fermi surface of metals

Upload: atowar-rahman

Post on 07-Mar-2016

217 views

Category:

Documents


0 download

DESCRIPTION

Electrons in metals

TRANSCRIPT

  • Dr. Michael Sutherland Cavendish Quantum Materials Group

    QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page1of22

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page2of22

    OutlineandGoals

    ReviewofFermiDiracStaFsFcs,theFreeelectronGas.

    Reviewofelementarybandstructuretheory,nearlyfreeelectronsmodels.

    ExamplesofrealbandstructuresandrealFermisurfaces

    OverviewofExperimentalTechniquesforprobingtheFermiSurface(QuantumOscillaFons,ARPES)

    Detailedlistforfurtherreading

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page3of22

    TheFermiDiracDistribuFon

    ElectronsarefermionsparFcleswithhalfintegerspinthatobeythePauliExclusionPrinciple:notwofermionsmayhaveexactlythesamesetofquantumnumbers.

    ForasystemofidenFcalfermions,theprobabilitythatasingleparFclestatewithenergyEisoccupiedisgivenby

    inthisexpressionisthechemicalpotenFal,oRendenedastheenergywherefD(E,T)=.

    isanimportantenergyscalethatismaterialdependent.AtT=0,wedenetheFermienergyEFbyEF=(T=0).

    AtT=0,theFermienergyisthedividinglinebetweenlledandunlledquantumstates.

    TheenergydependenceoffD(E,T)changesdramaFcallyasafuncFonofT.

    When/kT>>1(lowtemperatures)thefuncFonresemblesastepfuncFoncenteredatE=EFand

    When/kT

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page4of22

    TheSommerfeldmodelofametalusesFermiDiracStaFsFcstotakeintoaccountthequantumnatureofelectrons.WeignorethedetailsoftheatomicpotenFal.

    EachelectronsaFsesthefreeparFcleSchrodingerequaFonwithperiodicboundarycondiFonswithperiodL:

    with

    Thus,thereisonedisFncttripletofquantumnumberskx,ky,kzforthevolumeelement(2/L)3,andTWOelectronscanlleachstate(accounFngforspin).

    ForelectronsinanionicsolidofaveragepotenFalV0theenergyisgivenby

    (shiRzeroofenergyupbyaconstantV0)

    Inatypicalmetalwehavemanyfreeelectrons.Theyoccupystateswiththelowestenergyrst,thenllprogressivelyhigherenergystates.

    IfwehaveNelectrons,thevolumeofkstateslledisasphereofradiuskF:

    k(r) = exp(ik r)(1)

    1

    k(r) = exp(ik r)(1)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . . (2)

    1

    Image: Sutton, McGill Physics

    k(r) = exp(ik r)(1)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . . (2)

    Vkspace =43pik3F = 2 N

    (2piL

    )3(3)

    kF = (3pi2n)13

    (4)

    1

    k(r) = exp(ik r)(1)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . . (2)

    Vkspace =43pik3F = 2 N

    (2piL

    )3(3)

    kF = (3pi2n)13 , n N/L3

    (4)

    1

    k(r) = exp(ik r)(1)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . . (2)

    Vkspace =43pik3F = 2 N

    (2piL

    )3(3)

    kF = (3pi2n)13 , n N/L3

    (4)

    E(k) = V0 + h2k2

    2me=

    h2k2

    2me

    1

    TheFreeElectronFermiGasII

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page5of22

    TheFreeElectronFermiGasII

    Thecorrespondingelectronenergywhenk=kFissimply

    ThisleadstotheinterpretaFonthattheFermisurfaceisasurfaceofconstantenergyEFinkspace.

    Formanymetals,theFermienergyisveryhighcomparedtothethermalenergyatroomtemperature,kBT

    ItisoRenusefultodenetheFermitemperatureasTF=EF/kB.Since300K

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page6of22

    TheNearlyFreeElectronModelI

    Inrealmetals,onemusttakeintoaccounttheperiodicityofthelapce,whichmodiesthepotenFalandhencethewavefuncFonsoluFonstotheSchrodingerequaFon.

    Theproblemiseasiesttotackleinreciprocalspace.ForarealspacelapcewithlapcetranslaFonvectors

    Recallthatwemaydenethereciprocallapcevectorsby:

    TheperiodicityofthepotenFalV(r)allowustowrite:

    ThewavefuncFonsoluFonsofthefreeelectroncase(planewaves)arealsomodiedtoreecttheperiodicityofthepotenFal.

    HenceBlochstheorem:

    whereisafuncFonthathastheperiodicityofthepotenFalandareFouriercoecients.

    WecanwritedowntheSchrodingerequaFonusingtheseresults.

    ThesoluFonforthisequaFonofcoecientsgivesusthewavefuncFonsandenergystatesoftheelectronsinthepotenFal.

    k(r) = exp(ik r)(1)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . . (2)

    Vkspace =43pik3F = 2 N

    (2piL

    )3(3)

    kF = (3pi2n)13 , n N/L3

    (4)

    E(k) = V0 + h2k2

    2me=

    h2k2

    2me(5)

    EF =h2kF 2

    2me=

    h2

    2me(3pi2n)

    23

    (6)

    eiGnx Gn = npi/a (7)

    (8)

    k(r) = uk(r)eikr(9)

    1

    1

    k(r) = exp(ik r)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . .

    Vkspace = 43pik3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k)=-V0 +h2k2

    2me= h

    2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/a

    k(r) = uk(r)eikr

    k(x) = uk(x)eikx =Ck,nAe

    i(k+Gn)x

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. n1, n2, n3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    1

    k(r) = exp(ik r)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . .

    Vkspace = 43pik3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k)=-V0 +h2k2

    2me= h

    2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/a

    k(r) = uk(r)eikr

    k(x) = uk(x)eikx =Ck,nAe

    i(k+Gn)x

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    1

    k(r) = exp(ik r)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . .

    Vkspace = 43pik3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k)=-V0 +h2k2

    2me= h

    2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/a

    k(r) = uk(r)eikr

    k(x) = uk(x)eikx =Ck,nAe

    i(k+Gn)x

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    1

    k(r) = exp(ik r)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . .

    Vkspace = 43pik3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k)=-V0 +h2k2

    2me= h

    2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/a

    k(r) = uk(r)eikr

    k(x) = uk(x)eikx =Ck,nAe

    i(k+Gn)x

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(x) = uk(x)eikx =

    Ck,nAe

    i(k+Gn)x

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page7of22

    TheNearlyFreeElectronModelII

    ConsidertheperiodicpotenFalin1DforillustraFon

    Forthesestatestheenergybecomes:

    TheeectisthatanenergygapopensupneartheBZedge.Therearenoallowedstatesinthatgap.

    TheposiFonofEFwithrespecttogapdetermineswhetherasystemisaninsulator,semiconductor,ormetal.

    k(r) = exp(ik r)(1)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . . (2)

    Vkspace =43pik3F = 2 N

    (2piL

    )3(3)

    kF = (3pi2n)13 , n N/L3

    (4)

    E(k) = V0 + h2k2

    2me=

    h2k2

    2me(5)

    EF =h2kF 2

    2me=

    h2

    2me(3pi2n)

    23

    (6)

    eiGnx Gn = npi/a (7)

    (8)

    k(r) = uk(r)eikr(9)

    1

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    Image: Sutton, McGill Physics

    John Ellis Cambridge McGill Physics

    Foragivenstatewithwavevectork,onlystateswithk=kG,k2GwillcontributeFouriercomponentstotheoverallwavefuncFon.

    Forastatewithsmallk,thestateswithk=kG,k2Gareallmuchhigherinenergy.ForasmallpotenFalthesestatesdonotmixstrongly,andhencethedispersionrelaFonresemblesthefreeelectroncase.

    ForkstatesneartheBZboundary(/ain1D)thestatewithk=k/aisverycloseinenergyandhenceaectsthedispersionrelaFon(degenerateperturbaFontheory)

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page8of22

    TheNearlyFreeElectronModelIII

    OnecanunderstandthisgapasarisingfromcontribuFonstothewavefuncFonfromtwostandingwaveswithk - /a.OnehasamaximumchargedensityneartheBZedge(higherenergy)andonehasaminimumchargedensitythere(lowerenergy)

    Image: John Ellis, Cambridge

    HigherorderharmonicsofthepotenFalVGwilllinkstatesathigherenergiesandgivegapsathighBZedges.

    SinceanykvectorinahigherBZmaybemappedbyareciprocallapcevectorGintotherstBZ,itisoRenconvenienttofoldtheenergybandbackintothe1stBZ.Thisisknownasthereducedzonescheme.

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

  • TheapplicaFonofaforce(sayelectromoFve)changesthewavepacketenergybyanamount

    ForanelectriceldofstrengthE,wehave

    QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page9of22

    Wavepackets:semiclassicalmodel

    AknowledgeofthebandstructureofamaterialgivesadeepinsightintotheelectronicproperFes.ThedispersionrelaFongivesknowledgeoftheeecFvemassandgroupvelocity:

    WheretheeecFvemasstensorisdenedby

    InpracFcethismeansthatthevelocityisinverselyproporFonaltotheslopeofthebandwhenitcrossestheFermilevel,andthemassisinverselyproporFonaltothesecondderivateof.

    Thusat,shallow,bandstendtocontainslowmoving,heavyelectrons.

    Considerthegroupvelocityvgofawavepacketofelectrons,madeupasasuperposiFonofwavefuncFons. Image: John Ellis, Cambridge

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

    vg =1

    h$k#(k)

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

    vg =1

    h$k#(k)

    d#

    dt= F vg = dk

    dt$k#(k) = hdk

    dt

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

    vg =1

    h$k#(k)

    d#

    dt= F vg = dk

    dt$k#(k) = hdk

    dt

    #(k) = #(k0) +1

    2(h(k k0))m1(h(k k0))

    mij1 =

    1

    h2$ki $kj #(k)

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

    vg =1

    h$k#(k)

    d#

    dt= F vg = dk

    dt$k#(k) = hdk

    dt

    #(k) = #(k0) +1

    2(h(k k0))m1(h(k k0))

    mij1 =

    1

    h2$ki $kj #(k)

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

    vg =1

    h$k#(k)

    d#

    dt= F vg = dk

    dt$k#(k) = hdk

    dt

    #(k) = #(k0) +1

    2(h(k k0))m1(h(k k0))

    mij1 =

    1

    h2$ki $kj #(k)

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

    vg =1

    h$k#(k)

    d#

    dt= F vg = dk

    dt$k#(k) = hdk

    dt

    #(k) = #(k0) +1

    2(h(k k0))m1(h(k k0))

    mij1 =

    1

    h2$ki $kj #(k)

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

    vg =1

    h$k#(k)

    d#

    dt= F vg = dk

    dt$k#(k) = hdk

    dt

    #(k) = #(k0) +1

    2(h(k k0))m1(h(k k0))

    mij1 =

    1

    h2$ki $kj #(k)

    3

    fD(E, T ) =1

    e(E)/kBT + 1dk

    dt= 1

    heE

    TheenFreFermisphereisshiRedbyauniformamount(dependsonscaveringrate).

    Fromknowledgeofthebandstructure,itispossibletoesFmateconducFvity.

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page10of22

    Bandstructure2Ddivalentmetal

    Considera2Ddivalentmetal.Thereare2electronsperunitcell,soweshouldexpectafullband,andhenceaninsulatoreg.diamond.

    Howeversomedivalentmetals(Ca)aremetallic.Whyisthis?Metalsneednearbyemptystatesinordertopropagatecharge.

    Considerthecaseofa2DsquarelapcepotenFal.ThefreeelectronFS(acircle)hasthesameareaastherstBZ,andhencespillsovertothesecondBZ.

    Images: Singleton, Band theory of solids

    HoweverturningonapotenFalraisestheenergyofthestatesneartheedgesoftheBZandlowersthemnearthecorners.HenceelectronsaretransferredfromthesecondtorstBZ,resulFnginametal.

    Inthereducedzonescheme,thisresultsinsmallFSpockets,bothholeandelectronlike1

    stBZ2ndBZ Freeelectron

    circle

    1stBZ 2ndBZ

    1stBZ 2ndBZPotenFalturnedon

    Electrons

    Holes

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page11of22

    Copperisa3DmonovalentmetalwithconguraFon[Ar]3d104s1.[Ar]3d10electronsgiverisetoFghtlyboundbands,farbelowEF.One4selectrononeFSsheet.

    fcccrystallapce(bccreciprocallapce).TherstBrillouinzone(BZ)isatruncatedpolyhedra

    TheshortestdistancetotheBZedgeisalongthedirecFon.UsingthelapceparametersforCu,inthefreeelectronapproximaFonkF/k=0.903(shouldnottouchzoneedge)

    HowevertheexperimentallydeterminedFStouchestheBZedgealongthedirecFon.ThisarisesfrommixingofstatesofsimilarenergiesneartheBZedge.

    Images: S. Blundell Oxford

    k(r) = exp(ik r)(1)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . . (2)

    Vkspace =43pik3F = 2 N

    (2piL

    )3(3)

    kF = (3pi2n)13 , n N/L3

    (4)

    E(k) = V0 + h2k2

    2me=

    h2k2

    2me(5)

    EF =h2kF 2

    2me=

    h2

    2me(3pi2n)

    23

    (6)

    eiGnx Gn = npi/a (7)

    (8)

    k(r) = uk(r)eikr(9)

    1

    BandstructureCopper

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page12of22

    Formanysimplediandtrivalentmetals,theFSmaybeschemaFcallyconstructedbyfollowingthesesteps:

    1. Drawafreeelectronspherebasedonthenumberofvalenceelectrons

    2. SuperimposethisontotherstfewBrillouinzones.

    3. WheretheFSmeetstheBZboundarywherethebandgapopensup,splitandroundothesurface.

    4. TranslatetheresulFngsecFonsbackintotherstBZ,usingtheperiodicityofkspace

    Image: University of Florida

    GeneralrulesforconstrucFngFermisurfaces

    Evenusingtheserules,simplemetalsmayhaveexceedinglycomplexFermisurfaces.Thesecanbediculttocalculate,especiallyforthosematerialswithdandfbandswhichtendtobeveryat.

    Eg.Rhenium,hexagonalcrystalstructurewith6(!)bandscrossingtheFermilevel.

    AnexcellentwebresourceistheperiodictableofFermisurfacesfoundontheUniveristyofFloridaswebsite:

    www.phys.u.edu/fermisurface/

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page13of22

    FermiSurfaceofSr2RuO4

    ItissomeFmesusefultothinkofrealspaceorbitalswhenconstrucFngFermisurfaces.ThisapproachiscalledtheFghtbindingapproximaFon

    Sr2RuO4isalayeredruthenatematerialthatisalsoanunconvenFonalsuperconductoratlowtemperature.StronglyanisotropicconducFon(AB>>Chencequasi2Dmetal)

    Tetragonalcrystalstructure.Thedyz(dxz)statehasweakx(y)dependence.WethusexpecttheFSformedbythesestatestobeaatsheetperpendiculartothex(y)direcFon.Wheretheyintersect,theypinchotoformcylinderscenteredaboutthecenterandcornersoftheBZ.

    ThedxystatehasweakzdependenceandformsacylinderinthecenteroftheBZ.

    Image: C. Bergemann, Cambridge

    4delectronshybridizetoformthreelowenergystatesdxydyzdxzwhicharepopulatedby4electrons.

  • Inreciprocalspace,theelectroncantakeanyvalueofkz,butthevalueofkxandkyarequanFzedsuchthat:

    with:

    TheseorbitsformLandautubesinkspace

    QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page14of22

    Inverycleanmetals,inlargemagneFceldsandatlowtemperatures,anoscillatorycomponentisobservedintransport,thermodynamicandmagneFcmeasurements.

    Thefrequency,angularandtemperaturedependenceofthesignalcanbeusedtocharacterizetheFermisurface.

    ConsideraeldalongthezdirecFon.TheelectronexperiencesaLorentzforce:

    IfthescaveringFmeislarge,theelectroncanundergomanycyclotronorbitsorfrequency

    Image: I. Shiekin, Grenoble

    ExperimentalprobesoftheFermisurfaceQuantumOscillaFons

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    Allowedkspaceorbits(Landautubes)

    H

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

  • InrealexperimentsseveraldierentperiodiciFesareoRenobserved.HowdowemakequanFtaFvesenseofthem?

    QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page15of22

    Theresultisthatthedensityofelectronstatesg(E)acquiresastronglypeakedenergydependence(eachpeakcorrespondingtoaLandautube):

    IfthemagneFceldisvaried,thepeaksshiRinenergy.IfapeakcrossestheFermienergy,thestateispopulated,thenempFesasitmovesaway.

    ThisleadstooscillaFonsthatareperiodicininversemagneFc,1/B.

    ExperimentalprobesoftheFermisurfaceQuantumOscillaFonsII

    B1(Tesla1)Fouriertransformofdata(twofrequencies)

    SrFe2As2(amagneFcmetal)

    MagneFzaFon

    InrealexperimentsseveraldierentperiodiciFesareoRenobserved.HowdowemakequanFtaFvesenseofthem?

    BohrSommerfeldquanFzaFoncondiFon(seeKivel):

    wherepisthecanonicalmomentum:

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr = (n+ 1

    2)h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =h

    eB

    (n+

    1

    2

    )

  • TheLorenzforcetellsushowtheareasoftherealspaceandreciprocalspaceorbitsarerelated

    Wecancombingthesetoshowthat

    SonallywecanobtainarelaFonbetweenthefrequencyoftheoscillaFonsandtheareaofthereciprocalspaceorbits

    ThisisknownastheOnsagerrelaFonandshowshowoscillaFonstudiesmayactasacaliperoftheFermisurface.

    ThefrequencyisproporFonaltotheextremalcrosssecFonalareaperpendiculartotheappliedeld.

    QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page16of22

    Applyingthisyields

    UsingStokestheoremonthesecondterm:

    whereisthemagneFcux.Usingq=efortheelectronandcollecFngtermsgives:

    ShowingthatthemagneFcuxisquanFzed.

    Sincetheuxisjusttheeldthreadingtherealspaceorbit,ofareaArealwecanwrite:

    ExperimentalprobesoftheFermisurfaceQuantumOscillaFonsIII

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr = (n+ 1

    2)h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr = (n+ 1

    2)h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =h

    eB

    (n+

    1

    2

    )

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =hc

    eB

    (n+

    1

    2

    )

    Arecip =(e

    h

    )2B2Areal

    1

    Bn=

    2pie

    hcArecip

    (n+

    1

    2

    )

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =hc

    eB

    (n+

    1

    2

    )

    Arecip =(e

    h

    )2B2Areal

    1

    Bn=

    2pie

    hcArecip

    (n+

    1

    2

    )

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =hc

    eB

    (n+

    1

    2

    )

    Arecip =(e

    h

    )2B2Areal

    1

    Bn=

    2pie

    hcArecip

    (n+

    1

    2

    )

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =hc

    eB

    (n+

    1

    2

    )

    Arecip =(e

    h

    )2B2Areal

    1

    Bn=

    2pie

    hcArecip

    (n+

    1

    2

    )

    1

    B=

    1

    Bn+1 1Bn

    =2pie

    h

    1

    Arecip

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page17of22

    OrbitsmaybeobservedenclosinglledorunlledporFonsoftheFermisurface.

    ExperimentalprobesoftheFermisurfaceQuantumOscillaFonsIV

  • ThetemperaturedependenceoftheamplitudeisdeterminedbyconsideringthetemperaturedependenceoftheFermiDiracfuncFon.

    TheanalyFcexpressionis:

    QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page18of22

    OscillaFonsmaybeobservedinmanyphysicalquanFFes,forinstanceresisFvity(theShubnikovdeHaaseect)orinmagneFzaFon(thedeHaasvanAlpheneect).

    AtypicalmeasurementofthedHvAeectinvolvesmeasurementofthedierenFalsuscepFlbiltywithcounterwoundpickupcoils,suchthatthepickupvoltageis

    InaddiFontothefrequency,theamplitudeoftheoscillaFonsmaytellusagreatdeal.

    WhereisthescaveringrateandCisthecyclotronfrequency.TheelddependencecangiveinformaFononscavering.

    ExperimentalprobesoftheFermisurfaceQuantumOscillaFonsV

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =hc

    eB

    (n+

    1

    2

    )

    Arecip =(e

    h

    )2B2Areal

    1

    Bn=

    2pie

    hcArecip

    (n+

    1

    2

    )

    1

    B=

    1

    Bn+1 1Bn

    =2pie

    h

    1

    Arecip

    Ef =h2k2f2m

    = Ei + h kf = ki

    V = dM

    dB

    dB

    dt

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =hc

    eB

    (n+

    1

    2

    )

    Arecip =(e

    h

    )2B2Areal

    1

    Bn=

    2pie

    hcArecip

    (n+

    1

    2

    )

    1

    B=

    1

    Bn+1 1Bn

    =2pie

    h

    1

    Arecip

    Ef =h2k2f2m

    = Ei + h kf = ki

    V = dM

    dB

    dB

    dt

    Amp. B1e pic

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =hc

    eB

    (n+

    1

    2

    )

    Arecip =(e

    h

    )2B2Areal

    1

    Bn=

    2pie

    hcArecip

    (n+

    1

    2

    )

    1

    B=

    1

    Bn+1 1Bn

    =2pie

    h

    1

    Arecip

    Ef =h2k2f2m

    = Ei + h kf = ki

    V = dM

    dB

    dB

    dt

    Amp. B1e picAmp.

    sinh()

    = 14.7m!T/B

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =hc

    eB

    (n+

    1

    2

    )

    Arecip =(e

    h

    )2B2Areal

    1

    Bn=

    2pie

    hcArecip

    (n+

    1

    2

    )

    1

    B=

    1

    Bn+1 1Bn

    =2pie

    h

    1

    Arecip

    Ef =h2k2f2m

    = Ei + h kf = ki

    V = dM

    dB

    dB

    dt

    Amp. B1e picAmp.

    sinh()

    = 14.7m!T/B

    Image: C. Bergemann, Cambridge

  • Twofrequencies,correspondingtoneckandbellyorbits(extremalorbits).

    AngulardependencegivessuccessivecrosssecFonalcuts,perpendiculartoappliedeld.

    Weaktemperaturedependence(lightmasses).

    QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page19of22

    ExampleofaquantumoscillaFonstudy:Ag5Pb2O6nearlyfreeelectronsuperconductor

    Neckorbit(lowfrequency)

    Bellyorbit(highfrequency)

    1stBrillouinzone

  • UseconservaFonofmomentumandenergytoworkouttheiniFalstateofthetheelectron

    Momentumparalleltothesurfaceisconserved

    QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page20of22

    OtherProbesoftheFermiSurface:ARPES

    IniFalElectronstate

    Finalmeasuredenergyandmomentum

    AngularResolvedPhotoEmissionSpectroscopyispowerfultechniquethatusesthephotoelectriceecttoprobetheelectronicstatesnearthesurfaceofasample.

    AnincomingphotonofenergyejectselectronofmomentumkF

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =hc

    eB

    (n+

    1

    2

    )

    Arecip =(e

    h

    )2B2Areal

    1

    Bn=

    2pie

    hcArecip

    (n+

    1

    2

    )

    1

    B=

    1

    Bn+1 1Bn

    =2pie

    h

    1

    Arecip

    Ef =h2k2f2m

    = Ei + h kf = ki

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =hc

    eB

    (n+

    1

    2

    )

    Arecip =(e

    h

    )2B2Areal

    1

    Bn=

    2pie

    hcArecip

    (n+

    1

    2

    )

    1

    B=

    1

    Bn+1 1Bn

    =2pie

    h

    1

    Arecip

    Ef =h2k2f2m

    = Ei + h kf = ki

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page21of22

    OtherProbesoftheFermiSurface:ARPESII

    Dierentkstates(detectorangles)

    FermilevelsetbycalibraFngtoastandard

    Occupiedstates

    Example:Sr2RuO4(again!)

    Images: A. Damascelli, UBC

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page22of22

    EssenFalFurtherReading

    Thepreceedingnotesgiveaverybriefoverviewofelectronicbandstructure,Fermisurfaces,andtheexperimentalprobesusedtomeasurethem.Youshouldreadwidelyonthesubjectandbecomfortablewiththemainideas.

    FreeElectronModel:basicconceptsinIntroducFontoSolidStatePhysics9thedKivel,Chapter6.

    NearlyFreeelectronModel:BandTheoryandElectronicProperFesofSolidsJ.Singleton,OxfordMasterSeriesinCondensedMaverPhysics,Chapter3(2001).

    QuantumoscillaFonsandthedeHaasvanAlphenEect:J.Singleton,chapter8(goodintroducFon)

    MagneFcOscilaFonsinMetalsD.Shoenberg,CambridgeUniversityPress,(1984).

    ARPEStechniquesProbingtheFermiSurfaceofCorrelatedElectronSystemsA.DamascelliPhysicaScripta.Vol.T109,6174,2004