ナノ構造の磁気異方性と電界効果 magnetic anisotropy and its …pf · the magnetism of...

17
ナノ構造の磁気異方性と電界効果 Magnetic anisotropy and its electric field effects Magnetic anisotropy and its electric field effects in nanostructures 小田竜樹 小田竜樹 Tatsuki Oda Institute of Science and Engineering, Kanazawa University, PF研究会「磁性薄膜多層膜を究める: Institute of Science and Engineering, Kanazawa University, Kanazawa, 9201192, Japan PF研究会「磁性薄膜 多層膜を究める: キャラクタリゼーションから新奇材料の創製へ」 October 1415th 2011, Tsukuba, Japan KEK研究本館小林ホール KEK Tsukuba October 15th 2011 (11:40 12:00) October 15th 2011 (11:4012:00)

Upload: others

Post on 13-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • ナノ構造の磁気異方性と電界効果Magnetic anisotropy and its electric field effectsMagnetic anisotropy and its electric field effects 

    in nano‐structures小田竜樹小田竜樹Tatsuki Oda 

    Institute of Science and Engineering, Kanazawa University,

    PF研究会「磁性薄膜・多層膜を究める:

    Institute of Science and Engineering, Kanazawa University, Kanazawa, 920‐1192, Japan

    PF研究会「磁性薄膜 多層膜を究める:キャラクタリゼーションから新奇材料の創製へ」

    October 14‐15th 2011, Tsukuba, Japan

    KEK研究本館小林ホールKEK Tsukuba

    October 15th 2011 (11:40 12:00)October 15th 2011 (11:40‐12:00) 

  • Contents of the talk

    1. Introduction2. Magnetic anisotropy and 

    Electric field effectElectric‐field effect 2‐1.   Linear chains:Rashba effect2‐2.   Films : dielectric/metal

    3 Summary3. Summary

  • Microscopic origin of magnetic anisotropyin‐plane

    Magnetostatic contribution

    contribution

    ji

    RR ij

    jijjii

    ij

    ji

    jiR

    RRRmRRRmR

    RmRmc

    E

    ,532d-d

    )()()()(3

    )()(1 2D square lattice

    This depends on the arrangement of magnetic atoms, not so depend on electric field.

    Electronic structure contributionσH

    perturbation of spin orbit interaction σH SOI

    d dd dd

    perturbation of spin-orbit interaction,MA appears from an anisotropy of orbitals

    yzd xydzxd 22 yxd 223 rzd

    It is important to see the behavior of each angular orbitals. Anisotropic occupation of electrons leads to MA.

  • Spin‐orbit interaction

    prVHSOI

    )(grad4 22

    σ Pauli’s matrix

    ZeV2

    )( rdVrV r)(grad

    cm4 22

    )(σH

    rV )( r rdr

    V )(g d

    )( zzyyxxSOI σH connects orbital and spin spaces

    drdVrcm

    r 222

    4)(

    drrcm4

    Biot Savart law in the2 Biot-Savart law in the classical electromagnetics

    2spin-orbit interaction

  • Origin of MAE in electronic structure

    (A) 2nd perturbative contributions•spin-orbit coupling contribution from band electrons matrix element

    xzzx

    uouoEE

    22

    2)(MAE

    uo ou, band 2

    unoccupied0band 2

    unoccupied0

    out‐of‐plane contribution

    in‐planecontribution

    CouplingsF F

    0

    223xz xy

    contribution contribution

    band 1occupied band 1occupied223 rz

    yz 22 yx (B) Existence of partly-kk kk

    D. S. Wang, R. Wu, and A. J. Freeman, Phys. Rev. B 47,14932 (1993).

    occupied degenerate levelsLow dimentional system

    cosm

  • Nano magnetic structures on surfaceThe magnetism of the low-dimensional system with a supported materialThe magnetism of the low-dimensional system with a supported material

    (magnetism in nano-scaled systems) has been studied extensively.FePt alloys are a promising magnetic material for ultra high density recording

    media due to their large perpendicular magnetic anisotropy energy (MAE).media due to their large perpendicular magnetic anisotropy energy (MAE).

    43°

    nano-scale structure v.s. magnetic anisotropy

    19.2Å43

    Cheng et al., 2005

    P Gambardella et al Nature 416 (2002) 301Co nano‐wire on Pt(997) surface. almost in‐planeP. Gambardella et.al, Nature 416 (2002) 301. 

    STM Fe 0.15ML on Pt(997)

  • Fe atomic layer on Au(788) surface

    single Fe‐chain Shiraki et al., PRB 78, 11548 (2008)

    F (0 08ML)/A (788)Fe(0.08ML)/Au(788)

    The magnetic easy axis has 

    Fujisawa et al., PRB 75, 245423 (2007)

    a perpendicular component.

  • Toward electric field assisted magnetization reversal,there are some pioneering works on magnetic state 

    l b l f ld

    Chiba et. al.,

    control by electric field

    Ohno et. al., Nature Nature. 455, 515 (2008).

    Chiba et. al., Science 301, 943 (2003).

    408, 948 (2000).

    Mn)As(GaMn)As (In, magnetic semico.

    FePd FePt,Mn)As(Ga,

    001)MgO/Fe/Au(

    metallic layerwith dielectric mat.

    room temp.e de t, )g (room temp.

    Weisheit et al., Science 315, 349 (2007) Maruyama et. al., Nature Nanotech. 4, 158 (2009)

  • Recent works on the electric field effect of magnetic anisotropy energySeki et al., APL 98, 212505 (2011)

    232ZrO

    10MgO

    Seki et al., APL 98, 212505 (2011)

    MgO

    V ddE Electic Field (in MgO)

    18.6fJ/Vm in MAE MgOZrOZrOMgOZrO 222 V ddE GG AHEHallAHE

    max,Hall

    S dRHRMEperp

    /i/ 2

    /MgO/(Fe/Pd)n(001)  n=3‐4602fJ/Vm 

    Anomalous Hall Resistance

    E>0

    V/nm1inμJ/m33 2

    Co Fe B

    MgO- - - - -

    E>0

    M. Endo et. al., APL 96, 212503 (2010)

    Co40Fe40B20

    Bonell et al., APL 98, 232510 (2011)

  • Electric field effect of magnetic anisotropy energyM. Weisheit, S. Fähler, A. Marty, Y. Souche, C. Poinsignon, and D. Givord, Science 315, 349 (2007)

    FePdFePd Kerr rotation FePdFePd of surface magnetism

    FePt

    FePt h k finward electric fieldFePt For 2nm‐thick system of FePt, 4.5% change of 

    coercivityCoercivity decreases by the inward electric fieldin the difference of 600mV.FePt

  • chains    Fe‐chain/Pt(111) and Fe‐chain/Pt(664)

    Rashba effectRashba effect

  • MAE of Fe‐chain/Pt(664) surface3 23 meV/Fe ‐2 25 meV/Fe 1 19 meV/Fe‐3.23 meV/Fe ‐2.25 meV/Fe 1.19 meV/Fe

    parallel to  the chain

    bare h i

    h b idi i f 3d bi l b Fperpendicular to the chain

    Fe‐chain/Pt(664)Fe-chain Fe‐chain/Pt(111)

    bi l

    hybridization of 3d orbitals between Fe and Pt atoms ‐51° Φbefore relaxation

    yz orbital ‐85°

    exp.   ‐80°(Repetto et al., 2006)(Repetto  et al., 2006)

    atomic relaxation 

  • 磁気異方性エネルギ の電界効果磁気異方性エネルギーの電界効果

  • Electric field effects on MAEElectric field effects on MAEMAE Ex.  MgO/X/M(001)

    dielectric 

    Electrode metal0 rconstant

    MgO(001)

    Insulating layer

    )field electric(

    Magnetic layer界面の磁気異方性とその電界効果

    Substrate metal電界効果

    物質依存性、界面依存性

    F C Ni F C Pt Pd AFe, Co, Ni, FeCo, Pt, Pd, Au

  • Inverse of EF effects: Pd/Fe/Pd(001), comparison with Pt/Fe/Pt(001)comparison with Pt/Fe/Pt(001)

    Pd/Fe/Pd(001) PdPd/Fe/Pd(001)‐21 fJ/VmPt/Fe/Pt(001)

    Pd/Fe/Pd(001) PdPtPt/Fe/Pt(001)

    +78 fJ/Vm (GGA)27021Pd

    FePdPt/Fe/Pt(001) 270

    78PtPd .

    Experiment FePd1:4 MgO/(Fe/Pd)n(001)  n=3‐4

    fJ/V21fJ/V602 MgOexp

    FePtMinus slope : qualitative agreement with the experiment of Weisheit et alfJ/Vm21 fJ/Vm602 MgOr

    expPd

    the experiment of Weisheit et al. 

    Electric fieldS. Haraguchi, M. Tsujikawa, J. Gotou, and TO, J. Phys. D: Appl. Phys., 44 (2011) 064005. Weisheit et. al., Science 315, 349 (2007)exp.) Bonell et al., APL. 8, 232510 (2011)

  • Magnetic moments (in μB)Pd/Fe/Pd(001)Pt/Fe/Pt(001)/ / ( )

    M(c)FeM(1)

    M(2)

    S. Haraguchi, et al., JPDAP, 44 (2011) 064005.

  • まとめ密度汎関数法に基づいた第一原理計算による、

    磁性薄膜の電子状態と磁気異方性エネルギーの計磁性薄膜の電子状態と磁気異方性エネルギ の計算結果を紹介した。○SOIから寄与するMAEは フェルミ準位付近の電○SOIから寄与するMAEは、フェルミ準位付近の電子構造に敏感である。

    ○面内磁化の場合、フェルミ準位付近には、磁性層のラシュバ効果による分散の非対称性が現れた。○MAE電界効果の大きい薄膜の探索:FePt○不純物元素や不規則構造(膜厚方向および膜内○不純物元素や不規則構造(膜厚方向および膜内方向)の効果の解析も必要となる。