サイズ分布のある粒子からなる ダストアグリゲイトの衝突...

16
サイズ分布のある粒子からなる ダストアグリゲイトの衝突シミュレーション

Upload: others

Post on 22-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: サイズ分布のある粒子からなる ダストアグリゲイトの衝突 ...mosir/pub/2011/2011-11-09/27...2011/11/09  · from interstellar extinction (Mathis, Rumpl, & Nordsieck

サイズ分布のある粒子からなる ダストアグリゲイトの衝突シミュレーション

Page 2: サイズ分布のある粒子からなる ダストアグリゲイトの衝突 ...mosir/pub/2011/2011-11-09/27...2011/11/09  · from interstellar extinction (Mathis, Rumpl, & Nordsieck

Background

Structure evolution of dust aggregates in protoplanetary disks:

Collisional growth of dust Planetesimal formation ?

©NASA

(< µm) (> km)

ダストアグリゲイト衝突の数値シミュレーション!

ü When and how are aggregates compressed and/or disrupted ?

ü Can dust aggregates grow through collisions?

Numerical simulation of dust aggregate collisions!

Page 3: サイズ分布のある粒子からなる ダストアグリゲイトの衝突 ...mosir/pub/2011/2011-11-09/27...2011/11/09  · from interstellar extinction (Mathis, Rumpl, & Nordsieck

Grain interaction model

Elastic spheres having surface energy Normal Sliding rolling twisting

δ s ϕ

δ ξ

JKR and rolling resistance have been tested with experiments using ~1µm SiO2 particles. (Heim et al. 1999; Poppe et al. 2000; Blum & Wurm 2000)

JKR theory

(Dominik & Tielens 1995) (Dominik & Tielens 1996)

δ

Un

δ

Un

Johnson, Kendall and Roberts (1971) Johnson (1987), Chokshi et al. (1993) Dominik and Tielens (1995,96) Wada et al. (2007)

(Heim et al. 1999) Critical sticking velocity: exp.~10×theo.!? (Poppe et al. 2000)

(Heim et al. 1999)

Page 4: サイズ分布のある粒子からなる ダストアグリゲイトの衝突 ...mosir/pub/2011/2011-11-09/27...2011/11/09  · from interstellar extinction (Mathis, Rumpl, & Nordsieck

Grain interaction model

Normal Sliding rolling twisting

δ s ϕ

δ ξ

s, ξ, ϕ > critical displacements Energy dissipation Contact & Separation

Ebreak : Energy to break a contact

Eroll : Energy to roll a pair of gains by 90˚

Ø Critical slide  scrit ~ 1.5 Å (for 0.2 µm quartz)

Ø Critical roll  ξcrit ~ 2 Å (or ~30 Å (Heim et al.,1999)) Ø Critical twist ϕcrit ~ 1°

Johnson, Kendall and Roberts (1971) Johnson (1987), Chokshi et al. (1993) Dominik and Tielens (1995,96) Wada et al. (2007)

Elastic spheres having surface energy

Page 5: サイズ分布のある粒子からなる ダストアグリゲイトの衝突 ...mosir/pub/2011/2011-11-09/27...2011/11/09  · from interstellar extinction (Mathis, Rumpl, & Nordsieck

Ballistic Particle-Cluster Aggregation (BPCA)  

l  Compact structure (fractal dimension ~ 3)

Collisions of BPCA clusters implication for growth and disruption of dust

Dust is expected to be compact at high velocity collisions causing their disruption

l  Formed by one-by-one sticking of monomers

Page 6: サイズ分布のある粒子からなる ダストアグリゲイトの衝突 ...mosir/pub/2011/2011-11-09/27...2011/11/09  · from interstellar extinction (Mathis, Rumpl, & Nordsieck

Motivation

Is it possible for dust to grow through collisions ?

Collision velocity of dust in protoplanetary disks

e.g., <~50 m/s (Hayashi model, without turbulence)

< several 10 m/s !

Possible for ice dust aggregates

(Wada et al. 2009, ApJ 702, 1490-1501)

But for silicate dust? 0

1

(Nla

rge –

Nta

rget

)/ N

proj

10 100 ucoll [m/s] -1

(ice BPCA)

~ 60 m/s mass gain

mass loss

What if size-distribution of constituent particles?

composed of particles with the same radius of 0.1µm

ucoll for silicate = 0.1×ucoll for ice

Page 7: サイズ分布のある粒子からなる ダストアグリゲイトの衝突 ...mosir/pub/2011/2011-11-09/27...2011/11/09  · from interstellar extinction (Mathis, Rumpl, & Nordsieck

Particle size-distribution

Interstellar dust grains:

r = ~ 0.025 - 0.25 µm

Power-law with an exponent of -3.3 to -3.6

from interstellar extinction (Mathis, Rumpl, & Nordsieck 1977)

Page 8: サイズ分布のある粒子からなる ダストアグリゲイトの衝突 ...mosir/pub/2011/2011-11-09/27...2011/11/09  · from interstellar extinction (Mathis, Rumpl, & Nordsieck

Interaction b/w different-sized particles

Critical collision velocity for sticking of two monomers

34

2 5.121 RFEv ccbreakc ∝== δµ 6

5

~−

∝ RFv ccc µ

δ

vc increases with decreasing reduced radius R.

l Connections become strong for small particles.

l But small particles make aggregates weak? 3410~ RnEnE kbreakkc ∝Energy for catastrophic disruption

> 34

34

34

,

,

1010

42~ ⎟

⎞⎜⎝

⎛≈×

× SL

s

L

Sc

Lc RRRR

EE

nk:Number of contacts

µ: Reduced mass, Fc: Separation force, δc: Compression (separation) length

Page 9: サイズ分布のある粒子からなる ダストアグリゲイトの衝突 ...mosir/pub/2011/2011-11-09/27...2011/11/09  · from interstellar extinction (Mathis, Rumpl, & Nordsieck

Objective

BPCAs composed of particles with various size distributions.

ü Growth efficiency: f = (Mlarge – Mtarget)/ Mproj

Do collisions of aggregates composed of particles with a size distribution encourage dust growth?

Simulations of collisions between

Critical collision velocity for disruption of aggregates ucoll at f = 0

Page 10: サイズ分布のある粒子からなる ダストアグリゲイトの衝突 ...mosir/pub/2011/2011-11-09/27...2011/11/09  · from interstellar extinction (Mathis, Rumpl, & Nordsieck

•  Particle size distribution n(r)dr ∝ r-3.5 dr

Initial Conditions and Parameters

Head-on collisions of BPCA clusters with the same size

ü Ice (E = 7.0⋅1010 Pa, ν = 0.25, γ = 100 mJ/m2) , critical rolling displace. ξcrit = 8Å ü Collision velocity ucoll = 20 - 700  m/s

Continous (N=6400) Bimodal (200:6400)

• r = 0.1µm×100, 0.025µm×3200 (binary: total mass=0.1×150) • r = 0.1µm×200, 0.025µm×6400 (binary: total mass=0.1×300 ) • r = 0.2 - 0.025µm, N=6600 (continuous: total mass=0.1×201.6)

Page 11: サイズ分布のある粒子からなる ダストアグリゲイトの衝突 ...mosir/pub/2011/2011-11-09/27...2011/11/09  · from interstellar extinction (Mathis, Rumpl, & Nordsieck

ucoll = 52 m/s

Examples of simulations

8000 : 8000 b = 0

• r=0.1µm×200, 0.025µm×6400 (binary: total mass=0.1×300) ucoll = 55.3 m/s

No.11

ucoll = 180 m/s

No.20

Page 12: サイズ分布のある粒子からなる ダストアグリゲイトの衝突 ...mosir/pub/2011/2011-11-09/27...2011/11/09  · from interstellar extinction (Mathis, Rumpl, & Nordsieck

ucoll = 52 m/s

Examples of simulations

8000 : 8000 b = 0

• r=0.1µm×200, 0.025µm×6400 (binary: total mass=0.1×300) ucoll = 55.3 m/s

No.11

ucoll = 180 m/s

No.20

Page 13: サイズ分布のある粒子からなる ダストアグリゲイトの衝突 ...mosir/pub/2011/2011-11-09/27...2011/11/09  · from interstellar extinction (Mathis, Rumpl, & Nordsieck

ucoll = 52 m/s

Examples of simulations

8000 : 8000 b = 0

• r=0.2µm - 0.025µm N=6600 (continuous: total mass=0.1×201.6) ucoll = 49.3 m/s

No.09

ucoll = 197 m/s

No.15

Page 14: サイズ分布のある粒子からなる ダストアグリゲイトの衝突 ...mosir/pub/2011/2011-11-09/27...2011/11/09  · from interstellar extinction (Mathis, Rumpl, & Nordsieck

ucoll = 52 m/s

Examples of simulations

8000 : 8000 b = 0

• r=0.2µm - 0.025µm N=6600 (continuous: total mass=0.1×201.6) ucoll = 49.3 m/s

No.09

ucoll = 197 m/s

No.15

Page 15: サイズ分布のある粒子からなる ダストアグリゲイトの衝突 ...mosir/pub/2011/2011-11-09/27...2011/11/09  · from interstellar extinction (Mathis, Rumpl, & Nordsieck

100 10 -1

1

0

ucoll [m/s]

(ice) Growth efficiency

f ≡ (Mlarge – Mtarget)/ Mproj

f > 0 f < 0

: growth efficiency mass gain mass loss

f = (M

larg

e – M

targ

et)/

Mpr

oj

1000

• r=0.1µm×100, 0.025µm×3200 (binary:150+150)

• r=0.1µm×200, 0.025µm×6400 (binary:300+300)

• r=0.2µm - 0.025µm, N=6600 (continuous:201.6+206.1)

• BPCA (500+500) • BPCA(2000+2000) • BPCA(8000+8000)

~200 m/s

Page 16: サイズ分布のある粒子からなる ダストアグリゲイトの衝突 ...mosir/pub/2011/2011-11-09/27...2011/11/09  · from interstellar extinction (Mathis, Rumpl, & Nordsieck

Summary and Implication

Simulations of collisions of aggregates composed of particles with a size distribution

l  Particle size distribution leads to large growth efficiency.

encouraging dust growth and planetesimal formation

l The critical collision velocity ucoll,crit is unchanged?

Caution! These ucoll,crit are for head-on collisions.

ucoll,crit for silicate = 0.1×ucoll,crit for ice

ucoll,crit for ice ~ 200 m/s

~ 20 m/s

Can dust grow through collisions? Offset collisions must be investigated.