パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&scientific...

82
1 Self-organization Self-assembly ( )H. Haken : Synagetics, ( )Santa Fe group : Complex systems, ( )I. Prigogine : Dissipative structures pattern formation i) ii) iii No 1-1. ----- ----- ----- ----- 2 BZ CSTR BZ CSTR BZ BZ CSTR BZ 3 ( ) NADH NADH NAD --- ON OFF BZ D3 BZ NHK TV 4 OR-NOT OR-NOT OR OR (circummutation) 20 1H circadian rhythms 23

Upload: others

Post on 18-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

1

Self-organization Self-assembly

( )H. Haken : Synagetics, ( )Santa Fe group : Complex systems, ( )I. Prigogine : Dissipative structures

pattern formation

i)

ii)

iii

No 1-1.

-----

-----

----- -----

2

BZ

CSTR

BZ

CSTR BZ

BZ

CSTR BZ

3

( )NADH NADH NAD

--- ON OFFBZ D3

BZ

NHK TV

4

OR-NOT OR-NOT

OR OR

(circummutation)

20 1H

circadian rhythms 23

Page 2: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

5

SCN

A+B A: B:

S.Yamaguchi, et al., Science 302(2003)1408

Per-I-luc mouse Lucifarase-transgenic SCN suprachiasmatic nucleus

Turing

A,B

CIMA system BZ

Q. Quyang & H. L. Swinney, Nature, 352, 610(1991)

6

Fig. 2. Rearrangement of the stripe pattern of Pomacanthus imperator (horizontal movement of branching points) and its computer simulation. a, An adult P. imperator ( ~ 10 months old ). b, Close-up of region I in a. c, d, Photographs of region I of the same fish taken two (c) and three (d) months later. e, Starting stripe conformation for the simulation (region I). f, g, Results of the calculation after 30,000 (f) and 50,000 (g) iterations. h, Close-up of region II in a. i-l, Photographs of region II of the same fish taken 30 (i), 50 (j), 75 (k) and 90 (l) days later, respectively. m, Stating stripe conformation for the simulation (region II). n-q, Results of the calculation after 20,000 (n), 30,000 (o), 40,000 (p) and 50,000 (q) iterations, respectively. Fish (Fish World Co. Ltd (Osaka)) were maintained in artificial sea water (Martin Art, Senju). Skin patterns were recorded with a Canon video camera and printed by a Polaroid Slide Printer. In the simulated patterns, darker color represents higher concentrations of the activator molecule. Equations and the values of the constants used, as Fig. 1.

7

39 -0.01 /min 39s

.

PbI2 PbNO3+2KI PbI2+K2NO3

8

Scientific American 279,No.4(1998)

DLA DLA Df=1.706

H.Fujikawa, Physica A189(1992)15

(20g/l ) (7g/l) (1g/l) (15g/l: ) DLA

Page 3: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

9

Benard-Rayleigh

R-B

10

GP GP

11

Karman Reynolds Re

1.2.

12

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

1

Page 4: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

13

2 2-1.

N0

E0

0

000

�����N

Nor

EE ��

(1)

energy

�� 0

00

��N

N��

T1 T2

.

energy E0 N0

14

(2) flow

�E1 �E2 , �N1 �2

�E1��E2 , �N1��2

�����00 N

Nor

EE ��

�� flow �

||

15

2-2.

�(S)�

�(S) = (flux ) ( ) =

J��: � X� : �

( : Fick’s law )

(1)

J� X�

Fick’s law

( )

Fourier’s law

�, = 1,2, ,n L� : L���: etc.

0�� ��

� XJ

xnDJ��

���

0)( �� � � dVXJSP ��

xnDJ��

�� �� �

� Jxt

n��

����

���

���

����

����

��

���

TgradLJ.etc

xT

J TT

1�

� � XLJ ��

16

i j

(i) .

J = LX

L X .

L=L0 + L1X .

L L0Xi + L1XiXj 2

Onsager

L� �= L � (��� )

detailed balance . cyclic balance .

2fluxflow .

JT , JN (1) T1>T2, 1

0<� 20

I II t = 0 .

(2) T1 , T2 . (3) 1

!< 2!��

I II JN t JN 0 . 1

!> 10�"� 2

!< 20�

XT : #T �XN $� /T �

��� �

Page 5: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

17

DT 0 (t !) JN =0 JT

�(S) = JTXT + JNXN > 0 JT = L11XT + L12XN JN = L21XT + L22XN

t !"���JN 0 L21XT + L22XN = 0

Onsager L21 = L12 �(S) = L11XT2 + 2L21XTXN + L22XN2

X�

% &

% &0

2

22

2221

2221

'�

'���

NT

NTconstTXN

XLXL

XLXLSX

dVXJdVSP ��

��� � ��� )(

dVJdXdt

Pd

dVXdJdt

Pddt

Pddt

PddtdP

tJ

tx

Jx

��

��

� ��

� ��

'�

���

����

��

���

����

��

dtdJ

Jd

dtdX

Xd

t

t

��

��

0(dt

Pdx

18

Onsager

Soret

Soret

J1, J2 Jq

(1)

% &

dtPddVJdX

dVXLdX

dVXdXLdVXdJdt

Pd

Jt

t

ttx

�� ��

� ��

� �����

� ��

� �

� ��

dtPd

dtPd Jx �

02 (�'�dt

Pddt

Pddt

PddtdP xJx

)*

)+

,

''�

''�

''�

qqqqqq

qq

qq

XLXLXLJXLXLXLJ

XLXLXLJ

2211

22221212

12121111

19

Soret X1=0 X20�� �

J1=L12 - X2

Soret Doufor

Onsager

L12 = L21, L1q = Lq1 = -L2q = -Lq2 (2)

(3)

L1q (thermodiffusion Soret ) Lq1 Dufour (diffusion thermoeffect)

J1

(4)

L1q Lq1

)))

*

)))

+

,

�#���

��

�#���

T)(

LT

TLJ

JJT

)(L

TT

LJ

Tqqqq

Tq

2112

12

2111211

- .extbaropSoret CCCCDJ #'#'#'#�� /1

20

% &

% &

!�#

���

��� #�

���

��� �#��

#��

tTTTs

TTJ

TTJs

q

q

,0

2

2

2

��

0��

�T : �P :

D12 :

Soret entropy production

t ! , J1 = 0

( 0 : )

extB

Pbarop

TSoret

Uk

C

PP

C

TT

C

#12

�#

#�#

#�#

exp

1�

1��

���

����

�#'#��

logddC

logddC

TT

CDJ

T

T

21

121

�/

% & % &

20

03

1

TTJ

dttJJVTk

D

q

mqB

T

0�� �#��

� �!

% & % & dttJJVTk qq

B�!

�0

2 03

1�

12DDS TT �

% &dVsV� �

% & % & % &% &

% &% &t,rT

t,rJ

t,rT

t,rTt,rJs T

q �

��

�#

�#

�� 12

Page 6: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

21

entropy production

1.Onsager

( ) #1� ( )

2.

Jm 0, Jq = const. (0)

3. 4. (1) Soret

Soret

Soret

0

t1 P

P = 0 � (s) = 0

P 0 � (s) 0

X P

22

(Onsager )

X1 X2

P X1 X2

X X+3X�

3P�

3P ��0

(3) L

L 4=JX=LX2

X X + 3X flux J(t)

J(t)=L0 X(t) L0 Onsager

flux

J(t)=L X(t) + R(t)

R(t)

LL0

L

Onsager

q(t)

% & % & % & dseqsqk

LL si

B

55 �!

�'�00 01

% & % & % & si

B

eRsRdsk

L 55 �!

��0

01

23

1 Onsager 2

EHD

G.Gallavoti PRL, 77 (1996), pp.4334-7, “Extension of Onsager’s Reciprocity.” W. I. Goldburg et al. PRL, 87(2001), pp.245502-1-4, “Fluctuation and Dissipation in Liquid Crystal

Convection.”

No

!

Nu = S :

= S0 + q(t) + 6(t)

q(t) 6(t)

( )

24

q(t) 1 2

Nu

2 (1) Onsager (2)

2 (1) (short time scale)

( ) (2) (long time scale) ( )

( )

2-3.

(1)

Page 7: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

25

i) i) kB1 �kB17

ii) ii)

iii) 1 iii)

F=U-TS 1 S=0

F=U S F=U-TS 0 S

U TS

US

26

8 (1) U (2) S

i) (1),(2) (U S ) : S U

ii) S U

(1),(2) (U S ) (2)

Rayleigh-Benard

�T qc

27

RB

1)

2.7.1

(2.7.3)

2)

3Ekinetic = ( ) +( (z )) < 0

% & % &% &

% &- . 0

1

2 ��#�

���

���

�#'9�##�

dVw

C

dVpuCTwSP

v

v

: :�

/0�

3/

:::��

0)( ���� dVXJSP ��

% & % &%& &

% &- . 02& ��#%%�

��������

��������

#'#%#%

dVw

C

dVppuC

wS%%P

vCC

vCC

: :�--/0�

3/

:w::�

% & 00

2 ����

��� �#� � dzw

d: :�

0 ���0

28

< >

; (3/ ~ �: ) thermal expansion

3)RB

w w u, v, w

shear dissipation shear rate �xw , �zu

�xw qxw qx

qx �zu �zu

- . 00

2, <'�� dzwgu

d

ji :�;

wgwgxuu

j

iji /3:� �

��

�,

% &w,v,uu ��

du

dw

Page 8: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

29

shear dissipation shear velocity

qx

shear velocity energy dissipation rate =�d

(qx )

ns equation

0��'� wu zx

wu zx ��

dqw

udw

uqx

x �8

2dqw

du

ux

z�

% &223

2

2

1xx

z

qqd

wuud �� /;=

vvvvvv

vv

vvv21

2

2

2

9#9��

��

�8

#���

���

����

���

���

;//

;

ttme

t

tm

dtdeme

30

qx shear dissipation rate qx ��zu �xw

shear velocity =d /;�(��x2w)w

w = qx d u) /;�(qx

4 d2 u2 ) qx

4

qx ��zu ( shear) qx ��xw ( shear)

=d qx qx-2 qx

qx4

Rayleigh

w

:� :� heat flux

= 0

TTtT 2v #�#9'�� �

wt

d :�:'#�

�2

wd

wq

:22�� 22

31

4)Rayleigh Ra Prandle Prqx d

energy rate =b

=b g3/w = g/�:w

energy rate =;

22

2

2 0

wdg

wd

wt

b �

/�=

:

:�:

9

�'#���

% &2

2

2

ud

uuz

/;/;=; ��

22

22

ud

wdgb

/;=

/�=

; �

� w z g

u

32

qx d -1 w u

Rayleigh

=

Prandle Pr

Pr

Pr

etc

2

24

u

wdgb

�;

� ==

;

�;� 4dg

�8

TdgRa ���;� 4

2

2

2

2

;>?

>�?

�;

??

;

;

d

d

Pr

��

Page 9: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

33

2-4. 2-4-1.

L I a rod with the diameter L. 5 cm

1 R = 140

A.2

@LU

R9

� 140

34

U : L : ; :

U = 10 m/s, L 104 – 105 m ; 10-5 m2/s

Re 1010 !!

: reduction ( )

;U

Re �

3

22

10

10

e

T

R

smA

� ;;

sunshine U T

T+ T

35

Intermission

1750

40 30

2-4-2. (1)

F = m� = mv (4.1) �

U

F = -grad U

t -t

(4.2) : ( )

(2) i)

A + B C (4.3) [A] = CA

[B] = CB

(4.4) ii)

(4.5) t -t

(4.6)

Ugraddt

xd��2

2

Ugraddt

xd��2

2

)( ttCCkdt

dCCCkdt

dCBA

ABA

A ���B��

.)'(02 eqsFickDCDtC

C#���

)(02 C#���� DCD

tC

36

iii)

(4.7) (4.8)

t -t

k, D, �

D��

2-4-3.

Brown

:Langevin eq. (4.9)

: Newton

: (4.10)

t -t v -v f(t) f(-t)

2

i) f(t) ( 2 ) ii) v(t) ( 1 )

i) 2

ii) 1

Stoke s law (4.11) a : � :

i),ii) m M (

)

)(

.)'(0

2

2

1#���1�

��

C1#��1�

��

t

tt

eqsFouriert

FtfFext

�''E�� )(vv�

)(vv tf'E���

)(vv tf'E��

Ma�>6

�E

Page 10: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

37

(M )

(m )

?M ?m

i) t ?M f (t) (4.12)

(4.13) : f(t) v(t) (M m ( ) ( ))

v(0) Langevin eq. (4.14)

(4.15)

Langevin eq.

(4.16) mpp( )

E�

1M?

'� Om?

0)0(v)(

)(2

)()(2

0

F��F

tf

ttM

Lktftf B 3

)0(v)()0(v)(v)0(v)(v tfttdtd

'E��

)(v)0(v)(v

)0(v)(v)0(v)(v

20 M

t tet

ttdtd

?��8

E��

E�

�t

tdt

0

��E��E� '�

t

t

sttt dssfetet0

)(0

)0( )()(v)(v

38

t0

(4.A1)

t 0

(4.A2)

v(0) v(0) <v(0)v(0)> = <v02>

(4.A3) (4.12)

(4.A4)

(4.A5) (4.A6) (4.A7)

(4.A8)

0)()0( ��� �!!'E��E� eee ttt

dssfet st )()v(t

-

)(�!�E��8

dssfe s )()0v(0

-�!E��

)()()0v(0

-

0

-

2 sfsfesdds ss FF� � �!

FE'E

!

2

0020

)(0 0

0

0

2

)(2

)(2)()(

M

LkedsLk

ssesddsLk

ssLksfsf

BsB

ssB

B

E��

F�F�

F��F

�� �

!�

E

F'E

!� !�3

3

T

Tv

Tv

T21

v21

0

2

020

20

20

ML

Mk

M

LkM

k

kME

BB

B

B

�E8

�E

��

2

0

02

2

)(2

)()()()(

M

Lk

dtttLM

ksdsfsftdtftf

B

B

F��FF�FF ���!

!�

!

!�

!

!�3

39

(4.A9)

L0 (4.A7)

(4.A10)

(4.A11)

E� f(s)

(4.16) v(t) 1

(4.17)

(4.18) 2

(4.19)

(4.20)

(4.21)

sdsfsfk

M

sdsfsfk

ML

B

B

FF�

FF�

�!

!

!�

0

2

20

)()(

)()(2

sdsfsfkM

sdsfsfk

MMM

L

B

B

FF�

FF91

�1

�E

�!

!

0

0

20

)()(T

)()(1

% & - .% & - .�

���E�E�

�E�E�

E'�

E��

E'�

E'��

tstt

tstt

t

dssfextx

dssfextxdtt

0

)(00

0

)(0

00

)(e-11

1v

)(

)(e-11

1v

)()(v

% & % &

���

����

��CC9�

���

����

��'�'��

��

����

��� ���

E?

E1

EEEE1

EEEE

12

14321

v 222

020

MB

ttBt

ttMk

eetMk

ex)t(x

% &t

xtxD

t 2

)(lim

20�

�!�

E�

E

1�

E

19�

!�

20v

221

limMk

tMk

tD BB

t

40

4.2

(4.A12)

: (4.22)

: (4.23)

t s ?M

!!

D kBT E� kBT T 0 : D 0 but E 0 ii) ?M t ?m Langevin eq.

tet E�� 20v)0(v)(v

E���

���� �

E��

���

���

E��

!E�

!

�202

0

0

20

0

vv0

1

v1

)0(v)(v tedtt

�!

�80

)0)v(v( dttD

�!

FF1

�E0

)()( sdsfsfkM

B

Ma

tfdtd

ak

DCDtC B

�>�>

6)(v

v6

2

�E�'E��

1��#�

)()v()(v

0tfstsds

dtd t

'��� � G

Page 11: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

41

4.3 :

0 ( ?M t ?m )

t -t

s = -?�

? s �

1) 2)

( )

!

Onsager : Lij = Lji

Lij = Lij

0 + 3Lij

)(v

)0()()(

20

tftf

s �DD GG

)()(

vvv

v-v

tftf

dtd

dtd

dtd

��

���

����

���

GG

)(v)(

)(v)(

)(v)()(v)(

0

0

00

stsds

std

stsdsstsds

t

t

tt

��

��

'���

��

G

?G?

GG

42

4 Navier-Stokes random force

t -t v -v

Lagrangian picture r1 r2

r1 (Euler picture)

)(1

)(vvvv 2

0 tfPtFt

'#''#�#9'�

� ������

/;

)(vvvv 2

0 tft

'#�#9'�

� �����

;

vv���

9#9

DtDv�

t��v�

rd� v�d

vvvvvv

�����

���

gradgradtr

t

gradrdd

9�9��

���

8

9�

43

Fig. 11. Comparison of the trajectories of a Brownian or subdiffusive random walk (left) and a Lvy walk with index = 1.5 (right). Whereas both trajectories are statistically self-similar, the Lvy walk trajectory possesses a fractal dimension, characterising the island structure of clusters of smaller steps, connected by a long step. Both walks are drawn for the same number of steps (approx. 7000).

G. M. Viswanathan, H. E. Stanley, Nature, 381(1996)413

Fig.4. a, Possible flight path of a bird constructed from the longest time series, as described in the text. The time resolution of the data prevents us from considering changes in fright directions which occur more frequently than once per hour. b, Possible flight path given by the Lvy-walk model discussed in the text. Both flight paths have scale-invariant 'fractal' properties which may indicate that the distribution of food on the ocean surface is spatially scale invariant. FIG. 1 The longest of the 19 time series, with a length of 416 h. Each point in the time series gives the number of 15-s intervals in each hour for which the animal was wet for 9s or more.

44

=�= 0.1

correlation time

? 10s

total time for ex.

500 ?�

= =

Navier – Stokes equation Reynolds Re ;0#2v

;0#2v 0 Navier-Stokes equation

DtDv�

vvv ���

gradt

9'��

0vvv�#'

�� ����

t vv ���#

Page 12: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

45

( :0.2cm 100m) 105

life time ?e ?e ?1?1�

Analogy ?m ?e E�7 ?1�

;eff = ;0 + 3; HI I �

EHD �eff = �0 + 34�������( ) BZ keff = k0 + 3k ( )

(1)

(2) (3) ( )

vv ���#

kdkver rki���� ��

)()(v � 9�

% &

% &� �

� �

��

�F��FF

FFFF�#

�9

FFF9FF'F

11

11

11vv

,

vvvv

kkdkei

kkkkk

kdkdkei

kkkrki

kkrkki

�����

�����

�������

�����

���

11vv kkk

�����

46

2 (1) Onsager (2)

2 (1) (short time scale)

( ) (2) (long time scale) ( )

( )

N

47

3 3-1.

d :�

-��(d ):

:

:�:: : sin2 gdMMd '��� ���

:��2Md : : ��� <<2Md

0�:�

���

����

�����

gMD

Ddd

gM �::�

: sinsin

% &Dd

dd

DDd

c

c

�J�

�*+,

KIL

'���

��� �

��

6

,0

0611

61sin

2

3

:

:

::

:::

48

Page 13: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

49

3-2.

(1)

% &

% & % &

% & 42

3

41

21

xxxU

xUxd

d,xf

xx,xftdxd

'��

��

'���

=

=

==

=�� f (x, =�) = 0

=J�� Jss x,x 00

xsJ = = 0 xs0

(pitch-fork bifurcation) ( supercritical bifurcation)

'��'�� �� 202

2 xxdtdx

J��'� Jxx,x 02

50

�<0 xs (subcritical)

(2)

�= 0

x1 ��M�

(=�= 0, x2 = N2 , 0 )

N2 N2 > 0 transcritical pitchfork N2 < 0 hysterisis pitchfork

32

2 xxxdtdx

�'�� �=

032

2 ��'�� � xxxdtdx =

���

��� �J� �� =4

21

22

22x

51

(3)

(a)��N�> 0, ��> 0, A0 = 0 (normal bifurcation)

(b)��N�< 0, ��> 0, A0 = 0 (inverted bifurcation)

(c)��N�> 0, ��> 0, A0 0

( A0 < 0 )

( A0 > 0 )

(d)� �� � O�� 0 �� � ��� �O� 0

growth rate

O'�

'���� �i

Axxxdtdx

=�

� 053

=EEOE� 9�F'F� i

52

(4) a) Type I

stationary solution

( )

Im��= O�=0 Re� = 0 P Q qc = 0

oscillatory O��0 , qc = 0

Re� 0�=(=� + #2) =(=� q2)=0 -bx3

(1) (2)

Eckhaus

x x0 + 3x

=x = =x0 + =3x #2x = -q2x0 + #23x |x|2x = |x0|2x0 + 2|x0|23x + x0

23x* + 0(3x2, 3x3) |x|2x = (x0 + 3x) (x0 + 3x)* (x0 + 3x)

|x0|2x0 + 2|x0|23x + x023x*

% &% & 32

232

bxx

xxbbxxxx

�#'�

�#'�

=

=�

xxx ��� 3'� 0

% & xxbxx 22 �#'� =�

Page 14: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

53

% & 02

002

0 xxbxqx ��� =�

% &220

1q

bx �� =

% & xbxxxbx 33=3 20

202 '���

3x growth rate ( )2

0x

3x = (=���2b|x0|2 + #2) 3x

��n

i q nn exx x0 + 3x

Type II

% &R S% &

% &R S0

322

22

322

�#'#��

T

���

�#'�#�

� � drbxxdrx

q

qqbxxx

m

=

=

=0

=

x

Type III (Swift-Hohenberg eq. )

% &R S 3221 bxxx �#'�� =�

i)Im� = O = 0 qc �0 ii) O �0, qc 0 (Oscillatory )

q 3x

54

Type IV (Kuramoto-Shivasinsky eq. Nikolaevskii eq. ) : Kuramoto-Shivasinsky eq. : Nikolaevskii eq. Goldstone Mode

3-3.

F1 = =

Fr = -mg sin :

F1 = Fr

3.3.5

( 3.3.6 ) : (3.3.7)

(1)

(2)

% & % &222 xbxax #'#�#��

% &R S % &2222 1 xbxx #�#'��#� =�

2

2

td

dml

:

022

2

2

2

�'

��

:5:

::

sintd

d

sinmgtd

dml

lg

T

lg

5>

5

2�

� 5 : T : g : m :

:

::::

�'�� �!5!3

53

sin

022

2

�' :5:

td

d

55

1)

C :

k2 3 i) k2 < 1 ii)k2=1 !

iii) k2 >1 :

022

2

�' :5:

sintd

d

0cos221 2

02

2�

���

���

����

����

� ::

:5::dd

dtd

dtd

dtd

% & Cdtd

dtd

dtd

dtd

'������

���

�����

���

:5:

:5:

cos121

0cos21

20

2

20

2

���

��� ��'���

��

���

2sin42

2sin4 222

022

0

2 :5:5: kCdtd

K : U :

% &:5: cos121 2

0

2

�'���

����

��'�

dtdUKC

20

2

25Ck �

56

i) C < 2502 ( k2 < 1 )

C 2502 250

2

:�0 k :�0 :

0 0 U�= 0

K(k) :

:�0 : << >>

:�M� :M� k2 1

���

����

�����

����

�2

sin4 2220

2:5: k

dtd

U: sin2

sin k� 2>

U �

�� ��

8

��

tdt

k

d

dtkdk

kd

00

0 22

022

sin1

cos2sin1

cos2

5U

U

U5UU

U:

U

4sin10

0 00 22

42 1��

�8 ��

1 55U

U>

dtkd

% & % &% &00

0

4

2

::

:

kKgl

T

sink

*+,

KIL ''''�

��

1

2

2

0

664422

0 220

sin165sin

83sin

211

sin11

4>

>

UUUU

UU5

�kkkd

kd

Page 15: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

57

1� �

ii) C = 250

2 C

k2=1

t �� !� :��� >�

iii) C > 2502

k2 > 1

% &063.13

161

1612

00

20

0

20

1��

��

��

�'1�

��

��

�'�1

>:

::>

gl

% &t

dt

0

2

2

0 20

tanh2

sin

sin1

sin1log

cos2

5:

:5

:

::

:

�8

'�� �

U:

:5:

sin2

sin

2sin14 2222

0

2

��

���

����

�����

����

� �

z

kkdtd

58

iv)

(+) (-) 2

(2)

Duffin equation

5�0

���

����

��

���

����

�V�

1

���

����

� 1����

����

���

�� � �

kktsn

kk

t

k

dkt

1,2

sin

12

20,

20

sin1

0

0

0 220

5:

5

>U

U

U5U

22

2

1

1

snkdn

sncn

��

��

mgA

a,mk

tcosAsinmglml

gl ��

�''

G

5::G: 0���

59

(3.3.14) Japanese attractor

(3)

5�0

Wdis( ) Ws ()

tcosasin

tt, lg

gl

0

0

2

5::G:5>

55

�''

��

���

6sin

cos6

3

0

3

2

2

:::

5:::G:

��

����

����

��'' t

lg

dtd

dtd

73.0,65.0,15

17.2,1,22.0

0

0

���

���

a

a

5G

5G

ta

tt

mgA

amk

tAmglml

lg

gl

gl

0

0

0

cossin

2,

,

cossin

5::G:5>

55

G

5::G:

�''

��

��

�''

���

���

))K

))I

L

'���

10

ttcosasinx

x

��

5::G

:

iedttcosat

limWdtt

limW ext

t

ts

t

tdis 9���� �� !�!� 000

2 115::G �

������

60

Wdis

% &::2 �,

= 2

21

; :G2:

2:G �

�� �

����

:G � disWQ �� S�

limit cycle

limit cycle (4) Van der Pol equation

Van der Pol equation ( :� )

(Kirchhoff’s law)

% & ���

���2����� :::G::G ��� ,22

dtdW dis

1�

1� disWQS

��

��

!�

!�

��

t

t

tt

distdis

dt

dtdtd

tdtW

tW

0

00

1lim

1lim1lim

::G

::G

Rdis iedW W����� � ::1G �

0

Page 16: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

61

dtd

t,LC 0

20

15?5 �� ? t

% &

))))))

K

))))))

I

L

��

'�

�'''

dtvL

i

dtvd

Ci

Rv

i

Evfi

iiii

L

C

R

LCR

1

0

% & 01

��'''' dtvLdt

vdC

Rv

Evf

% &

% &

% & 0v1v

v11v

0v1v

v1v

0v1vv1

vv

2

2

2

2

2

2

�')*

)+,

)K

)IL

'F''

�')*

)+,

)K

)IL

'F''

�''''F9

LCdtd

EfCCRdt

d

Ldtd

EfRdt

dC

Ldt

dC

dtd

REf

dtd

0vv1v

0vv1v

2

2

2

2

�')*

)+,

)K

)IL

F''

�')*

)+,

)K

)IL

F''

dtd

fRC

L

dt

d

dd

fRC

L

d

d??

62

v v + E ( )

L g(x) :

( van der Pol )

% & % &02

2

3

v1

vv i

K

EEf '

)*

)+,

)K

)IL �

'��

�/

% &

)*

)+,

)K

)IL

���F

)*

)+,

)K

)IL

'��'

2

2

2

2

v1

1

v3

v1

1v

Kf

KEf

/

/

% &

% & 01

0111

22

2

2

2

2

2

�'�'

��

�')*

)+,

)K

)IL

����

����

���

xdtdx

xdt

xd

kv

RR

x

vdt

vdKR

vRRC

Ldt

vd

=

/

/

=

/�� ��� ��

63

3-4. 1.

||

5 50

entrainment Huygens : 17 synchronization

01

01

01

2

2

�'

�'

�' �

qLC

q

qCdt

qdL

iq

dtiCdt

diL

��

502

:NHK-TV

64

1 2 1

(3.5.1) 50 : 5 :

=�<< 1

(3.5.2)

A(t), U�(t) 50 , 5��

sin 5�t, cos 5�t 0

( ) sin 5�t + ( ) cos 5�t = 0 = 0 = 0 (3.5.3)

U= �� ,A, 2 0�UU== ������ ,A,,A

(3.5.3) 1 A(t), U�(t)

Dynamics

0��td

dtd

dA U5 (3) U�

% & tsinfxdtdx

xdt

xd

Poldervan

5=

5

0

1

22

2

0

1 �'��

����� ����� ��

% &% &tttAx U5 '� sin)(

))

K

))

I

L

�����

��

����

����

���

U55

5U

U5

=

cosAf

dtd

sinf

AA

dtdA

221

241

2

02

02

Page 17: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

65

A 5 f 0

0�td

dU

0�td

dU( -b < a < b)

(3) 2 0�td

dU

U cos U

��

��

� ��

��

��

��9�

555

U

=5U

212

cos

41

22

sin

2

0

2

0

fA

AA

f

22

20

222

222

20

222 1

411sincos �

��

� �'�

��

����'8

555

=5

UUf

AA

A

f

2

222

2

2222

222

2

20

41

1

14

1

AA

AAAf

)*

)+

,

)K

)I

L

��

��

��'�

��

����

� ��

��

��

� �'

��

��

���

=55

55

=5

555

5 Af

Af

221

20

20 �

55

5 21

2

20 �

Af

Af

Af

Af

Af

22

2)1(2)1)(1(1

221

2

00

2

02

0

����8

����'���

���

5

55555

555

5

66

BZ

BZ

67

BZ

Definition of entrainment rate R

i, j : nearest neighbor

2

KIL

��

ij

n

j,iij

F

FN

R1

0 : non-entrainment 1 : entrainment

(2)

[Fig. 3.7] Entrainment in 2D Coupled Lattice Oscillators with distance d

d D [mm]

R

d D [mm]

R

��<

N

jiijr

NR

1

68

Ca

100

Page 18: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

69

3-5. 3-5-1.

1982

2000

SN <6(t)> = 0 p t<6(t) 6(t ) > = 2QN23�(t-t’) SNR dB

N

s

PP

log1010� 3.6.1

Ps: PN: QN:

70

F.Moss etal:Int.J.Bif.Chaos, vol.4, No.6(1994)1383

(2)

Langevin eq. % & )(sin 0

3 ttAbxaxx 65 ����� ---(3.6.2)

)()()(sin

41

21

0

042

ttpttAc

cxUcxbxaxU

xUx

665 '�'�

'�''��

��

���

---(3.6.3)

6 (t) 0

c (t) c

---(3.6.4)

71

(1) c = 0 U = U0 (2) c = cth

c U0 Asin50 t A Cth

420 4

121

bxaxU '�� 03 �'�� bxaxcdxdU

ba

thc 274 3J�

72

( transient time)

U0 ( ) p (t) = Asin50 t A Cth

6 (t)

6 (t) QN

2 �U p(t) QN p(t) 6 (t)

Page 19: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

73

E. Simonotto et al., Phys. Rev. Lett., Vol.78, No.6, pp.1186-1189(1997)

3-5-2.

(1) <;�> -B +B (-B no-output +B 1 )

threshold � pulse

74

6

��

6 (t) Gaussian �

0

21

0

0

2

0

3

1

)(

)(

;�

����

����

��

c

cf

cf

f

dffP

dffPff

222

2

2exp)0()( NQgg �

���

���

� ���� �

���

���

� ���9

��

��

� 2

2

0 2exp

33)0()(

)0()(

N

cc

Q

ffgg

gg

;;

75

(2)

U�(t) 2 x1 x2 C (t)

<;>�

% & ?;?U <���

ttBt 121

)( 22

��

��

� ���

���

����

��

2

222

22

222

2exp

32121

sin21

)(

N

c

n

Q

fB

B

BfP

?

;?

55

;?

( 5 0 )

5���05�� ?

5; �

76

(3) modulation

< V >

NQ

A*

0 CC�

���

����

� �

���

���

���

����

�'�

��

����

���

��

����

�� 2

2

02

2

020

2

2

22

441

3 NN

*

N

*

N

*c

Qexptcos

QA

tsinQ

AQ

AfB �55

�?

PS (f)

SNR | formal 5�0 Ps

tA 0*

0 sin 5'���

% & ��

���

�'�

��

���

����

� ����

20

*02

2

2

sin2

1exp3

2exp

3

tAQ

fB

QfBBV

N

c

N

c

5?

?;?

% &tcos 52121

��

��

� �

���

���

��

��

�'

��

��

� ��

2

20

0

2

2

2*

0

2

2

*0

222

exp)2(4

)(3

)(NNN

cs QQ

A

Q

AfBfP 5353

?

���

���

� ��

��

��

� ��

2

20

4

2*20

10

10

2exp

3

2log10

log10

NN

c

n

sformal

QQ

Af

PP

SNR

ns PPSNR /�

Page 20: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

77

S

C

R

% &0�)t(s

)t(x)t(sC � x t

)t(x)t(s)t(x)t(sC ��

R S 21

221

2

1

���

���

*+,

KIL �

)t(x)t(x)t(s

CC

5�5

0H�

H 50

22 )t(x)t(s

C�/

mT)Tvar(

R �T

first passage time var T Tm mean first passage time

<C><C1> Q [33] .

.

78

D. F. Russell, L. A. Wilkens, F. Moss, Nature, Vol. 402, pp. 291-294(1999)

79

Chaos, Vol. 8, No. 3, p. 599-603(1998)

Physical Review E, Vol. 56, No. 1, p. 923-926(1997)

A.Priplata et al., Phys.Rev.Lett.89, (2002)238101-1

80

Page 21: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

81

BZ Fukuda, Nagano and Kai, JPSJ, 72,(2003) 487 BZ

82

83

K.Harada, S. Kai et al., IEICE trans., Vol.74, No.6, pp.1486-1491(1991)

84

P*(fa) : IN

* :

10

Page 22: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

85

U (t)

p(x) : x

x2 : 1 | t | : x1 x2 ( )

50 = 1

212121

21

21*

),(

)()()(

dxdxxxpxx

xx

txtxt

� �!

!�

!

!�

�U

~~~~~~~

t1 x1 x1+dx1 t2 x2 x2+dx2

dtttxtx

ttxtx

)()(1

lim

)()(

*2

2

*

'1

'

�1

1�

!�1

dxtxpxt )1)(()(0

2 �� �!

U

21

)exp(!

)( W�� xxx

xpx

55

5 21

2

20 �

�Af

% &220

20 1 555 ����8Af

% & 555 ��� 220

~~~~~~~

����

����

(C

�<����<<�

AfAf

Af

Af

0

0

00

21

0

21

0

21

21

5�5�

5�5�5�

86

f0

(3.5.3)

87

4 4-1.

(1)

vmmF ��� � (4.1) �

F = -grad U U

t t

A.2

(4.2)

Ugraddt

xd��2

2

Ugraddt

xd��2

2

88

4-2. van der Pol

(Kirchhoff’s law)

% & 01

�''�''Rv

dtvd

CdtvL

Evf (4.2.1)

0�''' RCL iiii

Page 23: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

89

van der Pol

U x2 L x �x + ��x3

dU / dx

0)()(2

2

�'� xfdtdx

xgdt

xd(4.2.3)

x = x0

x = x0 + y (4.2.4)

% &

0111

011

22

2

2

2

�'*+,

KIL

'�'

�'*+,

KIL

'F''

vLCdt

vdvba

RCdtvd

vLdt

vdEvf

Rdtvd

C

LC,tddt,tddttt

110

000 �F�F�F� 5

555

% &

bCL

Ra

CL

xvtt

xdtdx

xdt

xd

tdd

bR

aCtd

d

tdd

bR

aCdt

d

����

����

�����F

�'��

�'F)*

)+,

)K

)IL

���F

�'F)*

)+,

)K

)IL

���

1

212

2

2

02

2

20

2

0

20

2

220

,1

,,

0

0vv

v111v

0vv

v11v

�=

�=

5

555

5

% &

21

3

3212

2

)(

)(

0

xxg

xxxf

xxdtdx

xdt

xd

�=

� �=

��

'�

�''��

(4.2.2)

90

0)()(2

2

�'� xfdtdx

xgdt

xd(4.2.5)

y2 = y3 = 0

% & 023 00

201

20 �''''� yxxyxyxyyεy ����� �� (4.2.7)

x0 = 0

0�'� yyεy ��� (4.2.8)

(4.2.8)

01,2

% & % &R S % & % & % & 03000

20102

2

�''''''��' yxyxyxdtd

yxyxdt

d� �=

��dtd

dtd

2

2

% & % & % &% &% &

0

02

33

0201

30000

02

0201

320

20

30000

�'''�

�''''

'''''''�'

xxxxxεx

yxyyxx

yyxyxxyxyxεyx

����

��

������

��

(4.2.6) x0

constyeyty t :)( 000�

���

��� �J�

�'�

==0

00

421

0

22,1

2 ε

(4.2.9)

042 �� =

91

1 0�> 0 y : grow 0�< 0 y : decay

=2 4 < 0

= = 0

cii 5 0 J�J�2,1 (4.2.11) 5c : Hopf

= > 0 Hopf

= 20

2

45=

55 �� c 0(=�)

(i) 0� y(t) = A1e01t + A2e02t ( 4.2.12 )

(ii) 0�

y(t) = eRe(0)t (A ei5ct + A* e-i5ct ) (4.2.13) = = 0 ( )

y(t) = A ei5ct + A* e-i5ct (4.2.14) =�> 0 �A"�A* 5c �

�'''� 223

1021

yyyy === (4.2.15a)

t T

KIL

�'����

Ttt

t=

=1 (4.2.15b)

���

��� �J� 2

2,1 421

= =0 i (4.2.10)

% &

��

'�'�'�'��

���

����

�'''�'����

223

0T23

1021

223

1021

T

yyyy

yyyyy

ttt

tt

====

====

92

��

'��9

''�

''�

020

2

120

230

3

1020

2

23

23

23

3

2

yyyy

yyyy

yyyy

t=

==

==

(4.2.16)

(1) =�

(17),(18)

)*

)+,

'�

'��

ti*ti

ti*ti

cc

cc

eAeAy

eAAey55

55

111

0(4.2.20)

(20) (19) y0

30

20 yy �

2 (19) y2

tcitcitcitci eBeBeAeAy 5555 3*

23

2*222

�� '''� (4.2.21)

% &

% &

���

'��'�'��

���

����

�'''�'��'��

���

����

�'''�'����

1

0T12

022

1

223

1021

22T

2

223

1021

2T

2

2

2

yyy

yyy

yyyyy

ttt

tt

tt

===

=====

====

02:

0:

0:

0201

3000T22

223

112

0022

1

��''����''�

�'�

�'�

yyyyyyy

yy

yy

tttt

t

t

�� =

=

=

(4.2.19)

(4.2.17) (4.2.18)

% &tcitcitcitcic

tcitcitcitci

eAeAAeAAeAtiyy

eAeAAeAAeAy5555

5555

5 33***2330

20

33*2**23330 33

��

��

��'�

'''�

Page 24: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

93

y0 y2 (19)

e i5ct e i5ct 0

A e i5ct 0

(22) A 0 ��

% &0T � O FeFA i (4.2.23)

(22)

31

23

22Fi

FFi

c���

����

����O

5��

(24) (23)

O(=�) = O = ��� =� ��%77&� �

% &

0

33

2

99

33*1

2*1

*21

33*1

33*2**233

**T

3*2

232

2*2

22

2

3*2

232

2*2

22

2

��

�''

''''

����'

''''

'�'�

��

��

��

��

tcic

tcic

tcic

tcic

tcitcitcitci

tcic

tcic

tcic

tcic

tcic

tcic

tcic

tcic

tcic

tcic

tcic

tcic

eAi

eAAieAAieAi

eAeAAeAAeA

eAiAeieAiAe

eBeBeAeA

eBeBeAeA

5

555

5555

5555

5555

5555

5�

5�5�5�

����

5555

5555

5555

AAiA

A

AAiAAAiAi

c

ccc

21T

*21

*2T

23

22

032

���

����

�����8

�''��

5��

�5�55

(4.2.22)

ccFF

FFF

5��

5�

��

1

3

1

231

23

;23

1;0

�O�O

��� (4.2.24)

(4.2.25)

)T(11

1

T

1

teeA tii =��

= ��� OO

94

�1 > 0 �F ��supercritical( ) �1< 0 �F ��subcritical( )

% & % &- .titi cc eeyy O'�O' '� =5=5

�==

10

21

(4.2.26)

van der Pol � = 0

95

Onsager cyclic balance

96

4-3.

(1)1 Swift-Hohenberg (S-H)

R-B

% & )()(1)( 322 xuxuxu xt ����

��� �'��� = (1)

u(x): =� u(x) x

u = 0

EHD (=) u = 0

u (x) 1

qc

Page 25: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

97

u3 0. (1)

% & uu xt ���

��� �'���

221= (2)

iqxtAeu '� 0 (3) 0�: growth rate, q :

(2)

0���=�- 1 - 2q2 - q4

�=�=�-�(1 - q2)2 (4)

0� �0�= 0(neutral stability)

=��= (1 - q2)

2 (5)

q =

q qc u �0

))*

))+

,

�'����'���

��

'''�

XxxTtt ,

xX,tT

uuuu

==

==

=== �21023

21

(6)

98

% &% & % &

% & ))))

*

))))

+

,

�'�

�'��'

'��'��'��'

'��'��'��'

�'��'���

2

42

2222

222

222

1

4

2241

2241

2

23

x

XXx

xXXxx

xXXxx

XXxxx

==

==

==

==

(7)

(1) =�

% & )))

*

)))

+

,

�'���

������'�

������

���

300

22

122

002

012

1

02

0

22

4

4

23

21

uuuuuuu:

uuu:uu:

xX

XxTt

Xxt

t

=

=

=

(8)

% &% &% &

% & ))

*

))

+

,

�'�'��

�'��''�

���''�

�'�

0224

040

3000

22

0122

012

02

uuuuuu

uuu

xX

TXxt

Xxt

t

(9)

(9) 1

% & % & xciqxciq eTXAeTXAu �'� ,, *000 (10)

qc = 1 qc

(9) 2

u1 u0

% & % & xciqxciq eXAeXAu �'� T,T, *111 (11)

% &% & 01

10

02

002

0

��'

�������

u

quuu

x

cxXx

99

(10) (11) (9) 3 u2 (9) 3

% &

% & % &0422

00

0022

022

1112

1

����'��

�������

uuu

uuuu

xXxX

xXx

% &

0

34

34

33*0

330

*0

20

*0

*0

22*0T

02

00022

0T22

�''

���

��� '����'

���

��� '����''�

xciqxciq

xciqXc

xciqXct

eAeA

eAAAAqA

eAAAAqAu

u2

% & % &% & % & xciqxciq

xciqxciq

eXBeXB

eXAeXAu3*

23

2

*222

T,T,

T,T,�

''

'�

(13) (12) =�iqcx 0

(13) =�iqcx

(e�3iqcx ) e�iqcx (12) e�iqcx 0

02

002

00T

00

02

002

00T

*0

20

*0

*0

22*0T

02

00022

0T

3,2(14)

34

1

034

034

AAAAA

AAXX

AAAAA

q

AAAAqA

e

AAAAqA

X

X

c

Xc

xiq

Xc

c

FF�F�'F�F�

F�F�

��'��

�'����

�'�����

(12)

(13)

% & 021 242

22 ��'�'� uu xx

012121 42 �'��'� cc qq

(14) (15)

100

u(x) A

(15)

):F(FeA XiQ F�F0

(15)

F – Q2F – F3 = 0 21 QF ��8 (16)

u

% & % &

% & % &���

��� '��

'�

F��

'�'

F'�F'

QxxiQxxi

XQxiXQxi

eeQ

eF

eF

u

AA;uu

==

=

21

21

2

0

000

13

133

3

u

(17)

% & % &

xQQ

eeQu QxxiQxxi

���

����

�'��

���

��� '�� '�'

==

= ==

211cos1

32

13

2

2 21

21

(17)

% & Qqq

Qqq

c

c

=

=

21

21

��

'�

(18)

Page 26: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

101

(2)

� �

2

�G2 > 0 G2 |G1| B:

G1

couple

A = B = 0

G1 < 0 G1 > 0

B (2)

% & % & % &% & dsstAeBetBt

st 2

0

22 0 �'� � �� GG (3)

G2 1

% & % &% & % &% &

% &% &2

2

2

0

2

0

1

22

tA

dstAedstAetB st

s

G

GG

�� ��!

��

B A(t)

% &AAUACCACAA

��

�����

����

�'''� 3

132

122111 G

G�

BB

AA

2

1

G

G

��

��

t

t

eBBeAA

2

1

0

0

G

G

��

�(G1 > 0)

22

31312

2111

ABB

ACABCACAA

'��

'''�

G

G�

� (1) (2)

coupling

102

B

% & 413

2

1231121

41

32AC

CA

CAAU ��

����

�'����

GG

02

(���

����

���9

��9

��

���

AU

AAU

dtdA

AU

U

AU

A

��

U ( )

0132

12 <' CCG

(1) (2)

103

Swift-Hohenberg Brusselator model BZ

Nyx

DABADB

yx

'���

����

����

����

#'��#'�

����

����

�2

22

2211

x y (x) (y)

���

����

�F

����

����

�ww

Uyx

% &w,wMww

ww

dtd

F'���

����

�F��

����

����

����

�F �

'

000

0

couple

U

���

����

��

'�

000

01GUU

M

% & �'F'F'�F 232

21 wCwwCwCw,wM

wwbwwwwwwwww

F''F�F

''F''�

'

2

332

21

0

���0�

��

O(ww') ww‘ w3 order w 3 ( )

nonlinear part

w3

104

20

2 kk �

% & % &- .% & �� '�

'#���

'

'

kk

k

wkw

kDBBkD

0

�0 22

02

1220

2

0

w' ( 0+: , -0- |0+| )

% &2

0

wk

bw

��F0

% &- .wF

wwwk

wwwww

33

�=

��0

���''#��

'F''� '

321

220

2

22

1 ��

�1 0

% &- . 3220

2 wwkw �'#�� =�

% & % &xkcosxwroll 034=

Page 27: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

105

�1

% &)*

)+,

)K

)IL

'�� yk

cosxk

cosxkcosrwhexa 23

22 00

01�=

AAAAA X222

0T0 �6? ��'�� (18)

?0 : 60: ��:

( )

% &cqq

c

cppcqqRc q

RRR

����

� �

��

9�

2

2200 2

1,

16?

0

iqxtAeu '� 0

= R Rc

106

(4)

(17)

���

���

����

�� '�� � XQQu =6

= 10

2 1cos12

( )Eckhaus instability

02

002

00T AAAAA X ��'��

A0 = F eiQX

v ( X, T )

A0 = (F+ v ( X, T )) eiQX (20)

% & % &

% &% &22

22

11

1

(5)11

qR

q

RRRRR ccc

�'�

��

�����

=

=

% &- .

4821

8

14

20

1

2

12

2

�W�8

���

��

��

6

qq

qqqq

R

60 = 2

% &% & % &

11

11

1

0

22

22

����

�8

����

���

?0

=0

R

qR

q

107

v F ; v F (20)

% & % & % &% &% &% & iQXiQXiQX

iQXX

iQXiQX

eeeFFFeXFeXFeXF

99'''�

'�''�'��vvv

)T,(v)T,(v)T,(v**

2T

% &

*222

2*222*22222

**22

vv2

vvFvvvvvFvvv

vvvv

FFFF

FFFFFF

FFFF

''�

''''''''�

'����

�� '''

v

% &% &

% & % &32*222T

2232

22220

v,v0vv2vvv:v

10

10:v

'���''��

��8���

��B���

FFiQ

FQFFQF

FQFFFFFQF

X

=

(21) v

% & % &����������

b

iKXT**2

a

iKXT1 eeveevv �'� �� (22)

ansatz

% &iKXiKX eeee T2

T**1

* vvv �� '� �

vFeevKeevK

eevQKeevQK vQveeveev

iKXT**2

iKXT1

iKXT**2

iKXT1

iKXT**2

iKXT1

222

2

2

22

���

'���

'

��

��

�� ��

eiKX = 0

% & 0vv21 22

122 �����

��� �'�� FFKQ� (22-a)

e-iKX = 0

% & 0vv21 *1

2*2

22* �����

��� ���� FFKQ�

(21)

108

% & 0vv21 12*

222 �����

��� ���� FFKQ� (22-b)

(22-a) (22-b) v1 v2

% & 0v,vv 21 ��

0�Adet

% & % & 0212142222 ����

���� �������

��� �'�� FFKQFKQ ��

0421212422

22222222 ������

��� ���'��

���� ���� FKQKFQKFQ��

R S

% &% &iKXT

2iKXT**

1*

iKXT**2

iKXT1

iKXT**2

iKXT1X

iKXT**2

iKXT1X

iKXT**2

iKXT1

iKXT**2

*iKXT1T

eeveevFvF

eeveevF2vF

eevKeevKveevQKeevQKviQ

eeveevQvQeeveevv

��

��

��

��

��

�� ��

'���

'���

����

'���

'���

'��

22

22

222

22

2

222

% &% & iKXiKXiKX

iKXiKXiKX

eeFeeFKQKQee

eeFeeFKQKQee��� ���'��

������T**

12T*222*

2T**

2*

T2

2T2221

T1

v221vv

v221vv���

���

042422

222222 �������

�� ''�

���

�� '' FKQKFKF� (23)

0�vA�

Page 28: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

109

42222

4222

2222222

2,1

4

4

FKQKF

FKQKFKFKF

'J����

�� '��

''����

�� '��

���

�� 'J�

���

�� '���

x 1 , x'1 �1,2 (D > 0)

% &

% &22

2

22

2

22

4

22222

21

1

1321

21

QF

F

QK

F

QK

F

KQFKF,

��

���

���

� ��

���

���

�'�

���

���

�''''�

��

K Q ��> 0 Q

K �

024

04

821

2

2422

422

2

��'

�'

'���

QFKQ

FKQ

KQK

K�

2

42

2

442

4422

4

321

4

4

44

Q

QQ

Q

FQK

QFKQ

����

��

�'

(25)

�1 = 0�������������������K2��= 0� !! homogeneous !!

(24)

D > 0 ( ) D < 0 ( ) : Q2 > 0, K2 > 0, |F|4 > 0

(25)

Q2 < 1 |F|2 > 0 ( |F|2 = 0 )

(26)

(27)

110

- . 1,311242

61

0123

22,1

24

��'J��

��'

Q

QQ

312 C8Q , K2 > 0 � > 0 �

Eckhaus instability

(25) � = 0

31J

�Q

(25) (22-a) (22-b)

% & % & 0vv2131 22

122

2

22

�����

���

��'�

�� FFKQ

FQK

% & % & 0213

1 2222

22

�����

���

����

�� 1

*2 vFvFKQ

F

QK

v1 v2

% & % & 122

2

22

22 v21311v��

��

��'�

��� FKQ

FQK

F

Eckhaus instability

111

TDGL

Busse Balloon ( )

32 =�Q

=�2Q

112

( ) 2D SH-model

% &- . 3223

22

21

44 21 uuu yxyxyxt ���'�'�'�'�'��� ���=

u: u 1 u3 P�0

% &pyqxiteAeu '� 0

0: growth rate, q: (q, p) (2) (1)

% &223

22

21

44 21 pqpqpq ���=0 '��''��

0 = 022

32

22

144 21 pqpqpq ���= '��''�

Lifshitz point �2 ��2�3"���1��2"��qc2���1��

41

=p� (13)

normal roll� �( far from L. P. )

21

=p� (14)

X, Y, T, u

Page 29: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

113

(1)normal-roll range ( qc = 1, pc = 0 )

% & AAAAA YX222

T ��'�'��

(2)Lifshitz point ( qc �0 , pc = 0 )

% & AAAWizAA YYYXX2422

T ���������'�� (3)Oblique-roll regime ( qc 0, pc �0 )

% & AAAaAA YXYX222

T ���'�'�'��

SH

% &PYQXiFeA '� F3 0, �TA = 0 �

<NR> F2 = 1 - Q2 - P2

<LP> F2 = 1 - Q2 - zQP - WP2 - P4

<OR> F2 = 1 - Q2 - P2 - aPQ

% & % &PYQXieFA ''� v ��

(1)normal-roll range

% & % &- . *222T vv21v FFiPiQ YX '��''�''��

(2)Lifshitz point

% & % &% & % & % &- . *224222T vv21v FFiPiPwiPiQiziQ YYYXX ���'���'�'�'��''��

(3)Oblique-roll regime

% & % & % &% &- . *2222T vv21v FFiPiQaiPiQ YXYX ���'�''�''�''��

114

4-4.

115

EHD pattern

Williams domain

116

Page 30: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

117

Busse Balloon (2D)

( )2 RB

% & 222 2 xxccxc kkkkkk '���=

0�

xXk x == �

yYkk yy === �82

tT,yY,xX 2=== ���

Newell-Whitehead, J. F. M. (1969)38, 279-303.

(NW )

WYk

iX

WWWTW

c���

����

��

�'��

�2

22

2 (1)

(1) =

cqqQ /� cqqQ /�

Defect turbulence BF inst.

118

WYk

iX

WWWTW

c

2

2

22

2 ��

��

��

�'��

�= (2)

X�

WTW

YW

ki

XWWWdXdY

c

33

=

2��

��

��

��

��

���

''��2 ��2

2

242

221

4-5.

(1)

% & 01 2 ���' xxxx ��� =

xx

xU

���

��� ��2

2

2

311

21

=

0���

'�2�

'xU

tx��

U

119

2 ( )

::

G::

G:

Gdtd

ddtd

dtdtd

�����

����

���

2

( 1 ) ()

% & % &

% & % &xbaxax

xabxabbxU

=���'�2

'����

23

234

1

1211

31

41

FitzHugh-Nagumo

),(),())(1(

yxgbyxyyxfyaxxxx

�����'��

�=

f (x, y) = g (x, y) = 0 0�� yx ��

xb

yyxg

axxxyyxf1

0),(

))(1(0),(

��

'���

U

120

% & % & 234 121

131

41

xabxabbxU '����

234 xxx G � ���

234 xxxU G � ��� �"�� �"��G�� �= 0

24 xxU G� ��

U = 0 �GJ�x

% & 022

24

2

3

���

���

xx

xxxU

G�

G�

�G

2J�x

���0

Page 31: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

121

=�P�0 (1) x� y�

=���0

),(,),(

yxgyyxf

x �� ��=

yx �� CC x

(2)FitzHugh-Nagumo model 1) a > 0 ( )

xb

ybyxyxgy

axxxyyaxxxyxfx

yaxxxxyxf

10),(

))(1(0))(1(0),(

0))(1(),(

<�C���

'�<�C�'�C�

��'���

�=

yaxxxxyxfx

yaxxxxyxfx

<'��<�

C'��C�

))(1(:0),(

))(1(:0),(

=

=

122

2) a < 0

=���0 “excitable state” ( )

00IV00III00II00Ι

CC

<C<<C<

yxyxyxyx

��

��

��

��

ybx

y

bybx

yxgy

<<

CC

C�

0

)0(

0),(

123

(3)Brusselator model BZ (FKN model)

BZ Brusselator

XkXEX

BXkYBXkXDYXB

YXkYYXkXXYX

AkXXA

4

33

22

22

1

32

���

���'�'

����'

��

��

��

A, B

BZ

( KBrO3 ) (CH2(COOH)2)

(H2SO4) (

Ru(bpy)32+ Ru (bpy)33+ Fe(phen)32+( Fe(phen)33+( )

124

A, B k1, k2, k3, k4

)K

)IL

��

'���

YXkBXkY

YXkBXkXkAkX2

23

22341

)K

)IL

��

'���

YXBXY

YXBXXAX2

2

0�� YX �� X=X0, Y=Y0

)K

)I

L

������

�'��

00000

200

02

000

00

0

XB

YYXBYXBX

YXBXXA

Page 32: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

125

Y0

)0,(),(

),()1(2

2

C���

��'��

bayxgyxbxy

yxfyxxbax�

))K

))I

L

���

�'

���

xb

y)y,x(gy

xa

xb

y)y,x(fx

0

10

2

2

1

x

ax

by �

'�

KIL

�!��!��0

0yxyx

% &

% &a

by

ba

xx

xbadxdy

41

01

20

12

2

3

'�

C'

���'�

t = 0

000

0000

,

0

XB

YAX

AXBXBXXA

��8

���'��

ab

xb

yax ���0

00

X=x+x0, Y=y+y0

126

)))

K

)))

I

L

�'

<B<

�'

C

C''���BC

2

2

2

10

1010

xa

xb

yx

xa

xb

y

yxx)b(a)y,x(fxx

��

))K

))I

L

C<

<C���C

xb

y:y

xb

y:yxbx)y,x(gyy

0

00 2

��

127

Dx, Dy ( )

���

����

��

'<

<�<

���

����

��

'C

C�C

2

2

1

0),(0

1

0),(0)i

x

ax

by

yxfxx

ax

by

yxfx

���

����

�C

<�<

���

����

�<

C�C

xb

y

yxgy

xb

y

yxgy

0),(0

0),(0)ii

���

����

����

ab

aayx ,0)iii ��

128

Page 33: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

129

5 5-1.

5-2.

(1) ( )

( )

EX

DYXB

XYX

XA

k

k

k

k

�� ��

'�� ��'

�� ��'

�� ��

4

3

2

1

32

XkX

BXkYBXkX

YXkYYXkX

AkX

4

33

22

22

1

��

���

���

��

��

A, B

)K

)IL

��

'���

YXkBXkY

YXkBXkXkAkX2

23

22341

130

A, B k1, k2,

44

4

3

21

34

22

1

4242

4

,,

,

,

kD

kD

DD

Bkk

BAk

kkA

YkkYXkkX

tkt

YXYX �

����

����

��

��

)K

)IL

��

'���

YXBXY

YXBXXAX2

2

)K

)IL

��

�'��

00

0200

02000

YXBXYXBXXA

Y0

000

0000

,

0

XB

YAX

AXBXBXXA

��

�8�'��

X, Y DX , DY

( )

)K

)IL

#'��

#''���

YDYXBXY

XDYXBXXAX

Y

X

22

22

)K

)I

L

��

00

00 0

XB

Y

YXB

131

( 022 �#�#�� YXYX �� )

000 ,

XB

YAX ��

x, y (x, y )

)K

)I

L

'�'�

'�'�

yBA

yYY

xAxXX

0

0

R Sikrtyx

yx

k ����

����

����

����

�Eexp

0

0

% & % & % & xkDyAB

xAxABxAAx X22 ���

����

�''''�'���

% & yAxkDByAxkDBxx

X

X22

22

1 '���

'����

% & % & ykDyAB

xAxABy Y22 ���

����

�''�'��

% &ykDABx Y22 '���

yyxx kk EE �� �� ,

% &% &)K

)IL

�''��

�'���

001

22

22

ykDABxyAxkDB

ky

kX

E

E

Ek > 0

132

% & 01

22

22

�''��

���

kY

kX

kDAB

AkDB

E

E

% &R S % &R S% & % &- . % &% &

0011

01

2

22222222

2222

�''

�''������''

�'''���

kkkk

YXkXYk

YkXk

RBAkDAkDBkDBkDA

BAkDAkDB

�EE

EE

EE

kkkkkk iRR EE�E FFJF����

��� �J�� 4

21 2

Ek

’ > 0

)K

)I

L

FF

F

ti

t

k

k

e

e

E

E

i) soft mode inst. ii) hard mode inst.

% & % &% &- . 4222

22

1

1

kDDkBDADA

kDDBAR

YXYXk

YXk

'��'�

''���

tit kk EE FF'FF sincos

i) 00 �F�FF kk , EE

ii) 00 �FFF kk , EE

iii) 0<FkE

Page 34: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

133

i)

% &

% &)K

)I

L

�*+,

KIL �J���

����FF

bRR

aR

kkkk

kkk

0421

0

040

2

2

�E

�E

(a) Rk (a) �k (�M���

00 ��( kk ��

B

% &- . 01 222

2

('��' kDDDBADkA

YXYX

���

����

�'''� 2

222 1

1kA

DA

DD

kDBYY

XX

k

4

224

3

2

021

YXc

YX

YX

DDA

kDD

Ak

kA

DkD

kB

���8

����

����

��'�

kc (kc: )

% &22

2

2

22

2

2

22

2

11

1

11

cXY

X

Y

X

Y

X

Y

X

YX

YY

X

YXXc

kDADD

DAD

ADD

DAD

DDA

AD

ADD

DDA

DB

'���

��

�'�

'���

����

�''�

'''�

% &- . 01 4222 ('��'�8 kDDkDBADA YXYXk�

k2

134

(1) (2)

�k > 0 Rk (Rk2 -4�k ) hard mode Ek' ��0

( cyclic balance ) Rk B �k B

1 DY

Rk2 -4�k < 0 -Rk DY hard mode

ii) 00 �FFF kk , EE

Rk = 0, Rk2 -4�k < 0

�k > 0

Rk = 0

% & % &% &

% &- .% & 0

1

1

01

42222

4222

22

22

C�9�'�

'��'��

'''�8

�''���

kDkADDAkDDkBDADA

kDDABkDDBAR

YYX

YXYXk

YX

YXk

% &

% & 22

2

222

2

02

AD

DDk

kDADDk

Y

YXm

YYXk

��

�������

Brusselator soft-hard

135

BZ

Gray-Scott Model J. E. Pearson, Science, 261(1993)189

% &

% & vvv1vv

v

22

22

#'�'���

#''���

DFut

uDuuFutu

F : flow velocity v + 2u ��3u

u � p

136

% &

))K

))I

L

�'#��

��'#��

vkuvDtv

vuuuDtu

v

u

2

22 �

Gray-Scott model 5-3. : (1952 )

( )

Fig. 4. The evolution of spot multiplication. This figure was produced in a 256 simulation with physical dimensions of 0.5 by 0.5 and a time step of 0.01. The times t at which the figures were taken are as follows: (A) t = 0; (B) t = 350; (C) t =510; (D) t = 650.

Page 35: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

137

2 X, Y

:b,a;abbYY

aXX0CC

)K

)IL

��

��

X X

X

Y Y Y

i) X Y ii) Y X

% &% &)K

)IL

�'��

'��

XbbYY

YaaXX

1

1�

0�X� % &YaaX 1'� aY

X 11'�

2

% & % &% & 0

01<�

�'�'��ba

XbaXbaX ���

00

����

YXYX ��

X DX , Y DY , DX « DY

Y X

% &% &)K

)IL

#'�'��

#''��

YDXbbYYXDYaaXX

Y

X2

2

11

% &% & % &R S

% & % & % &

% &% &% & % &XbaXba

XbaabXXbXa

Xba

baXXaXa

aaXX

Y

XbbYaXa

YaXaX

1

11

11

1

1

11

1

'����

�'�'��

)*

)+,

)K

)IL

�''

�'��

'

���

�'�'��

���

��

��

����

DY DX

138

X

Y

(1) r0 X (2) X Y (3) Y (4) r0 Y X X

(5) r0 r1 X / Y <A0 X X, Y Y X / Y >A0

Turing Pattern Simulations Alan Turing (1952) activator (green) inhibitor (red). 1

2

% &

0

11

010

AaY

XYaaX

X

�'�

�'�8��

A0 X/Y X

139

a = 5, b = 7, DX = 0.5, DY = 4.5

1990

3 (1) (CIMA) (2) (CDIMA) (3) (MBO)

(1) (2) (3)

1990

1952 40

DX > DY

140

Fig. 2. Rearrangement of the stripe pattern of Pomacanthus imperator (horizontal movement of branching points) and its computer simulation. a, An adult P. imperator ( P�7M�months old ). b, Close-up of region I in a. c, d, Photographs of region I of the same fish taken two (c) and three (d) months later. e, Starting stripe conformation for the simulation (region I). f, g, Results of the calculation after 30,000 (f) and 50,000 (g) iterations. h, Close-up of region II in a. i-l, Photographs of region II of the same fish taken 30 (i), 50 (j), 75 (k) and 90 (l) days later, respectively. m, Stating stripe conformation for the simulation (region II). n-q, Results of the calculation after 20,000 (n), 30,000 (o), 40,000 (p) and 50,000 (q) iterations, respectively. Fish (Fish World Co. Ltd (Osaka)) were maintained in artificial sea water (Martin Art, Senju). Skin patterns were recorded with a Canon video camera and printed by a Polaroid Slide Printer. In the simulated patterns, darker colour represents higher concentrations of the activator molecule. Equations and the values of the constants used, as Fig. 1. Kondo: Nature Liesegang-Ring Formation

Pb(NO3)2

KI

Page 36: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

141

5-4. limit cycle ( ) (1) limit cycle

a cos 5 t

x(t) = R cos 5 t

? = 5�t ? t ( 5 1 )

% & % &% &tx,tx �

% &% & % & % & 222 Rtxtx

tsinRtxtcosRtx

�'*+,

���

��

xy ��

222 Ryx �'

b :� :ieRW �

xy

tan

yxR

1

22

��

'�

:

limit cycle

142

l.c.

:

:

FF�F

�i

i

eRWeRW

( isochron )

% & % &RfR ��::X ,

isochron limit cycle

5X ��

complex TDGL % & % & WWiWiW 210 11 55 '�'��

:ieRW �

% &)K

)IL

���!���

!�����

103

210

1 555

5:555:

,R:tRRR

tR�

��

isochron X�(R, :�) X = : - f (R)

% &% &

% & 01

13

21

3210

1

CRlnRfRRR

RdRdf

RRdRdf

RRdRdf

'�8

��

��8

�������

5

55

55:5X ���

X = : - f (R) % & Rln,R 15::X ��

R�

143

c

3

3

RR

RRR

��

��

=

% &121

23

21 32 ���

����

�����'�� RRRRRRR�

144

subcritical bif.

(2)

a, : !!

( : ) : �X�X1

Xn Xn’ = Xn + ��Xn

X� X’ = Xn + ��X

a

Type1 isochron Type0 isochron

:: sinicosW '�

% &

21

1

2Wln

cosasin

tan

sinicosaW

F�F�F8

'�F

''�F

5:X

::

:

::

Page 37: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

145

b ( T )

T1 : X' 0 ( X' ( 2> , X : 0 2>�T0 : X' a ( X' ( b , X : 0 2>� ( ) :"�:�' ��������� X"�X' : X"�X' (isochron) . T1 Type1 1

isochron T0 Type0 0

isochron

T1 T0

( 0 > > 2> )

146

A. Kaminaga : Chem. Phys. Lett., 278(1997)16

Fig4.

MBO BZ

minimal bromate oscillator ( )

Ru(bpy)2+

photo-sensitive

147

Fig5.

TO

Figure 16. New-phase X’ vs. old phase X, double-plotted from data of Walker(1969) from the chorusing rhythm of crickets perturbed at various phases by the sound of their own call. Phase 0 is the moment of calling.

Figure 17. The new phase of rhythmic activity in cardiac pacemaker cells, electrically stimulated at each old phase, replotted from unpublished data of Jalife (1975). The action potential occurs at phase 0.

148

Figure 18. The new phase of the flashing rhythm in fireflies of three species perturbed by the sight of their own flash at various old phases. The flash occurs at phase 0 on this scale. Each box is exactly on cycle by one cycle. Replotted from Hnson (1978, Figure 7)

1 1G0

G1

DNA

G0 G1

G2

M

DNA S

Page 38: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

149

Figure 3. Excess mitotic delays induced by 30-min pulses of 10 g/ml cycloheximide. (abscissa) Fraction of cell cycle completed when pulses begin. Mitosis at 0 and 1.0. DNA synthesis ends around 0.3. (ordinate) Excess delay (delay in excess of pulse duration) plotted as fraction of a control cell cycle. (From Scheffey and Wille, 1978, Figure 1, with permission.)

5.1 Halaban, 1968

150

5.2 5.1 Halaban, 1968 5.1 CT 4 6 8

5.1 4

1992

2 111

12 18

24

CT 12CT0

151

4. 1991

5.3 x, y

1 1 X x, y

2424.8

24

152

5-5. limit cycle ( ) 1 limit cycle

% &XFX���� �0 (1)

t !� (1) 5

% &tXtX 002 ��

����

����

�'

5>

C X� C

% &XX v�� (2)

% & % & 02 C�' X>X vv C v(X) = 5�

C X� C

isochron ( ) I(X)

I(X) X� t !� �C 1

C X (2) X�

X� ��

% &% &

% &5X

X

XX

��

9�

9��

vXFgrad

dtXd

XX

X

��

��

5

(1) ( )

% & % &t,XpXFdtXd �����

'� (4)

(3)

Page 39: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

153

X�

(5)

XXgrad � I(X) X�

X�

C

(5) 2 X�

0X�

1(5)

% & % &% &t,XpZ XX5X 0

���� '� (6) ( 0XX

��� )

% &% & % &X>X

XX

ZZ

gradZ X��

��

�'

20

(7)

Y X

(8) � = 0 Y5X �� '�

(9)

% &pgradpFgrad

dtXd

Xdtd

X

X�

��

9'�

'9�

9��

X5X

XX

% & % & % & % &% &% & % & % &>XXX>XXX

XXXXX

2200

'F�F'�F

F�F

,G,G,G

X,XpZ,G�����

% &11 <<��F���F

F'F�F'�

5555

Y5XY5X t,t

% &% & % &Y5Y5XX

5XX55XYF'F'�F�

�F'���t,tG,G

,G��

154

���0 X�'

% &)K

)IL

F'F�F

'�

Y5X

Y5X

t

tt(10)

Y5X �� '� (11)

(9) % &XXY F'�� ,G� (12)

% & t,Gt XX5X F'F�

% &% &Y5Y5

Y5Y5F'F'F�

F'F'F

t,tGt,tG

Y� Y�'

Y

% &t,tG 5YY5 FF�'F�

1

% & % & % &t,tGtd 5YY55>

YYE>

FF�'FF�F� �2

021

(13)

% &YYY F�E'��� (14)

(11)

(15)

1 Y',�Y

1

% &% &YYE5

YYE�5XF�'F�

F�''��

155

p�

% & % &>55 211 '� tptp ��5�1 :

X�

% & % &tpZ 15X5X ��� '�

% &tY5X �� '� 1

% & % &% & % &tpZ

tptZ

1

11

5X5

5Y55Y��

���

'��

''��

� 11

125>

�T

% & % & % & % &

% &>Y

55Y5>

Y>

221

1

2

011

'E�

'�E � tdtptZ ��

% &YE5�Y '��

111 555�5555 ,, <<��

X

111 555�5555 ,, <<��

156

( )2 van der Pol equation ( )

% &

% &2122

1211

2

2

XX5X

XX5X

�'�

�'�

sinK

sinK

% & X�XX ��� �� 21

% & % & % &- .

% & % & % &- .

% &

% &Y5�YX�

X�5�

XXXX55

XXXX55X�

sinK

sinK

sinsinK

sinsinK

�'��

�9'�

�'�'��

���'��

��

22

2

2

121221

211221

% &

% &2122

1211

2

2

XX5X

XX5X

�'�

�'�

cosK

cosK

% & % &- .5�

XXXX5�XXX�

���'��� 211221 2coscos

K���

5�Z �� �5�= 0 K K1 K2= K

E�(Y)

% & % & % &YEYEYE as '�

(2)2

PFX����

'�

Es�(Y) : Ea�(Y) :

Page 40: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

157

2

% & % & % &% & % & % &212222

211111

X,XGXfXFX

X,XGXfXFX���������

���������

''�

''�

3

3

coupling term

% & % &% & % & % &% &R S201010111 XXX3X5X X,XGXfZ�����

� ''�

% & % & % &R S% & % & % &R S21111

211111

XXX3X

Y5Y5Y53Y5Y

,GfZ

t,tGtftZ���

����

'�

'''''�

�?

% &2111 YYE5�Y �'��

% & % & % &

% & % & 0YY000>

0Y0Y0Y0>

YYE

>

>

F�'FFF�

'''��

��

d,GZ

d,GZ

12

2

0

21

2

0121

21

21

��

��

�Y2

% &1222 YYE5�Y �'��

21 Y�Y�Y� ��

% & % &Y�EY�E5�Y� ��'��

21 5�5�5� ��

% &11 X3 f 0X

% &21 XX ,G�

coupling

158

% & % & % &% & % & % & % &Y�EY�EY�EY�E

Y�EY�EY�E

aass

as

�����'�

;

% & % & % &YYY �E���E��E a2

% &Y�E5�Y� a2'��

% & % & % & % & 0,0,00 ���E���E�E�E 5>>> aaaa 2

2�(�� ) % &YYY?

��2

���d

d�

% & % & % &R S� ���9��Y�

:E:E:Y�5Y�20

d

2�(�� )

159

YY �'�� sin0C� VDP

% &% & % &% &

% &�������

���

t

ttsintAxtsinfxxxx

X

X555=

F'��'��

1

1020

21

����� ,A,A.g.e X F

))

K

))

I

L

F��F��

�F

F����

����

���

XX55

55X

X5

=

cosbacosA

f

sinf

AA

A

1

0

1

21

20

1

02

22

241

2

160

Page 41: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

161

% &% &

% &5�55

5�555

5555555

X5X

J����

'��

��

F�'�

1

10

1

1010

1

21

20

1

2

2a

cosba�

162

% &tt X5X F'� 1 ~~~~~ ~~~~~~~

��5�t

% &

% & % &X2

XE5�X

X5X

F�DF'�F

F'�

dd

t

t

��1

(3)N

N

% & % &tietrZ Z�

��

�N

j

i j

Nz

1e1 X

% & ttt 5555 ��' 11

t5X �

% &

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &&&&&&&&&&&&&&&&&&&&&&&&&&&& %% &XX2222

XX%EE55��XXXXXXXXXXXXXXXXXXX

X5X

FF�DDF''������FFFFFFFFFFFFFFFFFFFFFFF

F'�

ddXdddddddddd22

ttttttttt

t

1

% & % &

% &�

�'�

'�

��'�

N

iijjj

j

jj

N

iijjj

sinNK

N,,,j

1

121

::5X

5

3555

XXE5X

��

Z5:5X

'�'�

tt

163

r(t)Z(t)

N !� n(:, t) z

�����

> :X ::>

20

1 211

de)t,(neN

z iN

j

i j

)sin(Krdt

djj

j ZX5X

���

3 (a) , L 1 (b) 1 L (c) L 1

1 L

W

164

= 60 60 = 3600 (FIH )

FFT

Page 42: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

165

Fig. 4 The simultaneous representation of the traces of the alpha component. The “start” represents application of the photic stimulation.

f0 : flash : 10 Hz Fig. 1 The international 10-20 electrode system. Top view of the scalp. The upper part is the front of the head. The abbreviations are as follows : Fp; frontal pole, F; frontal, C; central, T; temporal, P; parietal, O; occipital.

Fig. 2 The alpha spectra from O2 to Fp2: (i) at rest, (ii) under 10Hz photic stimulation. K. Harada, et al. IEICE trans., 74(1991)1486

166

4 Phaseolus coccineus 15

5 Canavalia ensiformis KLEINHOONTE 1929 10 18

12

Fig. 5 The “on”-responses to the stimulation ; (a) the amplitude, (b) the phase and (c) the phase difference between posterior and anterior and regions.

Fig. 6 The “off”-responses of the amplitude (a), the phase (b) and the phase difference (c). The “last stim.” presents removal of the stimulation.

167

62 Chenopodium amaranticolor KÖNTIZ

3 2

SCN

A+B )

A: B:

S.Yamaguchi, et al., Science 302(2003)1408

mPer-I-luc mouse Lucifarase-transgenic

movie SCN:suprachiasmatic nucleus

168

circadian rhythm Fig. 2 Time course of reentrainment of circadian rectal temperature rhythm to an 8-h phase-advanced schedule of sleep and social contacts. Top trace: with bright light; bottom trace: without bright light.

Page 43: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

169

Fig. 3 Time courses of orthodromic reentrainment of circadian melatonin rhythm to an 8-h phase-advanced schedule of sleep and social contacts (subject YA). , With bright light; , without bright light. Shaded areas indicate the rest time, and horizontal open bars represent time of bright light exposure.

Fig. 6 Time courses of antidromic reentrainment of circadian melatonin rhythm to an 8-h phase-advanced schedule of sleep and social contacts (subject KA). See Fig. 3

Fig. 5 Time courses of antidromic reentrainment of circadian melatonin rhythm to an 8-h phase-advanced schedule of sleep and social contacts (subject AI). See Fig. 3 legend.

Fig. 4 Time courses of orthodromic reentrainment of circadian melatonin rhythm to an 8-h phase-advanced schedule of sleep and social contacts (subject IS). See Fig. 3 legend.

170

Circumnutation

Circummutation

Circadian Rhythm

171

Fig. 77 8:8 Canavalia ensiformis KLEINHOONTE 1929

502 - 512

Fig. 79 6:6 Canavalia ensiformis KLEINHOONTE 1929

24

Fig. 80 18:18 Canavalia ensiformis KLEINHOONTE 1929

172

transgenic plants) . A.Hall et al., Plant Physiol., 127(2001) 1808.

S.A.Finlyson, Plant Physiol., 116 (1998) 17.

SCN

S.N.Reppert et al., Nature, 418 (2002)935.

US-army

Page 44: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

173

5-6.

:

: ( )

: ( )

: ( WT �WF )

: ( WT �WF )

XX

��

���

2G

2 : 2

21

X�G� (G : )

(2) a

[( a ( X, t ) ) f (X, t ) S

% &% & % &tXfktXaS B ,ln, �

fd

FT

od

od

fdodT

WW

WW

WW

WW

WWWWW

CC

�'�

% &XFX���

174

f ( X, t ) �V

% & VtXfN ��� ,

A �X1 � �� ��� ����

�V

dXXXf�

�� 21 �

B �X1 + �X1 �% &

dXXXXXf

Xf ��� ��

�21

1

11 �

��

�'

% & % &�� ��� ��

��

V

d

d

ii

id

iXXX

X

XfN

dtd

AB�

���� 2111�

����� �

��

% &�� �

������

����

��

� d

i i

i

XXf

Ndtd

VVN

ttf

1

1 ��

���

% &

� �

� �

���

���

)*

)+,

)K

)IL

��

��

�'

��

d

i i

i

d

i

d

i i

i

ii

ii

XdivfXX

f

XXf

Xf

XXf

Xtf

dtdf

1

1 1

��

���

Xdivftd

dXdivtdfd

f�� ����� ln1

flnktd

dS B��

% &

minmaxB

dBB

k

kXdivkS

00

0

'�

��� ���

�d

i

ii

i XX

fXXf

��

��

��

limit cycle

175

% &XFX �� ��

���

����

���

iB dX

dFkS�

idXdF �

� ( W0 ) � 1 �G�X Q = Wf

dXXTTT

WS

TW

TQ

S

f

f

���

��

��

��

0

1 G

( )

% &min

dXdivS 00 ���T���

0 : Liapnov

<< >> limit cycle

% &

min

d

ii

d

~ 0

00

<���

01

0(d) : < 0 : = 0 : > 0

00 t

telog

tlim

1!�

176

0i ��'�'�' �� 23121 ddd 000000

---

% & % &minmax20000 '��� d

id

1. 0max = 01 > 02. 0min = 0d < 0

3. 0(d)

= ��<

d

i i100 ( d = 6N )

3 ( 0

(d) > 0 )

Wf

% & % &

% &

% &tXdXT

dttXlimWE

XXdtdX

XW

T

tf

f

��

�����

!�

���

0

0

2

02

2

01

2

G

G1

2GG

1

= 1 /

% &% &

% & % & 0teZtZtZXX

XFX

0�

'��

����

01�> 0�"�03�< 0� ��� % &

22�$� �T0 : limit cycle� �

dtX

dtdtdX

dX

��

9�

Page 45: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

177

RB

% & dxT

W jif

2

0

v� ��;

�V(t) 0dx�

% &

% &% &0

ln1limlim00 V

tVtVt �

��

��!�0

% & % & % &% &

��

d

i i

i

i

d

i i

XdivXX

tXdtd

tXtVln

dtd

1

1

1

��

��

��

% &% &% & dtXdiv

VtV

ln

dtXdivtVlnd

t

tt

���

0

00

0�

��

% &

% &% &

% & 0

00

ln1limlim

21

100

<�

<'''�

��

� ��

!� ��

dd

d

i i

i

t XtX

tiX

0

000

0

% & 02 minmax

)( <'�8 000 dd

% &XdivdtXdiv

tlimlim

t

t V

�� ��8 ��!� 0

100�

0

% &

% &% &

% & % &\�

!� �

d

ii

t

tXtV

V

tVln

tlimlim

V

1

01

00

��

�0

178

2 )()()(),()()( ������������ F'F�F'� 33 00 (2.16)

FF0 dXX / dt F0( X ) (2.11) p F(X)

X X0( ) (2.12) GZ ( ) F (X0( )) 1

(2.15)

(2.17)

2 2

(2.18)

(2.20)

ij

(2.21)

K 1/N N

( )i g( )

g( ) 0 g( ) g( )z = r(t) ei (t)

(2.22)

)(dtd

XXE355X

F�''�

)(dt

dXXE535

X�F'F'F�

F

� ��'��

N

jijijii N,,i),(

11 �� ::E5X

� ��'��

N

jijii N,,i),sin(

NK

11 �� ::5X

�����

> :X ::>

20

1 211

de)t,(neN

z iN

j

i j

179

r(t) (t)( 2.3) N n( , t)z 1

(2.23)

r t (2.23) rn( ) r

(2.22) rr = S(r) Kc 2/ g( 0) K < Kc r = 0

K Kc (K Kc)1/2 rKuramoto

[10]

ZZ ( +2 ) = Z ( ) 1 ( X )p = V ( X, X ) I , I

X, X C IX0( ) C I X0( )

(2.12) G( , ) , 2

= t + , = t + (2.12)

))(),(()(),(G

),(Gdtd

XXXXX

XX5X

F�F

F'�

00 ����

G 12 / , (2.13)

1

)sin(Krdt

djj

j ZX5X

���

)t,t(Gdtd

:5:5:

F''�

180

(2.14)

,

)(dtd

XXE5X

F�'� (2.15)

2

� F''�F�

F��

> :5:55>

::E

::E:

202

1)t,t(G)t(d)(

)(dtd

Page 46: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

181

=a < 0 n ]�E MBBA ^a >0 n // H �a > 0

6-1.

RB EHD

Advantages of EHC1. Initial symmetries can be easily controlled due to anisotropies2. Easy visualization of flow patterns due to optical anisotropy 3. Possible to make large aspect cells

8. EHC can be controlled with high accuracy because of a control parameter, electric field E. 6-1-1.

3

3

% & % &R S % &R S- .% & % &2

02

0

233

222

211

21

21

21

EHn

nnnnn

9�9�

9#9'9#9'9#�

n

KKKf

aa

ela

==^

182

�������������= = =|| - =]�<�0�( )��� = �|| - �]�<�0�( )

E ]�n���������������������_�//�n

E E

E

183

� �Navier-Stokes � �

6-1-2. i.

% & % & % & % & % &222

3

2

2

2

1 21

21

21

21

21

EnHnnnKnnKnKf aa

������������9�9�W#W'W#9'9#� =^

ii.

0�9# v��

iii.Navier-Stokes eq.

% & Eqx

pvvtdvd

ek

ki ������

'�

�'#��#9'

�// �ki : Leslie

�kijkjijijkki

kiikjmmjikki

AnnAnnA

NnNnnnAnn

����

����

''''

''�

654

321

���

����

�'

��

j

m

m

jmj x

vxv

A21

- .vntdnd

N���

��

W#9'�21

184

iv.director

% &nANnhn�������

211 GGE 'W�W�

h��

% & % &)*

)+,

)K

)IL

��

���

#9�

�9#�

�����

nrf

nrf

nf

h �

��

33

1

v.Maxwell eq.

eqD �9#��

% &ijiji EDE =��W# 0��

vi.

0��

�'

rJ

tdqd e

iejeijj vqEJ '� �

~~~ vii. s oki

% & kikj

ki nnf

���

���`3

3 1 1D

1 (x )

% & % &% &

)K

)I

L

��

��

xkvv

n

x

z

cos,0,0

0,0,1sin,0,cos

0::

::�

:==:��

zax//x

zax//x

xe

EEDEEJ

xJ

q

'�'�

��

�' 0�

Page 47: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

185

Y:==

Y��:

��

zax

//e

zax

//zax

//x

Ex

Eq

Ex

Ex

Ex

Ex

J

'�

��

'�

����

����

�'

��

xE x

� Ez = EM cos 5�t ( )

0����

����

��'' ]] Y��

==

�=�

z////

//e//

//e Eqq

�������

?q-1: �H : Helfrich constant

01

�9'' tcosEqq MHeq

e 5Y�?

� (A)

% &���

����

�'

��

���

����

�'

���

���

����

�'

��

��

]

v

//a

//

a

���

����

���==

=0

���==

���

��

21

11

1111

32

22

22

232

0

023

0322

32

0

23

20

1x

//

a

kkE]

�==

=

x��

�:

Y

(1)

% & 01222

0 �''' tcosEqtcosEE MeM 5�

Y50Y� (B)

186

322231

542

��G��G����

'���''��

,v

a Evis

Eela Emag , Eele

% &% &xzzaele

aamag

xela

zvis

EEE

HHn

kKx

K

xv

'��

���

���

�9��

���

��

���

����

��

�'�

:=E

:^^:33

E

::

:33

E

�:GE

2

22

23

2

3

21

21

21

��

% &R S xzazaaxz EEEHkKx

v=:=^�:G �''��

�' 222

321� (2)

b. Navier-Stokes eq.

zexxx Eq

xtddv

'�

��

�/

0

txvz

vxx �

�'

��

:��� 22

1

542 ���� ''��v

2

187

021

22

2

�'�

�'

�ze

zv Eq

txv Y

�� (3)

vz , Ex (B)

(A), (B) 2 , qe Y (1) ?Y (5) ( Y )

5�� ��?q-1 �director

% & % &% &222

222022

11

21

?5a?5

'�

'��

EEtE Mz

���

����

��

0�?�

a H2

��

��

��

]

23

20

1x

//

a

kKE==

=

% &q

c ?a

52

1

12 ��

?Y qe 51/2

5�C�5c 0�eq�

5

5

T

9�

M

M

E

constE 2

21

188

EHD E. Bodenschatz et al. J. Phys. (Paris) 49 (1988)

Navier-Stokes eq. Maxwell eq. with anisotropy Continuum eq.

full 3D linear theory “milestone” no fitting parameter(exact) RB

))K

))I

L

'#��

#'9#�#�

wt

wgwt

//

//

:�

;�:

2

422

% & % &

% & % &ykxki

ykxki

yx

yx

ez

ezAw'

'

b:

)K

)I

L

��'

��'

0

0

2

2

22

Aq

gqk

AqA x

b�b

b�;

% &

0�

���

����

��

yk

zd

sinzf>

2

2222

11���

����

�'���

dkq,

q,

q xA

>

�?

;? b

))K

))I

L

��'

�F�'

01

01

A

AAA

b?

b

b�?

b

�;

??b ��

ArP

Page 48: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

189

EHD

))

K

))

I

L

�''

�F''

01

01

e

Heq

e

q

qq

GZ?

Z

Z�?

Z

)K

)I

L

�F

tc o sE

tc o sE

M

MHH

5�

G

5��1

OSC 3D full linear analysis E. Bodenschatz et al. J. Phys. (Paris) 49, 1875 (1988)

% & % &% & % &% & % &

% & % &% & % &pyqxsint,zv~v

,pyqxcost,zv~vpyqxsint,z

~,pyqxsint,z~,pyqxcost,z

~

zz

yxyx

'�

'�'�

'�

'�

XX

YY::

(3.1)

% &:Y:Y: sin,sincos,coscosn �

% & % & % &- .

% &- . 02

0

20

22220

�'�'''

W��'''��'� ]]]]

ccqieV

pqpq

taati

zt||t||

:5==�>

X

==���===

5

(3.2a)

% &% & 0

112

232211

211

222022

2

10

�''�'���

W���

���

���'�'�'

ccvqvpkk

keVLd

qeV

zxzz

zti

atti

a

��Y:

>==

>GX

>== 55

(3.2b)

% & 0232

2212

2

12211 �'�����

���

���'�'�� ccvqpvkL

dpkk yxztz ��Y

>G: (3.2c)

G� �,

,

HFF

190

(3.2d)

(3.2e)

0��'�� zzyx vpvqv (3.2 f )

% & % &- .% &% &- .221

11221

12

0

1422

22112

2222

20

1

?5==

?5>

''''

��'�

�� SDIpqDGMq

KIIkkpKV

a

(3.11)

where K1 = L1 + k22I6 ; K2 = L2 + k11I1 (3.12)

122

1122 IpqD;IpqS |||| ''�''� ]] ==��

(3.13) (3.14)

% & % &

% & 022

432

2421

24322

2

22

22

22102

2

2

22

32

22

2

3

�'����

����

����

���

���

��'���'��

'���

���

���'��'�'��'���

ccvqpqvqpd

pvpqdd

pqd

p

zzyztm

xztmtzt

���

�����

>/

�����>

/Y>

��:>

- . % & % &

% &

% & 022

112

242432

212

24

32

22

22

21202

2

2

2

3

222202

22

32

20222

�'���

���

�'���''����

����

���

'����

���

���'��'�'��

����

���

�''��'���' ]]

ccqvpqd

vqp

vpqdd

p

eqVd

qqpqeV

zzmyz

xzztmzt

tiatzz||

ti

�����

>/

���

�����>

/Y>

:>

==>

��X====>

55

% & % & % &]]

]]]

��

�'��''�

�==???

?5=�=�==

0010

1222

19822

2 11;SD

DDSDG;IIpqD aa||

% &- .% &R% & S % &11

232

22132

232623

12221162312

22

32

� ��

� ��F���

'����

ppIqIIIKIkkIqppM

���

���

����

����

�'''�

'���

����

���F�

���

�'��

52

42

24

12

2

10272

416522

41

21

21

21

Iqpqp

IIq,IIq

���3

��3 ��3

191

EHD Carr-Helfrich instability

Maxwell

for 1D linear % &U1,0,~n�

SH eq. [ W. Pesch et al., Z. Phys. B, 63, 121(1986).]

% &- . 3222

41

2 21 uuEu yxyt ������'��� ���

[ E. Bodenschatz et al., J. de Phys., 49, 1875(1988).]

AAAAAA yyxxt22222

�'�'��� 66=

% &% & % &

% & 22

2121

21143276

22

20211062

21

2423 2

pq

qIIIpqIIqpq

����3

����������

'''�

�����'�'���

����

�'�

% &

viscdielmageltdd

tddI

qvtdvd

q

tdqd

E�E'E'E����

����

�W

'F'#9��

T�T

nn

E

EDDEJ

J

.6

divv.5

.4div3.

2.

div.1

�//

=

% &

xddV

a

EEE

Hx

k

zvisc

xzzdiel

mag

el

21

2

20

2

2

33

'�

���

���

UGE

U=�E

U^� E

UE

0div �v� ( )

.c.cAeu rqi c '� 9��

192

Page 49: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

193

(1) (2) Eckhaus instability A A = ( R + v (X, T)) eiQ X v v1 e��T�+�iK X + v2

* e��T -�iK X ���� 0

v

Eckhaus inst. Benjamin-Feire inst. ( TDGL ) (Complex TDGL ) 1D Eckhaus inst. OHP

qc

AAAAA xT22 �����

% & ������

������

���

����

�'��

��

xQcosQxu

QR

==

21

113

2

131

2

2

2

=31

31 22 ��� QQ

194

(3)

% & % &

% & 322

22

RRRR

RR

,Rg,RfR

XX

XXX

����'�

�'�����

X

XXXXX ��

(1D)

~~~~ 0

AAAAA xT22 �����

a b

195

EHC experiments in 1D

iVU '�Z

U,R

UcosRU �UsinRV �

U,R

UV

u

u

u

U,R

VU ,

PS time

196

t 1 (1D)

phase slip pair- nucleation

50 m xd

l 1cm

Eckhaus pair- elimination

x

Page 50: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

197

a

b

198

(1) SH equation for Liquid Crystals

% &R S % &R S % &R S% &R S

% &% & % &% &HcHcucuc

upcC

pcqcCqcCGuu

zt

c

ccct

��99'#9#9'#��c

���'#9�

��� '#9'#9�'#9����c

]]

]

]

^EXVXG

=?

2

2223

22222

2221

3

no convection simple decay

% &

% &XXX

XX

cos,sinc

c

sin,cosc

���

��

]

% & :i

xqi

et,y,xAA.c.ceAu c

'�

convection X coupling defects

=�2Q

32 =�Q

199

(2) amplitude equations

% &% &

% &% &))K

))I

L

'���'���

����

���'���

�'��'�'��

.c.cAiAiH

K

AAiiA

y*

yxt

y,yyxt

XEX=

X

X X?2

223

2221

coupling (3) defect dynamic equations (Turing-type)�

% & - .Z�/>�//

Z/>EZEZ

'����

�''���

2

2222

2223

xt

effxt

D

AhK

� �� J�#�

'���

��d��

JJ

�'

�'

nqrdq

nnnnn

dy*L

,y

x

121

1

�:

>

/

XZ

/

- .))

K

))

I

L

�'���

����

�'

��

'��

��

Z/>EZEZ

Z�/>�//

222

2

222

2

3

2

2

effAh

xK

t

xD

t

A. G. Rossberg Physica D 115(1998)19.�

: topological charge density : total defect density�

200

))

K

))

I

L

�''�

�''�

2

2

3

2

2

xKdc

t

xDba

t

Z//

Z

/Z/

/

% &22

2

2

42

hAd

Axc,b,a

eff

eff

���

����

E

E�>�

Turing Model

% &

% &))K

))I

L

#'�'���

#'''��

YDXbbYtY

XDYaaXtX

Y

X

2

2

1

1���

����

�CC

C0ab

DD XY

X : activator

Y : inhibitor

A. G. Rossberg Physica D 115(1998)19.�

u SH

Page 51: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

201

V

f > fc

Turbulence

(a)

(a)

(b)

(c)

200μ m

202

Nikolaevskii

22

2

2

2

2

)(1xuu

xu

xtu

��

��=

��

��

����

���

����

����

�'��� V. N. Nikolaevskii (1989)

This was first proposed to describe the propagation of longitudinal seismic waves in viscoelastic media.

203

1D-Numerical study

M. I. Tribelsky and K. Tsuboi : PRL 76, 1631 (1996) Turbulence arises from the spatially uniform state as a result of one and the only one supercritical bifurcation.

cannot be scaled out from equations for the slowly varying amplitudes.

1~ �=t

The amplitudes of chaotic modes are scaled approximately as 1/2

.

Experimental study In electroconvection of LC S.Kai, et al J.Phys.Chem. (1996)

(Swift - Hohenberg Equation, 1977)

% & % & % &

% &% & parametercontrol:k

rategrowth:ikxtexpAuuuu,u

t,xut,xuxt

t,xu

==0

00

=

22

00

3

2

2

2

1

0

1

���

'�'��

���

��

���

����

�'��

% & % & % &

% &- .222

22

2

2

2

2

1

01

kk

xt,xu

t,xuxxt

t,xu

���

����

����

�'

��

��

���

����

�'�

��

=0

=

Goldstone mode

204

EHD Goldstone mode A. G. Rossberg, et al., PRL 76, 4729 (1996)

Quasi-two-dimensional pattern-forming systems with spontaneously broken isotropy (experimentally accessible in electroconvection of homeotropically aligned liquid crystals)

)sin,(cos UU�C director q = (qc, pc) : critical wavenumber

Normal rolls (NR) % &- .

% &)K

)I

L

'��'�'�

'��''�

c. c.A)qi(AqiHKK

AiAgqiA

cy*

caxyt

y,cyyyxxxt

U�E

U^U�U�U�G

UU�6�6=?�

422

32

11

22222

Oblique rolls (OR) % & % & % &% &-.% &)

))

K

)))

I

L

�'�'�

'J��

�JJ�'J'�

22

21

223

211

212

122

21

2222221

2

2

AApq

HKK

AiiAhAg

qipiqipiA

ccaxyt

/y,yx,x//

cycxxycyyycxxx/t

EU^U�U�U�G

U U

U�U�6U�6U�6=?�

H : magnetic field (|| x) G1 : rotational viscosity K1 : splay elastic constant ^a : magnetic susceptibility K3 : bend elastic constant

EHD

A. G. Rossberg, et al., PRL 76, 4729 (1996) (1995 )

X6= AiAAAgAtA

'#'���

� 222

Goldstone Mode coupling

(1) : OR( ) (2) : NR( )

Nikolaevskii-equation

XXXX

G

XXX

G

222

222

AhKt

AhKt

'�#��

��#��

Page 52: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

205

Coupling between Goldstone Modes and Convective Modes

M. Tribelsky & K. Tuboi PRL, 76(1996)1631 A. Rossberg, et al. PRL, 76(1996)4729 H. Sakaguchi Prog. Theor.. Phys., 96(1996)1037

q 0

206

1D Amplitude Equations of SMT

0122

2

2

2

2

����

����

�'

��

��

���

����

�'�

�'

xu

uxxt

u=

Nikolaevskii equation (1989).

% & % & % &T,Xf.c.cxiexpT,XAu 232

== ''

Goldstone mode self-consistent scaling

tTxX == ��

))K

))I

L

��

��

��

�'�

2

2

2

2

2

4

AXX

fTf

AfiX

AA

TA

SMT equation

4/3~ =u

Matthews & Cox PRE 62(2000)R1473

freely rotate resp. to akis. freely rotate resp. to

207

2D Nikolaevskii Equation

),()),((),( 2 tDtt rXrXFrX #'�� reaction-diffusion system

reduction

% & % &2122

32

212 X X;;;X #'##'#'#�� phase dynamics

1 2 < 0

% & % &212

212 X X;;X #'#�#�� Kuramoto-Sivashinsky eq.

1 < 0, 2 , 3 > 0

% & % &21

220

23

2 X X;=X #'���

��� '#��#� k� Nikolaevskii eq.

H. Fujisaka and T. Yamada: Prog. Theor. Phys. 106, 315 (2001)

2D-Numerical Study H. Fujisaka, et al.: Prog. Theor. Phys. 109, 911 (2003)

Deriving the amplitude equation from the two-dimensional Nikolaevskii eq. and carrying out the numerical integration of their amplitude equations

power spectrum for small k % &4.0e xp~)( CkkS �

3

22

13

20 4

,2 ;

;=;; vk '���

208

Goldstone Mode

Goldstone Mode

Schematic drawings of the director n and the angle �. The C-director represents a projection of the director n onto the xy-plane, and the angle � indicates the azimuthal rotation of the director n.

S.Kai, et al., J.Phys.Chem (1996) Rossberg 1995

leadership

H // q // x

H

( ) ( )

Page 53: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

209

6-1-3. EHD

defect turbulence phase slip turbulence

A : Williams domain (roll convection) B :

))

K

))

I

L

���

����

��

�'#�

��

����

��

�'#��

�#

��

��

�'��

dd

2

2

2

22

2

2

2

222

2

2

2

22

yA

Ay

AA

ybiB

yxDBd

tB

yB

Aaiy

Ax

ADAAA

tA

x

x=

free-slip boundary condition ( Kaiser ; Physica D 59(1992) 759 ) y

))

K

))

I

L

���

����

��

�'

�'��

��

�'��

dd

2

2

2

2

2

2

2

22

yA

Ay

AAbi

yC

dCtC

ACaiy

AAAA

tA

=

X= ieA 9

))

K

))

I

L

��

�'��

��

��

2

2

2

2

2

2

2y

byC

dCtC

SCyt

X=

XX

Bodenshatz zig-zag undulation simulation

% &% &T,YQXieFA X'�

% & % &- .332 2 XXXX YYYYT ZQW ������'�� undulation

% & 2221 YXT AAA �'���'�� ��

zig-zag

210

Patterns EHD

Basic equation 1) orientational free energy ( elastic parts )

% & % & % &- .233

222

2112

1nnKnnKnKFel�����

W#W'W#9'9#� (1)

2) magnetic – dielectric free energy

% & % &20

2

0 21

21

EnHnF aaem

����9�9�� ==^ (2)

3) director torque balance equation

0�W� Sn���

E (3)

% &��

���

�''�� nAN

nF

S���

��

21 GG33

(4)

Patterns evolutions to STC in the route A and B. (a)-(c) shows each typical pattern observed for each =� in the route A (H=400 G) ((a) V = 7.498 V, = = 0.021, � = -0.017, (b) V = 7.704 V, = = 0.078, � = 0.040, (c) V = 8.017 V, = = 0.168, � = 0.13). (d)-(f) does in the route B (H=1000 G) ((d) V = 8.074 V, = = 0.074, � = -0.026, (e) V = 8.285 V, = = 0.13, � = 0.031, (f) V = 8.706 V, = = 0.249, � = 0.149). Here � ( = = -�=STC) represents a relative from a threshold =STC (H). When � is negative, the pattern ((a)or(d))shows a stationary state.

211

% &

% &

% & ijj,ij,ijii

j,ii,jj,i

nn,nnn

vvA

vntdnd

N

��������

'�

W#W'�

33

21

21 ���

��

4) Navier-Stokes (momentum balance) eq.

l

lii

im x

Tf

tdvd

�'�/ (5)

Ef e

��/�

/�0 : charge density E�

: electric field

jij,k

i,kjiji tn

nF

pT '���

����

����

33

3 (6)

(stress tensor) ikkjjkkijiijjijikllkji AnnAnnANnNnnnAnnt 654321 ������ '''''�

�1, e�"���6��: viscosity ��6 ���5��� � 2 +���3

G�1 = ��3 � 2 , �G�2 = ��3 +� 2 5) incompressible fluid

0�9# v��

(7) 6) electrostatic equation

% & 0�W#�99# E,E e

����/= (8)

7) charge conservation

0��'9# etj /��

(9)

vEj e����

/��

% & % &:Y:Y:

====3==

^^^^3

sin,sincos,coscosrnnnnnxx

//ajiajiji

//ajiajiji

��'�

��'�

]]

]]

��

reduction of information

reductive perturbation

Nonlinear Envelope Equation

212

6-2. (1)

i.

% & % & % & 2

3

2

2

2

1 21

21

21

nnKnnKnKf d��������

W#W'W#9'9#�

ii.

% &221

Hnf am

��9�� ^

iii.

% &221

Enf ae

��9�� =

% & 221

W''�� emd fffdvF

% & % & % &*+,

KIL 9�W#W'9#��

22

3

2

121

HnnnKnKdvF a

�������^

% & % &% & % &000 ,,HH,zcos,,zsinn x����

::

Page 54: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

213

% & % & % &% & % & % & % &% &

% & % & % &% &% & % & % &% &zyyzzxxzyxzyyzyzxxzx

zyyzyxxyzxzyyzzyxxyx

zxxzyxxyzxzxxzzyxxyy

zzzzyyxx

nnnnnnnnnnnn

nnnnnnnnnnnn

nnnnnnnnnnnnnn

nnnnn

������'���'���'

����������'���'

����������'����W#Wc

��'�'��#c

2

2

2

2222

2222

22222

222

���

��

% & % & % &% & % & % &% & % &31

223

21

22222

KKznKnK

nnnnn~

zxzzz

xzxzxxzz

����'�

���'��

:

% & % &R S2212

1:^: sinHKdvF az ����

aH

H

az

KH

cossinZ

cossinHKH

^6

:::

6

::^:3:3

1

0

0

2

22

22

�'�

�'��

))K

))I

L

��

3

32::::

>::

~cossin

Zd

cosm

: 2= 0

12

2 ����

����

��

dcH

>6

��

��

���

����

���

���

��

���

��

���

����

��

��'���

����

��

2

22

2

2

2

3

2

2

123

032

1

032

d

d

d

H

H

H

>6:

:>

6:

:::>

6

ac

Kd

H^

>�

214

wall

LX, wall

( ) first - order P. T.

(1) wall ( real order parameter ) (2) dynamical wall ( complex order parameter )

(1)�f (2) transition

(wall ) 1 2

(2) Wall Wall

: , sin:�cos:

���

����

�� 2

32

1 ::

% & % &dz

cosxz,x>

:: �

% & % & % & 0212 2

222

232

2

2

�'����

����

�� x

dxd

xxd

:6G::6>

% &rx

thx6:

::2!

!�

(phase transition of domain wall.)

215

A B (A)

% &6

::

6

:::

2

3

12

2r

yth

KK

ythysp

!!

!! ��

(B)

% &6

::

6

:::

2

3

22

2r

xth

KK

xthxtw

!!

!! ��

wall energy

31

32

3

3

!

!

:>

:>

KHH

F

KHH

F

csplay

cTW

K2 ( K1 FTW ( Fsplay splay

3

2

3

122

232

22

22 12

KK

orKK

r

HK

d

a

���

����

���!

^6

6>

:

21

21

��F wall

wall

���

����

����

����

�� !

! dz

cosr

xth

>6

:::

22 ���

����

�� ! d

zcos

>::

% & % &

% &���

���

���

����

������

���

���

���

����

����'���

31

21

31

21

2222

3

2222

22

3

::^:

::^::

HKdzdx

HKKdzdx

az

axx

twist

(energy )

216

Hy Y

% & % &d

zcostanyxz,y,x

>Y:: ��

% & % &% &% &% & 2

1

21

222

222

2

2

Y6

Y::

Y6

YY:::

tanr

tanyxth

tanr

sinycosxthy,xspTW

'

��

'

��

!!

!!�

% &

% &

% & 02

032

1

032

1

32

22222

22222

22

2222

22

��''

����

����

��'�'�'�

����

����

��'�'�'�

! ::

Y6::

:::6

::^:::

xdd

tanr

KKr

HKK

xyz

axyz

% & 212223

3Y::

>Y sincosrK

HH

cwall '� !F

Wall energy

3122

2 KKK,KK

r, ���

KK

r 22 �

Page 55: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

217

(3) 5 = 0 : static problem

21

���

����

��

aco d

H^�>

5

coHH 2�!

dynamical equation ()

% &���

���

��9�W

nf~

HHnnnn elaa �

������� 3^G 1

(1)

% &:X:X: cos,sinsin,cossinn ��

(1)

�����

�����

�����

����

��

X33:3

3

X:

G F

F

t1

(2) E H E A

218

% &% & % &)K

)IL

�'����

�'���

XX5X5^XG

:X5::^:G22

1

2221

zat

zat

KtcostsinHKtcoscossinH

(K = K1 = K2 = K3 )

X (wall ) % & % &tt,r XX ��

: Ising model

X� % & % &t,rt,r

��XX � : Bloch model

219

220

00 2 �#�# XX ,

% &% &% & % &

- .- .)

))

K

)))

I

L

���'�'

�'�'�'

�'���

���

:XX:X:X

:XX:X:X

:X5::^:G

X5^XG

222222

222221

23

221

21

2

2

221

xyyx

xyyx

zat

at

cossincossinK

cossinsincosKKtcoscossinHt,r

ttsinH�

% & % &t,zt,z,y,x :: �

% &% &

% & % &)K

)I

L

�'���

���

::

::X5^:G

X5X?

fZ

cossintcosH

ttsin

at

t

2

222

1

2

H (H :� )

% &% &ttsint X5X? ��� 2

KIL

���

X5��?5

tsin 2

ig5�?�= 1 4>

� �max ( )

% &a

cH^5G

5 12�8 5�? = 1

% & 3211 KKK,f ���:���

����

�� 2

12Ha^G

?

12

21 �9

ca H^G

5

Page 56: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

221

iig5?�> 1, H > Hc(5) (a) ��

(b) :

% & ���

����

�'� 2

1

222 1

55

5 coc HH

112

1

23

1��� ?

G>

5d

K

director

H2 Hco2 , 5 51

#X�, #2X� �5X �� t

���

% &X5X? ��� tsint 2

1

rs !��������������������rs lc����������������������������������������������������������������rs :

lc��$�wall ��

% &a��a ��� ,tvr � �

�����

� ( )

% &�� ��� ��

rrK

rKtsint �

�'

�'���

XXX5X?

2

2

2

0221

12

12

2

�'��

��

�'

�5G�^

�G

��sinH

trrK

rK a

���

222

% & 0��' xfxxm ��� E �

�����

��

1 : 2

K1 = K2

% & AAaAKAAiA * 22111 �#'''� G5G G �

))

K

))

I

L

���

����

���

���

2

2

31

22

2

32

23

21

22

dKKa

H,d

KH aa

>

^G

>^

!!

( phase dynamics for entrainment )

�^��

5G�

G 221 2

2

2

11 sinHrr

Kr

Kt a��

��

����

�'

�'�

�G^

�G

�G

5�

2

221 2

111

sinba

sinHxKK a

xxx

��

����

����

�''��

))K

))I

L

''�

2

1

11

21

Hb

xKK

a

a

xxx

G^

�G

�G

5

% &����� ������ �����

����

�'�� 5G��^

� 12 2

41

cosHdd

xf a

% & % & % &

% & % & % &% & % & % &y,xsiny,xy,xY

y,xcosy,xy,xX

A

y,xYiy,xXy,xA

X:X:

:

��

'�22

223

224

ω

ω

ω

Page 57: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

225

6.4.

v≠0

t t t t t t

ω

226

(a) (b)

% & AAaAKAAiA *T

22111 �#'''�� G5G G

227

6-5.

DNA

ABA

DNA

228

(allelopathy)

C. A. Klausmeier, Science Vol.284, Jun 11 1999: 1826-1828 www.sciencemag.org

Page 58: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

229

regular pattern Turing instability irregular pattern

W N

rate A rate L RG(W)F(N)N

G(W) : W

F(N) : ( )

F(N) = N

G(W) = W F(N) = N

J :

rate MN

v -x

230

Water v -X D

))

K

))

I

L

���

����

�'

�'��

�'���

nyx

mnwntn

xw

vwnwatw

2

2

2

22

2

( homogeneous equilibria )

no plant w0 = a , n0 = 0 a > 2m two non-trivial solutions

one stable

another : never stable ( can be ignored )

))

K

))

I

L

���

����

�'

�'��

�'���

NYX

DMNRJWNTN

XW

vRWNLWATW

2

2

2

22

2 A : LW : RWN 2 : RJWN 2 : MN :

XW

v�

�:

a : water input m : plant losses v : water flows

231

( )

232

1. 12.3.4.

-3- 2,4- 2,5,6-

0.55 nm (-) (3+ )

IAA

GA

ABA

Page 59: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

233

1000 80%

40% 100%

234

% & % &ltnfLbLadtdL

,,'��

f = 0 L0

% &atL

LL

L���

����

��'

�!

!

exp110

3

3L�: , L!�:

f 0 L0 �� ��(t)

% &4

2

1 ���

����

�'�

9�

! at

at

eL

L

eMt

3

noise Gaussian Simulation hints

% & % & % &% &% &tSBCBDB

tSACADA

tfLBAbLBAaL

BBB

AAA

,

,

,,

2

2

2

r

r

'�#�

'�#�

'��

A :B :

% &

% &B,Ab

aB,Aa 0

���

����

����

����

cc BB

bAA

b log,log 21

235

(Turing type )

The Experimental Method Group Growth Dynamics Growth Stage Sensitivity for ABA

% & % & 2,, LBAbLBAaL '��

% & % &% &LLIAbIAatL

,, ���

236

% & % & % &% &% &tSBCBDB

tSACADAtfLBAbLBAaL

BBB

AAA

,r,r

)(,)(,)(

2

2

2

'�#�

'�#�

'��

� rrr

a P const.

% & % & % & % &

% & % &BA

bBbBAbAb

ba

ba

^^

^^

,

021 ''�

b

(1)

% & % &

% & % & ���

����

����

���

����

����

dtdL

rrStS

dtLd

HrrStS

ii

iBB

ii

iAA

��

��

3

3

,

, 2

2

r

r

(2)SA, SB 3� g( r, rF�) r0

7: 2

(a) f(r)(b) L!(r)

(i) dA = 2.5 9�10-4

, dB = 2.5 9�10-3

(ii) dA = 2.5 9�10-3

, dB = 2.5 9�10-4

Page 60: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

237

hormone sensitivity : x

10: 3(a) dA = dB = 1.0 9�10

-2, TA = TB = 2.0, ?A = ?b = 1.0 9�10

-1

(a) rA = rB = 0.0 ; ^a = ^

b = 1.0

(b) rA = rB = 5.0 9�10-7

hormone sensitivity : x

11: 7(a) dA = dB = 2.5 9�10

-4, TA = 1.0,

TB = 2.0, ?A = ?b = 1.25 9�10-1

(a) rA = rB = 0.0. ; ^a = ^

b = 1.0

(b) rA = 2.0 �10-5

, rB = 2.0 9�10-6

238

hormone sensitivity

239

2

(1)edge

edge

(2) ---

(3)

240

r0

( )

A, B :

t ! ( )

( )

BAW

'� /1

t !����B 0

KW �9 /

Page 61: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

241

W

r : ( = )

1. ( )

2. ( )

3. ( )

4 j = 1 ; j = 2 ;

j = 3 ; j = 4 ;

P1 : ( ) Rj j ( )�1j : j Vj :

wj : j kr , kP :

kPP1 = =

= +

r :

jjrjPj VRkPk

tddW

��� 11�

32

10WC

jjjjr WbWCRk '� 32

1

jjj WdV �

242

jjjj WBWA

tddW

WBWAtd

dW

��

��

32

32

1

11111

jjjjjj dbB,CCA '��� 01� Aj , Bj :

1. Wj

2. :

3. :

: Wj W1

( )W

% & % &WtBWtAtd

dW'� �

1.Blackman model ���= 1

2.Logistic model ���= 2 2

3.Bertalanffy model ���=

W S ( )

( )

( )

t

32

243

von Bertalanffy model

% & % &

% &% &

% & % &% & ���

���

��

��

11

11

1

32

1 tdtBetBtA

W

WtBWtAW�

���

����

��

32

% &

% &% &

�?

!

!

��

��

���

����

��

��

11

1

11

1

tBtA

W

WW

lnB

W : ? :

244

1)

x

texx:xtdxd

xx

1

1

01

2

=

=

= ��

�� ��

= 1 > 0 : = 1 < 0 :

2)

x

= 1 = 1 = 2x

kxk

exkxk

exx

xxtdxd

t

t

11

1

21

0101

0

201

1

1

��

'��

��

!==

==

=

=

Page 62: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

245

6-6.

G-L 2�( p"�T�)

% & % & rdT,pFpT,pV

�� �

��

���

�'#�

22

2=

2

= : ----- p

% &

)21)321(2(

4

)23

()12(4

,

22

222

mpmpp

mpmppppTpF

�'���

�''��m T

m : m = m (T )

m 21

<m

F m p = 0 p = 1

A p = 0, B p =1

2 �F m �F A B P 2

ttP

323

? ���

% & % &���

����

�'��'#�

�TmPPP

tP

21

122 X=? (1)

246

1. ( )(1) ( = 1 ) 2 p = 0, 1

2 p 1

(2) 31 |m|

( 2 3 m = 0 )2 m = 0, 2 (p) 1 2

( 1 2 )

3 m = 0, P 01

de=

�T ; d =

O(=�) =� 0

( )

3

= 0

247

���

����

�'#�

tP

KTDtT

T2 (2)

TCL

K

CD

v

vT

/�

�T = ( Te - T ) L : Cv : T : � : Te : ( 0 )

�(1), (2)

% & % &eTTtanTm �� � G>

11 G�:

Nishiura self-replicating patterns

% &

))K

))I

L

�'#��

��'#��

vkuvDtv

vuuuDtu

v

u

2

22 �

Gray-Scott model

K�> 1 : undercooling K > 1 : hypercooling

248

6-7.

B. subtilis

( )

(1) (2)

(i) (ii) (iii)

(i)(ii)(iii)

Page 63: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

249

B. subtilis

M. Matsushita et al. Physica A 249(1998)517.

% &% & % & % & % &% &

% & % &Sn,bbn,bS

bngndnSn,bbn,bbngbn,bDb

� �=

��

��'�'##�

b : n : S : D :

d : g(n) : = : ��( b, n ) : b S �( b, n ) : S b

250

% &% & % & % & % &% &

% & % &Sn,bbn,bS

bngndnSn,bbn,bbngbn,bDb

� �=

��

��'�'##�

M. Matsushita Physica A (1998)

251

differentiation Anabaena

A B

B B A

A B B A B 2 A B A

B

252

Page 64: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

253

6-8. 24

Molecular interactions within the Arabidopsis circadian system.

M.J Yanovsky and S.A Kay, Current Opinion in Plant Biology 2001, 4:429-435

254

CR

255

0

CO2 ATP

Vigna anguralis

24 100%

256

CO2 Q

QSN

L

LSN Q

QQQ

��

QL

QSN

P(fc)/P024 P(fc)

P0

Page 65: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

257

CR

258

259

84 120[h] tc

180[h] ts

260

tc

ts

tc ts

Page 66: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

261

CR

262

The model for circadian oscillations in the Drosophila period protein (PER).A.Goldbeter,Proc.R.Soc.Lond.B (1995)261,319-324

6-9. BZ BZ

( KBrO3 ) (CH2(COOH)2)

(H2SO4) (

Ru(bpy)32+ Ru (bpy)3

3+

Fe(phen)3

2+( Fe(phen)33+( )

263

BZ

150ml 1M H2SO4 0.175g 0.002M Ce(NO3)6(NH4)2 4.292g 0.28M CH2(COOH)2 1.415g 0.063M NaBrO3 FKN (10 ) R1 HOBr + Br

- + H

+ Br2 + H2O

R2 HBrO2 + Br- + H

+ 2HOBr

R3 BrO3

- + Br- + 2H

+ HBrO2 + HOBr

R4 2HBrO2 BrO3

- + HOBr + H+

R5 BrO3

- + HBrO2 + H+ 2BrO2 + H2O

R6 BrO2 + Ce3+

+ H- HBrO2 + Ce

4+

R7 Br2 + CH2(COOH)2 BrCH(COOH)2 + Br- + H

+

R8 6Ce4+

+ CH2(COOH)2 + 2H2O 6Ce3+

+ HCOOH + 2CO2 + 6H+

R9 4Ce4+

+ BrCH(COOH)2 + 2H2O 4Ce3+

+ HCOOH + 2CO2 + 5H+ + Br

-

R10 Br2 + HCOOH 2Br- + CO2 + 2H

-

Net 6BrO3

- + 5CH2(COOH)2 + 2H 3BrCH(COOH)2 + 2HCOOH + 4CO2 + 5H2O

R2, R3, R4, R5, R6, R9

X + Y 2P R2 A + Y X + P R3

2X A + P R4 A + X 2X +2Z R5, R6 B + Z hY R9 A, B

X( ) Y( ) Z( )

Oregonator

A = BrO3-

B = BrCH(COOH)2 P = HOBr X = HBrO2 Y = Br-

Z = Ce4+

))))

K

))))

I

L

��

'���

�'��

BZkAXktdZd

BZkhXYkAYktdYd

XkAXkXYkAYktdXd

53

521

24321

22

2

264

3 Y

Keener-Tyson

T :

CSTR

% &

BtktAkkBkk

,AkBk

,hb,kkkk

a

AkYk

w,Ak

BZkkv,

AkXk

u

5

32

54

3

5

32

41

3

22

3

54

3

4

22

2

2

�F���

���

==

% & % &

))K

))I

L

��

'

����

vutd

duau

aubvuu

tddu

1=

Page 67: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

265

CSTR :Tyson-Keener( )

u , v : (HBrO2) (Br- or Fe3+) f : ( )

% &

% &4

31

2

22

vuvDtv

ququ

vfuuuDtu

v

u

�'#��

���

����

'

���'#�

=

Du Dv

(1)Du Dv : (2)Du Dv :

% &

% &2

11 2

vudtvd

ququ

vfuudtdu

��

���

����

'

�'��

=

266

267

268

BZGTF

(1) X+Y+ H 2P(2) Y+A+ 2H X (3) 2X P (4) X+ A+ H 2B(5) G+B+H Z+X(6) Z+ M 2G+Y – Z (P1) G + I G*(P2) G*+X +H B+Z (P3) G*+A+2H Z+B

X=HBrO2, Y=Br- , Z=Ru(bpy)3

3+, B BrO2 G=Ru(bpy)3

2+, G*=Ru(bpy)3

2+*, M=CH2(COOH)2 R=Z + G + G*

A=BrO3-, P=HOBr

I light intensity

rate constants k1=2*106mol-3s-1

k2=2mol-2s-1 k3=3*103mol-2s-1 k4=33mol-1s-1

k-4=4.2*107mol-1s-1

k5=1.2*104M-2s-1

k-5=1.4*103M-1s-1

k6=0.046M-1s-1

kp1=1*10-5s-1

kp2=1*1010M-2s-1

kp3=2*102M-3s-1

k-p1=2.23*108s-1

B

G

Z

Y

X

FdtdB

Fdt

dG

FdtdZ

FdtdY

FdtdX

*

*

*

*23

*255

244

*1

*23

*21

*23

*2655

62

21

*255

244

23

221

22

2

*

GGZR

AGHkHXGkXZkHGBkBkAHXkF

GkAGHkHXGkIGkF

AGHkHXGkMZkXZkHGBkFMZkAYHkHXYkF

HXGkXZkHGBkBkAHXkXkAYHkHXYkF

ppB

ppppG

ppZ

Y

pX

''�

'''���

����

''���

'���

��''��'��

��

��

Page 68: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

269

X=HBrO2

Fig..

270

K.Fujii, D.Hayashi, O.Inomoto, S.Kai: Forma, 15,219-255, 2000

271

[Fig.4]

272

)(

)(

)(

*

*

ijBi

Gi

Zi

ijYi

ijXi

BBFdt

dB

Fdt

dG

Fdt

dZ

YYFdtdY

XXFdt

dX

i

i

i

i

�'�

�'�

�'�

coupling constant (i, j) (0, 1) or (1,0)

initial conditionX0=0M, Y0=1*10-4M, Z0=0M G*0=0M, B0=0M

concentrations

H=0.80M, A=0.28M M=0.10M, Y0=1*10-6M R=0.01 0.023 M

coupling constant

0.01

light intensityI=IN (t)

IN noise intensity (t) = [0,1]

Page 69: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

273

[Fig.14]

.

.

274

6-10.

2

�<

�N

jiijr

NR 1

275

BZ

276

[Fig.2.7] EW (

3.

coupling constant(i, j) nearest neighbor

)BB(Fdt

dB

Fdt

dG

Fdt

dZ

)YY(FdtdY

)XX(Fdt

dX

ijj,i

Bi

G

*i

Zi

ijj,i

Yi

ijj,i

Xi

i

*

i

i

i

�'�

�'�

�'�

Page 70: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

277

I = IN

IN :

278

279

R

280

2 EW 0.25mW/cm

2

0.34mW/cm2

R d 2 R 6mW/cm2

Rmax 2

Page 71: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

281

Amemiya model

( Amemiya et al. J. Phys. Chem. A, 102(1998)4537 )

Z X Y

Xi : HBrO2 Yi : Br Zi : Ru(bpy)3

3+ 3

: : :

i, j :

282

noise-enhanced phenomenonStochastic Resonance

BZ

SNRResidence-time distribution

Stochastic Synchronization

283

Input-output synchronization (Neiman, PRE 1998)

(Sakaguchi, PRE 2002)-

BZ(Kadar, Nature 1998)

2 (Fujii, Forma 2000) (Miyakawa, PRE 2002) 2 (Fukuda, JPSJ 2003)

(Neiman, PRL 2002)(Bahar PRE 2002)

(Neiman, PRE 1998)(1) Phase fluctuations (2) Frequency fluctuations (3) SNR

Belousov-Zhabotinsky BZ

y

284

BZ Fukuda, Nagano and Kai, JPSJ, 72,(2003) 487

Page 72: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

285

286

�� ��T tii

ijji

ij dtT

rrn

R ijij

0

)(

,e1e,1 :��Z

��

�N

k

titiG

kG

Ntr

1

)()( e1e)( :Z

Newell-Whitehead Boussinesq (Navier-Stokes + ) Rayleigh-Benard

Tyson-Alexander-Manoranjan-Murray

Martiel-Goldbetter slime mold

Fitz-HughBeeler-Reuter

Ginzburg-Pitaevsky Maxwell

Fitz-Hugh Hodgkin-Huxley (

Oregonator Keener-Tyson

FKN BZ

287

2

11

,22 ''

<<'��

� kkkk

k tkt ??>???>:

ijΔ ::: ��

288

Bahar, PRE 2002(1) Phase fluctuations

���Z Ti dtT

r tiΔ

0)(e1e :

(2) Frequency fluctuations

2012 )]()([ tt ??� ��

(3) Output signal-to-noise ratio (SNR)

BZBZ BrO3 CH2(COOH)2

6BrO3 + 5CH2(COOH)2 +2H+ 3BrCH(COOH)2 + 2HCOOH + 4CO2 + 5H2O

Ce

4+

Fe(phen)32+

Ru(bpy)32+

Page 73: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

289

(Amemiya, et al., JPCA 1998)

FKN10 A + Y P + X

X + Y 2P A + X 2X + 2Z 2X P + A M + Z hY

G EE + V Y + Z E + A X + 2Z

��

���

�''2�2 )()2sin( tt

Tec 3G6> �

c Hopf

Te

[ 1, 1]

2''��

2''���

2'�'��

)2()2(

)(

)2(

2153

1521

22

4321

ppMZkAXkdt

dZ

pMZhkYXkAYkdtdY

pXkAXkYXkAYkdt

dX

iOiOi

iOiiOiOi

iOiOiiOiOi

290

BZ

291

24

292

(Rascher et al., PNAS 98 (2001) 11801)

Page 74: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

293

6-11.

SNR( - )

(Noise-Induced Order) (Stochastic Resonance)

etc...

% & 6'� xfx� (1) Multiplicative noise process

% & % &6xgxfx '��

noise-induced transition stochastic resonance 1/f noise

(2) Additive noise process

% & 6''� xfx�

stochastic resonance

g ( t )

294

295

BZ BZ

( KBrO3 ) (CH2(COOH)2)

(H2SO4) (

Ru(bpy)32+ Ru (bpy)3

3+

Fe(phen)3

2+( Fe(phen)33+( )

BZ

296

Noise-Induced Entrainment

Forma, Vol.15, No.3, p.219-225(2000)

Page 75: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

297

* SN SNR: (dB

=10 log10 damped driven nonlinear oscillators

J. F. Linder et al, PRL 75(1995)3. E. Simonotto et al., Phys. Rev. Lett., Vol.78, No.6, pp.1186-1189(1997)

298

F.Moss etal:Int.J.Bif.Chaos, vol.4, No.6(1994)1383

299

D. F. Russell, L. A. Wilkens, F. Moss, Nature, Vol. 402, pp. 291-294(1999)

Chaos, Vol. 8, No. 3, p. 599-603(1998)

Physical Review E, Vol. 56, No. 1, p. 923-926(1997)

300

A.Priplata et al. Phys.Rev.Lett.89 (2002)238101-1

Ichiro Hidaka, Daichi Nozaki, Yoshiharu Yamamoto, Phys. Rev. Lett.,Vol. 85, No. 17, pp. 3740-3743(2000)

Page 76: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

301

V 100 V

302

W. Klimesch et al., Electroencephalography and clinical Neurophysiology, Vol.91, pp.428-441(1994)

1. : PET MRI

2. ( methods of activation )

20 25 / ---

303

S.A. 10 ,

1 30 5c/sec

S.A. 14 ,

spike and wave

f- MRI PET (1)

(2) 10 (3)

(1)

(2) 30 h, 60 h 256 (3)

304

J. Neurophysiol. 83(2000)1394 Stochastic Resonance Improves Signal Detection in Hippocampal CA1 Neurons

E. Rodriguez et al., Nature, Vol. 397, pp.430-433(1999)

E. Rodriguez et al., Nature, Vol. 397, pp.430-433(1999)

Page 77: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

305

1997 12 17

f MRI

306

Photic Stimulation ( )

( )

( ) K.Harada, S. Kai et al., IEICE trans., Vol.74, No.6, pp.1486-1491(1991) K.Harada, S. Kai et al., IEICE trans., Vol.74, No.6, pp.1486-1491(1991)

307

K.Harada, S. Kai et al., IEICE trans., Vol.74, No.6, pp.1486-1491(1991)12

308

Page 78: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

309

P*(fa) : IN

* :

10

SR is observed at electrode position O1 only.

310

Noise synchronization BZ reaction Nature Physics portal -research highlights- Physics World Contents

311

Physics World July 2002 2002 7 9

1. 2. 3.

312

: :

(Nature(1999))

(1997)

1 ( )

Langevin eq.

% & )(sin 03 ttAbxaxx 65 �����

U

)t()t(p)t(tsinAc

cxUcxbxaxU

xU

x

665 '�'�

'�''��

���

0

042

41

21

Page 79: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

313

6�(t)�= 0� c�(t)�= c

c U0 ( ) c Asinw0t A Cth

314

A Cth c(t)=Asinw0tA Cth 6�(t)

6 (t) QN

2 �U P(t) QN P(t) 6 (t)

315

316

(EPSP) (IPSP)

� 80 100ms �

Page 80: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

317

f MRI

--- (1/3 1/4)

318

� �

� �

� �

�� 3. (intermittent photic stimulation)

( G.Walter(1947) )

( )

10 20Hz 15Hz photic driving ( )

synchronization entrainment

scan

319

S. A. 10 , ,

1 30 5 c/sec

J.I. 13 , spike and wave 3.5 c/sec spike and wave

secondary bilateral synchrony spike and wave spike and wave

320

( )

G :30Hz )

Eugenio Rodriguez, nature, 39(1999)

Page 81: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

321

1997 12

10

10

( )

( ) (Hayashi, 1986)

( )

(a) (b) (c)(a) (b) etc...

322

(10 )

!!

?

323

1. ��

2.

3.

(2)

4

2 3

324

SCN

A+B ) A: B:

S.Yamaguchi, et al., Science 302(2003)1408

Per-I-luc mouse Movie Lucifarase-transgenic

SCN:suprachiasmatic nucleus

�V 100 V

4 8Hz :�

0.4 4Hz 3�

8 14 Hz ��

14 Hz �

Page 82: パターン形成・自己組織化の物理¤‡雑系科学...å b Ø ö @$ ^ >&Scientific American 279,No.4(1998) >' ä,¡,æ bDLA W>8 Ç Ã ± î å DLA à ± î å>&Df=1.706>

325

7. 1. ( -

2. 3.

( )

2

( ) activator inhibitor

4. ? ?