fonctionnement opérationnel

8
Fonctionnement opérationnel Vitesse horizontale: 20-40 km/jour Centre de données Coriolis, IFREMER Brest, France Modèles opérationnel MFS, INGV MERCATOR Station de réception IFM-GEOMAR LOCEAN, LPO-Ifremer NOCS IMEDEA CETSSM ? GTS,... ???

Upload: holt

Post on 01-Feb-2016

42 views

Category:

Documents


0 download

DESCRIPTION

Fonctionnement opérationnel. Station de réception IFM-GEOMAR LOCEAN, LPO-Ifremer NOCS IMEDEA CETSSM ?. Centre de données Coriolis, IFREMER Brest, France. Modèles opérationnels MFS, INGV MERCATOR. GTS,. Vitesse horizontale: 20-40 km/jour. ???. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Fonctionnement opérationnel

Fonctionnement opérationnel

Vitesse horizontale: 20-40 km/jour

Centre de données Coriolis, IFREMER

Brest, France

Modèles opérationnels MFS, INGV

MERCATOR

Station de réceptionIFM-GEOMAR

LOCEAN, LPO-IfremerNOCS

IMEDEACETSSM ?

GTS,...???

Page 2: Fonctionnement opérationnel
Page 3: Fonctionnement opérationnel

Nouvelles possibilités offertes par les gliders

Les gliders peuvent apporter énormément aux futurs systèmes

d’observation opérationnels

Télédétection In-situ !!

Les gliders peuvent être utilisés comme outils dédiés à des études de

processus

Les gliders peuvent accroître significativement nos capacités d’observation in-situ

Les gliders sont des “teenagers” avec un fort potentiel :

1) possibilité des manoeuvres : - sections répétées - mouillage virtuel- réponse à des événements - échantillonnage adaptatif

2) Longue endurance avec des piles Lithium = 3-5 mois ~ 2000-3000 km)

3) Possibilité de mesurer des paramètres physiques et biogéochimiques

4) Très haute densité et résolution des mesures

Page 4: Fonctionnement opérationnel

• utilisations possibles :1) étude de processus (régions restreintes)2) observatoires

sections répétées, long terme flottille de l‘ordre de 10 gliders (e.g. Med. NW ou W)

3) côtier ET large (contrairement aux profileurs) 4) en combinaison avec d‘autres systèmes d‘observation

• flottille, nombre de gliders, dimensionnement en fonction des objectifs

=> simulateur de glider dans un GCM (fait dans NEMO et MERCATOR)=> ANR LIVINGSTONE (LOCEAN)=> projet "flottille robotisée" (REI ENSTA/LOCEAN/IFREMER/GOSTAI)

• instrumentation spécifique (baie scientifique)physique/biogeochimie/autre?=> ANR PABO (LOV)

• valorisation des données, assimilation=> données à CORIOLIS en temps réel=> projet LEFE-assim (LOCEAN)

Par ex. : échantillonnage adaptatif => nécessité pilotage robotisé

Caractéristiques des Gliders et développements en cours

Page 5: Fonctionnement opérationnel

Réseaux d’obs. in situ en complément de l’altimétrie imaginés à l’avènement de l’ère satellite

La réalité aujourd’hui : un ensemble d’instruments complémentaires incluant des gliders et profileurs

Personnes impliquées à différents titres en FranceENSTA/LOCEAN : Pierre Testor, Laurent Mortier, Alexis Chaigneau, Vincent Echevin (IRD) LOV : Hervé Claustre, Katarzyna NiewiadomskaLPO : Pascale Lherminier, Thierry TerreLEGOS : Lionel Gourdeau, Alexendre Ganachaud, Gérard Eldin (IRD)LSEET, ELICO, LMGEM : Anne Molcard, Hubert Loisel, Madeleine Goutx, Richard Sempéré, Marc TedettiAutres : Etienne Ruellan, Emmanuel Alessandrini (DT), Vincent Rigaud, Michel Perrier (DSSM), Elie Jarmache (SGM), Nicolas Seube (ENSIETA), ACSA et projet SeaExplorer

En EUROPE et USEuropean Gliding Observatories : NOCS (GB), IFM-GEOMAR (D), IMEDEA (Sp), UIB (No), COC (Cy), OGS (IT)Academic : Rutgers University, OSU, WHOIIndustriels : Webb Research Corporation, WETLABS, …

Activités scientifiques et techniques autour des gliders

Page 6: Fonctionnement opérationnel

http://www.locean-ipsl.upmc.fr/gliders/

projet européen (FP7 en prep.)

- Activity 6.3 Environmental technologies- Area 6.4.1.2 Cross-cutting research act. relevant to GEO

initiative européenne EGO:

- IFM-GEOMAR (D), IMEDEA (Sp), LOCEAN, LOV, LPO (Fr), OGS (It), NOCS (GB), UIB (N), Oc. Center (Cy)

- Mise en commun de gliders pour des "observatoires" pilotes (~10 gliders)

- "Gliderport" : Banyuls, La Seyne, Palma- Formation (stages en oct. 2007)- Partenariats avec les constructeurs- Web

1 (5)1

1 (2)

2

3 (5)

1

(3)

1

3

Page 7: Fonctionnement opérationnel

1st EGO initiative, NWMED – winter 2007

Mid-January -> mid June.

1) MERSEA (WP3.5) : Deepy (IFM-GEOMAR, LPO, LOCEAN), Maya (IMEDEA), Spray016 (SIO, IFM-GEOMAR, LPO, LOCEAN), and Potame (LPO, LOCEAN) 2) NERC (DOCONUG) : Ammonite, Bellamite, Coprolite (NOCS), 3) ANR LIVINGSTONE : Pytheas (LOCEAN)

1500 deep casts (down to ~1000m depth) and 1700 shallow casts (down to ~200m depth)

CTD data and additional sensors of Oxygen (Potame, Pytheas), Fluorescence (Spray016, Pytheas), and Turbidity (Pytheas).

Coriolis centre

(ifremer)

Page 8: Fonctionnement opérationnel

FP7 Provisional Work Programme 2007 Cooperation THEME 6 Environment (including Climate Change)

Activity: EARTH OBSERVATION AND ASSESSMENT TOOLS FOR SUSTAINABLE DEVELOPMENT

Sub-activity: Earth and ocean observation systems and monitoring methods for the environment and sustainable development

Networking arctic and antarctic observing systems

Emerging ocean observation systems on ship of opportunities and gliders

Sea level observing systems

Integration of socio-economic data with environmental observations

Contribution to the development Shared Environment Information System and to the Global Spatial Data Infrastructure (GSDI)

Support to GEONETCast in order to make it available on the longer terms to developing countries

Sub-activity: Earth and ocean observation systems and monitoring methods for the environment and sustainable development

Emerging ocean observation systems on ships of opportunities and gliders

Growth in in-situ ocean observing system capabilities can most economically be realized by the optimal use of existing underutilized platforms, such as commercial vessels and the increased capabilities of robotic platforms. Volunteer observing ships (VOS) are capable of collecting data at regular intervals along fixed lines over large parts of the ocean. Energy efficient remotely controlled autonomous vehicles (gliders) provide high flexibility in sampling within a more limited region. Pilot experiments in the North Atlantic Ocean using a combination of VOS and glider platforms will demonstrate the utility of remotely operating systems for large scale observations. Process studies near Ocean Margins or within Marginal Seas (African Upwelling, Mediterranean and Black Sea) in collaboration with regional marine centers and ocean assimilation models will demonstrate the utility of 4D observations and adaptive sampling for improved understanding of biogeochemical processes. An assessment of the benefit of automated in-situ platforms for Global Monitoring for Environment and Security (GMES) shall be provided. The development of a European glider system is encouraged.

Funding scheme: collaborative projects (small or medium-scale focused research projects)

Expected impact: Economically sensible method to grow in-situ ocean observing systems. Improved in-situ physical and biogeochemical ocean state monitoring. Improved estimate of the oceans CO2 uptake in the context of global carbon management. Event triggered observing capabilities (oil spills, harmful algae blooms, hypoxia). Adaptation and integration of platforms, sensors, operation and analysis facilities, and sampling methods for quasi-autonomous ocean monitoring in remote areas. Training and transfer of knowledge to marine institutions in new or less developed member states. Growth of the European market sector in ocean technology by encouraging SME to marked a European glider system.

Possible core partners: IFM-GEOMAR (Germany) proposed lead institution, University of Bergen (Norway), LOCEAN (France), IMEDEA (Spain), NOCS (UK), …

This provisional work programme is subject to formal confirmation following the entry into force of the 7th EC Framework Programme and the Specific Programme Cooperation .