $ zlwk wkh ordg W lv=

g$gW @ �4

Y 2�U+71<4,

Page 36: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Yroxphwulf frqwuro ri k|gudxolf v|vwhpv 448

T

Qd

p3

p4p1

p2

Qm

Qp

Qd

Qm

Qp

Qd

p3

p4p1

p2

Qp

p3

p4p1

p2

a)a) b)

c)

T

T

Qm

Ilj1 :51 E|0sdvv frqwuro flufxlwv iru k|gudxolf prwruv

dqg wkh uhodwlyh yduldwlrq ri $ lv wkhq=

g$gW

4$ @ �4

TRY�U� Y�s� +71<5,

Wklv htxdwlrq 0 rewdlqhg xqghu dvvxpswlrqv wkdw=� rz wkurxjk wkh e|0sdvv uhvwulfwru lv odplqdu� suhvvxuh se @ 3� prwru vxsso| suhvvxuh s� lv htxdo wr wkh sxps suhvvxuh s2vkrzv wkdw ordg kdv dq lqyhuvho| sursruwlrqdo h�hfw rq wkh e|0sdvv rz1 Wkxv/ wkhh�hfw ri ordg rq prwru vshhg $ lv odujh zkhq wkh ordg/ dqg wkhuhiruh suhvvxuh s� lvvpdoo1 Wkh prwru zloo vwrs zkhq=Prwru zloo vwrs zkhq rz wkurxjk wkh uhvwulfwru ydoyh lv htxdo wr sxps rz/ l1h1zkhq=

s� � TRU +71<6,

Wr plqlpl}h wkh h�hfw ri ordg fkdqjhv rq wkh prwru vshhg zh pd| xvh d uhvwulfwruw|sh/ suhvvxuh frpshqvdwhg/ rz frqwuro ydoyh lq d e|0sdvv olqh +�j1 :5e, ru d e|sdvvw|sh rz frqwuro ydoyh +�j1 :5f,1

Page 37: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

449 Frqwuro ri K|gudxolf V|vwhpv

716 Yroxphwulf frqwuro ri k|gudxolf v|vwhpvWklv w|sh ri frqwuro lv dffrpsolvkhg e| ydu|lqj hlwkhu sxps gholyhu| rz ru rzdevruehg e| wkh prwru xqlwv +prwru rz ghpdqg, lq vxfk d zd| dv wr rewdlq uhtxluhgrshudwlrq fkdudfwhulvwlfv/ h1j1 wr pdlqwdlq d frqvwdqw suhvvxuh1 Wklv phwkrg rifrqwuro uhtxluhv yduldeoh glvsodfhphqw xqlwv/ lq wkh fdvh zkhq wkh srzhu rxwsxwghylfh lv dq dfwxdwru +hlwkhu olqhdu ru urwdu|,/ yroxphwulf frqwuro ri d v|vwhp lv rqo|srvvleoh e| yduldwlrq ri sxps gholyhu|1 Wkh kljkhu frvw/ lq frpsdulvrq wr �{hgglvsodfhphqw xqlwv/ ri yduldeoh glvsodfhphqw sxpsv dqg prwruv lv wr d odujh ghjuhhr�vhw e| kljkhu rshudwlqj h!flhqflhv ri v|vwhpv zlwk yroxphwulf frqwuro1 Lq yduldeohglvsodfhphqw d{ldo slvwrq xqlwv wkh frqwuro ri rz gholyhu| ru rz ghpdqg lv rewdlqhge| fkdqjlqj wkh vwurnh ri wkh slvwrqv 0 hlwkhu e| fkdqjlqj wkh dqjoh ri d vzdvk sodwh+lq0olqh slvwrq xqlwv, ru e| fkdqjlqj wkh dqjoh ri wkh f|olqghu eorfn +ehqw0d{lv slvwrqxqlwv,1 Frqwuro ri glvsodfhphqw ri ydqh sxpsv dqg prwruv lv rewdlqhg e| ydu|lqj wkhhffhqwulflw| ri wkh urwru lq uhodwlrq wr sxps2prwru fdvlqj1 Vlploduo|/ glvsodfhphqwri udgldo slvwrq sxpsv dqg prwruv lv ydulhg e| fkdqjlqj hffhqwulflw| ri wkh urwdwlqjeorfn krxvlqj wkh slvwrqv lq uhodwlrq wr wkh fdvlqj1 Frqwuro ri wkh glvsodfhphqw fdqeh pdqxdo/ k|gudxolf/ hohfwurk|gudxolf/ hwf1 Dv wkh irufhv qhfhvvdu| wr fkdqjh wkhglvsodfhphqw duh odujh/ wkh gluhfw frqwuro lv olplwhg wr xqlwv ri vpdoo fdsdflw|> wkhodujhu xqlwv duh vhuyr frqwuroohg1Dw frqvwdqw vkdiw vshhg/ fkdqjlqj ri glvsodfhphqw sdudphwhu %R +h1j1 vzdvk sodwhdqjoh, zloo ydu| sxps gholyhu| rz TR/ �j1 :6=

TR @ T|R��R @ %RtRqR��Rdqg lq d vlplodu zd|/ dw frqvwdqw gholyhu| rz T6/ fkdqjlqj glvsodfhphqw sdudphwhu%6 +h1j1 hffhqwulflw| ri wkh urwru lq d ydqh prwru, frqwurov prwru vshhg q6

q6 @ T6��6t6%6

-Qp

Qp

np

εp

1

-1

Qtp

Qmax

-Qmax

εp

Ilj1 :61 Yduldeoh glvsodfhphqw sxps 0 elgluhfwlrqdo= d1 judsklf v|pero/ e1 rz yv1glvsodfhphqw fkdudfwhulvwlfv T|R @ i+�R,Yduldwlrq ri frqwuro sdudphwhuv ri sxpsv %R dqg prwruv %6 fdq eh shuiruphg lq dqxpehu ri zd|v1 Ghshqglqj rq zklfk v|vwhp yduldeohv zh zdqw wr frqwuro dqg wkhfrqwuro vwudwhj|/ zh pd| kdyh wkh iroorzlqj fdvhv=

Page 38: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Yroxphwulf frqwuro ri k|gudxolf v|vwhpv 44:

� uhjxodwlrq ri gholyhu| rz udwh +T @ frqvwdqw,� uhjxodwlrq ri frqvwdqw suhvvxuh +s @ frqvwdqw,� uhjxodwlrq ri srzhu +sT @ frqvwdqw,71614 Uhjxodwlrq ri frqvwdqw rz udwh +T @ frqvwdqw,Lq uhdo k|gudxolf v|vwhpv wkh sxps lqsxw vshhg dqg lwv yroxphwulf h!flhqf| ghshqgrq sxps ordg1 Li zh zdqw wr pdlqwdlq d frqvwdqw rz gholyhu| dw d jlyhq ydoxh riglvsodfhphqw sdudphwhu %R/ zh pxvw xvh d uhjxodwru zklfk zloo frqwlqxrxvo| frpsduhdfwxdo sxps gholyhu| TR zlwk wkh ghvluhg gholyhu| rz dqg dgmxvw sdudphwhu %R wrpdlqwdlq TR frqvwdqw1 Dq h{dpsoh ri d rz uhjxodwru lv vkrzq lq �j1 :71 Uhjxodwlrqri sxps gholyhu| lv rewdlqhg e| d wkuhh zd| +e|0sdvv, rz frqwuro ydoyh dqg d vlqjohdfwlqj/ vsulqj uhwxuq/ dfwxdwru1 Sxps rz uhjxodwlrq lv xvhg lq v|vwhpv lq zklfkurwdwlrq vshhg ri d sulph pryhu lv fkdqjlqj exw wkh rz gholyhu| vkrxog eh frqvwdqw/h1j1 wuxfn prxqwhg frqfuhwh pl{huv/ wuxfn prxqwhg frpsuhvvruv1

εp

np

Qp

Qp

npmin np

Ilj1 :71 Frqvwdqw rz uhjxodwlrq TR @ i+qR,

71615 Uhjxodwlrq ri frqvwdqw suhvvxuh +s @ frqvwdqw,Wkh sxusrvh ri suhvvxuh uhjxodwlrq lv wr pdlqwdlq frqvwdqw suhvvxuh lqghshqghqw rifkdqjhv lq xlg rz udwh lq wkh v|vwhp +wklv w|sh ri uhjxodwru lv riwhq fdoohg suhvvxuhfrpshqvdwru,1 D sxps prxqwhg frqvwdqw suhvvxuh uhjxodwru zloo pdlqwdlq frqvwdqwsxps suhvvxuh lqghshqghqw ri wkh rz ghpdqg ri wkh v|vwhp1 H{dpsohv ri sxpssuhvvxuh uhjxodwlrq v|vwhpv dqg wkhlu rz0suhvvxuh fkdudfwhulvwlfv duh vkrzq lq �j:81Suhvvxuh uhjxodwlrq fdq eh dovr xvhg zlwk yduldeoh glvsodfhphqw prwruv/ wkhq wkhlqsxw suhvvxuh ri wkh prwru lv lqghshqghqw ri wkh prwru*v ordg1 D suhvvxuh uhjxodwrufdq eh xvhg lq frqmxqfwlrq zlwk wkh ydoyh vshhg frqwurov/ wklv pdnhv lw srvvleoh wrkdyh d vprrwk frqwuro ri wkh prwru vshhg zlwk plqlpxp lqkhuhqw hqhuj| orvvhv1D v|vwhp xvlqj d yduldeoh glvsodfhphqw prwru htxlsshg zlwk suhvvxuh uhjxodwlrq

Page 39: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

44; Frqwuro ri K|gudxolf V|vwhpv

zloo zrun dw hvvhqwldoo| frqvwdqw srzhu vhwwlqj/ wkdw lv li prwru ordg +dqg wkhuhiruhv|vwhp suhvvxuh , lqfuhdvhv wkhq glvsodfhphqw ri wkh prwru zloo dovr lqfuhdvh dqgkhqfh prwru vshhg zloo ghfuhdvh wr pdlqwdlq frqvwdqw rxwsxw srzhu1 V|vwhpv olnhwklv duh xvhg lq ydulrxv zlqfk gulyhv1

np

εp

Qp

Qp

p

p

np

εp

Qp

p

Qp

a) b)

Ilj1 :81 Frqvwdqw suhvvxuh frqwuro= d1 vlqjoh dfwlqj f|olqghu e1 grxeoh dfwlqjf|olqghu dqg fkdujh sxps

71616 Frqvwdqw srzhu frqwuro +Ts @ frqvwdqw,Frqvwdqw srzhu rxwsxw ri d sxps lv rewdlqhg e| dgmxvwlqj sxps glvsodfhphqw/ dqgwkhuhiruh gholyhu| rz ri wkh sxps/ xvlqj v|vwhp suhvvxuh zklfk lv sursruwlrqdo wrwkh ordg rq wkh rxwsxw xqlw1 Wkh rz fdsdflw| ri wkh sxps lv dxwrpdwlfdoo| dgmxvwhgwr wkh sxps ordg/ lq vxfk d zd| wkdw wkh rxwsxw +k|gudxolf, srzhu lv frqvwdqw1 Sxpsk|gudxolf srzhu/ dvvxplqj qr orvvhv/ lv htxdo wr=

S|R @ T|R�sR @ frqvw=wkxv/ wr pdlqwdlq frqvwdqw k|gudxolf srzhu/ zh pxvw frqwuro sxps glvsodfhphqw lqd vxfk d zd| wkdw lwv rz udwh lv lqyhuvho| sursruwlrqdo wr v|vwhp suhvvxuh=

T|R @ frqvw=�sR

Zkhq sxps vkdiw vshhg qR lv frqvwdqw wkhq sxps rz udwh lv sursruwlrqdo wr glv0sodfhphqw sdudphwhu %R/ T|R 2 %/ dqg wkxv dovr=

Page 40: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Yroxphwulf frqwuro ri k|gudxolf v|vwhpv 44<

%R @ frqvw=�sR

Sorwv ri TR dqg %R lq T � s frruglqdwhv duh k|shuerodv1 Lq sudfwlfh/ rz0suhvvxuhfkdudfwhulvwlfv duh dssur{lpdwhg e| dgmxvwlqj sxps glvsodfhphqw xvlqj dq dfwxdwru/ordghg zlwk wzr ru pruh vsulqjv/ zklfk srvlwlrq lv frqwuroohg e| slorw suhvvxuh wdnhqiurp wkh sxps gholyhu| olqh1 D sxps zlwk frqvwdqw srzhu uhjxodwlrq dqg lwv rz0suhvvxuh fkdudfwhulvwlfv duh vkrzq lq �j1 :91 Zkhq sxps ordg lv vpdoo wkh frqwuroslvwrq lv ixoo| h{whqghg dqg wkh sxps lv dw lwv pd{lpxp glvsodfhphqw1 Dv suhvvxuhlq wkh gholyhu| olqh lqfuhdvhv wkh slvwrq uhwudfwv wr wkh uljkw dqg uhgxfhv sxpsglvsodfhphqw/ l1h1 sxps rz1 Wkh k|shuerolf uhodwlrq ehwzhhq sxps suhvvxuh dqgsxps gholyhu| rz lv rewdlqhg e| d surshu vhohfwlrq ri vsulqjv +lqlwldoo| rqo| rqhvsulqj lv zrunlqj dqg dv wkh f|olqghu pryhv rwkhu vsulqjv duh frpsuhvvhg,1 Iorz0suhvvxuh fkdudfwhulvwlfv duh olplwhg dw rqh hqg e| d pd{lpxp sxps glvsodfhphqw/fruuhvsrqglqj wr pd{lpxp gholyhu| rz TR6@%/ dqg dw wkh rwkhu hqg e| d pd{lpxpshuplvvleoh suhvvxuh s6@%1 Frqvwdqw srzhu frqwuro lv riwhq xvhg lq k|gudxolf v|vwhpvri zlqfkhv dqg hduwk prylqj pdfklqhu| dv lw doorzv wkh ixoo xvh ri dydlodeoh srzhuxqghu zlgho| ydu|lqj ordgv1

np

εp

Qp

pmax

Qp

p

Qpmax

III

III

P=const

Ilj1 :91 Frqvwdqw srzhu frqwuro

Page 41: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

120

Examples of Calculations - Control of Hydraulic Systems

Problem 4.1 Cylinder drive system

Calculate maximum forces during the operation of a cylinder, piston speeds and �owthrough the directional control valve for a system shown in �g. 77. Ignore frictionforces in the cylinder and forces due to back pressure in a return line. Assume nolosses in the cylinder and the system.

Qp

po

A1

A2

F

I O II

Fig. 77. Cylinder control system

Answer: When the directional control valve is in position marked 0 then thepiston is at rest. When the directional control valve is in position II the piston willmove to the left and the maximum piston force is a function of system pressure p0 -set by a relief valve, thus:

Fmax(2) = p0A2

The maximum force during movement of the piston to the right, when the directionalcontrol valve is in its position I, is:

Fmax(1) = p0(A1 ¡A2)

Piston speed when extending is:

v2 =QpA2

Page 42: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Cylinder counterbalancing system 121

and

v1 =Q

A1 ¡A2

when piston is retracting. If we assume ratio of areas:

A1A2

= 2 then A1 ¡A2 = A2

and speed v1 = v2 and also Fmax(2) = Fmax(1). Thus in this system the speed of thepiston in either direction is the same as is the force if supply pressure is constant. Atconstant pump delivery �ow Qp, the maximum �ow through the directional controlvalve is when the valve is in position I, i.e. when the piston is moving to the right.In this case the �ow through the directional control valve is equal to a sum of pump�ow Qp and the �ow from the annulus volume of the cylinder

Qmax = Qp +Q2

where:Q2 - the �ow from the annulus volume of the cylinder, Q2 = v1A2

At velocity v1 equal to:

v1 =Qp

A1 ¡A2

the maximum �ow through the directional control valve is:

Qmax = Qp

µ1 +

A2A1 ¡A2

¶= Qp

A1A1 ¡A2

and when the ratioA1A2

= 2, then:

QmaxA1A2

= 2Qp answer!

Problem 4.2 Cylinder counterbalancing system

A single acting, hydraulic cylinder is loaded by a large inertial force F , �g. 78.Design a system to prevent uncontrolled descent of the piston in the case of linefailure between the directional control valve and the cylinder.

Page 43: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

122 Examples of Calculations - Control of Hydraulic Systems

II 0 II

D

F

p0

Fig. 78. Gravity loaded hydraulic system (Solution a)

Answer - Solution a. In neutral position 0 of the directional control valve,the pump and the pilot line of a pilot operated check valve are connected to thereservoir. The pilot operated check valve, mounted directly on the cylinder, shuts theconnection between the cylinder and the directional control valve and thus preventspiston movement. When the directional control valve is moved to position II, thepilot pressure will lift the check valve o¤ its seat and the piston will start to descenddue to the gravity load on the piston. The pump �ow is directed to the reservoirthrough the pressure relief valve. The descent speed of piston will depend on the �owrate through the directional control valve to the reservoir which in turn is a functionof the sum of pressure drops across the check valve and the directional control valve.The power loss in this circuit is large as during piston descent the full �ow of thepump is discharged to the reservoir through the relief valve at the pressure set onthe relief valve.

The pressure necessary to lift the piston, ignoring hydro-mechanical losses, is:

p =4F

¼D2

where D is piston diameter.

Answer - Solution b. Lower power loss can be obtained by incorporatingin the circuit a relief valve which is set to a pressure necessary to open the pilotoperated check valve (the pilot pressure is usually 4-5 times lower than the pressureacting on the check valve). A uni-directional �ow control valve is also added to thecircuit, it allows control of the speed of the cylinder during descent. A check valve,

Page 44: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Forces - cylinder drive system 123

i 00 iiii i

Solution cSolution b

F F

Fig. 79. Gravity loaded hydraulic system (solutions b&c)

mounted in parallel to the �ow control valve, allows free �ow into the cylinder, �g.79b. In case of a failure of the line between the directional control valve and thepilot operated check valve, when the directional control valve in positions 0 or I,the check valve will close and prevent uncontrolled descent of the piston. When thedirectional control valve is in position II the failure of the line will not stop descentof the piston, however the piston will then travel at the speed set by a �ow controlvalve.

Answer - Solution c. An e¤ective method of protecting a system from theconsequences of failure of the line is to mount the pilot operated check valve directlyon the cylinder, �g. 79c. This circuit provides operating safety and also has theadvantage of controlling descent provided by solution b. In this solution the cylinderwill always descend at the speed controlled by the �ow control valve.

Problem 4.3 Forces - cylinder drive system

A double acting, single rod, hydraulic cylinder is controlled by a system shown in�g. 80. Calculate forces on the piston rod if the pressure settings pn1 and pn2 of therelief valves are known. Ignore losses in the system.

Answer: The system is equipped with a relief valve in the supply line and tworelief valve-check valve assemblies between the cylinder and the directional control

Page 45: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

124 Examples of Calculations - Control of Hydraulic Systems

valve. When the directional control valve is set in position 0, the piston is held instationary position by the check valves. The up motion of the piston is obtained bysetting the directional control valve to position II, then the cylinder force, ignoringfriction losses, is:

F1 = p3A1 ¡ pn2A2 answer!

where: p3 is pump pressure.

Setting the directional control valve to position I will move the cylinder in a down-ward direction, then the cylinder force is:

F2 = p3A2 ¡ pn1A1 answer!

These relations show that, to obtain the same required force, supply pressure p3has to be higher than it would be in a circuit which does not have cylinder mountedrelief valves. If the external load acts only in one direction, only one relief valve-checkvalve assembly may be used.

0

II

I

pn2

pn1

F1

A2

A1

p3

F1

Fig. 80. Cylinder control system (Problem 4.3)

Problem 4.4 Hydraulic lock

For a hydraulic system shown in �g. 81, in which a double acting, single rod cylinderis subjected to gravity force calculate pilot pressure ps controlling the operation ofa pilot operated check valve when external force F is known. Ignore friction andhydrodynamic-forces in the pilot operated check valve and hydro-mechanical lossesin the cylinder.

Page 46: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Hydraulic lock 125

Fp2

F

B

B1ps

p2'

p1

I 0 II

p2'

B

B1

ps=p1pT

a0

Fs

a1

pT'

pT'

A1

A2

Fig. 81. Hydraulic control system (Problem 4.4)

Answer: When the directional control valve is set in neutral position 0 thecylinder is stationary. Placing the valve into position II will move the cylinderupward against the load. During the down motion of the piston, when the directionalcontrol valve is in position I, the pilot operated check valve must be lifted o¤ itsseat by pilot pressure ps = p1, which is set by a relief valve. Piston area is A1 andannulus area of the cylinder is A2: For this system to operate correctly, pump supply�ow Qp must be higher than the �ow demand of the cylinder, thus v1A1 � Qp. Fromthe balance of forces acting on the piston, pressure p2 is:

p2 =F

A2+ p1

A2A1

(a)

and also:

p2 = p0

2 +¢pd (b)

where ¢pd is pressure drop across the �ow control valve. The pilot operated checkvalve, which is lifted by pilot pressure ps will open when the following condition issatis�ed:

psa1 = p1a1 > p0

2a0 + Fs

Page 47: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

126 Examples of Calculations - Control of Hydraulic Systems

and pilot pressure ps must meet condition:

ps >p02a0 + Fs

a1(c)

where:Fs - spring forcea0 - area of the poppeta1 - area of the pilot piston

We can combine the �rst two equations, eq. (a) and eq. (b), and rearrange to obtainexpression for p02:

p02 =F

A2+ p1

A1A2

¡¢pd

thus, after substituting for p02 in eq. (c) the required pilot pressure is:

ps = p1 >

F

A2¡¢pd +

F sa0

a1a0¡A1A2

answer!

and also, as p1 > 0, ratio of the pilot piston area to the valve seat area should bea1a0>A1A2. Required setting of pressure di¤erential ¢pd on the �ow control valve can

be obtained from:

¢pd =F

A2+ p1

A1A2

¡ p02

Problem 4.5 Cylinder decompression system

In some hydraulic systems when the cylinder reaches its end position the elasticenergy stored in the system (due to compliance of the �uid or load) may cause a�rebound� which may disturb the return movement of the piston. In such systemsto obtain a smooth reversal of the cylinder we must automatically release the storedelastic energy when the movement of the piston is reversed. An example of such ahydraulic system is shown in �g. 82.

Analyse operation of this system and:

² Describe its operation assuming that pressure ph set on sequence valves 3 and 5is 1=5 of maximum pressure due to load and that pressure required to operateback-pressure check valve 8 is lower than ph. Assume that the system is suppliedby a constant displacement pump, e¢ciency of the cylinder is ´c = 1, reservoir

Page 48: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Cylinder decompression system 127

12

3

456 7

8

O x1 h x

p1 p2

pp

A B

P T

ph

1.2 ph

F=F(x)

I IIO

Line z

Line b

Fig. 82. Decompression circuit (Problem 4.5)

pressure is p0 = 0; ignore hydraulic friction losses in hydraulic lines and checkvalves.

² Determine, on the basis of force-stroke characteristics shown in �g. 83, changesin the following operating variables in the function of piston stroke x:

� pressure p1 at the entry to the cylinder (piston head side of the cylinder)

� pressure p2 at the exit from the cylinder (piston rod side of the cylinder

� supply pressure pp� speed of piston v.

² Derive equation for the ori�ce area of �ow control valve 4 which will assure thatthe maximum speed of the piston during the return stroke is:

v2 �Q

A2

Answer - Description of operation: During piston motion to the right (direc-tional control valve in position I) the �uid �ows with minimum resistance throughcheck valve 1 to the piston head end of the cylinder. Fluid from the annulus side ofthe cylinder is returned to the reservoir, however there are two possible �ow pathsdepending on the cylinder load. In the �rst case, when pressure p1 in the cylinder

Page 49: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

128 Examples of Calculations - Control of Hydraulic Systems

0

1<n<5

F0

h

x

x1

F

x

-F0

Fig. 83. Force F versus stroke x

head is lower than pressure ph set on sequence valve 3 (p1 < ph), the valve will beclosed and �uid from the cylinder will return to the reservoir via check valve 2, thedirectional control valve (path B-T) and check valve 8.

In the second case, when p1 > ph, �uid from the cylinder will return to the reservoirvia check valve 2 and sequence valve 3.

When the piston reaches its end position, the load (and therefore pressure p1) in-creases, see force-stroke characteristics, and the elastic energy is stored in the �uid.The increase in pressure p1 causes valve 3 to open (pressure ph is according to ourspeci�cation equal to 1/5 of the maximum pressure). When subsequently the direc-tional control valve is switched to a neutral position 0 then the piston is stopped,however, the piston rod is still under load.

Switching the directional control valve into position II causes the piston to retract.As sequence valve 3 is still in its open position it prevents build up of pressure in lineb thus sequence valve 5 remains shut. Discharge of the �uid through �ow controlvalve 4 causes a gradual movement of the piston and reduction of the pressure inthe piston head volume of the cylinder. When pressure p1 drops to the level ofpressure ph, valve 3 closes and the pressure in line b increases. Pressure in lineb controls sequence valve 5, which opens and connects the piston head volume ofthe cylinder to the reservoir thus releasing all the energy stored in the �uid duringcylinder stopping. As pressure in line b increases further and reaches the value ofapprox. 1:2¢ph, sequence valve 6 opens and allows �uid �ow to the annulus volumeof the cylinder. The purpose of valve 6 is to maintain pressure that will keep valve5 open and valve 3 closed independently of the load on the piston.

Page 50: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Cylinder decompression system 129

During the decompression phase, it is necessary to prevent cylinder cavitation byallowing �uid to enter the annulus volume of the cylinder. This is achieved byallowing �uid �ow through line z to the annulus volume via check valve 7, withvalve 8 providing the necessary back-pressure.

0

nF0/A

hx1

F/A

x

p1

Fig. 84. Plot of pressure p1 vs. stroke x

Piston head pressure p1 = p1(x): When an external force, retracting the piston,is exerted on the cylinder rod (F > 0), the value of pressure p1 is a function of theload:

p1 =F

A1answer!

where A1 is the area of the piston.

In the other case, when an external force is extending the piston (F < 0), tensionforce pressure p1 is equal to pressure in the reservoir p1 = 0. Plot of pressure p1 asa function of piston stroke is shown in �g. 84.

As we assumed that 1 < n < 5, then pressure p1 =F0A1

is larger than pressure ph set

on valves 3 and 5, and:

F0A1

> ph

Annulus pressure p2 = p2(x): When pressure p1 > ph valve 3 is open, therefore,annulus pressure is equal to pressure in the reservoir p2 = 0. This occurs duringout-stroke of the piston and during return stroke up to the moment when there isa jump change in force from +F0 to ¡F0. When the piston is subjected to tension

Page 51: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

130 Examples of Calculations - Control of Hydraulic Systems

force F0, pressure p2 is de�ned by the relation:

p2 =F0A2

where A2 is the annulus area of the cylinder.

Plot of pressure p2 as a function of piston stroke x is shown in �g. 85.

0

hx1 x

F0/A2

p2

Fig. 85. Plot of pressure p2 vs. stroke x

Pump pressure pp = pp(x): To extend the piston the directional valve is shiftedto position I. Then pump pressure pp is equal to pressure p1:

p1 = pp =F0A1

answer!

During the return stroke, valve in position II, pump pressure is equal to zero untilsuch time as valve 3 closes, and then it is equal to the sum of pressure p2 and thepressure di¤erence across sequence valve 6:

pp =F0A2

+ 1:2ph answer!

Plot of pressure pp as a function of piston stroke x is shown in �g. 86

Piston velocity v = v(x): Piston velocity v1 during the out-stroke is constantand depends on pump delivery Qp:

v1 =QpA1

answer!

During the return stroke, velocity of the piston until the moment when valve 3 closesand valve 5 opens, is equal to:

v02 =QdA1

answer!

Page 52: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Cylinder decompression system 131

where Qd is �ow through restrictor valve 4.

0

nF0/A1

hx1

F0/A1

x

pp

F0/A2+1.2ph

Fig. 86. Pump pressure pp vs. stroke x

Flow rate through restrictor 4 can be calculated from equation:

Qd = Kvad

r2p1½

where:Kv - �ow coe¢cientad - area of the ori�ce½ - �uid densityp1 - load pressure

Substitute expression for p1:

p1 =F

A1

and rearrange, then:

v02 = Kvad

s2

½A31

pF

Thus velocity of the piston is dependent on restrictor �ow area ad. After valve 3closes and valve 5 opens (this will occur when force +F0 changes to ¡F0) the velocityof the piston during the return stroke is:

v002 =QpA2

Page 53: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

132 Examples of Calculations - Control of Hydraulic Systems

Plot of piston velocity as a function of piston stroke is shown in �g. 87. Velocityduring working stroke is taken to be positive. Various values of parameter ad areshown by dotted lines. This plot was drawn using �ow area ad of the ori�ce forwhich steady maximum velocity during the return stroke is equal to v002 .

hx1

v

v1

-v''2

x

ad1ad1

ad2>ad1

ad3>ad2

0

Fig. 87. Plot of piston velocity v vs. stroke x

Maximum ori�ce �ow area: From the condition v02 = v00

2 for x = h we obtain:

QpA2

= Kvadmax

s2

½A31

pnF 0

thus:

admax =QpA1KvA2

r½A12nF 0

answer!

Problem 4.6 Speed control of two cylinders in parallel

A system of cylinders is shown in �g. 88. System parameters are:

² pump stroke displacement qp = 2£ 106m3rev¡1

² pump rotation speed np = 1500 rpm

² piston areas A1 = A2 = A, A = 25£ 10¡4m2

² force - cylinder 1 F1 = 1000 N

² force - cylinder 2 F2 = 2000 N

The relief valve is set at pressure p0 = 2:5 MPa, ignore losses in the system.

Calculate speed of pistons v1; v

2and delivery pressure p for the following cases:

Page 54: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Speed control of two cylinders in parallel 133

1. a. All throttling valves are fully open (no �ow resistance)

b. Valves S2 and S3 are fully open, and pressure drop on valve S1 is:

¢pS1 = k1QS1 Pa k1 = 1£ 1010 Nsm¡5

c. Valve S3 fully open, and pressure drops on valves S1 and S2 are:

¢pS1 = k2QS1 Pa k2 = 5£ 1010 Nsm¡5¢pS2 = k3Q

2S2Pa k3 = 1£ 1015 Ns2m¡8

d. Valves have following pressure drops:

¢pS1 = k2QS1 Pa k2 = 5£ 1010 Nsm¡5¢pS3 = k3Q

2S2Pa k3 = 1£ 1015 Ns2m¡8

¢pS3 = k2QS3 Pa k2 = 5£ 1010 Nsm¡5

∆pS1

∆pS2

F1

p0

p

p0

qp

np

A2

A1

S3

∆pS3

F1

S2

S1

Cylinder 1

Cylinder 2

Fig. 88. Hydraulic control system (Problem 4.6)

Solution of case a. When restrictor valves are fully open, we can calculate thesupply pressure to both cylinders from equations:

p1 =F1A=

1000

25 £ 10¡4= 400000Pa = 0:4 MPa answer!

p2 =F2A=

2000

25 £ 10¡4= 800000Pa = 0:8 MPa answer!

And as p1 < p2, cylinder 1 will extend �rst with velocity:

Page 55: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

134 Examples of Calculations - Control of Hydraulic Systems

v1 =QpA=npqp60A

=1500£ 2£ 10¡6

60£ 25£ 10¡4= 2£ 10¡2 ms¡1 answer!

When the piston of cylinder 1 reaches its end position, the piston in cylinder 2 willextend with the velocity, �g. 89:

v2 = v1 =QpA= 2£ 10¡2 ms¡1 answer!

0

0.02

v [m/s]

t [s]

v1 v2

Fig. 89. Velocity of pistons versus time (case a)

Solution of case b. Valves S2 and S3 are fully open. The pump delivery �ow is:

Qp =npqp60

=1500£ 2£ 10¡6 £ 1

60= 50£ 10¡6 m3s¡1

Pressures in cylinders 1 and 2 are:

p1 =F1A+ k1QS1

p2 =F2A=

2000

25 £ 10¡4= 8£ 105 Pa = 0:8 MPa answer!

If the pressure set on the relief valve is p0 > p1 and p0 > p2, then we may considerthe following cases:

² For condition p1 < p2, cylinder 2 is at rest and cylinder 1 will start moving, thenQS1 = Qp:

p1max =F1A+ k1Qp =

1000

25£ 10¡4+ 1010 £ 5£ 10¡5 = 9£ 105 Pa = 0:9 MPa

thus p1max > p2 and this case is not possible.

² Both cylinders move simultaneously when p1 = p2:

Page 56: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Speed control of two cylinders in parallel 135

F1A+ k1QS1 =

F2A

thus:

QS1 =F2 ¡ F1Ak1

=2000¡ 1000

25£ 10¡4 £ 1010= 40£ 10¡6 m3s¡1

If:

Qp = QS1 +QS2

then:

QS2 = Qp ¡QS1

Initial velocities of the pistons are:

v1 =Q1A=40 £ 10¡6

25£ 10¡4= 1:6£ 10¡2 ms¡1

v2 =QS2A

=10 £ 10¡6

25£ 10¡4= 0:4£ 10¡2 ms¡1 answer!

Piston 1 will reach its end position in time:

t1 =h

v1

where h is piston stroke.

Piston 1 will reach its end position earlier than piston 2 as v1 > v2. After time t1piston 2 moves with increased velocity as pump full �ow is directed to cylinder 2,�g. 90:

v02 =QpA=50£ 10¡6

25£ 10¡4= 2£ 10¡2 ms¡1 answer!

Piston 2 will reach its end position after time:

t2 = t1 +h¡ v2t1v02

= t1(1 +v1 ¡ v2v2

)

Pump delivery pressure p = p2 = 0:8MPa < p0

Page 57: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

136 Examples of Calculations - Control of Hydraulic Systems

0.020

0.016

0.010

0.004

t1 t2 t [s]0

v [m/s]

t [s]

v1 v2'

v2

Fig. 90. Velocity of pistons versus time (Case b)

Solution for case c. Valve S3 is fully open, and pressure drops on valves S1and S2 are:

¢pS1 = k2QS1 k2 = 5£ 1010 Nsm¡5¢pS2 = k3Q

2S2

k3 = 1£ 1015 Ns2m¡8

Supply pressure to cylinders:

p1 =F

A+ k2QS1

p2 =F

A+ k3Q

2S2

Supply �ow rates to cylinders:

QS1 = Av1QS2 = Av2

(a)

If the relief valve is closed, p0 ¸ p1 and p0 = p2, then:

Qp = QS1 +QS2 = A(v1 + v2)

thus:

v1 + v2 =QpA=50£ 10¡6

25£ 10¡4= 2£ 10¡2 ms¡1 (b)

We may now consider again, as we did in case b, that p1 = p2 so both pistons moveat the same time:

F

A+ k2QS1 =

F

A+ k3Q

2S2

Page 58: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Speed control of two cylinders in parallel 137

If we substitute eq. (a) and the values of coe¢cients then:

1000

25£ 10¡4+ 5£ 1010 £ 25£ 10¡4v1 =

2000

25£ 10¡4+ 1015 £

¡25£ 10¡4

¢2 £ v2

The equation above allows calculation of either velocity v1 or v2. For example, byusing eq. (b) and transforming the above equation we obtain:

v22 + 0:02v2 ¡ 3:36£ 10¡4 = 0

thus:

v2 = ¡0:01 + 0:0209 = 0:0109 = 1:09£ 10¡2 ms¡1 answer!

and using again eq. (b) we calculate velocity v1:

v1 = 2£ 10¡2 ¡ 1:09£ 10¡2 = 0:91£ 10¡2 ms¡1 answer!

As v1 < v2, piston 1 will reach its end position before piston 2. Calculation ofvelocity v01 when v2 = 0 is carried in the same way as in the case b. Pump pressurep is calculated from equation:

p = p1 =F

A+ k2QS1 =

F

A+ k2v1A

p =1000

25£ 10¡4+ 5£ 1010 £ 0:91£ 10¡2 £ 25£ 10¡4 = 1:54MPa answer!

and as p0 = 2:5 MPa then p < p0 so the assumption that the relief valve is closed istrue.

Solution of case d. Pressure drops across restrictor valves were de�ned previ-ously by the equations:

¢pS1 = k2QS1 k2 = 5£ 1010 Nsm¡5¢pS3 = k3Q

2S2

k3 = 1£ 1015 Ns2m¡8¢pS3 = k2QS3 k2 = 5£ 1010 Nsm¡5

If we initially assume that the relief valve is closed, then �ow through restrictor S3is QS1 = Qp and the pressure drop on this valve is:

¢pS3 = k2Qp = 5£ 1010 £ 50£ 10¡6 = 2:5MPa

However, as additional pressure drops also occur on valves S1, S2 and in the cylindersthen it obvious that the above assumption is not correct. Thus, the relief is operating,and the system is working at pressure p0 = 2:5MPa set by the relief valve. Under

Page 59: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

138 Examples of Calculations - Control of Hydraulic Systems

such condition velocities of the pistons can be calculated from equations:

p1 = p0 =F1A+ k2Av1 + k2A(v1 + v2) (c)

p2 = p0 =F2A+ k3(Av2)

2 + k2A(v1 + v2) (d)

Substituting valves data into (c) and (d) we obtain:

2:5£ 106 =1000

25£ 10¡4+ 5£ 1010 £ 25£ 10¡4v1 + 5£ 1010 £ 25£ 10¡4 £ (v1 + v2)

2:5£ 106 =2000

25£ 10¡4+ 1015 £ (25£ 10¡4v2)2 + 5£ 1010 £ 25£ 10¡4 £ (v1 + v2)

which after rearrangement becomes:

250v1 + 125v2 ¡ 2:1 = 0 (e)

6250v22 + 125(v1 + v2)¡ 1:7 = 0 (f)

Expression for velocity v1 is obtained using eq. (e):

v1 =2:1¡ 125v2

250

which after substitution in eq. (f) yields equation for velocity v2:

6250v22 + 125

µ2:1¡ 125v2

250+ v2

¶¡ 1:7 = 0

or:

v22 + 0:01v2 ¡ 1:04£ 10¡4 = 0

Solution of this equation gives value of velocity v2:

v2 = 6:3578£ 10¡3 ms¡1 answer!

and �nally velocity v1 is

v1 = 5:22£ 10¡3 ms¡1 answer!

The velocity of piston 2 is larger than velocity of piston 1, so piston 2 will reach itsend position at time t:

Page 60: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Articulated platform - cylinders in series 139

t =h

v2

and subsequently the velocity of piston 1 will change to v01 which can be calculatedfrom equation:

p0 =F1A+ k2Av

0

1 + k2Av0

1

Velocity v01 is, �g. 91:

v0

1 =p0 ¡

F1A

2k2Aanswer!

v0

1 =2:5£ 106 ¡

1000

25£ 10¡42£ 5£ 1010 £ 25£ 10¡4

= 0:84£ 10¡2 ms¡1

Problem 4.7 Articulated platform - cylinders in series

A hydraulic system operating an articulated platform, shown in �g. 92 and �g. 93,has the following data:

² piston areas of cylinder 1 and 2, A11 = 50 cm2, A21 = 30 cm

2

² annulus areas of cylinder 1 and 2; A12 = 30 cm2; A22 = 10 cm

2

² forces acting on pistons 1 and 2; F1 = 60 kN; F2 = 50 kN

² hydro-mechanical e¢ciencies of cylinders 1 and 2; ´hm1 = 0:96, ´hm2= 0:94:

t [s]0

0.0084

v [m/s]

v1

v2

v1'

0.0100

0.0057

Fig. 91. Velocity of pistons versus time (Case d)

Page 61: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

140 Examples of Calculations - Control of Hydraulic Systems

Assume volumetric e¢ciencies of cylinders ´v1 = ´v2= 0 and calculate pressuresp1and p2.

Answer: The connections between cylinders are shown in �g. 93. Force balancefor cylinder 1:

F1´hm1

= p1A11 ¡ p2A12

and for cylinder 2:

F2´hm2

= p2A21 ¡ p1A22

Substituting data for cylinder 1:

60£ 103

0:96= p1 £ 50£ 10¡4 ¡ p2 £ 30£ 10¡4

and for cylinder 2:

50£ 103

0:94= p2 £ 30£ 10¡4 ¡ p1 £ 10£ 10¡4

we may calculate pressures p1and p2:

1

2

I

0

II

G

Fig. 92. Articulated platform (Problem 4.7)

Page 62: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Two cylinders in series - position error 141

p1 = 28:93MPa answer!

p2 = 27:38MPa answer!

p1

p2

F1 F2

A11 A22

A12A21

12

Fig. 93. Cylinder connections

Problem 4.8 Two cylinders in series - position error

A hydraulic system with two cylinders connected in a series is shown in �g. 94. Thefollowing data is available:

² piston areas for cylinder 1 and 2; A11 = 20 cm2; A21 = 15 cm

2

² annulus area for cylinder 1 and 2; A12 = 15 cm2; A22 = 10 cm

2

² length of stroke is s = 50 cm for both cylinders

² forces F1 = F2 = 15:0 kN.

² The volumetric losses in cylinders are de�ned by the following equation:

´vc =1

1 +K¢p

v

(a)

where:¢p - cylinder pressure di¤erentialv - piston velocityK - constant; K = 10¡1 cmMPa¡1s¡1

² pump has stroke displacement qp = 15 cm3rev¡1

² pump rotation speed np = 2800 rpm:

² pump volumetric e¢ciency ´vp = 1.

Calculate position error e between pistons when one of the pistons reaches its endposition. Also determine to which cylinder we must connect in parallel a restrictorvalve to eliminate this position error. The calculation should be carried out assuming

Page 63: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

142 Examples of Calculations - Control of Hydraulic Systems

A12 A22

A11 A21

Q2

Qvc1 Qvc2

F1 F2

p3

Q1

p1

p2

Fig. 94. Hydraulic system (Problem 4.8)

of no losses with exception of the volumetric losses due to leakages in cylinders.Ignore pressure losses in directional control valve.

Answer: Pressure in the cylinder 2 is calculated from equation, p3 = 0 :

F2 = p2A21

p2 =F2A21

=15000

15£ 10¡4= 10 MPa

and the pressure in cylinder 1 from equation:

F1 = p1A11 ¡ p2A12p1 =F1 + p2A12

A11=15£ 103 + 10£ 106 £ 15£ 10¡4

20£ 10¡4= 15 MPa

Pump delivery �ow rate Qp, assuming pump volumetric e¢ciency ´vp = 1, is:

Qp = npqp =2800

60£ 15 = 700 cm3s¡1

The volumetric e¢ciency of cylinder 1:

´vc1 =v1A11Qp

where v1 is piston velocity in cylinder 1. Thus equating this equation with the eq.(a) we obtain:

Page 64: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Two cylinders in series - position error 143

1

1 +K¢p

v1

=v1A11Qp

thus:

v1v1 +K¢p

=v1A11Qpv1

v1 =QpA11

¡K¢p

The pressure di¤erential ¢p in cylinder 1 is:

¢p = ¢pc1 = p1 ¡ p2 = 5MPa

therefore:

v1 =700

20¡ 5£ 10¡1 = 34:5 cms¡1

Volumetric losses Qvc1, due to internal leakage in cylinder 1, are:

Qvc1 = Qp ¡ v1A11 = 7000¡ 34:5£ 20 = 10 cm3s¡1

Return �ow Q2 from cylinder 1 is described by equation:

Q2 = v1A12 +Qvc1 = 34:5£ 15 + 10 = 527:5 cm3s¡1

Similar calculations for cylinder 2 allows us to �nd piston velocity v2: Again vol-umetric e¢ciency of the cylinder is a ratio of the demand �ow of the cylinder tosupply �ow Q2, thus:

´vc2 =v2A1Q2

and

1

1 +K¢p

v2

=v2A21Q2

v2 =Q2A21

¡K¢p

where ¢p is pressure di¤erential in cylinder 2 which, and if we ignore pressure lossesin the return line, it is equal to:

Page 65: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

144 Examples of Calculations - Control of Hydraulic Systems

¢p = ¢pc2 = p2 = 10 MPa

Finally, the velocity of piston 2 is:

v2 =527:5

15¡ 1 = 34:2 cms¡1

Volumetric losses Qvc2 due to internal leakage in cylinder 2 are:

Qvc2 = Q2 ¡ v2A21 = 527:5¡ 34:2£ 15 = 15 cm3s¡1

As velocity of the piston in cylinder 1 is v1 = 34:5 cms¡1 and velocity of the piston

in cylinder 2 is v2 = 34:2 cms¡1, thus the piston in cylinder 1 will reach its endposition sooner than the piston in cylinder 2. Position error e will be:

e = s1¡s2 = s¡v2t1 = s¡v2s

v2= s

µ1¡

v2v1

¶= 50£(1¡

34:2

34:5) = 0:435 cm answer!

where:s - maximum stroke of pistons

s1;s2 - strokes of pistons in cylinders 1 and 2t1 - stroke time of the piston in cylinder 2

To eliminate the position error we may install a restrictor valve, in parallel withcylinder 1, which will allow some �uid to bypass cylinder 1. Such a valve shouldallow by-pass �ow Qv = Qvc2¡Qvc1 = 5 cm3s¡1 at pressure di¤erence ¢p = 5 MPa:

Problem 4.9 Two cylinders in parallel - lifting system

A hydraulic lifting system is shown in �g. 95. Following data is available:

² mass M = 5000 kg

² pump stroke displacement qp = 50 cm3rev¡1

² pump rotation speed np = 1420 rpm

² pistons �areas are 25 cm2, pistons are cushioned at the end of their stroke, howeverthis should be ignored in calculations.

² hydro-mechanical and volumetric e¢ciencies of the pump are ´hmp = 0:96; ´vp =0:94

² hydro-mechanical and volumetric e¢ciencies of cylinders are ´hmc = 0:93, ´vc =0:98

Calculate time required to lift the load to height h = 1:0m :

Answer: Actual pump delivery �ow Qp is:

Qp = ´vpnpqp = 0:94£ 1420£ 50 = 66740 cm3min¡1

Page 66: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Two cylinders in parallel - lifting system 145

Mass M

A11

A21

Qc Qc

qp

np p0

Fig. 95. Hydraulic lifting system (Problem 4.9)

and the �ow into each cylinder is equal to:

Qc =Qp2= 33370 cm3min¡1

To calculate pressure in cylinders we use the equation for cylinder hydro-mechanicale¢ciency ´hmc:

´hmc =FeFtc

=FepA

where:Fc - actual cylinder forceFtc - theoretical cylinder force

therefore:

p =Fe

A´hmc=

Mg

2£ ´hmcA=

5000£ 9:812£ 0:93£ 25£ 10¡4

= 10:5 MPa

Volumetric e¢ciency of cylinder is:

Page 67: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

146 Examples of Calculations - Control of Hydraulic Systems

´vc =vcA

Qc

thus:

vc =´vcQcA

=0:98£ 3337025£ 60

= 21:8 ms¡1

and, �nally, lifting time t is equal to:

t =h

vc=100

21:8= 4:6 s answer!

Problem 4.10 Pump torque - open circuit hydrostatic drive

Select the sizes of a pump and a motor for the system shown in �g. 96. Determinethe required input torque when the relief valve pressure p0 is set to p0 = 21 MPa,and pump rotation speed is np = 2£103 rpm. The hydraulic motor should haverotation speed nm = 5 revs

¡1 at load torque Tm = 100 Nm. Ignore volumetric andhydraulic losses.

poTp

np

Tm

nm

Fig. 96. Open circuit hydrostatic drive (Problem 4.10)

Answer: The following equations apply for a system without losses:

Tp = VÁp¢pp Qp = VÁp!pTm = VÁm¢pm Qm = VÁm!m

To minimize the size of the pump and the motor, it is necessary to choose systemoperating pressure as high as possible. Thus we will choose an operating pressureonly slightly lower than the maximum pressure set on the relief valve. Ignoringlosses, we assume:

¢pp = ¢pm = 20MPa < p0

Page 68: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

System pressure - open circuit hydrostatic drive 147

Unit displacement VÁm of a motor is calculated from:

VÁm =Tm¢pp

=100

20£ 106= 5£ 10¡6 m3rad¡1 answer!

and using value of VÁm, we can calculate the �ow demand of the motor:

Qm = VÁm!m = 5:0£ 10¡6 £ 2£ ¼ £ 5 = 157£ 10¡6 m3s¡1

If the relief valve is closed then:

Qp = Qm thus Qp = VÁm!p

and unit displacement of the pump is equal to:

VÁp =Qm!p

=157£ 10¡6 £ 602000£ 2£ ¼

= 0:75£ 10¡6 m3rad¡1 answer!

Required pump input torque Tp is:

Tp = VÁp¢pp = 0:75£ 10¡6 £ 20£ 106 = 15:0 Nm answer!

Problem 4.11 System pressure - open circuit hydrostatic drive

The system shown in �g. 97 has the following data:

² rotation speed of electric motor ne = 1430 rpm

² torque of hydraulic motor Tm = 0:07nm Nm, where rotation speed of hydraulicmotor nm rpm

² stroke displacements of pump and motor qp = qm = 35 cm3rev¡1

² volumetric e¢ciency of pump ´vp = 0:94

² volumetric e¢ciency of motor ´vm = 0:95

² overall e¢ciency of pump ´p = 0:88

² overall e¢ciency of motor ´m = 0:90

² relief valve is set at p0 = 20 MPa

Using above data and ignoring volumetric and hydraulic losses in the lines calculatethe rotation speed of the motor nm, hydraulic motor output power Pm and pressureat the motor inlet port p3.

Answer: Pump delivery �ow:

´vp =QpQtp

=Qpnpqp

Page 69: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

148 Examples of Calculations - Control of Hydraulic Systems

ne

po

p3

Load

nm

Pm

Qrv

Fig. 97. Open circuit hydrostatic drive (Problem 4.11)

Qp = ´vpnpqp (a)

When the relief valve is closed and the e¢ciency of the delivery line is ´v1 = 1 (nolosses), then:

Qm = Qp (b)

The rotation speed of the motor is calculated from the equation for motor volumetrice¢ciency:

´vm =QtmQm

=nmqmQm

and

nm =´vmQmqm

answer!

From eq. (a) and eq. (b) we obtain, qp = qm:

nm = ´vm´vpnpqpqm

= 0:95£ 0:94£ 1430 = 1277 rpm

According to the problem statement, the torque of the motor is:

Tm = 0:07nm = 1277£ 0:07 = 89:4 Nm

and the motor output power is:

Pm = Tm!m = Tm2¼nm60

= 89:3£2£ ¼ £ 1277

60= 11:9 kW answer!

We can calculate pressure di¤erential across the motor using equation for hydro-mechanical e¢ciency of the motor:

Page 70: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Motor e¤ective power - open circuit hydrostatic drive 149

´hmm =TmTtm

=Tm2¼

¢pmqm

therefore:

¢pm =Tm2¼

´hmmqm

and as:

´hmm =´m´vm

then:

¢pm =Tm2¼´vm´mqm

=89:3£ 2£ ¼ £ 0:9535£ 10¡6 £ 0:90

= 16:92 MPa

We assume that the return line pressure p4 = 0, thus:

p3 = ¢pm = 16:92 MPa answer!

this pressure is lower than the setting of the relief valve p0 = 20 MPa, therefore theassumption that Qm = Qp was correct.

Problem 4.12 Motor e¤ective power - open circuit hydrostatic drive

For the system analysed in Problem 4.11, �g. 97, calculate rotation speed of themotor nm, actual motor power Pm and motor input pressure p3 when the relief valveis set to p0 = 15MPa. Torque of the motor was de�ned by equation:

Tm = 0:07nm Nm

where nm was rotation speed of the motor in rpm. Other system data are:

² pump and motor displacements; qp = qm = 35 cm3rev¡1

² volumetric e¢ciency of motor; ´vm = 0:95

² overall e¢ciency of motor; ´m = 0:90

Answer: In Problem 4.11 system pressure was calculated to be 16:9 MPa. Ifwe now assume that the relief valve is set at p0 = 15 MPa and that it has an ideal�ow-pressure characteristics, the pressure in the system will be limited to 15 MPa.Equations for hydro-mechanical e¢ciency ´hmm of the motor and motor torque Tmare:

´hmm =TmTtm

=2¼Tm¢pmqm

Page 71: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

150 Examples of Calculations - Control of Hydraulic Systems

Tm = 0:07nm Nm

which when combined yield:

´hmm = 0:07nm2¼

¢pmqm(a)

The overall e¢ciency of the motor is equal to:

´m = ´vm´hmm

then after substituting in the above eq. (a) and rearranging we obtain:

´m´vm

= 0:072¼nm¢pmqm

where ¢pm = p3. Thus:

nm =´m¢pmqm0:07´vm2¼

nm =0:9£ 150£ 105 £ 35£ 10¡6

0:07£ 0:95£ 2£ ¼= 1130 rpm answer!

then torque of the motor is:

Tm = 0:07nm = 0:07£ 1130 = 79:1 Nm answer!

and the output power of the motor:

Pm = Tm!m = 79:1£2£ ¼ £ 1130

60= 9:4 kW answer!

Problem 4.13 Analysis of open circuit hydrostatic drive

Open circuit hydrostatic drive is shown in �g. 98. Input data is as follows:

² rotation speed of electric motor ne = 1430 rpm

² torque of hydraulic motor Tm = 0:07nm Nm, where rotation speed of hydraulicmotor nm rpm

² stroke displacements of pump and motor qp = qm = 35 cm3rev¡1

² volumetric e¢ciency of pump ´vp = 0:94

² volumetric e¢ciency of motor ´vm = 0:95

² overall e¢ciency of pump ´p = 0:88

² overall e¢ciency of motor ´m = 0:9

² volumetric and hydraulic losses in the lines are ignored.

Page 72: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Analysis of open circuit hydrostatic drive 151

The valve has the following characteristics:

Qrv =

½0 for p3 � p0

K(ps ¡ p0) for p3 > p0

where:

K - �ow coe¤cient, K = 40£ 10¡11 m3MPa¡1=2s¡1p - system pressurep0 relief valve set pressure, p0 = 13 MPa

Using above data and ignoring volumetric and hydraulic losses in the lines calculatethe rotation speed of the motor nm, hydraulic motor output power Pm and pressureat the motor inlet port p3.

ne

po

p3

Load

nm

Pm

Qrv

Fig. 98. Open circuit hydrostatic drive (Problem 4.13)

Answer: Pump delivery �ow is:

Qp = ´vpnpqp =0:94£ 1430£ 35£ 10¡6

60= 784:1£ 10¡6 m3s¡1 (a)

The maximum motor pressure is dependent on the characteristics of the relief valve.Remembering that we may ignore losses in delivery and return lines:

¢pm = p0 = p3

Pressure p = p3 at which system will operate after relief valve opens is calculatedusing the equation for �ow through the relief valve:

Qrv = K(p3 ¡ p0)

p3 =QrvK

+ p0 (b)

We use the expression for hydro-mechanical e¢ciency of the motor ´hmm and calcu-late pressure di¤erential ¢pm:

´hmm =TmTtm

=Tm

¢pmVÁm

Page 73: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

152 Examples of Calculations - Control of Hydraulic Systems

then as Tm = 0:07nm then pressure di¤erential across the motor is:

¢pm =0:07nm2£ ¼´hmmqm

(c)

Thus, as ¢pm = p3, we can equate eq. (b) with eq. (c):

0:14¼nm´hmmqm

=QrvK

+ p0

and obtain the expression for �ow through the relief valve:

Qrv =0:14¼nmK

´hmmqm¡Kp0 (d)

The equation for volumetric e¢ciency of a motor is:

´vm =QtmQm

=!mVÁmQm

from which we obtain the equation for motor demand �ow:

Qm =nmqm £ 10¡6

60´vm(e)

Pump delivery Qp is equal to the sum of �ows through the relief valve Qrv and themotor Qm, thus we can calculate rotation speed of the motor:

Qp = Qrv +Qm

taking into consideration equations (d) and (e) we obtain:

Qp =0:14¼nmK

´hmmqm¡Kp0 +

nmqm60£ 106´vm

where:

´hmm =´m´vm

=0:9

0:95= 0:947

Rearranging and using (a) we get expression for motor speed:

nm =Qp +Kp0

0:14¼K

´hmmqm+qm £ 10¡6

60£ ´vm

=

Page 74: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Motor speed - open circuit hydrostatic drive 153

nm =784:1£ 10¡6 + 40£ 10¡11 £ 13£ 106

0:14£ ¼ £ 40£ 10¡11

0:947£ 35£ 10¡6+35£ 10¡6

60£ 0:95

= 1010 rpm answer!

The motor output torque is:

Tm = nm0:07 = 1010£ 0:07 = 70:7 Nm

and the motor output power is equal to:

Pm = T! =70:6£ 2£ ¼ £ 1010

60= 7:47 kW answer!

Finally pressure p3; which in the absence of losses is equal to pressure di¤erentialacross the motor, is calculated from equation:

p3 = ¢pm =Tm´vm2¼

´mqm=70:6£ 0:95£ 2£ ¼0:90£ 35£ 10¡6

= 13:4 MPa (answer!)

Problem 4.14 Motor speed - open circuit hydrostatic drive

A hydraulic pump which supplies a hydraulic motor, �g. 99, has rotation speed nm =15 rev s¡1. What is the rotation speed of a motor which has stroke displacementqm = 15qp (where qp is pump stroke displacement). Volumetric e¢ciency of thepump is ´vp = 0:9, and the motor internal leakage �ow Qvm = 2Qvp.

qp qmQvp Qvm

QpQm

np nm

Fig. 99. Hydraulic System (Problem 4.14)

Answer: The theoretical delivery �ow of a pump and the theoretical �ow demandof a motor are calculated from relations:

Qtm = nmqm

Qtp = npqp

Page 75: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

154 Examples of Calculations - Control of Hydraulic Systems

Volumetric e¢ciencies of a pump and a motor are de�ned by expressions:

´vp =QpQtp

=Qtp ¡QvpQtp

= 1¡QvpQtp

and (note that Qvm = 2Qvp)

´vm =QtmQm

=Qtm

Qtm +Qvm=

1

1 +QvmQtm

=1

1 +2QvpQtm

(a)

where:Qp;Qm - actual pump supply and motor demand �ows

Qtp;Qtm - theoretical pump supplu and motor demand �owsQvp; Qvm - leakage �ows of pump and motor

As the pump is directly connected to the motor thus Qp = Qm and:

´vpnpqp =nmqm´vm

(b)

or:

1¡ ´vp =QvpQtp

therefore the leakage �ow of the pump is expressed by:

Qvp = (1¡ ´vp)Qtp (c)

The volumetric e¢ciency of the motor, using relations (c) in (a) is:

´vm =1

1 + 2(1¡ ´vp)QtpQtm

which we can substitute in eq. (b):

´vpnpqp =nmqmQtm + 2(1¡ ´vp)Qtp

nmqm

as the stroke displacement of motor is qm = 15qp then after simpli�cation we obtain:

´vpnp = 15£ nm + 2(1¡ ´vp)np

so, �nally, we can calculate motor rotation speed nm:

Page 76: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Parallel drive of two hydraulic motors 155

nm =3´vp ¡ 215

np =3£ 0:9¡ 2

15£ 15 = 0:7 revs¡1 answer!

Problem 4.15 Parallel drive of two hydraulic motors

In a hydraulic system shown in �g. 100, a single �xed displacement pump supplies�uid to two motors connected in parallel.

np

qp

Tm1 nm1

Tm2 nm2

qm1

qm2

Fig. 100. Drive of two motors in parallel (Problem 4.15)

Following data is available:

² rotation speed of the pump np = 50 revs¡1

² torque loading of hydraulic motors Tm1 = 173 Nm and Tm2 = n2m2k

² stroke displacement of the pump qp = 40:8£10¡6 m3rev¡1

² stroke displacements of motors qm1 = 60 £ 10¡6 m3rev¡1 and qm2 = 50 £10¡6 m3rev¡1

² hydro-mechanical e¢ciency of the motors; ´hmm = 0:90, constant over wholeoperating range

² volumetric e¢ciency of the pump; ´vp = 0:98, constant over whole operatingrange

Ignore volumetric and hydraulic losses in hydraulic lines and calculate rotationspeeds of motors.

Answer: Torques developed by the motors are:

Tm1 =¢pmqm12¼

´hmm

Page 77: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

156 Examples of Calculations - Control of Hydraulic Systems

Tm2 =¢pmqm22¼

´hmm

Using the �rst of the above equations we calculate pressure drop in the motors:

¢pm =2¼Tm1qm1´hmm

=2£ ¼ £ 173

60£ 10¡6 £ 0:9= 20£ 106 Pa

then the torque of the second motor is:

Tm2 =¢pmqm22¼

´hmm =20£ 106 £ 50£ 10¡6

2£ ¼£ 0:9 = 143:2 Nm

Rotation speed nm2 of the second motor is calculated from equation:

Tm2 = n2m2k

and is equal to:

nm2 =

rTm2k

=p143:2 for k = 1

nm2 = 11:97 revs¡1 answer!

If we ignore leakages in the motor and hydraulic lines �ow demand Qm2 of motor 2is:

Qm2 = nm2qm2 = 11:97£ 50£ 10¡6 = 598:5 cm3s¡1

and as �ow delivery Qp of the pump is:

Qp = npqp´vp = 50£ 40:8£ 10¡6 £ 0:98 = 2000 cm3s¡1

then demand �ow Qm1 of motor 1 is:

Qm1 = Qp ¡Qm2 = 2000¡ 598:5 = 1401:5 cm3s¡1

and �nally rotation speed nm1 of motor 1, keeping in mind that we assumed volu-metric e¢ciency ´vm = 1; is calculated from equation:

nm1 =Qm1qm1

=1401:5£ 10¡6

60£ 10¡6= 23:4 revs¡1 answer!

Page 78: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Pump �ow - meter-in control of a motor 157

Problem 4.16 Pump �ow - meter-in control of a motor

Calculate �ow rate Qp of a pump driving a hydraulic motor in a circuit shown in�g. 101. The required output power of the motor is P = 25 kW. Calculate also thepump delivery pressure p and �ow coe¢cient Krv of the relief valve which has thefollowing �ow characteristics:

Qrv =

½0 for ps � p0

Krv(ps ¡ p0)pp for ps > p0

where p0 is relief valve pressure setting.

∆pd

Qp

po

Qd=Qmpp

∆pm

np nm

P

Fig. 101. Meter-in control of hydraulic motor (Problem 4.16)

The pump operating rotation speed np = 18:0 revs¡1 and its volumetric e¢ciency is

´vp = 0:95. Flow through the restrictor is governed by the following equation:

Qd = Kadp¢pd (a)

where:¢pd - pressure drop across the restrictorad - �ow area of the restrictor, ad = 3:0 cm

2

K - constant, K = 5:0 MPa¡1=2ms¡1

The motor has the following parameters:

² stroke displacement qm = 80:0 cm3rev¡1

² rotation speed nm = 14 revs¡1

² volumetric e¢ciency ´vm = 0:93

² overall e¢ciency ´m = 0:68

Calculations should be carried out assuming that actual �ow demand Qm of themotor is equal to 72% of pump �ow rate (Qm = 0:72Qp). Ignore losses in deliveryline.

Page 79: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

158 Examples of Calculations - Control of Hydraulic Systems

Answer: We calculate pressure drop in the motor using equation:

P = Qm¢pm´m = qmnm¢pm´hmm

then

¢pm =P

qmnm´hmm

and as

´hmm =´m´vm

=0:68

0:93= 0:73

therefore

¢pm =25£ 103

80£ 10¡6£14£ 0:73= 30:58 MPa

Pressure p is calculated using equation:

p = ¢pm +¢pd

We use the equation for �ow through the restrictor valve to calculate pressure drop¢pd:

¢pd =

µQd

Kad

¶2

and as

Qd = Qm =qmnm

´vm=80£ 10¡6 £ 14

0:93= 1:2 Ls¡1

therefore

¢pd =

µ1:2£ 10¡3

5:0£ 3£ 10¡4

¶2= 0:64 MPa

and pressure p is:

p = 30:58 + 0:64 = 31:22 MPa answer!

Flow delivery of the pump is:

Qp =Qm

0:72

Qp = qpnp´vp =Qm

0:72

Page 80: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Pump �ow - meter-in control of a motor 159

thus required stroke displacement of the pump:

qp =Qm

0:72np´vp=

1:2£ 10¡3

0:72£ 18£ 0:95= 0:097 Lrev¡1

Coe¢cient Krv is calculated using relation:

Qb = Krv(p¡ p0)pp

where �ow Qb through the relief valve is:

Qb = Qp ¡Qm

as the actual �ow delivery of the pump is equal to:

Qp = qpnp´vp = 0:097£ 18£ 0:95 = 1:66 Ls¡1 answer!

then �ow through the relief valve is equal to:

Qb = 1:66¡ 1:2 = 0:46 Ls¡1

Pressure p0 at which relief valve will open is calculated using equation:

p0 = ¢pm1 +¢pd1

where ¢pmp1 and ¢pd1 are pressure di¤erentials when Qp = Qm, thus:

¢pm1 =P

Qm´hmm

¢pm1 =25£ 103

1:66£ 10¡3 £ 0:73= 20:63 MPa

Pressure drop ¢pd1on the restrictor valve when Qp = Qm is equal to:

¢pd1 =

µ1:66£ 10¡3

5£ 10¡3 £ 3£ 10¡4

¶2= 1:2 MPa

so, pressure p0 set on the relief valve should be equal to:

p0 = 20:63 + 1:2 = 21:83 MPa

Coe¢cient Krv can be now calculated:

Krv =Qb

(p¡ p0)pp

Page 81: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

160 Examples of Calculations - Control of Hydraulic Systems

Krv =0:46

(31:22¡ 21:83)p31:22

= 8:76£ 10¡3 Ls¡1MPa¡3=2 answer!

Problem 4.17 Motor speed - meter-in control of a motor

For the hydrostatic drive shown in �g. 102 calculate �ow Qd through the restrictorvalve and a maximum rotation speed nm of the motor.

Qp

po

Qd=Qmpp

∆pm

np nm

T

∆pd

Fig. 102. Meter -in control of hydraulic motor (Problem 4.17)

Use the following data:

² pump stroke displacement qp = 0:12 Lrev¡1

² pump rotation speed np = 20 revs¡1

² pump volumetric e¢ciency ´vp = 0:95

² motor stroke displacement qm = 0:16 Lrev¡1

² motor volumetric e¢ciency ´vm = 0:95

² motor hydro - mechanical e¢ciency ´hmm = 0:80

² motor load torque T = 60 Nm

² pressure setting of the relief valve p0 = 7 MPa

Flow through the restrictor valve is de�ned by equation:

Qd = Kadp¢pd

where:¢pd - pressure drop on the valvead - valve �ow area, ad = 2 cm

2

K - �ow constant, 4:25 MPa¡1=2ms¡1

Answer: Hydraulic motor power Pm is following equations:

Pm = T!m

Pm = Qtm¢pm´hmm = qmnm¢pm´hmm

Page 82: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Motor speed - pressure compensated �ow control valve 161

and as:

nm =!m

therefore:

qm!m¢pm´hmm2¼

= T!m

and pressure drop ¢pm across the motor is equal to:

¢pm =2¼T

qm´hmm=

2£ ¼ £ 600:16£ 10¡3 £ 0:8

= 2:95 MPa

As the system is working at maximum pressure thus the relief must be open and thepressure drop ¢pd on the restrictor valve is:

¢pd = p0 ¡¢pm = 7:0¡ 2:95 = 4:05 MPa

Flow through the restrictor valve is, according to the problem statement, de�ned byequation:

Qd = Kadp¢pd = 4:25£ 2£ 10¡4 £

p4:05 = 1:71 Ls¡1 answer!

The maximum pump delivery �ow is equal to:

Qp = qpnp´vp = 0:12£ 20£ 0:95 = 2:28 Ls¡1

The maximum rotation speed nm of the motor is calculated using Qd and the knownvalue of the volumetric e¢ciency of the motor:

Qd =Qtm

´vm=qmnm

´vm

where Qtm is the theoretical �ow demand of the motor. Finally, the maximumrotation speed of the motor is equal to:

nm =Qd

qm´vm =

1:71

0:16£ 0:95 = 10:1 revs¡1 answer!

Problem 4.18 Motor speed - pressure compensated �ow control valve

For the system which is shown in �g. 103 calculate the maximum torque developedby a hydraulic motor and the overall e¢ciency of the system when the restrictorvalve is fully open. Use the following data:

² pump stroke displacement qp = 0:18 Lrev¡1

Page 83: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

162 Examples of Calculations - Control of Hydraulic Systems

² pump rotation speed np = 16 revs¡1

² pump volumetric e¢ciency ´vp = 0:90

² pump overall e¢ciency ´p = 0:75

² the relief valve is set at p0 = 7 MPa: The relief valve is closed when the restrictorvalve is fully open

² the pressure di¤erential valve has pressure di¤erential ¢pc = 0:7 MPa

² pressure drop through the fully open restrictor valve is ¢pd = 0:3 MPa

² motor stroke displacement qm = 0:14 Lrev¡1

² motor volumetric e¢ciency ´vm = 0:93

² motor hydro-mechanical e¢ciency ´hmm = 0:85

Qp

po

pp

∆pm

np nm

∆pd∆pc

qp qm

Fig. 103. Speed control of hydraulic motor (Problem 4.18)

Answer: The pressure drop on the motor is:

¢pm = p0 ¡¢pc ¡¢pd = 7:0¡ 0:7¡ 0:3 = 6:0 MPa

and the maximum motor torque may be calculated using equation:

Tmmax=qm¢pm´hmm

2¼=0:14£ 10¡3 £ 6:0£ 106 £ 0:85

2¼= 113:6 Nm answer!

Overall e¢ciency of the system is a product of overall e¢ciencies of the pump, motorand the �ow control valve, thus:

´ = ´p´m´fv

The pump overall e¢ciency is given as:

´p = 0:75

and the overall e¢ciency of the motor is de�ned by equation:

Page 84: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Speed control of cylinder - pressure compensated controls 163

´m = ´vm´hmm = 0:85£ 0:9 = 0:76

As the overall e¢ciency of the �ow control valve (i.e. sequence and restrictor valves)is de�ned by equation:

´fv =¢pmp0

=p0 ¡¢pc ¡¢pd

p0=6:0£ 106

7:0£ 106= 0:86

thus, the overall e¢ciency of the system is:

´ = 0:75£ 0:76£ 0:86 = 0:49 (answer!)

Problem 4.19 Speed control of cylinder - pressure compensated controls

The hydraulic system shown in �g. 104 consists of a �xed displacement pump, arelief valve, three directional control valves (a, b and c), restrictor type �ow controlvalve (d, e) and a hydraulic cylinder. The following data is available:

² pump rotation speed np = 1000 rpm

² pump unit displacement V'p = 20 mLrad¡1

² cylinder piston diameter D = 60mm

² cylinder rod diameter - d = 25mm

² cylinder force F = 10 kN

² force losses in cylinder Ffr = 100 N

² pump hydro-mechanical e¢ciency ´hmp = 0:80

² pump volumetric e¢ciency ´vp = 0:92

² the relief valve is set at p0 = 15:0 MPa

Flows through the valves, when pa; pb and pc units are MPa, are:

for valve (a):

Qa = 3:0ppa Ls

¡1 (a)

for valve (b):

Qb = 2:5ppb Ls

¡1 (b)

for valve (c):

Qc = 4:5ppc Ls

¡1 (c)

Page 85: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

164 Examples of Calculations - Control of Hydraulic Systems

Constant pressure di¤erential ¢pd = 0:4 MPa across restrictor (d) is maintainedby valve (e). The �ow control valve assures constant velocity of the piston, vc =600 mms¡1.

Calculate pump �ow rate Qp, pump input power Pp, pressure drop on �ow controlvalve ¢pr, and the overall e¢ciency of the system ´sys. Calculate also system e¢-ciency when the restrictor-type, �ow control valve is replaced by a by-pass type �owcontrol valve.

Qp

p3

pp

np

Q1

F

p4 Q2

φD

φdb

c

d

e

a

p0=15 MPa

Fig. 104. Cylinder speed control (Problem 4.19)

Answer: Flow rate Q1 into cylinder piston volume is:

Q1 =¼D2

4vc =

¼ £ (0:06)2

4£ 0:6 = 1:7 Ls¡1

and �ow rate Q2 into annulus volume is:

Q2 =¼(D2 ¡ d2)

4vc =

¼ £ (0:0602 ¡ 0:0252)4

£ 0:6 = 1:4 Ls¡1

Page 86: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Speed control of cylinder - pressure compensated controls 165

The actual �ow delivery of the pump is calculated using the pump theoretical �owrate Qtp and its volumetric e¢ciency ´vp:

Qtp = VÁp2¼np60

= 20£ 10¡6 £2£ ¼ £ 103

60= 2:09 Ls¡1

Qp = Qtp´vp = 2:09£ 0:92 = 1:93 Ls¡1 answer!

As pump �ow is larger than �ow into the cylinder piston volume Qp > Q1 then therelief valve must be open and the input power to the pump is then:

Pp =p0Qtp

´hmp=15£ 106 £ 2:09£ 10¡3

0:8= 39:2 kW answer!

The e¤ective power of the cylinder is calculated using equation:

Pc = Fvc = 10£ 103 £ 0:6 = 6 kW

thus, the overall e¢ciency of the system is:

´sys =Pc

Pp=

6

39:2= 0:15 answer!

Pressure loss in directional control valve (b), eq. (b), due to �ow from the annulusvolume of the cylinder into the reservoir is:

¢pb2 =

µQ2

2:5

¶2=

µ1:4

2:5

¶2= 0:31 MPa

and the pressure loss due to �ow into the cylinder:

¢pb1 =

µQ1

2:5

¶2= 0:46 MPa

Using eq. (a) we can calculate pressure loss in directional control valve (a):

¢pa =

µQ1

3

¶2=

µ1:7

3

¶2= 0:32 MPa

Cylinder pressure p3 is calculated from the following equation:

p3¼D2

4= F + Ffr +¢pb2

¼(D2 ¡ d2)4

thus,

Page 87: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

166 Examples of Calculations - Control of Hydraulic Systems

p3 =4(F + Ffr)

¼D2+¢pb2

µ1¡

d2

D2

p3 =4£ (10£ 103 + 100)¼ (60 £ 10¡3)2

+ 0:31£ 106Ã

1¡¡25 £ 10¡3

¢2

(60 £ 10¡3)2

!

= 3:83 MPa

Finally, pressure drop on the pressure di¤erential valve (e) is:

¢pr = p0 ¡¢pa ¡¢pd ¡¢pb1 ¡ p3¢pr = 15¡ 0:32¡ 0:4¡ 0:46¡ 3:83 = 10 MPa answer!

Pressure drop ¢pr is the inherent loss associated with a chosen control strategy.

c d

e

To valve a

To valve b

Fig. 105. By-pass �ow control (Problem 4.19)

If we replace the restrictor type �ow control valve with a by-pass �ow control valve,�g. 105, then pump pressure is:

pp = ¢pa +¢pd +¢pb1 + p3

where:

¢pa =

µQp

3

¶2=

µ1:93

3

¶2= 0:41 MPa

as the relief valve is closed because the pump pressure is lower than the relief valvesetting. The pump pressure is:

Page 88: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Hydraulic lift system 167

pp = 0:41 + 0:4 + 0:46 + 3:83 = 5:1 MPa

The power input to the pump is equal to:

Pp =pQtp

´hmp=5:1£ 106 £ 2:09£ 10¡3

0:8= 13:32 kW answer!

thus, the overall e¢ciency of the system is:

´sys =Pc

Pp=

6

13:32= 0:45 answer!

The e¢ciency of this system in which a by-pass �ow control valve is used is thusthree times higher than the e¢ciency of the system with a restrictor type �ow controlvalve.

Problem 4.20 Hydraulic lift system

A hydraulic system operating a lift is shown in �g. 106. Calculate power P necessaryto drive the pump and overall e¢ciency of system ´sys. System parameters are asfollows:

² load F = 13:4 kN

² dead weight of the lift F0 = 450N² lifting velocity v = 0:6 mms¡1

² pump delivery �ow Qp = 1:5 Ls¡1

² pump overall e¢ciency ´p = 0:85

² cylinder piston area A2 = 0:5A1² piston diameter D = 100mm

² e¢ciency of cylinder ´c = 1

The �ow rate through directional control valve (e) in directions P-A, B-T, and indirections P-B and A-T is de�ned by equation (¢p in MPa):

Q = K1p¢p

where K1 is �ow coe¢cient, K1 = 440 LpmMPa¡1=2

The �ow rate through valves (d) and (g) is de�ned by:

Q = K2p¢p

where K2 is �ow coe¢cient, K2 = 570 LpmMPa¡1=2 and ¢p is in MPa.

Page 89: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

168 Examples of Calculations - Control of Hydraulic Systems

c

d

0.35 MPa

b

a

h

e

f

Fc

F+F0 v

A2

A1

g17 MPa

A

T

P

B

Fc

p3

p4

Fig. 106. Hydraulic lift system (Problem 4.20)

Answer: The power necessary to drive the system is calculated using equation:

P = Pp = Qp¢p12´p

(a)

In the case when directional control valve (d) is in a closed position, the �ow pathfrom the pump to the cylinder is through by-pass �ow control valve (c) and direc-tional control valve (e) (path P-A). If we ignore pressure losses in hydraulic lines,the pressure di¤erence acting on the cylinder piston is:

¢p12 = ¢pc +¢pP¡A + p3

To evaluate pressure losses in individual control elements we must �rst calculate �owQ2 to the cylinder and return �ow Q1:

Q1 = A1 £ v2

and as piston area is equal to:

Page 90: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Hydraulic lift system 169

A1 =¼D2

4=¼ £ 0:1002

4= 7:854£ 10¡3m2

and velocity of the piston is:

v2 =v

i=0:6

2= 0:3 ms¡1

where i is overall ratio of pulley system, therefore:

Q1 = 7854£ 10¡6 £ 0:3 = 2:36£ 10¡3 = 2:36£ 10¡3 m3s¡1 = 141:4 Lpm

At the same time the return �ow from the cylinder is:

Q2 = A2 £ v2

where area A2 is equal to:

A2 = 0:5£A1 = 0:5£ 7:854£ 10¡3 = 3:927£ 10¡3m2

thus return �ow Q2 is

Q2 = 3:927£ 10¡3 £ 0:3 = 1:18£ 10¡3 m3s¡1 = 70:7 Lpm

Pressure drop ¢pP¡A is equal to:

¢pP¡A =

µQ2

K1

¶2=

µ70:7

440

¶2= 0:026 MPa

Assuming pulleys e¢ciency ´pl = 1, cylinder pressure p3 is:

A2 £ p3 = Fc + p4 £A1

where:

Fc = i£ (F + F0) = 2£ (13400 + 450) = 27700 N

Pressure in the return line is calculated from the relation:

p4 = ¢pg +¢pB¡T =

µQ1

K2

¶2+

µQr

K1

¶2

p4 =

µ141:4

570

¶2+

µ141:4

440

¶2= 0:062 + 0:103 = 0:165 MPa

thus:

Page 91: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

170 Examples of Calculations - Control of Hydraulic Systems

p3 =Fc+p4A1A2

=27700 + 0:165£ 106£7854£ 10¡6

3927 £ 10¡6= 7:38 MPa

and pressure ¢p12 in pump delivery line is equal to:

¢p12 = 0:35 + 0:026 + 7:384 = 7:76 MPa

Using eq. (a) we can calculate the required input power:

P =1:5£ 10¡3 £ 7:76£ 10¡6

0:85= 13:7 kW answer!

Finally, the overall e¢ciency of the system is equal to:

´sys =Fcv2

P

´sys =27700£ 0:313700

= 0:61 answer!

Problem 4.21 Flow-pressure characteristics of combined hydraulicelements

Flow-pressure characteristics of two hydraulic elements A and B are shown in �g.107. Determine �ow-pressure characteristics for the assembly of these elements in-series and in-parallel.

∆p

B

A

Q

Fig. 107. Flow-pressure characteristics of hydraulic elements A and B (Problem4.21)

Answer: In the case of a parallel connection of the elements a total �ow §Qis the sum of �ows through the individual elements. However the pressure drop, if

Page 92: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Flow-pressure characteristics of pumping unit 171

we ignore losses in connecting lines, is the same in each element. We obtain the�ow-pressure characteristics of the assembly by adding �ow rates through elementA and element B at constant pressure drop ¢pA = ¢pB = ¢p, and repeating theprocedure for various values of ¢p.

A

B

QA

QB

Qtotal

A

B

QA

A+B

QA

QB

∆p

Qtotal

∆pA=∆pB

B

A

Q

∆pA

∆pB

∆p

Qtotal

∆ptotal

∆pB

∆pB

Q

A+B

B

A

A B

∆ptotal

∆pB∆pA

∆ptotal

Fig. 108. Flow-pressure characteristic curve. a.- parallel connection; b.- seriesconnection. Series connection

In a series connection of the elements the �ow through each element is the same,however the total pressure drop is the sum of pressure drops on the individual el-ements. We obtain the �ow-pressure characteristic curve by summing the pressuredrops ¢pA and ¢pB on elements A and B at a constant �ow Q and repeating theprocess for various values of �ow Q. The resultant characteristic for parallel andseries connections are shown in �g. 108.

Problem 4.22 Flow-pressure characteristics of pumping unit

Given the �ow-pressure characteristics of a pump and a relief valve, �g. 109, deter-mine �ow-pressure characteristics of the pumping unit which includes these elements.

Answer: In a pumping unit a pump and a relief valve are connected in parallel.We obtain the unit�s characteristics by assuming that the system �ow is equal to:

Q = Qp ¡Qrv

Page 93: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

172 Examples of Calculations - Control of Hydraulic Systems

p

Qp

p

p0

Qrv

Fig. 109. Flow-pressure characteristics. Left - relief valve, right - pump

where:Qp - �ow rate delivered by the pumpQrv - �ow through the relief valve to reservoir

For p � p0 (the pressure at which the relief valve opens) �ow through the relief valveis Qrv = 0 and thus Q = Qp, and in this pressure range the characteristic curve ofthe unit is identical to the characteristic curve of the pump.

p

p0

px

Qrv

p2

B(Qx,px)

A(Q1,p0)

D(Qp,px)

Qrv

Qx

p

p0

p2

Qrv Q

Qrv

C

Fig. 110. Flow-pressure characteristics of pumping unit (pump - relief valve)

For p > p0, relief valve �ow Qrv > 0 and the characteristic curve of the unit isfound using two points A(Q1; p0) and B(Qx; px). Point A(Q1; p0) de�nes the �owand pressure at which the unit starts working with the relief valve open, whereaspoint B(Qx; px) is obtained by subtracting relief �ow Qrv at pressure px from pump�ow Qp at the same pressure. Point C in which characteristic curve cuts y-axisdetermines pressure p2 at which full �ow of the pump is returned to the reservoirvia the relief valve, �g. 110.

Page 94: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Graphical analysis of hydraulic system 173

If the pump was not protected by the relief valve then system �ow would followpump characteristics, e.g. point D(Qp; px) shows that pump would deliver its full�ow (less leakage) at pressure px: One outcome of this would be overloading of theprime mover supplying power to the pump.

Problem 4.23 Graphical analysis of hydraulic system

A hydraulic circuit shown in �g. 111 is assembled from components having �ow-pressure characteristic curves also shown in �g. 111 (note that the purpose of thiscircuit is only to illustrate the method - it has no practical application!). Determineoperating characteristics of the system using the graphical method.

Qp

Qrv

np

p

Qd

p p p

Qp QdQrv

Fig. 111. A hydraulic system and characteristic curves of the system components

Answer: Subtracting relief �ow Qrv from pump �ow Qp (see Problem 4.22) weobtain the characteristic curve of the pumping unit, �g. 112, represented by lines(1,5). As the �ow from the pumping unit �ows through the restrictor valve, andthe input pressure to the restrictor is equal to the delivery pressure, we obtain pointB in which the characteristic curve of the restrictor intersects the pumping unit�scharacteristic (1, 5). This point de�nes system pressure p and �ow through therestrictor valve Qd.

Point A on pump characteristic curve corresponding to pressure p determines pump�ow Qp. The �ow through the relief valve is thus equal to:

Qrv = Qp ¡Qd

Page 95: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

174 Examples of Calculations - Control of Hydraulic Systems

QpQd Q

p

p

p0

5

3 1

A(Qp,p)

Qrv

B(Qd,p)

Fig. 112. System characteristic curve (�rst approach)

This problem may be also solved using a di¤erent approach - by summing the �owsthrough relief valve Qrv and the �ow through restrictor valve Qd at the same pressurewe obtain characteristic (3,4)1 shown in 113.

Qp QQd

p

p

p0

3

4

A(Qp,p)

Qrv

B(Qd,p)

1

Fig. 113. System characteristic curve (second approach)

Point A - an intersection of (3,4) with characteristic (1) of the pump determinessystem pressure p and pump output �ow. Flow Qd through the restrictor valve isdetermined by point B which lies on restrictor characteristic curve (3) and has y-axis coordinate of p. We obtain relief valve �ow Qrv by subtracting �ow through therestrictor Qd from pump �ow Qp.

1 A characteristic curve for two elements in parallel - see problem 4.21

Page 96: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Principle of motor control - graphical method 175

Problem 4.24 Principle of motor control - graphical method

For a hydraulic system shown in �g. 114 demonstrate graphically the principle ofmotor control. The operation of the individual elements is de�ned by their static�ow-pressure characteristics. Ignore system losses and assume hydro-mechanicale¢ciency of motor ´hmm = 1.

Qp

Qrv

np

p

nm

Tm

p3

Qd

p4

Fig. 114. Meter-in control of hydraulic motor (Problem 4.24)

Answer: The �ow-pressure characteristics, lines (1,2) in �g. 115, for the pump-relief valve system are determined in the same way as for Problem 4.22. The hy-draulic pressure in the system, as we are ignoring pressure losses in the lines, is onlydependent on load and the pressure drop on the restrictor valve.

Pressure drop on the hydraulic motor is obtained from equation:

¢pm = p3 ¡ p4 =2¼Tmqm

and if the motor load is constant, then the actual pressure drop on the motor is alsoconstant and is equal to p3 (assuming no pressure loss in the return line of the motor)- this is illustrated by line (3) parallel to Q-axis. Pressure drop on the restrictorvalve, assuming a turbulent �ow, is de�ned by equation:

¢pd =K2

a2dQ2d

where:ad - restrictor �ow areaK - �ow coe¢cientQd - �ow through the restrictor valve

Thus pressure in the delivery line upstream of the restrictor valve is equal to thesum of pressure drop ¢pd on the restrictor valve and load pressure p3. Curves(40),(400) and (4000) represent �ow-pressure characteristics of the restrictor valve forvarious �ow areas ad. The intersection of curve (4) with characteristics (1,2) of the

Page 97: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

176 Examples of Calculations - Control of Hydraulic Systems

p

p2

p1

Qtm'' Qtm''Qm''

p3

ad'''

ad'

ad''

4'

4''4'''

3

Qm'

Qm'''Qtm'''

5''' 5'

5''

Q

2

1

A

C

B

3

Fig. 115. Static characteristics of the motor control system

pumping unit determines operating parameters of the system. Point A allows us to�nd �ow Q0m to the motor when the �ow area of the restrictor is a

0

d. In a similar waypoints B and C determine Q00m and Q

000

m for other settings of ad, where a000

d < a00

d < a0

d.Rotation speed nm of the motor is de�ned by equation:

nm =Qtm

qm(a)

and Qtm is de�ned by:

Qtm = Qm ¡Kvmp3 (b)

where Kvm is motor leakage coe¢cient.

This relation, for various displacements of the motor, is represented by line (5)(tan(®) = Kvm). Thus the theoretical �ow demand of the motor is de�ned by apoint of intersection of the Q-axis by line (5). We may select, at large load, asuitable opening ad of the restrictor valve and vary the theoretical �ow demand ofthe motor, i.e. its rotation speed.

The motor will have a maximum rotation speed when the restrictor valve is fullyopen, ad = admax. Whereas, when the restrictor valve is fully closed, ad = 0, themotor will be stationary and all �ow from the pump will be directed to the reservoirthrough the relief valve.

Page 98: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

By-pass control of hydraulic motor - graphical method 177

Variations in settings of the restrictor valve have small e¤ect on the variation of motordemand when characteristic curve (4) of the restrictor cuts the pump characteristiccurve (line 1, pointA). The correct control range for this type of control correspondsto those settings of ad for which characteristic curve (4) cuts characteristic curve ofthe power unit (line 2) - i.e. for ad < a

00

d.

We should note that in actual systems the load on the motor will usually vary, thusthe pressure drop ¢pm will also vary and characteristic curve (4) will change itsposition relatively to the characteristic curve of the pumping unit (lines 1,2). Thusfor a �xed setting of the restrictor valve the point of intersection of characteristics,which determine the operating parameters of the drive, may also change.

Problem 4.25 By-pass control of hydraulic motor - graphical method

A hydraulic system which uses a by-pass �ow control is shown in �g. 116. Staticcharacteristics of the system elements are known. Using these characteristics demon-strate graphically principles of by-pass control of motor speed and determine thesystem operating parameters. Ignore pressure loses in delivery line.

Answer: Flow from the pumping unit (pump-relief valve) is divided into a �ow

Qrv

p

Qd

np

nm

QmQp p3

p4

Tm

Fig. 116. By-pass control of hydraulic motor (Problem 4.25)

through the by-pass restrictor valve Qd to the reservoir and a �ow Qm supplying themotor. In contrast to series �ow control, the relief valve acts here as a safety valveand is closed during normal operation of the system. By changing Qd = F (ad), atconstant Qp, we vary �ow Qm to the motor and therefore rotation speed nm:

Qm = Qp ¡Qd (a)

Flow Qd through the restrictor valve is de�ned by equation:

Qd = adKpp3 ¡ p4 (b)

where: ad �ow area of the restrictor and K is �ow coe¢cient.

Page 99: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

178 Examples of Calculations - Control of Hydraulic Systems

p

p2

p1

p3

Qtm'Qtm'' Qm'' Qm'

Q

5'5''

6'6''

ad'

ad''

3

1

4

2

A

A'

A''

Fig. 117. Static characteristic curve of by-pass control of hydraulic motor

The �ow Qd for a given setting of the valve (area ad) thus depends on pressuredi¤erence ¢p34, i.e. the load of the motor. By varying the opening of the valve wecan change the speed of the motor, at the same time load variation at the set valueof ad will also a¤ect the motor speed.

The �ow-pressure characteristics (lines 1,2) de�ne operating limits of the pumpingunit (pump-relief valve) and line 3 represents the load characteristics of the motorpm = p3, �g. 117. Curve 4 represents the actual characteristics of the motor whenhydro-mechanical e¢ciency is taken into consideration.

By combining the characteristics of the pumping unit and the restrictor valve (bysubtracting �ow rates Qd from Qp at various values of system pressure) we obtaincurves 5� and 5�, which represent characteristics of the pumping unit combined withthe restrictor valve, corresponding to di¤erent �ow areas ad of the restrictor valve.

Point A which is the intersection of curve 5�with the load curve of the motor de�nespressure in delivery line and �ow rate Qm supplied to the motor at valve openinga0d. Similarly, point A� de�nes the motor operational parameters for a

00

d the areaa0d < a00d. Lines 6� and 6� determine the theoretical �ow demands Q

0

tm and Q00tm ofthe motor (see Problem 3.22).

We can see that by changing the opening of the restrictor valve we change the theo-retical �ow demand of the motor and thus its rotation speed according to equation:

nm =Qtm

qm

The motor will reach its maximum speed when the restrictor is fully closed ad = 0(point A is then placed on the characteristic curve of the pumping unit), whereasby increasing the valve opening we may reduce rotation speed to zero.

Page 100: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Analysis of hydraulic winch drive - graphical method 179

Problem 4.26 Analysis of hydraulic winch drive - graphical method

A hydraulic winch consists of an electrically driven pump, a relief valve, two restrictorvalves and a hydraulic motor driving a drum, �g. 118. The static �ow-pressurecharacteristic curves for hydraulic elements (a), (b), (c), (d) and (e) are shown in�g. 119 for the chosen load and selected settings of the restrictor valves. Determinegraphically the actual �ow demand of the motor and its rotation speed if motor unitdisplacement VÁm = 0:2 Lrad

¡1and volumetric e¢ciency ´vm = 1.

Qrv

pQd1

Qd2Qp

np nm

Qm

Mg

Qp

e

pp

d

a

b c

Fig. 118. Hydraulic winch

Answer: Graph I shows the pressure-�ow characteristic of the pump (line a)with superimposed characteristics of the relief valve (dotted line); these two linesde�ne the operating range of the pumping unit. Graph II shows the relief valvecharacteristics. Graph III represents the �ow-pressure characteristics of restrictorvalve (c), whereas graphVI shows the �ow-pressure characteristics of restrictor valve(d). Graph IV shows motor characteristic. Flow in the delivery line of the pumpingunit is equal to �ow through valve (c). Thus, pressure downstream of restrictor valve(c) is obtained by subtracting, for various values of delivery �ow, pressure drop onvalve (c) from the pump delivery pressure. Plot of the pressure downstream of therestrictor as a function of �ow Qd1 through restrictor (c) is shown in graph V -curve f. This pressure is also equal to the pressure drop on by-pass restrictor valve(d). Subtracting, at the same pressure, from �ow Qd1 �ow Qd2 through valve (d) weobtain the characteristic curve of the system - curve (g). The point of intersectionof curve (g) with characteristic curve of motor (e) de�nes the operating parametersof the motor, i.e. pressure pm = 4:3 MPa and actual �ow demand:

Qm = 0:2 Ls¡1 (answer!)

The rotation speed of the motor is de�ned by equation:

nm =Qtm

qmnm=Qm´vm2¼VÁm

and substituting the data:

Page 101: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

180 Examples of Calculations - Control of Hydraulic Systems

nm =0:2£ 0:922£ ¼ £ 0:2

£ = 0:14 revs¡1 = 8:6 rpm (answer!)

1.00.0

10.0

0.0

Qrv

a

Qp [ L/s]

pp [MPa]

Pump

pm=4.3

1.00.0

10.0

0.0

Qm=0.2

Qd2

g

f

e

a

b

Q [ L/s]

p [MPa]

∆pd1

1.00.0

10.0

0.0

c

∆pd1

Qd1 [ L/s]

∆pd1 [ MPa]

Valve 1

1.00.0

10.0

0.0

Qrv b

Qrv [L/s]

pp [MPa]

Relief valve

1.00.0

10.0

0.0

dQd2

Qd1 [L/s]

∆pd2 [MPa]

Valve 2

1.00.0

10.0

0.0

e

Qm [ L/s]

pm [MPa]

Motor

I

VIV

IVIII

II

Fig. 119. Hydraulic winch characteristics (Problem 4.26)

Problem 4.27 Speed of hydraulic motor - analytical and graphicalapproach

Calculate rotation speed nm of the motor and overall e¢ciency ´sys of the systemshown in �g. 120. System parameters are as follows:

Page 102: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Speed of hydraulic motor - analytical and graphical approach 181

² pump rotational speed np = 40 revs¡1

² pump displacement qp = 40 cm3rev¡1

² pump volumetric e¢ciency ´vp = 0:95

² pump volumetric e¢ciency ´mp = 0:94

² motor displacement qm = 80 cm3rev¡1

² pump volumetric e¢ciency ´vm = 0:97

² pump volumetric e¢ciency ´hmm = 0:96

Load on hydraulic motor is de�ned by equation:

Tload = T0 +Knm

where:T0 - constant torque, T0 = 20 Nmnm - motor speedK - constant, K = 6:0 Nmrev¡1

p0

p

QpQrv

np Tload

nm

Fig. 120. Drive of a hydraulic motor (Problem 4.27)

The relief valve characteristics are:

Qrv =

½0 for p � p0

Krv(p¡ p0) for p > p0

where:Qrv - relief valve �owp - system pressurep0 - relief valve set pressure, p0 = 10 MPaKrv - constant, Krv = 400 cm

3MPa¡1s¡1

Ignore leakages and pressure losses in the lines. Solve the problem using the analyt-ical and graphical approach.

Answer (analytical solution): Pump delivery �ow:

Qp = npqp´vp = 48£ 40£ 0:95 = 1824 cm3s¡1

When the relief valve is closed then Qp = Qm, and the motor speed is:

Page 103: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

182 Examples of Calculations - Control of Hydraulic Systems

nm =Qp

qm´vm =

1824

80£ 0:97 = 22:12 revs¡1

and as the load torque is de�ned the by equation:

Tload = T0 +Knm = 20 + 6£ 22:116 = 152:7 Nm

then pressure drop across the motor is equal to:

¢pm =Tload2¼

qm´hmm=

152:7£ 2£ ¼80£ 10¡6 £ 0:96

= 12:49 MPa

As ¢pm > p0, the relief must open and Qp = Qrv+Qm, where Qm is motor demand�ow rate de�ned by equation::

Qm =nmqm

´vm

thus, for p > 10 MPa:

npqp´vp = Krv

µ2¼(T0 +Knm)

qm´hmm¡p0

¶+nmqm

´vm

and �nally rearranging the last equation and substituting the data we obtain:

nm = 18:55 revs¡1 answer!

We again use the equation for load torque to calculate the pressure drop on themotor at rotation speed nm = 18:55 revs

¡1:

¢pm = p3 =(20 + 6£ 18:55)£ 2¼80£ 10¡6£0:96

= 10:74 MPa

The output power of the motor is:

Pm = Tloadnm2¼ = (20 + 6£ 18:55)£ 18:55£ 2¼ = 15:3 kW

and the pump input power is equal to:

Pp =qpp3np

´hmm=40£ 10¡6£10:74£ 106£48

0:94= 21:93 kW

thus, overall e¢ciency ´sys of the system is:

´sys =Pm

Pp=15:3

21:93= 0:697 answer!

Page 104: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Speed of hydraulic motor - analytical and graphical approach 183

3

1

2

4

A

B

C

E

p [MPa]

Q [L/s]

15.0

2.001.821.541.00

1.63

5.0

10.0

10.8

12.5

0

D

Fig. 121. Graphical solution of Problem 4.27

Answer (graphical solution): Pump delivery �ow rate Qp, at a constant volu-metric e¢ciency, is represented by line (1), �g. 121. The �ow-pressure characteristicof the relief valve is a straight line de�ned by equation:

Qrv = Krv(p¡ p0)

Line (2) is plotted using coordinates p = 10 MPa, Qrv = 0, and p = 12:5MPa,Qrv = 1:0 Ls

¡1 (point C).

The pumping unit (pump-relief valve) characteristics are represented by half-lines(1) and (3) according to equation Q = Qp¡Qrv, intersection pointA has coordinatesp = 10 MPa and Q = 1:824 Ls¡1:

Motor characteristic curve (line 4) is de�ned by equation:

Tload = T0 +Knm

and because:

¢pm =Tload2¼

qm´hmm

Page 105: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

184 Examples of Calculations - Control of Hydraulic Systems

thus, for nm = 0 , the motor �ow is Qm = 0 and the motor characteristic line passesthrough point D which has the following p-axis coordinate:

¢pm =2¼T0qm´hmm

= 1:63 MPa

The second point on the motor characteristic line (point E) may be de�ned usinganalytical solution, where for Qm = 1:824 Ls

¡1 we found that the pressure drop onthe motor was pm = 12:49 MPa. Intersection point B of line (4) with the character-istic of the pumping unit (pump-relief valve) de�nes system operating parameters.Coordinates of point B are:

Qm = 1:540 Ls¡1 = 1540 cm3s¡1

pm = 10 MPa

thus rotation speed of the motor is, as in the analytical solution, equal to:

nm =Qm´vmqm

=1540£ 0:97

80= 18:6 revs¡1 answer!

Problem 4.28 Pump - accumulator system

Hydraulic cylinder shown in �g. 122 has stroke volume Vc = 0:6 L. The duration ofa working stroke is t1 = 2 s, intervals between subsequent working strokes vary butare not smaller than t2 = 0:5 s. Calculate the size of the pump and the accumulator,to assure maximum utilisation of hydraulic energy. The minimum cylinder pressureduring working stroke is p3 = 9 MPa and the relief valve is set at 12 MPa.

Qp p0

p3

FQ [L/s]

t1 t2

Q

Qp

t [s]543210

0.1

0.2

0.3

Fig. 122. Pump-accumulator system (Problem 4.28)

Page 106: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Pump - accumulator system 185

Answer: Required pump delivery �ow, for a system without an accumulator, is:

Qp =Vc

t1=0:6

2= 0:3 Ls¡1

however when we include an accumulator in the system, which will be charged duringtime t2 between subsequent cycles, then required pump �ow Qp can be calculatedfrom equation:

(Q¡Qp)t1 = Qpt2

thus:

Qp = Qt1

t1 + t2= 0:3£

2

2+0:5= 0:24 Ls¡1 answer!

We add approx. 5% for volumetric losses in the pump and valves and select froma catalogue a pump which delivers Qp = 0:25 Ls¡1. The selection of accumulatorsize starts with calculation of �uid volume Va which will �ow into the accumulatorbetween two consecutive working cycles. Thus:

Va = V3 ¡ V2 = Qpt2 = 0:25£ 0:5 = 0:125 L

where:V3 - volume of �uid in the accumulator at minimum pressure p3V2 - volume of �uid in the accumulator at maximum pressure p2

We assume that the accumulator charging and discharging is a polytropic process(compression and expansion of the gas), so we can write:

p1VÂ1 = p2V

Â2 = p3V

Â3 = const:

where:Â - polytropic exponent, Â = 1:5V1 - gas volume in the accumulator at pressure p1

Volume V1 is equal to the capacity of the accumulator, as at pressure p1 (initialcharge pressure) the gas occupies the whole volume of the accumulator. In practice,we accept that p1 = 0:9p3 and the isothermal process (Â = 1) during transition fromp1V1 to p2V2 (i.e. during start-up) thus, the volume of the accumulator is [2]:

V1 =

Vap3

p1

1¡µp3

p2

¶ 1Â

(a)

and if we assume that:

Page 107: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

186 Examples of Calculations - Control of Hydraulic Systems

p1 = 0:9p3 = 0:9£ 9 = 8:1 MPa

then the required accumulator volume is:

V1 = 0:125

9

81

1¡µ9

12

¶1Â

= 0:8 L answer!

Problem 4.29 Pump unloading system

A hydraulic system shown in �g. 123 is designed to unload the �xed displace-ment pump when the closed-centre directional control valve is in a neutral position.Calculate the volume V1 of an accumulator, which works with a pump deliveringQp = 0:3 Ls

¡1, necessary to drive a double acting, double rod, hydraulic cylinder.

The cylinder has piston area A = 200 cm2 and load F = 0:3 kN. Assume thatthe cylinder power stroke h = 250mm will be completed in time t = 3 s, and thefull working cycle in time tc = 60 s. The maximum pressure in the system (set bythe relief valve) is p2 = 20 MPa. Plot pressures and �ows against time, and showthat, by incorporating an accumulator into the system, a substantial reduction ofthe pump input power can be achieved.

Answer: Cylinder �ow demand Q during the power stroke is:

Q =Ah

t=200£ 25

3= 1:66 Ls¡1

and cylinder pressure p is:

p =F

A=3£ 105

2£ 10¡2= 15 MPa

thus the input power to the system without an accumulator is equal to:

P1 = Qp = 1:66£ 15£ 106 = 24:9 kW

In the system shown in �g. 123 pump delivery �ow Qp is supplemented by accu-mulator �ow Qa, which is the average �ow from the accumulator during a powerstroke:

Qa = Q¡Qp = 1:66¡ 0:3 = 1:36 Ls¡1

From the above we calculate the accumulator volume to be:

Va = V3 ¡ V2 = Qat = 4:08 L

Page 108: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Pump unloading system 187

Qp

A

h

10 20 30 40 50

60

t [s]

v

vavg

vavg

0

Fig. 123. Pump unloading system an accumulator. Lower diagram shows a cylindercycle (Problem 4.29)

We use the equation for polytropic expansion (Â = 1:5), and for given values ofp2 = 20 MPa, p3 = p = 15 MPa, and also assuming p1 = 0:9p3 = 13:5 MPa (aminimum working pressure), the accumulator minimum volume is calculated usingeq. (a) Problem 4.28:

V1 =

Vap3

p1

1¡µp3

p2

¶1=Â =4:08£

15

13:5

1¡µ15

20

¶2=3 = 26 L answer!

Thus as we require an accumulator which has a minimum volume of 26 L. Therequired input power to the system is then:

P2 = Qpp2 = 0:3£ 20£ 106 = 6kW

and this power must be supplied to the system during charging time, which is:

t1 =Va

Qp=4:08

0:3= 13:6 s

Page 109: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

188 Examples of Calculations - Control of Hydraulic Systems

The system will be requiring only minimum power during remaining time tp as thepump �ow is directed to the reservoir at the reservoir pressure:

tp =tc

2¡ t¡ t1 = 30:0¡ 3:0¡ 13:6 = 13:4 s

The variations of �ows and pressures during a cycle are shown in �g. 124. Theabove calculations show that by including an accumulator in the system the size ofthe power unit may be reduced and we also obtain considerable energy savings whichis equal to:

¢P = P2 ¡ P1 = 24:9¡ 6:0 = 18:9 kW : answer!

Q [L/s]

0

5

15

20

10

0.30

1.66

1.00

p [MPa]

t [s]

t [s]

Q

Qp

Qa

pa

pp

t

tc/2

t1

Fig. 124. Time plots of system�s �ows and pressures

Problem 4.30 Load sensing system

A hydraulic system with a variable displacement pump with a load sensing controlsystem, which compensates for the e¤ects of varying load, is shown in �g. 125.Discuss the principle of operation of such a system and show that the inherent lossesdue to the design concept of this circuit are much lower than for systems using other

Page 110: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Load sensing system 189

types of control, e.g. pressure control p = const: Develop design of an analogoussystem which uses a �xed displacement pump and discuss its advantage.

12

3

68

7

4 9

5

∆ps

Fig. 125. Load sensing system - variable displacement pump (Problem 4.30)

Answer: The basic element of the �load sensing� control is compensating valve(6), which takes the pilot pressure from pump delivery line (8) and cylinder pres-sure line (7). Compensating valve (6) provides a control input to pump actuator(2), which adjusts the displacement of pump (1) and maintains constant pressuredi¤erence ¢ps, usually about 1:5 MPa, between the delivery and cylinder ports ofdirectional proportional control valve (4). When the cylinder is stationary, valves(4) and (6) are in positions as shown, and pump delivery pressure p (it has value¢ps) acting on pump actuator (2) decreases the pump displacement close to zero(the pump maintains some �ow to compensate for internal volumetric losses in thesystem).

When proportional valve (4) is actuated, pressure in pilot line (7) causes shiftingof valve (6) to the right which in turn connects the pump actuator to the reservoirallowing the actuator�s spring to increase pump displacement until the pressure dif-ference on directional proportional valve (5) reaches ¢ps. If, due to the action ofvalve (4), pump �ow increases above the value of �ow which is necessary to maintain¢ps then the spool of valve (6) will move to the left and will decrease pump dis-placement. Thus �ow capacity of the pump is automatically controlled in responseto the position of the proportional valve (4).

Thus in this system, as the pressure di¤erence across the proportional valve is main-tained constant, the �ow through this valve and therefore the speed of the cylinder isproportional to the position of control spool of the valve (4). Comparison with othertypes of speed control, either resistive (valve control) or volumetric (pump control)

Page 111: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

190 Examples of Calculations - Control of Hydraulic Systems

show that the inherent losses in this system are smallest when the power balanceover the full range of load is considered. Inherent power loss Ploss in this system is:

Ploss = P1 ¡ P2

where:P1 - pump output hydraulic powerP2 - cylinder input hydraulic power

Power P1 is de�ned by equation:

P1 = p1Q1

where:p1 - pump pressureQ1 - pump �ow rate

Power P2 is de�ned by:

P2 = p2Q2

where:p2 - cylinder load pressureQ2 - �ow through the proportional directional control valve (4)

and we note that:

Q1 = Q2 and p1 = p2 +¢ps

thus inherent power loss is:

Ploss = (p2 +¢ps)Q2 ¡ p2Q2 = ¢psQ2

Due to a constant value of ¢ps an inherent power loss Ploss depends only on �ow Q2which is also demand �ow of the cylinder, i.e. on the required speed of the cylinder.For comparison, inherent power loss in a system using p = const: control, is:

Ploss = p0Q2 ¡ p2Q2 = (p0 ¡ p2)Q2

where p0 is maximum system pressure set by the relief valve. Thus in this casethe inherent power loss depends on �ow Q2 and load (i.e. p0 ¡ p2). A graphicalinterpretation of inherent losses in a load sensing and p = const: control systems isshown in �g. 126.

The above analysis shows that power losses in a load sensing system are much lowerthan in a conventional system and only when load sensing system operates at loadpressure p2 which is close to pressure p0 (maximum pressure set on relief valve) arethe power losses similar. A �load sensing� system which uses a �xed displacementpump is shown in �g. 127.

Page 112: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

Load sensing system 191

Q

Q1maxQ1=Q2

P1

Ploss

Q

Q1maxQ1=Q2

p0

p2

p

P2

Ploss

p0

p2

p

p1

Fig. 126. Graphical interpretation of inherent power loss in a load sensing systemand constant pressure system.

13

68

7

4 9

5

∆ps

Fig. 127. Load sensing system - �xed displacement pump

The basic hydraulic element is again, as in previous system, compensator valve 6which takes the pilot pressure from pump delivery line 8 and cylinder pressure line(7). When proportional valve 4 is actuated, the pressure in pilot line 7 shifts thevalve 6 to the right. This in turn allows some of the pump �ow to be discharged tothe reservoir until the pressure di¤erence on the proportional valve reaches ¢ps. Thecompensator valve controls the pump delivery pressure by allowing the return of theexcess �uid to the reservoir and thus maintains constant pressure di¤erence ¢psonproportional valve 4 which is independent of the cylinder load (we are ignoring smalllosses in lines 8 and 9). From the point of view of power losses this system does not

Page 113: F K D S W H U 7 F r q wur o r i K | g ud x olf V | vwhp v · 7 14 14 14 G luhfwlr q d o fr q wur o y d oy hv +G F Y , W k h p dlq ix q fwlrq ri g luhfwlrq do frqwuro ydoyhv lv wr

192 Examples of Calculations - Control of Hydraulic Systems

o¤er full bene�ts of load sensing over the whole control range as the excess �uid isreturned to the reservoir at pressure dictated by the load.

A graphical interpretation of the losses in this system is shown in �g. 128. Inputpressure to the cylinder is p2, the cylinder demand �ow is Q2, and the pump deliv-ery �ow Q1 = const. The shaded area represents inherent power losses (losses inhydraulic lines, the pump and the cylinder are ignored). A major characteristic ofthis system is very accurate control of cylinder speed, independent of load variations,due to a constant pressure drop across the directional proportional valve (as is wellknown in systems without load compensation the �ow rate through the directionalcontrol valve will vary with load).

Q

Q1=constQ2

p2

p

p1

∆ps

Fig. 128. Interpretation of losses in load sensing system

In practice other types of load sensing systems are also used. Load sensing systemscan also be used in systems employing hydraulic motors as output devices.