fresadora de control numérico.docx

22
Maquinas control numérico Tema # 2 Fresadora de control numérico Fresadora universal, propiedad del IES Politécnico de Sevilla Una fresadora es un máquina herramienta de fabricación por arranque de viruta. Elimina material de un material bruto de partida utilizando cuchillas que rotan en torno a un eje, mientras que la pieza se mueve en las 3 direcciones del espacio (X- Y-Z). Esta combinación de movimientos (rotación y desplazamiento) crean la forma de la pieza deseada. Mediante los programas de Control Numérico (CNC ) se puede producir más rápido, eficaz y con mas exactitud. Mas recientemente se ha implantado los programas CAD/CAM , que permiten fabricar una pieza introduciéndole nada mas que el plano en un programa de CAD . Las cuchillas pueden ser de varios tipos. Desde Acero Rápido al Carbono (HSS) hasta las últimas plaquitas de Vanadio , pasando por las herramientas de Widia (Nombradas así por el nombre del primer fabricante). Tienen diferentes formas y utilidades, dependiendo del mecanizado y de las características superficiales que se deseen obtener en la pieza final. Índice 1 Operaciones realizables en una Fresadora o 1.1 Fresado 1.1.1 Aplanado/Planeado 1.1.2 Fresado Combinado 1.1.3 Ranurado 1.1.4 Taladrado 1.1.5 Mandrinado 1.1.6 Escariado 1.1.7 Roscado 2 Control Numérico por Computadora (CNC) 3 Comandos M y T (Funciones Misceláneas y herramientas) 4 Comandos G o 4.1 G0 - Posicionamiento rápido o 4.2 G1 - Interpolación Lineal o 4.3 G2 - Interpolación Circular a Derechas (Sentido horario) o 4.4 G3 - Interpolación Circular a Izquierdas (Sentido antihorario) o 4.5 G4 - Temporizador.

Upload: cjo-arroyo-muijca

Post on 17-Feb-2015

36 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Fresadora de control numérico.docx

Maquinas control numérico Tema # 2

Fresadora de control numérico

Fresadora universal, propiedad del IES Politécnico de Sevilla

Una fresadora es un máquina herramienta de fabricación por arranque de viruta. Elimina material de un material bruto de partida utilizando cuchillas que rotan en torno a un eje, mientras que la pieza se mueve en las 3 direcciones del espacio (X-Y-Z). Esta combinación de movimientos (rotación y desplazamiento) crean la forma de la pieza deseada. Mediante los programas de Control Numérico (CNC) se puede producir más rápido, eficaz y con mas exactitud. Mas recientemente se ha implantado los programas CAD/CAM, que permiten fabricar una pieza introduciéndole nada mas que el plano en un programa de CAD.

Las cuchillas pueden ser de varios tipos. Desde Acero Rápido al Carbono (HSS) hasta las últimas plaquitas de Vanadio, pasando por las herramientas de Widia (Nombradas así por el nombre del primer fabricante). Tienen diferentes formas y utilidades, dependiendo del mecanizado y de las características superficiales que se deseen obtener en la pieza final.

Índice

1 Operaciones realizables en una Fresadorao 1.1 Fresado

1.1.1 Aplanado/Planeado 1.1.2 Fresado Combinado 1.1.3 Ranurado 1.1.4 Taladrado 1.1.5 Mandrinado 1.1.6 Escariado 1.1.7 Roscado

2 Control Numérico por Computadora (CNC) 3 Comandos M y T (Funciones Misceláneas y herramientas) 4 Comandos G

o 4.1 G0 - Posicionamiento rápidoo 4.2 G1 - Interpolación Linealo 4.3 G2 - Interpolación Circular a Derechas (Sentido horario)o 4.4 G3 - Interpolación Circular a Izquierdas (Sentido antihorario)o 4.5 G4 - Temporizador.o 4.6 G5 - Trabajo en arista matadao 4.7 G7 - Trabajo en arista viva.o 4.8 G8 - Trayectoria circular tangente a la trayectoria anterior.o 4.9 G9 - Trayectoria circular mediante tres puntos.o 4.10 G10 - Anulación Imagen Espejo.o 4.11 G11 - Imagen Espejo en el Eje X.o 4.12 G12 - Imagen Espejo en el Eje Y.o 4.13 G13 - Imagen Espejo en el Eje Z.o 4.14 G17 - Selección del plano XY.

Page 2: Fresadora de control numérico.docx

o 4.15 G18 - Selección del plano XZ.o 4.16 G19 - Selección del plano YZ.o 4.17 G33 - Roscado Electrónico.o 4.18 G40 - Anulación de Compensación de Radio.o 4.19 G41 - Compensación de Radio a Izquierdas.o 4.20 G42 - Compensación de Radio a Derechas.o 4.21 G43 - Compensación de Longitud.o 4.22 G44 - Anulación del Compensado de Longitudes.o 4.23 G49 - FEED-RATE Programable.o 4.24 G53 a G59 - Traslados de origen.o 4.25 G70 - Programación en Pulgadas.o 4.26 G71 - Programación en Milímetros.o 4.27 G73 - Giro del Sistema de Coordenadas.o 4.28 G77 - Acoplamiento del 4º Eje W o del 5º Eje V con su asociado.o 4.29 G78 - Anulación del G77.o 4.30 G79 - Ciclo Fijo Definido por el usuario.o 4.31 G80 - Anulación de Ciclos Fijos.o 4.32 G81 - Ciclo Fijo de Taladrado.o 4.33 G82 - Ciclo Fijo de Taladrado con Temporización.o 4.34 G83 - Ciclo Fijo de Taladrado Profundo.o 4.35 G84 - Ciclo Fijo de Roscado con Macho.o 4.36 G85 - Ciclo Fijo de Escariadoo 4.37 G86 - Ciclo Fijo de Mandrinado con Retroceso en G0.o 4.38 G87 - Ciclo Cajera Rectangularo 4.39 G88 - Ciclo Cajera Circular.o 4.40 G89 - Ciclo Fijo de Mandrinado con Retroceso en G1.o 4.41 G90 - Programación de Cotas Absolutas.o 4.42 G91 - Programación de Cotas Incrementales.o 4.43 G94 - Velocidad de Avance F en mm/min.o 4.44 G95 - Velocidad de Avance F en mm/rev.o 4.45 G96 - Velocidad de Avance Superficial Constante.o 4.46 G97 - Velocidad de Avance del Centro de la Herramienta Constante.o 4.47 G98 - Vuelta de la Herramienta al Plano de Partida al Terminar un Ciclo Fijo.o 4.48 G99 - Vuelve la Herramienta al Plano de Referencia al Terminar un Ciclo Fijo.

5 Véase también 6 Enlaces externos

Operaciones realizables en una Fresadora

Fresado

Fresas cilíndricas

El fresado es la operación de mecanizado que mas se utiliza en una Fresadora. Se utiliza una fresa, una herramienta cilíndrica parecida a una broca pero generalmente sin punta cónica. Esta herramienta elimina material por la superficie cilíndrica, ideal para realizar mecanizados en superficies planas y para realizar un agujero de casi cualquier forma en una pieza de partida.

Page 3: Fresadora de control numérico.docx

Aplanado/Planeado

Es la creación de una cara totalmente plana. La fresa avanza durante toda la cara a aplanar, eliminando material. Dependiendo de la dirección del eje de la fresa el aplanado tiene diferentes nombres. Si el eje de la fresa está en una dirección paralela a la cara a planear, estamos hablando de un PlaneadoJony down Segun ISO

Periférico. Si el eje de la fresa está en una dirección perpendicular a la cara a planear, estamos hablando de un Planeado Frontal, pues se utilizan los filos del frente de la fresa.

Fresado Combinado

Se habla de fresado combinado cuando se utilizan los filos de las caras frontales y laterales de la fresa conjuntamente. Es importante para realizar este tipo de fresado, asegurarnos de que la fresa permite utilizar los filos frontales de la misma. Si se utilizan mas los filos frontales, hablamos de un Fresado Combinado Predominantemente Frontal. En el caso de utilizar mas los filos de la cara cilíndrica estaremos realizando un Fresado Combinado Predominantemente Periférico.

Ranurado

Mediante esta operación se puede crea una ranura de cualquier forma, desde rectangular, hasta de cola de milano, utilizadas para guías de otras máquinas o mecanismos. En esta operación se puede penetrar mientras se ranura. FALTA INFORMACIÓN (borrado por alguien)

Taladrado

La forma de trabajar de la fresadora permite realizar taladrados, ya que solo hay que mover el eje vertical para realizar esta operación. Algunas fresas permiten también ser utilizadas como bocas, pero es preferible utilizar bocas para realizar esta operación, para evitar roturas de las fresas.

Mandrinado

Esta operación permite mejorar la calidad superficial de un agujero. Se utilizan herramientas parecidas a las de un torneado interior en el torno. El resultado es una mejora de la calidad superficial del agujero, con una calidad menor a la de un escariado convencional.

Escariado

Escariador.

Se utiliza el escariado para eliminar muy poco material de agujeros, mejorando notablemente la calidad superficial del mismo. Es necesario el previo taladrado del agujero a un diámetro cercano al final, pues el escariado no elimina mucho material. Es necesario la utilización de lubricantes, para mejorar el resultado final y alargar la vida del escariador.

Roscado

Terraja para roscar y el portaterraja.

Page 4: Fresadora de control numérico.docx

Utilización de un macho (roscar un agujero) o de una terraja (Roscado exterior) para realizar una rosca. Muy utilizado para unir piezas mediante tornillos o tuercas. Es una operación delicada, pues las herramientas poseen varios filos pequeños, éstos crean mucha tensión y es fácil que se partan en plena ejecución del roscado. haciendo muy difícil su extracción. Por ello es importante utilizar aceites de corte para lubricar los filos.

Control Numérico por Computadora (CNC)

El CNC tiene sus orígenes de la intención de la industria de elevar la producción. Desde tabletas de madera perforadas, pasando por accionamientos mecánicos hasta el CNC y los programas de CAD/CAM.

El hombre que empezó a diseñarlo fue John T. Parsons (1913-2007) en las fábricas de Detroit, y aún hoy en día se está mejorando continuamente. El CNC consiste en unos códigos de letras y números que, combinados, provocan el movimiento de los ejes de la máquina. Las letras indican un comando específico, y los números suelen ser los valores deseados.

Actualmente el CNC se utiliza para muchos otras operaciones, como por ejemplo en grúas automáticas o en los vehículos bélicos, como la recarga de munición en los tanques.

Comandos M y T (Funciones Misceláneas y herramientas)

Los comandos M y T varían dependiendo del fabricante de la máquina. Un mismo comando M pueden ser distintas operaciones en distintas máquinas. Aqui tienen los comandos mas generales.

Comando Descripción Uso

M00 Inicio de programaSe utiliza en el comienzo del programa, todo lo que haya debajo de esta línea de programa se considera el programa. Es útil si se utilizan varios programas para una pieza.

M01 Paro opcional. Detiene el programa, (efectuar operaciones), se reanuda en el block siguiente con el botón start.

M02 Fin de programa pieza. Finaliza el programa.

M03 Giro de la herramienta en sentido horario.

Inicia el giro de la herramienta en el sentido de las agujas del reloj. Adjuntando el parámetro S indica la velocidad de giro.

M04 Giro de la herramienta en sentido anti-horario. Inicia el giro de la herramienta en el sentido contrario a las agujas del

reloj. Adjuntando el parámetro S indica la velocidad de giro.

M05 Detención del giro de la herramienta.

Detiene el giro de la herramienta.

M06 Cambio de laherramienta.

Subprograma de cambio de la herramienta, parámetro T indica el número de herramienta.

M07 Conexión del aporte de rocío del enfriador.nº2

Aplica refrigerante al proceso.

M08 Conexión del aporte de rocío del enfriador.nº1

Aplica refrigerante al proceso.

M09 Fin de aporte de rocío del enfriador.

Detiene aporte refrigerante al proceso.

M19 Indexación del cabezal. Indexa el cabezal en su origen angular .En el eje de rotación

M30 Fin de programaFinaliza todos los comandos anteriores y finaliza el programa.

Page 5: Fresadora de control numérico.docx

Los comandos T son referidos al número de herramienta. La herramienta 1 en el cargador de herramientas tendrá la denominación T1. La herramienta 2, T2.

Comandos G

Los comandos G son las órdenes más utilizadas. Son las órdenes de movimientos de las herramientas. Por lo que son las básicas y las que determinarán las coordenadas y la forma final de la pieza mecanizada. Se expone a continuación los comandos G Modales, de una fresadora con el programa de CNC Fagor.

G0 - Posicionamiento rápido

Permite mover la herramienta con rapidez en una línea recta. Ideal para posicionar rápidamente la herramienta cerca del punto de corte deseado. Hay que tener especial cuidado al utilizar este comando para que la herramienta no interfiera con ningún objeto que pueda golpear.

G1 - Interpolación Lineal

Realiza un movimiento lineal controlado con avance. Utilizado para realizar un mecanizado lineal. El avance ha de estar acorde con la velocidad de giro, para evitar problemas y mantener la vida útil de la herramienta.

En la figura adyacente se pude ver que el comando G1 tarda mas tiempo en llegar al punto de destino, debido al avance de la herramienta.

G2 - Interpolación Circular a Derechas (Sentido horario)

Realiza una trayectoria circular en el sentido de las agujas del reloj. Es indispensable indicar las coordenadas del punto final y el radio de la curva que se desee mecanizar.

G3 - Interpolación Circular a Izquierdas (Sentido antihorario)

Realiza una trayectoria circular en el sentido contrario de las agujas del reloj. Es indispensable indicar las coordenadas del punto final y el radio de la curva que se desee mecanizar.

G4 - Temporizador.

Añade una opción de temporizar una acción. Se suele utilizar para asegurarse de que la herramienta realice el corte de material en un lugar concreto delicado. O para mantener la herramienta quieta en una posición concreta durante un tiempo, útil si se trabaja con varias herramientas a la vez.

G5 - Trabajo en arista matada

Realiza un programa prescrito para eliminar las aristas vivas, redondeándolas o creando un chaflán en los cantos.

G7 - Trabajo en arista viva.

Trabaja sin matar aristas o cantos. También se utiliza para eliminar la función G5.

G8 - Trayectoria circular tangente a la trayectoria anterior.

Permite mecanizar una curva tangente a la operación anterior, sea ésta una curva o una línea.

G9 - Trayectoria circular mediante tres puntos.

Realiza una circunferencia indicando 3 puntos de la trayectoria deseada para el mecanizado.

Page 6: Fresadora de control numérico.docx

G10 - Anulación Imagen Espejo.

Anula las órdenes de Imagen espejo.

G11 - Imagen Espejo en el Eje X.

Copia en simetría respecto a un eje las trayectorias deseadas en el eje X.

G12 - Imagen Espejo en el Eje Y.

Copia en simetría respecto a un eje las trayectorias deseadas en el eje Y.

G13 - Imagen Espejo en el Eje Z.

Copia en simetría respecto a un eje las trayectorias deseadas en el eje Z.

G17 - Selección del plano XY.

Limita a utilizar exclusivamente el plano XY.

G18 - Selección del plano XZ.

Limita a utilizar exclusivamente el plano XZ.

G19 - Selección del plano YZ.

Limita a utilizar exclusivamente el plano YZ.

G33 - Roscado Electrónico.

Utilización de un subprograma para roscar automáticamente. Solo es necesario introducirle los datos del roscado.

G40 - Anulación de Compensación de Radio.

Elimina las órdenes de compensación de radio.

G41 - Compensación de Radio a Izquierdas.

Genera una compensación a la hora de realizar arcos en el sentido contrario a las agujas del reloj, para controlar mas las cotas en la trayectoria.

G42 - Compensación de Radio a Derechas.

Genera una compensación a la hora de realizar arcos en el sentido de las agujas del reloj, para controlar mas las cotas en la trayectoria.

G43 - Compensación de Longitud.

Compensa las cotas de longitud para controlar mejor las dimensiones del mecanizado.

G44 - Anulación del Compensado de Longitudes.

Cancela la orden de Compensación de Longitud.

G49 - FEED-RATE Programable.

Page 7: Fresadora de control numérico.docx

Permite programar el efecto Feed-rate en los componentes de la fresadora.

G53 a G59 - Traslados de origen.

Para facilitar el mecanizado de alguna pieza difícil, se puede trasladar el origen de coordenadas para evitar fallos en algunas cotas críticas, simplificando la escritura del programa.

G70 - Programación en Pulgadas.

Cambia el sistema de medidas de milímetros a pulgadas.

G71 - Programación en Milímetros.

Cambia el sistema de medidas de pulgadas a milímetros.

G73 - Giro del Sistema de Coordenadas.

Gira el sistema de coordenadas un ángulo concreto.

G77 - Acoplamiento del 4º Eje W o del 5º Eje V con su asociado.

Permite sincronizar movimientos con más de 3 ejes. Por ejemplo, con un plato divisor electrónico.

G78 - Anulación del G77.

Anula la orden G77.

G79 - Ciclo Fijo Definido por el usuario.

Crea un ciclo que se repite constantemente.

G80 - Anulación de Ciclos Fijos.

Cancela los ciclos fijos existentes en ese momento.

G81 - Ciclo Fijo de Taladrado.

Crea un ciclo de taladrado en Fresadora. Solo hay que proporcionarle los datos necesarios.

G82 - Ciclo Fijo de Taladrado con Temporización.

Crea un ciclo fijo de taladrado con temporización, como si también se aplicara el comando G4.

G83 - Ciclo Fijo de Taladrado Profundo.

Crea un ciclo fijo para taladrar agujeros profundos. Es una operación delicada porque puede hacer que la broca se parta y se quede dentro del agujero.

G84 - Ciclo Fijo de Roscado con Macho.

Crea un ciclo para realizar un roscado con macho. Es una operación delicada porque puede quedarse el macho dentro del agujero, y es difícil de extraer.

G85 - Ciclo Fijo de Escariado

Page 8: Fresadora de control numérico.docx

Crea un ciclo para escariar un agujero, mejorando la calidad superficial del mismo.

G86 - Ciclo Fijo de Mandrinado con Retroceso en G0.

Crea un ciclo para realizar un mandrinado en un agujero, mejorando la calidad superficial. utiliza el comando G0 para extraer la herramienta rápidamente del agujero mandrinado.

G87 - Ciclo Cajera Rectangular

Crea un ciclo para realizar una cajera rectangular en la pieza. La cajera rectangular está representada en la figura.

G88 - Ciclo Cajera Circular.

Crea un ciclo para realizar una cajera con forma circular. La cajera circular está representada en la figura.

G89 - Ciclo Fijo de Mandrinado con Retroceso en G1.

Crea un ciclo para realizar un mandrinado en un agujero, mejorando la calidad superficial. utiliza el comando G1 para extraer la herramienta a una velocidad controlada, ideal para mandrinados delicados.

G90 - Programación de Cotas Absolutas.

Permite utilizar las cotas absolutas (cero máquinas)) para realizar el mecanizado y programar las órdenes.

G91 - Programación de Cotas Incrementales.

Permite utilizar cotas que se van incrementando para realizar el mecanizado y programar las órdenes.

G94 - Velocidad de Avance F en mm/min.

Los avances a partir de esta orden se realizarán en milímetros por minuto.

G95 - Velocidad de Avance F en mm/rev.

Los avances a partir de esta orden se realizarán en milímetros por revolución.

G96 - Velocidad de Avance Superficial Constante.

El avance en la superficie de la pieza será constante al aplicar este comando.

G97 - Velocidad de Avance del Centro de la Herramienta Constante.

El avance en el centro de la herramienta será constante al aplicar esta orden.

G98 - Vuelta de la Herramienta al Plano de Partida al Terminar un Ciclo Fijo.

Al finalizar un ciclo fijo, la herramienta vuelve a la posición de inicio del mecanizado de la pieza. Asegurándose de que no hay peligro de choque de la herramienta con la pieza.

G99 - Vuelve la Herramienta al Plano de Referencia al Terminar un Ciclo Fijo.

Al finalizar un ciclo fijo, la herramienta vuelve al plano de acercamiento, el plano de las últimas coordenadas marcadas antes de que la herramienta toque la pieza en un ciclo fijo.

Page 9: Fresadora de control numérico.docx

Torno control numérico

Torno de control numérico CNC.

Torno de control numérico o torno CNC se refiere a una máquina herramienta del tipo torno que se utiliza para mecanizar piezas de revolución mediante un software de computadora que utiliza datos alfa-numéricos,1 siguiendo los ejes cartesianos X,Y,Z. Se utiliza para producir en cantidades y con precisión porque la computadora que lleva incorporado controla la ejecución de la pieza.2

Un torno CNC puede hacer todos los trabajos que normalmente se realizan mediante diferentes tipos de torno como paralelos, copiadores, revólver, automáticos e incluso los verticales. Su rentabilidad depende del tipo de pieza que se mecanice y de la cantidad de piezas que se tengan que mecanizar en una serie.

Índice

1 Control numérico 2 Funcionamiento 3 Arquitectura general de un torno CNC

o 3.1 Motor y cabezal principal o 3.2 Bancada y carros desplazables o 3.3 Ajuste posicionamiento de carros o 3.4 Portaherramientas o 3.5 Accesorios y periféricos o 3.6 UCP (Unidad central de proceso)

4 Trabajos previos para elaborar un programa de mecanizado 5 Estructura de un programa de torneado

o 5.1 Número de secuencia N o 5.2 Funciones preparatorias G o 5.3 Programación de cotas X-Z o 5.4 Programación de la herramienta T-D o 5.5 Factores tecnológicos F-S o 5.6 Funciones auxiliares M

6 Ventajas y desventajas de los tornos CNC frente a los convencionales 7 Formación de viruta 8 Mecanizado en seco y con refrigerante 9 Fundamentos tecnológicos del torneado 10 Referencias 11 Fuentes 12 Véase también

Page 10: Fresadora de control numérico.docx

13 Enlaces externos

Control numérico

El primer desarrollo en el área del control numérico lo realizó el inventor norteamericano John T. Parsons junto con su empleado Frank L. Stulen, en la década de 1940. El control numérico (CN) es un sistema de automatización para máquinas herramientas en que se utilizan números, letras y símbolos. Cuando cambia la tarea a realizar, se cambia el programa de instrucciones.

Los caracteres establecidos para estos programas están regidos por las normas DIN 66024 y 66025. Algunos de los caracteres son:

N - corresponde al número de bloque o secuencia. Luego de la letra se coloca el número del o los bloques que se deben programar. El número de bloques debe estar comprendido entre 1 y 9999.

X, Y, Z - corresponde a los ejes de coordenadas X, Y, Z de la máquina herramienta. En los tornos solo se utilizan las coordenadas X y Z. El eje Z corresponde al desplazamiento longitudinal de la herramienta en las operaciones de cilindrado mientras que el X es para el movimiento transversal en las operaciones de refrentado y es perpendicular al eje principal de la máquina. El eje Y opera la altura de las herramientas del CNC.

G - son funciones preparatorias que informan al control las características de las funciones de mecanizado. Está acompañado de un número de dos cifras para programar hasta 100 funciones.

Funcionamiento

Los ejes X, Y y Z pueden desplazarse simultáneamente en forma intercalada, dando como resultado mecanizados cónicos o esféricos según la geometría de las piezas.

Las herramientas se colocan en portaherramientas que se sujetan a un cabezal que puede alojar hasta 20 portaherramientas diferentes que rotan según el programa elegido, facilitando la realización de piezas complejas.

En el programa de mecanizado se pueden introducir como parámetros la velocidad de giro de cabezal portapiezas, el avance de los carros longitudinal y transversal y las cotas de ejecución de la pieza. La máquina opera a velocidades de corte y avance muy superiores a los tornos convencionales por lo que se utilizan herramientas de metal duro o de cerámica para disminuir la fatiga de materiales.

Arquitectura general de un torno CNC

Las características propias de los tornos CNC respecto de un torno normal universal son las siguientes:

Motor y cabezal principal

Este motor limita la potencia real de la máquina y es el que provoca el movimiento giratorio de las piezas, normalmente los tornos actuales CNC equipan un motor de corriente continua, que actúa directamente sobre el husillo con una transmisión por poleas interpuesta entre la ubicación del motor y el husillo, siendo innecesario ningún tipo de transmisión por engranajes.

Estos motores de corriente continua proporcionan una variedad de velocidades de giro casi infinita desde cero a un máximo determinado por las características del motor, que es programable con el programa de ejecución de cada pieza. Muchos motores incorporan dos gamas de velocidades uno para velocidades lentas y otro para velocidades rápidas, con el fin de obtener los pares de esfuerzo más favorables. El husillo lleva en su extremo la adaptación para los correspondientes platos de garra y un hueco para poder trabajar con barra.

Las características del motor y husillo principal de un torno CNC pueden ser las siguientes:3

Page 11: Fresadora de control numérico.docx

Diámetro agujero husillo principal: 100 mm Nariz husillo principal: DIN 55027 Nº 8 / Camclock Nº 8 Cono Morse Nº 2 Gama de velocidades: 2 Velocidad variable del husillo: I: 0-564 rpm II: 564-2000 rpm Potencia motor : 15 kw

Bancada y carros desplazables

Husillo de bolas con rosca redondeada rectificada.

Para poder facilitar el desplazamiento rápido de los carros longitudinal y transversal, las guías sobre las que se deslizan son templadas y rectificadas con una dureza del orden de 450 HB. Estas guías tienen un sistema automatizado de engrase permanente.

Los husillos de los carros son de bolas templadas y rectificadas asegurando una gran precisión en los desplazamientos, estos husillos funcionan por el principio de recirculación de bolas, mediante el cual un tornillo sin fin tiene un acoplamiento a los respectivos carros. Cuando el tornillo sin fin gira el carro se desplaza longitudinalmente a través de las guías de la bancada. Estos tornillos carecen de juego cuando cambian de sentido de giro y apenas ofrecen resistencia. Para evitar los daños de una colisión del carro con algún obstáculo incorporan un embrague que desacopla el conjunto y detiene la fuerza de avance.4

Cada carro tiene un motor independiente que pueden ser servomotores o motores encoder que se caracterizan por dar alta potencia y alto par a bajas revoluciones. Estos motores funcionan como un motor convencional de Motor de corriente alterna, pero con un encoder conectado al mismo. El encoder controla las revoluciones exactas que da el motor y frena en el punto exacto que marque la posición programada de la herramienta.

Por otra parte la estructura de la bancada determina las dimensiones máximas de las piezas que se puedan mecanizar. Ejemplo de las especificaciones de la bancada de un torno CNC:5

Altura entre puntos: 375 mm Diámetro admitido sobre bancada: 760 mm Diámetro sobre carro longitudinal 675 Diámetro admitido sobre carro transversal. 470 mm Avance de trabajo ejes Z, X. 0-10000 mm/min Desplazamientos rápidos ejes Z, X 15/10 m/min Fuerza empuje longitudinal 9050 N Fuerza empuje transversal 9050 N

Ajuste posicionamiento de carros

A pesar de la calidad de los elementos que intervienen en la movilidad de los carros longitudinal y transversal no hay garantía total de poder conseguir la posición de las herramientas en la cota programada.

Page 12: Fresadora de control numérico.docx

Para corregir los posibles fallos de posicionamiento hay dos sistemas electrónicos uno de ellos directo y el otro sistema indirecto. El sistema de ajuste de posicionamiento directo utiliza una regla de medida situada en cada una de las guías de las bancadas, donde actúa un lector óptico que mide exactamente la posición del carro, transfiriendo a la UCP (Unidad Central de Proceso) las desviaciones que existen donde automáticamente se reprograma hasta conseguir la posición correcta.6

Portaherramientas

Detalle del cabezal portaherramientas.

El torno CNC utiliza un tambor como portaherramientas donde pueden ir ubicados de seis a veinte herramientas diferentes, según sea el tamaño del torno, o de su complejidad. El cambio de herramienta se controla mediante el programa de mecanizado, y en cada cambio, los carros retroceden a una posición donde se produce el giro y la selección de la herramienta adecuada para proseguir el ciclo de mecanizado. Cuando acaba el mecanizado de la pieza los carros retroceden a la posición inicial de retirada de la zona de trabajo para que sea posible realizar el cambio de piezas sin problemas. El tambor portaherramientas, conocido como revólver, lleva incorporado un servomotor que lo hace girar, y un sistema hidráulico o neumático que hace el enclavamiento del revolver, dando así una precisión que normalmente está entre 0.5 y 1 micra de milímetro. Las herramientas tienen que ser ajustadas a unas coordenadas adecuadas en un accesorio externo a los tornos de acuerdo con las cotas que indique el programa. En la mayoría de los casos se trabaja con plaquitas intercambiables de metal duro, con lo cual, cuando se necesita reponer la plaquita, no hace falta desmontar el portaherramientas de su alojamiento.7

Accesorios y periféricos

Se conocen como accesorios de una máquina aquellos equipamientos que formando parte de la misma son adquiridos a un proveedor externo, porque son de aplicación universal para ese tipo de máquina. Por ejemplo la batería de un automóvil es un accesorio de mismo.

Todas las máquinas que tienen incorporado su funcionamiento CNC, necesitan una serie de accesorios que en el caso de un torno se concretan en los siguientes:8

UCP (Unidad de Control de Proceso) Gráficos dinámicos de sólidos y de trayectoria Editor de perfiles Periféricos de entrada Periféricos de salida

UCP (Unidad central de proceso)

Page 13: Fresadora de control numérico.docx

Artículo principal: Unidad central de proceso.

La UCP o CPU es el cerebro de cálculo de la máquina, gracias al microprocesador que incorpora. La potencia de cálculo de la máquina la determina el microprocesador instalado. A cada máquina se le puede instalar cualquiera de las UCP que hay en el mercado, por ejemplo: FAGOR, FANUC, SIEMENS, etc. Lo normal es que el cliente elige las características de la máquina que desea y luego elige la UCP que más le convenga por prestaciones, precio, servicio, etc.

Las funciones principales encomendadas a la UCP es desarrollar las órdenes de mando y control que tiene que tener la máquina de acuerdo con el programa de mecanizado que el programador haya establecido, como por ejemplo calcular la posición exacta que deben tener las herramientas en todo el proceso de trabajo, mediante el control del desplazamiento de los correspondientes carros longitudinal y transversal. También debe controlar los factores tecnológicos del mecanizado, o sea las revoluciones del husillo y los avances de trabajo y de desplazamiento rápido así como el cambio de herramienta.

Por otra parte la UCP, integra las diferentes memorias del sistema, que pueden ser EPROM, ROM, RAM y TAMPON, que sirven para almacenar los programas y actuar como un disco duro de cualquier ordenador.

Como periférico de entrada el más significativo e importante es el teclado que está instalado en el panel de mandos de la máquina, desde donde se pueden introducir correcciones y modificaciones al programa inicial, incluso elaborar un programa individual de mecanizado. Hay muchos tipos de periféricos de entrada con mayor o menor complejidad, lo que si tienen que estar construidos es a prueba de ambientes agresivos como los que hay en los talleres.

Como periférico de salida más importante se encuentra el monitor que es por donde nos vamos informando del proceso de ejecución del mecanizado y podemos ver todos los valores de cada secuencia. También podemos controlar el desplazamiento manual de los carros y demás elementos móviles de la máquina.9

Trabajos previos para elaborar un programa de mecanizado

Ciclo básico de mecanizado.

Antes de empezar a confeccionar un programa de mecanizado se tiene que conocer bien el mecanizado que se va a realizar en el torno y las dimensiones y características del material de partida, así como la cantidad de piezas que hay que componen la serie que hay que mecanizar. Con estos conocimientos previos, se establece el sistema de fijación de la pieza en el torno, las condiciones tecnológicas del mecanizado en cuanto a velocidad de corte, avance y número de pasadas.

Igualmente se establecen los parámetros geométricos del mecanizado señalando las cotas de llegada y partida de las herramientas, así mismo se selecciona las herramientas que se van a utilizar y las calidades de las mismas.

Page 14: Fresadora de control numérico.docx

Velocidad de giro del cabezal. Este dato está en función de las características del material, del grado de mecanizado que se desee y del tipo de herramienta que se utilice. El programa permite adaptar cada momento la velocidad de giro a la velocidad más conveniente. Se representa por la letra (S) y puede expresarse como velocidad de corte o revoluciones por minuto del cabezal.

Avance de trabajo. Hay dos tipos de avance para los carros, uno de ellos muy rápido, que es el avance de aproximación o retroceso al punto de partida, y otro que es el avance de trabajo. Este también está en función del tipo de material, calidad de mecanizado y grado de acabado superficial. El programa permite adaptar cada momento el avance que sea más conveniente. Se representa por la letra (F) y puede expresarse en milímetros por revolución o milímetros de avance por minuto.

Otro factor importante a determinar es que todo programa debe indicar el lugar de posición que se ha elegido para referenciar la pieza que se llama "cero pieza". A partir del cero pieza se establece toda la geometría del programa de mecanizado. El control numérico es una máquina herramienta que nos ayuda en el mecanizado de piezas en metalmecánica. SH

Piezas de ajedrez mecanizadas en un torno CNC.

Estructura de un programa de torneado

La estructura de un programa de torneado está conformado por una serie de secuencias y funciones donde se van programando las tareas que debe realizar la máquina de acuerdo con los parámetros de la pieza y las condiciones tecnológicas de su mecanizado. Existen varios fabricantes de ordenadores para tornos. En este artículo para ejemplarizar un tipo de programación se toma referencia el modelo 8050 que fabrica la empresa española Fagor.10

Número de secuencia N

Se denomina secuencia al conjunto de órdenes no contradictorias que se pueden dar de una sola vez a la máquina. Se identifican por la letra N, y en un torno normal se pueden dar has 9999 órdenes sucesivas. Si el programa no es muy largo se pueden numerar de 10 en 10, por si es necesario introducir alguna orden complementaria no prevista, así tendremos N10, N20, N30, etc. o podríamos tener, N10, N11, N20, etc.11

Funciones preparatorias G

Bajo la letra G acompañada de una cifra se agrupan una gran variedad de funciones que permiten al torno realizar las tareas adecuadas y necesarias para su trabajo.

Hay cinco tipos básicos de funciones preparatorias:

Funciones de movilidad. Funciones tecnológicas. Funciones de conversión. Funciones de mecanizado especiales. Funciones modales.

1- Funciones de movilidad Las funciones de movilidad más importantes son las siguientes:

Page 15: Fresadora de control numérico.docx

G00. Desplazamiento rápido. Indica el desplazamiento más rápido posible del carro portaherramientas, desde el punto de referencia al punto donde inicia el trabajo cada herramienta. Hay que tener especial cuidado en el uso de esta función ya que la trayectoria no es controlada por el usuario sino que el torno actúa basándose únicamente en la máxima velocidad de desplazamiento. Nunca se mecaniza con ella. Sólo actúa al inicio del programa, cada vez que se produce un cambio de herramienta, y al final del programa en el retorno al punto de referencia.

G01. Interpolación lineal. Indica que la herramienta se está desplazando al avance de trabajo programado, permitiendo las operaciones clásicas de cilindrado y refrentado así como el mecanizado de conos.

Mecanización con interpolación circular.

G02 Interpolación circular a derechas (sentido horario) Se utiliza cuando es necesario mecanizar zonas esféricas o radiales con velocidad controlada.

G03. Interpolación circular a izquierdas (sentido antihorario). Se utiliza cuando es necesario mecanizar zonas esféricas vacías, o radios a izquierdas.

Hay otras funciones de movilidad G, menos importantes y que están en función del equipo que se instale en la máquina.

2- Funciones tecnológicas Las funciones tecnológicas son las que se refieren a la forma de programar la velocidad del cabezal y el avance de trabajo. La velocidad de rotación del cabezal se puede programar a las revoluciones por minuto que se desee, para lo cual se antepondrá la función G97, o se puede programar para que gire a una velocidad de corte constante en m/min. En tal caso se indica con la función G96. Igual sucede con el avance de trabajo, si se desea programar el avance en mm/rev, se antepone la función G95 y si se desea trabajar en mm/min se antepone la función G94.

3- Funciones de conversión La función más importante de este grupo es la que corresponde al traslado de origen para situar el cero pieza que se realiza mediante la función G59. también existen funciones si el acotado está en pulgadas o en milímetros. Si bien ya tiene preestablecida la que se va a usar normalmente. Otro caso de conversión es si se programa con cotas absolutas o cotas incrementales.

4- Funciones de mecanizados especiales. La más popular de estas funciones es la que corresponde a un ciclo de roscado representada por la función G33. Otras funciones de este tipo son las de refrentados, taladrados, roscado con macho, escariado, etc.

5- Funciones modales. En los programas de CNC, existen funciones que, una vez programadas, permanecen activas hasta que se programa una función contraria, o el programa se termina. Estas funciones son las llamadas funciones modales. En un bloque se pueden programar tantas funciones como se desee, siempre que no sean incompatibles entre ellas. Por ejemplo no se pueden programar en un bloque las funciones G00 y G01.12

Programación de cotas X-Z

Se entiende por programación de cotas la concreción en el programa de los recorridos que tienen que realizar las herramientas para conformar el perfil de la pieza de acuerdo con el plano de la misma. La programación se puede hacer mediante coordenadas X y Z o coordenadas polares. También mediante la función G adecuada se pueden programar las cotas tanto en milímetros como en pulgadas. Para hacer una programación correcta de las cotas hay que conocer bien los

Page 16: Fresadora de control numérico.docx

excedentes de material que hay que remover, para determinar el número de pasadas que hay que realizar así como la rugosidad superficial que deben tener los acabados mecanizados, así como la forma de sujetar la pieza en la máquina y la rigidez que tenga....

Programación de la herramienta T-D

Los tornos de control numérico tienen un tambor frontal donde pueden ir alojados un número variable de herramientas generalmente de 6 a 20 herramientas diferentes. Las herramientas se programan con una letra T seguida del número que ocupa en el tambor, por ejemplo T2, la letra T, es la inicial de esta palabra en inglés (tool). Como cada herramienta tiene una longitud diferente y un radio en la punta de corte también diferente es necesario introducir en el programa los valores correctores de cada herramienta, para que el programa pueda desarrollarse con normalidad.

Aparte de la longitud de la herramienta existen unas funciones G para introducir una corrección de acuerdo al valor que tenga el radio de la herramienta en la punta de corte. La compensación del radio de la herramienta tiene una gran importancia en el mecanizado, especialmente en piezas que contengan perfiles irregulares. Las placas de herramientas de torno tienen siempre puntas redondeadas, de esta forma son más rígidas. Cuanto menor es el radio de la punta mayor tendencia presenta a astillarse.13

Factores tecnológicos F-S

Los factores tecnológicos que hay que tener a la hora de elaborar un programa son los siguientes:

Material de la pieza a mecanizar.

Tolerancia de cotas y calidad superficial del mecanizado.

Estructura de la pieza a mecanizar.

Estos factores son los que van a determinar entre otras cosas los siguientes elementos.

Velocidad de corte la velocidad de corte se programa mediante la letra S, inicial de la palabra inglesa (speed) que significa velocidad, y una cifra que puede referirse a un valor constante de velocidad de corte que queremos mantener en todo el mecanizado o a una cifra que corresponde a las revoluciones por minuto del cabezal de acuerdo con la velocidad de corte que se funcione y el diámetro de la pieza que se esté torneando. La elección de un sistema de programa u otro se realiza mediante la función G que corresponda.

Profundidad de pasada este concepto viene determinado por la cantidad de viruta que se tenga que remover y del grado superficial que se tenga que obtener y de la tolerancia de mecanizado del plano.

Avance de trabajo El avance de trabajo de la herramienta se representa por la letra F inicial de la palabra inglesa (Feed) que significa avance, seguida de una cifra que puede referirse al avance de la herramienta expresado en mm/rev o en mm/min. En el torneado lo más común es programar el avance expresado en mm/rev. La elección de un sistema de programa u otro se realiza con la función G que corresponda.

Refrigerante en muchos mecanizados es necesario refrigerar la zona donde está actuando la herramienta, esta función se programa mediante una función auxiliar M.

Fijación de la pieza en el cabezal en las máquinas de control numérico es muy importante asegurarse que la fijación de la pieza sea lo suficientemente rígida como para poder soportar las tensiones del mecanizado, asimismo se debe prever un sistema rápido y seguro de anclaje de la pieza para eliminar tiempos muertos inactivos de la máquina.

Funciones auxiliares M

Las funciones auxiliares sirven para establecer el funcionamiento de la máquina. Tales como encendido y parada del accionamiento principal o fin del programa.14

Page 17: Fresadora de control numérico.docx

Ventajas y desventajas de los tornos CNC frente a los convencionales

Ventajas:

Permiten obtener mayor precisión en el mecanizado. Permiten mecanizar piezas más complejas. Se puede cambiar fácilmente de mecanizar una pieza a otra. Se reducen los errores de los operarios. Cada vez son más baratos los tornos CNC. Se reducen tiempos de mecanizado.

Como desventajas se pueden indicar las siguientes:

Necesidad de realizar un programa previo al mecanizado de la primera pieza. Coste elevado de herramientas y accesorios lo que implica una elevada inversión. Conveniencia de tener una gran ocupación para la máquina debido a su alto coste.15

Formación de viruta

El torneado ha evolucionado tanto que ya no se trata tan solo de arrancar material a gran velocidad, sino que los parámetros que componen el proceso tienen que estar estrechamente controlados para asegurar los resultados finales de economía calidad y precisión.

La forma de tratar la viruta se convierte en un proceso complejo, donde intervienen todos los componentes tecnológicos del mecanizado, para que pueda tener el tamaño y la forma que no perturbe el proceso de trabajo. Si no fuera así se acumularían rápidamente masas de virutas largas y fibrosas en el área de mecanizado que formarían madejas enmarañadas e incontrolables.

La forma que toma la viruta se debe principalmente al material que se está cortando y puede ser de material dúctil y también quebradizo y frágil.

El avance con el que se trabaje y la profundidad de pasada, son bastante responsables de la forma de viruta, y cuando no se puede controlar con estas variables hay que recurrir a elegir la herramienta que lleve incorporado un rompevirutas eficaz.16 mayor eficacia que un torno normal es mayor rapidez

Mecanizado en seco y con refrigerante

Hoy en día el torneado en seco es completamente viable y se emplea en numerosas aplicaciones. Hay una tendencia reciente a efectuar los mecanizados en seco siempre que la calidad de la herramienta lo permita. Una zona de temperatura de corte más elevada puede ser en muchos casos, un factor positivo.

Sin embargo el mecanizado en seco no es adecuado para todas las aplicaciones, especialmente para taladrados, roscados y mandrinados para garantizar la evacuación de las virutas.

Es necesario evaluar con cuidado operaciones, materiales, piezas, exigencias de calidad y maquinaria para identificar los beneficios de eliminar el aporte de refrigerante.17

Fundamentos tecnológicos del torneado

En el torneado hay seis parámetros clave:

Los tornos CNC, debido a sus mecanismos de funcionamiento permiten ajustar al máximo las condiciones de mecanizado y por lo tanto conseguir el mejor tiempo de torneado posible.18

1. Velocidad de corte (Vc). Se define como la velocidad lineal en la periferia de la zona que se está mecanizando. Su elección viene determinada por el material de la herramienta, el tipo de material de la pieza y las características

Page 18: Fresadora de control numérico.docx

de la máquina. Una velocidad de corte alta permite realizar el mecanizado en menos tiempo pero acelera el desgaste de la herramienta. La velocidad de corte se expresa en metros/minuto.

2. Velocidad de rotación de la pieza (N). Normalmente expresada en revoluciones por minuto. Se calcula a partir de la velocidad de corte y del diámetro mayor de la pasada que se está mecanizando.

3. Avance (F). Definido como la velocidad de penetración de la herramienta en el material. En el torneado suele expresarse en mm/rev. No obstante para poder calcular el tiempo de torneado es necesario calcular el avance en mm/min de cada pasada.

4. Profundidad de pasada. Es la distancia radial que abarca una herramienta en su fase de trabajo. Depende de las características de la pieza y de la potencia del torno.

5. Potencia de la máquina. Está expresada en kW, y es la que limita las condiciones generales del mecanizado, cuando no está limitado por otros factores.

6. Tiempo de torneado (T). Es el tiempo que tardan todas las herramientas en realizar el mecanizado sin tener en cuenta otras cuestiones como posibles paradas de control o el tiempo poner y quitar la pieza del cabezal que puede variar dependiendo de cada pieza y máquina. Se calcula a base de ir sumando los tiempos parciales de cada herramienta.

Estos parámetros están relacionados por las fórmulas siguientes:

Generalmente, la velocidad de corte óptima de cada herramienta y el avance de la misma vienen indicados por el fabricante de la herramienta o, en su defecto, en los prontuarios técnicos de mecanizado.