friction models conveyor ppt

17
9 th ICBMH Newcastle NSW 2007. Keynote Address Summary ¾ Running friction and profile determine conveyor power and dynamics. ¾ Numerous design method exist (e.g. DIN 22101, CEMA, Inhouse). ¾ Computer programs incorporate design simulation algorithms. ¾ For long conveyors, design models need to accommodate :1. Temperature effects. 2. Vertical and horizontal curves. 3. Troughed, pipe and cable belt systems. 4. Idler, belt and material properties.

Upload: odnanref00

Post on 06-Apr-2015

152 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Friction Models Conveyor Ppt

9th ICBMH Newcastle  NSW 2007.  Keynote Address 

Summary

Running friction and profile determine conveyor  power and dynamics.

Numerous design method exist (e.g.  DIN 22101, CEMA, In‐house).

Computer programs incorporate design simulation algorithms. 

For long conveyors, design models need to accommodate :‐

1.   Temperature effects.2.   Vertical and horizontal curves.3.   Troughed, pipe and cable belt systems.4.   Idler, belt and material properties.

Page 2: Friction Models Conveyor Ppt

1.0 IntroductionConveyor  Belt  Rolling  Resistance  Methods – References (1950 – 2007)

1950 – 1970

1954  – P. Lachmann (Clouth) > Resistance of Full Conveyors (Germany)

1956 – 1960.   A. Vierling & H.H. Oehman > Travel resistance, measurements  (Germany)

1960 – 1970.   U. Behrens, F Schwartz  > Conveyor  Resistance Theories  (Germany)

1970 – 1980

1976 – CEMA  and Goodyear, Conveyor Equipment Manufactures , handbooks (USA)

1978 – 1991.  C.  Spaans >Indentation Resistance and Belt  Flexure  (Netherlands)

1979 – ISO 5048  > Calculations for Belt Conveyors (and DIN 22101)  (Germany/Europe)

1980 – C. Jonkers > Indentation Rolling Resistance  (Netherlands)

1980 ‐2007

1987 – 1998.  A. Harrison, et al : various  > Rolling Loss Test Rigs, Alt. Models  (Australia/USA)

1987 – 1997.  L. Nordell, et al. : various > Power/Rubber losses, Applications (USA)

1993 – 2005.  M. Hager/A. Hintz, et al  >  Energy Saving, Long Conveyors  (Germany)

1995 – 2003.  G. Lodewijks : various >  Rolling Resistance of Rubber  Types (USA/Netherlands)

2003 – 2006.  C. Wheeler, et al. : various >  Indentation, FEA, Material Flexure (Australia)

Page 3: Friction Models Conveyor Ppt

General :Te = L g [R + B + V] + Q v + P + O   :   T1 = (Te + T2)     (in N)

T1

T2V

L

Q (t/h)v (m/s)

R = Resistance of Idlers (carry and return)‐(CEMA Kx, DIN has separated values)B = Belt  and Material Flexure (carry and  return)‐(CEMA Ky, DIN n/a)

Variable CEMA DIN 22101 (or ISO 5048)R Kt  Kx = Kt (0.0068(Mb+Mm) + Ai/Sc f ct C  Ai*  (1 < ct < 1.7)B Kt  Ky Mb  +  0.015 Mb Kt + Mm Ky f ct  C (2 Mb + Mm) cos δ 

(cos δ  ~1 if slope δ<18 º)(0.01 <  f < 0.04) DIN factor 

V Mm H/L Mm  H/L

Comparison of coefficients for CEMA and DIN methods.

Page 4: Friction Models Conveyor Ppt

General Components of  “Te” at the Element Level

F j F j+1

D

MF(j)= f(v, Sag, Type)

BI(j)BF(j)

R(j)

j j+1

Fn = (Mm+Mb) g

MmMb

Fn

BI = f (T, D, Fn       )1.33

T =  TemperatureD = Idler DiameterS = Idler Spacing

S j

‐40 C 0               40 C

R(j)SBR

KNNNSC

Small D

Large D

Coal

Lig

Cem

MF(j)

Ore

Page 5: Friction Models Conveyor Ppt

3.0 Hybrid Non‐Lin Models

for (int j = 0; j < lsn; j++) //

{ T = g L [R + {BI + BF} + MF + V] + Qv + P + O)}

Material Flex: MF = M Sz (p + q v)(1.66 Sc/Sr))s

(0.2 < p < 3), (0.02 < q < 0.6), (1 < s < 3)M =(Mb+Mm), z = carry or return

Belt Flexure : BF = mu Kt1/2 M Sz3/2 / L (0.003 < mu < .008)

Indentation : BI =(d tanδ v1/4 / g f(Dz)) . (g M Sz)4/3

tanδ = Rubber Loss(T) = f(v, Sz(j), τ) + f(T) τ = Viscoelastic time constant at a frequency = v/Sz (Hz).f(Dz) = (k1. idz + k2)

Idlers : R = Kt1/2 [Ks + Az) (v/2)2/3exp(- c T) / Sz) ]

Page 6: Friction Models Conveyor Ppt

RUN >

Page 7: Friction Models Conveyor Ppt

Input Selections

Model Values

Page 8: Friction Models Conveyor Ppt

Example 1: 16.8 km belt, 5% slope

Page 9: Friction Models Conveyor Ppt

Example 1. : Model Values

Inputs

Page 10: Friction Models Conveyor Ppt

Example  1. – Long Conveyor,  5% Slope

SBR

Nat./SBR

Tensions

Page 11: Friction Models Conveyor Ppt
Page 12: Friction Models Conveyor Ppt

Example  1. – Natural Rubber

Page 13: Friction Models Conveyor Ppt
Page 14: Friction Models Conveyor Ppt

Example 2. Horizontal and Vertically Curved Pipe Belt

Page 15: Friction Models Conveyor Ppt

Example 2 : Pipe Conveyor (Cement & Limestone

Page 16: Friction Models Conveyor Ppt

Example 2 :  Dual Carry, Natural Rubber

END

Page 17: Friction Models Conveyor Ppt

END