furfural-fpe-2014

Upload: yli-sc

Post on 06-Jul-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/16/2019 Furfural-FPE-2014

    1/9

    Isothermal vapor–liquid equilibrium for binary mixtures containingfurfural and its derivatives

    Wen-Ping Tai, Hao-Yeh Lee, Ming-Jer Lee *

    Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd., Sec. 4, Taipei 106-07, Taiwan

    A R T I C L E I N F O

     Article history:

    Received 5 August 2014

    Received in revised form 23 October 2014Accepted 25 October 2014Available online 29 October 2014

    Keywords:

    VLE2-MethylfuranFurfuryl alcoholFuranFurfural

    A B S T R A C T

    The isothermal vapor–liquid equilibrium (VLE) data were measured for the binary systems of 2-methylfuran+ furfuryl alcohol, isopropyl alcohol+ furfuryl alcohol, and furan + furfural at 353.2, 373.2,and 408.2K over entire composition range,including the vapor pressures of ve constituent compounds.The experimental results of the investigated binary systems show no azeotrope formation and positivedeviations from Raoult’s law. The thermodynamic consistency of these new binary VLE data has beenconrmed by point, area, and innite dilution tests. The Wilson–HOC, the NRTL-HOC, and the UNIQUAC-HOC models were used to correlate the VLE data. Comparable results were obtained from these threemodels.

    ã 2014 Elsevier B.V. All rights reserved.

    1. Introduction

    As fossil fuels are gradually depleted, biomass will inevitablybecome an alternative resource to provide a kind of renewableenergy and raw materials for chemical industries in the future.Furfural is oneof thekey intermediates to connect the bio-resourceto bio-fuels or chemical products [1]. In this green manufacturingroute, furfural alcohol can be synthesized via hydrogenation of furfural using isopropyl alcohol as a solvent. Simultaneously,several by-products, including 2-methylfuran and furan, may alsobe generated from this series of chemical reactions  [2]. To providereliable VLE data for the related process development, wemeasured the isothermal VLE for three binary systems:2-methylfuran+ furfuryl alcohol, isopropyl alcohol + furfuryl alco-hol, and furan+ furfural at 353.2, 373.2, and 408.2K over entirecomposition range, including the vapor pressures of  ve constitu-ent compounds. No VLE data at the comparable conditions areavailable in literature for the above mentioned mixtures. All the

    new binary VLE data were validated by thermodynamic consis-tency tests and then correlated with the Wilson–HOC   [3], theNRTL-HOC   [4], and the UNIQUAC-HOC   [5]  models. The optimalvalues of binary parameters were obtained from the datacorrelation.

    2. Experimental section

     2.1. Chemicals

    2-Methylfuran (purity: 0.99 in mass fraction) was purchasedfrom ACROS (USA) and furan (purity: 0.99 in mass fraction) fromAlfa Aesar (USA). Furfural (purity: 0.99 in mass fraction), furfuralalcohol (purity: 0.98 in mass fraction), and isopropyl alcohol(purity: 0.999 in mass fraction) were supplied by Sigma–Aldrich(USA). The purity levels of these chemicals were conrmed bychromatographic analysis. All the chemicals were used withoutfurther purication. The materials description is given in Table 1for each pure compound. The density of each compound has beenmeasured with a vibrating-tube densimeter (DMA 4500, AntonPaar, Austria) to an uncertainty of 0.1% and compared withliterature value in Table 1. The deviations between experimentaland literature values are from 0.01 to 0.19%. It should also be notedthat furfural and furfural alcohol are light-sensitive compounds.

    We handled these twosubstances with care. The degassing processwas operated in dark andthe askwas warped with aluminum foil.The color will become from yellowish, initially, to brownish afterthe measurement process, especially at higher temperature408.2 K. A small impurity peak can be detected from the phaseequilibrium samples by GC, but the amount of the impurity is lessthan 0.7% in the worst case.

     2.2. Apparatus and procedure

    A static VLE apparatus was employed in the present study tomeasure the VLE data. The equipment is similar to that of Lee and

    * Corresponding author. Tel.: +886 2 2737 6626; fax: +886 2 2737 6644.E-mail address: [email protected] (M.-J. Lee).

    http://dx.doi.org/10.1016/j.uid.2014.10.037

    0378-3812/ã

     2014 Elsevier B.V. All rights reserved.

    Fluid Phase Equilibria 384 (2014) 134–142

    Contents lists available at ScienceDirect

    Fluid Phase Equilibria

    j o u r n a l h o m e p a g e :   w w w . e l s e v i e r . c o m / l o c a t e / fl u i d

    mailto:[email protected]://dx.doi.org/10.1016/j.fluid.2014.10.037http://dx.doi.org/10.1016/j.fluid.2014.10.037http://dx.doi.org/10.1016/j.fluid.2014.10.037http://dx.doi.org/10.1016/j.fluid.2014.10.037http://dx.doi.org/10.1016/j.fluid.2014.10.037http://dx.doi.org/10.1016/j.fluid.2014.10.037http://www.sciencedirect.com/science/journal/03783812http://www.elsevier.com/locate/fluidhttp://www.elsevier.com/locate/fluidhttp://www.sciencedirect.com/science/journal/03783812http://dx.doi.org/10.1016/j.fluid.2014.10.037http://dx.doi.org/10.1016/j.fluid.2014.10.037mailto:[email protected]://crossmark.dyndns.org/dialog/?doi=10.1016/j.fluid.2014.10.037&domain=pdf

  • 8/16/2019 Furfural-FPE-2014

    2/9

    Hu [10] and several modications have been made by Hwang et al.[11]. A stainless steel made equilibrium cell was placed in athermostatic bath (Model: B503S, stability= 0.03 K, Firstek,Taiwan). The bath temperature was measured by a precision

    thermometer (Model-1560, Hart Scientic, USA) with a platinumRTD probe to an accuracy of   0.02 K. Two pressure transducers(Model: PDCR-912, pressure ranges: 0–101.325 kPa and 0–2.0 MPa,Druck, UK) with digital indicators (Model: DPI-280, Druck, UK)displayed the equilibrium pressure to an accuracy of  0.1%. Whilethe vapor sample was taken with a six-way sampling valve (Model6T, operable up to 573 K and 2067 kPa, sample size 100ml, VICI AGInternational, Switzerland), the liquid sample was taken with afour-way sampling valve (Model 6CI4UWT1/2, operable up to603K and 2067kPa, sample size 0.5ml, VICI AG International,Switzerland). Compositions of both vapor and liquid samples wereanalyzed by a gas chromatography (Model: 8700T, ChinaChromatography, Taiwan) with a thermal conductivity detector(TCD). A stainless steel column Porapak QS (80/100 mesh,1.5 m 1/8” I.D. 2 mm) was used for sample analysis. High purityhelium (99.99% purity, Gu-Fong Gas Company,Taiwan) was used ascarrier gas. Four samples were replicated for individual phase ateach experimental condition. The averaged area fraction of thereplication samples was converted into mole fraction viacalibration equations. The uncertainties of the reported molefractions for liquid and vapor phases are within 0.005 and 0.005,respectively.

    3. Results and discussion

    The isothermal VLE data are measured in the present study forthe binary systems of 2-methylfuran + furfuryl alcohol, isopropylalcohol + furfuryl alcohol, and furan + furfural at 353.2, 373.2, and408.2K over entire composition range. Table 2 lists the coef cientsof the extended Antoine equation for each constituent compoundwhere the equation is dened as

    ln  P sat kPað Þ

    100

    " #¼  A1 þ

      A2T K ð Þ þ A3ð Þ

    þ A4T þ A5lnT 

    þ A6T  A7 for A8

    T    A9   (1)

    The values of   A1– A9  are available from the Aspen thermody-namic databank, except for 2-methylfuran. The vapor pressures of all pure compounds are also determined experimentally in thisstudy. As shown in   Table 3, the measured vapor pressures of furfuryl alcohol, furan, furfural, and isopropyl alcohol agree wellwith the smoothed literature values, which are calculated from theextended Antoine equation using the coef cients listed in Table 2.

    Eon et al. [12] reported the vapor pressures of 2-methylfuran attemperatures from 333.45 to 373.45K and the Antoine constantsdetermined from these data have been collected in the NISTChemistry WebBook   [13]. Kobe et al.   [14]   measured the vaporpressures from 336.72 to 527.59 K. In this study, we measured 23

    new data points for 2-methylfuran at temperatures from 353 to409K as given in Table 4. The coef cients of the extend Antoineequation for 2-methylfuran are obtained by  tting these new datato Eq.  (1)  and listed in Table 2.   Table 4   and Fig. 1   compare theexperimental values with the correlated results from the extendedAntoine equation and those from of the Antoine equation using theconstants taken from NIST Chemistry WebBook [13] and the datareported by Kobe et al. [14]. The deviations are all within 1.0% overthe entire temperature range.

    The isothermal VLE data are listed in Tables 5–7 for the binarysystems of 2-methylfuran + furfuryl alcohol, isopropyl alcohol +furfuryl alcohol, and furan+ furfural, respectively. The tabulatedactivity coef cients (gi) were calculated from the criteria of phaseequilibria, i.e.,

    Nomenclature

     A   index of area consistency test A1– A9   parameters of the extended Antoine equation Aij   interaction variables in Wilson modelaij   parameters of the activity coef cient modelbij   parameters of the activity coef cient model (K)C 0–C  2   variables used in consistency tests

    D0–

    D 3   variables used in consistency testsG molar Gibbs free energy (Jmol1)I 1 and  I 2   indices of innite dilution consistency testMW molecular weight (gmol1)n   number of data pointsP    pressure (kPa)q   surface area parameter of UNIQUAC modelr    volume parameter of UNIQUAC modelR   gas constant (kPacm3 mol1 K1 or J mol1 K1)Rg   radius of gyration (Å)T    temperature (K)T b   normal boiling temperature (K)V    molar volume (cm3 mol1) x   mole fraction of liquid phase

     y   mole fraction of vapor phase Z    compressibility factor

    Greek lettersa   parameter of NRTL modelg    activity coef cientd   index of point consistency testD   deviationh   association parameter of HOC modelm   dipole moment (Debye)p   objective functionr   density (g cm3)s    standard deviationt ij   interaction variables in NRTL and UNIQUAC models^

    fi   fugacity coef 

    cient of component  iv   acentric factor

    Subscriptsc    critical propertycal calculated valuei   component  iexp experimental valueij   i- j pairP    pressureT    temperature x1   liquid composition of component 1 y1   vapor composition of component 1

    Superscriptscal calculated valueE    excess propertyexp experimental valueL   liquid phasesat saturation

    W.-P. Tai et al. / Fluid Phase Equilibria 384 (2014) 134–142   135

  • 8/16/2019 Furfural-FPE-2014

    3/9

    g i  ¼f̂i yiP 

     xifsati   P 

    sati   exp½   V 

    Li ðP  P 

    sati   Þ=RT

    (2)

    where xi,  yi, and P sati   are liquid mole fraction, vapor mole fraction,

    and vapor pressure for component i, respectively. The liquid molarvolume, V L i , was estimated from the modied Rackett model [15].The variables  fsati   and

     f̂i  are the fugacity coef cients of pure  i  atsaturation condition and the fugacity coef cient of component i in

    the vapor phase. These two fugacity coef 

    cients were calculatedfrom two-term virial equation with the second virial coef cient

    estimated from the Hayden and O’Connell model [16]. The molarexcess Gibbs free energies, GE, listed in Tables 5–7 were calculatedfrom the following denition:

    G E  ¼ RTX2i¼1

     xi lng i   (3)

    Figs. 2–4   are the phase diagrams of 2-methylfuran+furfuryl

    alcohol, isopropyl alcohol + furfuryl alcohol, and furan + furfural,respectively. All these investigated systems exhibit positive

     Table 1

    Description of the materials useda.

    Compound Supplier Purity in mass fraction Purication method   rexp (g/cm3)   rlit(g/cm3) Data source

    2-Methylfuran Acros, USA 0.99 Degas 0.9132 0.91500   [6]Furan Alfa Aesar, USA 0.99 Degas 0.9331 0.9340   [7]Furfural Sigma–Aldrich, USA 0.99 Degas 1.1546 1.15525   [8]Furfural alcohol Sigma–Aldrich, USA 0.98 Degas 1.1320 1.13028   [8]Isopropyl alcohol Sigma–Aldrich, USA 0.999 Degas 0.7809 0.78082   [9]

    a u(r)=0.1%.

     Table 2

    Parameters of the extended Antoine equationa.

    Compound   A1   A2   A3   A4   A5   A6   A7   A8 (K)   A9 (K)

    2-Methylfuranb 17.4859   225.3   248.3232 0.0306   6.8370 14.7121   0.0033 353.0 409.2Furanc 63.2251   5417.0 0 0   8.0636 7.5E-06 2 187.0 490.2Furfuralc 83.0571   8372.1 0 0   11.1300 8.8E-03 1 236.0 670.2Furfural alcoholc 63.5521   8846.6 0 0   7.2425 2.8E-06 2 258.0 632.2Isopropyl alcoholc 99.2071   9040.0 0 0   12.6760 5.5E-06 2 185.2 508.3

    a Extended Antoine equation: ln½P satðkPaÞ=100 ¼  A1 þ ½ A2=

    T ðK Þ þ A3

    þ A4T þ A5lnT þ A6T 

     A7 for A8   T  A9.b Determined from the vapor pressure data measured in this work.c Taken from thermodynamic databank of Aspen Plus process simulation package.

     Table 3

    Vapor pressures of furan, furfural, furfuryl alcohol, and isopropyl alcohola.

    T  (K)   P sat exp   (kPa) P sat cal

    b (kPa)   Dev P c (%)

    Furan353.4 455.1 455.7   0.13373.1 735.6 735.1   0.07407.9 1513.3 1513.6   0.02

    Furfural

    353.2 5.9 5.9 0.00373.4 13.6 13.7 0.74408.0 46.3 46.3 0.00

    Furfuryl alcohol353.3 2.6 2.6 0.00373.0 7.0 7.0 0.00407.9 30.1 30.2 0.33

    Isopropyl alcohol353.3 93.8 94.0 0.21373.5 200.1 200.9 0.40408.3 593.8 594.3 0.08

    a u(T )=0.1K;  u(P )=0.1%.b Calculated from the extended Antoine equation.c DevP ð%Þ ¼ 100%   P satcal  P 

    satexp

    =P satexp.

    136   W.-P. Tai et al. / Fluid Phase Equilibria 384 (2014) 134–142

  • 8/16/2019 Furfural-FPE-2014

    4/9

    deviations from Raoult’s law. In each binary system, no azeotropeis formed and the light component is dominant in the vapor phase.

    According to the experimental results, the compounds in therelated mixtures can be separated ef ciently by using distillationtechnique.

    Thermodynamic consistency tests were made for all the newVLE data. The testing method has been detailed in Kojimaet al. [17]and Lee and Hu   [10].   Table 8   gives the results of thethermodynamic consistency test. All the binary VLE data passedthe thermodynamic consistency evaluation, including the point,the area, and the innite dilution tests.

    4. Vapor–liquid equilibrium data correlation

    Theg

    wmethod was employed to correlate the new binaryVLE

    data. Three activity coef cient models, including the Wilson, theNRTL, and the UNIQUAC, were selected to represent the non-ideality of liquid mixtures, while the fugacity coef cient in thevapor phase were estimated from the two-term virial equationaccompanying with the Hayden–O’Connell (HOC) model forcalculating the second virial coef cient. The optimal values of thebinary parameters were determined by theminimizationof thefollowing objective function p:

    p ¼Xnk¼1

    P calk   P expk

    s  p

    " #2þ

    T calk   T expk

    s T 

    " #2þ

     xcal1;k xexp1;k

    s  x1

    " #2þ

     ycal1;k  yexp1;k

    s y1

    " #28<:

    9=;

    (4)

    [

    340 360 380 400 420

    T /K

    100

    1000

          P       /       k       P     a

    Fig. 1.  Comparison of experimental vapor pressures with literature values for 2-methylfuran (open circle: experimental point; open square: literature value [13];open triangle: literature value [14]; solid line: correlation with extended Antoine

    equation).

     Table 4

    Vapor pressures of 2-methylfurana.

    T  (K)   P sat expb (kPa)   P sat cal

    c (kPa)   Dev P d (%)   P sat lit 

    e (kPa)   Dev P f  (%)

    353.8 161.8 162.3 0.31 163.3 0.93353.8 162.6 162.5   0.06 163.6 0.62357.5 181.5 181.7 0.11 181.9 0.22357.5 181.7 181.9 0.11 182.1 0.22358.3 186.5 186.4   0.05 186.4   0.05362.4 210.5 210.6 0.05 209.9   0.29

    362.5 211.1 210.7   0.19 209.9   0.57363.1 214.9 214.5   0.19 213.6   0.60367.2 242.1 241.3   0.33 240.0 -0.87367.4 242.7 242.2   0.21 240.9   0.74367.9 246.0 245.5   0.20 244.1   0.77373.4 285.3 285.3 0.00 283.7   0.56373.6 286.4 286.4 0.00   – –373.9 288.4 289.3 0.31   – –398.2 527.6 527.1   0.09   – –398.4 530.3 530.1   0.04   – –398.8 533.8 534.6 0.15   – –403.0 587.6 589.1 0.26   – –403.2 591.7 592.0 0.05   – –403.3 592.3 593.5 0.20   – –408.4 667.2 666.4   0.12   – –408.6 670.2 669.4   0.12   – –409.0 676.7 675.5   0.18   – –

    AARDg (%) = 0.14 AARDg (%)=0.53

    a u(T )=0.1K;  u(P )= 0.1 %.b Experimental data obtained from this work.c Correlated results from the extended Antoine equation.d DevP ð%Þ ¼ 100%   P satcal  P 

    satexp

    =P satexp.

    e Calculated from the Antoine equation by using parameters reported in NIST Chemistry WebBook  [13] (original data source: Eon et al.  [12]).f  DevP ð%Þ ¼ 100%   P satlit   P 

    satexp

    =P satexp.

    g AARDð%Þ ¼ ð100%=nÞSn

    i¼1   jP sat

     X    P satexpj=P 

    satexp

    i, where subscript  X  represents cal or lit, and  n  is the number of data points.

    W.-P. Tai et al. / Fluid Phase Equilibria 384 (2014) 134–142   137

  • 8/16/2019 Furfural-FPE-2014

    5/9

     Table 5

    VLE data of 2-methylfuran (1) + furfural alcohol (2)a.

    T (K)   P (kPa)   x1   y1   g 1   g 2   ln(g 1/g 2) (GE/RT)/ x1 x2

    353.2 2.6b 0.0 0.019.3a 0.058 0.869 1.832 1.015 0.590 0.90332.0a 0.112 0.925 1.673 1.021 0.494 0.76753.8a 0.207 0.959 1.576 1.049 0.407 0.80562.2a 0.259 0.966 1.466 1.076 0.310 0.79883.8a 0.397 0.978 1.303 1.150 0.125 0.79297.3a 0.482 0.983 1.252 1.200 0.042 0.812111.1a 0.572 0.987 1.208 1.267   0.047 0.855127.8a 0.712 0.991 1.120 1.497   0.290 0.960146.4a 0.865 0.995 1.059 2.029   0.650 1.245150.0a 0.929 0.996 1.011 3.162   1.140 1.399159.1b 1.0 1.0

    373.2 7.1b 0.0 0.025.7a 0.032 0.729 2.218 1.007 0.790 1.04254.2a 0.111 0.878 1.611 1.023 0.454 0.74686.4a 0.208 0.929 1.437 1.046 0.318 0.673112.5a 0.290 0.949 1.362 1.074 0.237 0.681159.0a 0.399 0.968 1.409 1.095 0.252 0.797179.2a 0.475 0.974 1.334 1.134 0.163 0.814198.1a 0.571 0.979 1.227 1.225 0.001 0.833224.9a 0.709 0.985 1.121 1.442   0.252 0.907254.7a 0.854 0.991 1.051 1.919   0.602 1.106270.6a 0.929 0.995 1.026 2.308   0.810 1.268283.3b 1.0 1.0

    408.2 30.4b 0.0 0.062.5a 0.028 0.522 1.994 0.996 0.694 0.572148.9a 0.112 0.809 1.807 1.002 0.589 0.685241.6a 0.210 0.891 1.689 1.005 0.519 0.688297.9a 0.300 0.916 1.481 1.054 0.340 0.737380.5a 0.402 0.942 1.427 1.053 0.304 0.724424.7a 0.468 0.951 1.369 1.097 0.221 0.788467.1a 0.571 0.960 1.235 1.201 0.027 0.812515.2a 0.704 0.969 1.104 1.460   0.28 0.872581.2a 0.841 0.980 1.040 1.929   0.618 1.027626.6a 0.925 0.989 1.019 2.383   0.849 1.190662.3b 1.0 1.0

    a u(T )=0.1K;  u(P )=0.1%;  u( x1)=0.005;  u( y1)=0.005.b Calculated from the extended Antoine equation.

     Table 6VLE data of isopropyl alcohol (1) + furfuryl alcohol (2)a.

    T (K)   P (kPa)   x1   y1   g 1   g 2   ln (g 1/g 2) (GE/RT)/ x1 x2

    353.2 2.6b 0.0 0.09.5a 0.062 0.737 1.247 1.004 0.217 0.29318.6a 0.148 0.877 1.213 1.005 0.188 0.26023.6a 0.196 0.908 1.201 1.007 0.176 0.26333.9a 0.296 0.943 1.182 1.016 0.152 0.29145.0a 0.412 0.963 1.147 1.039 0.098 0.32752.5a 0.499 0.972 1.112 1.071 0.037 0.35058.0a 0.561 0.977 1.096 1.105   0.008 0.38767.1a 0.658 0.984 1.085 1.134   0.044 0.43173.5a 0.755 0.989 1.039 1.187   0.133 0.38384.5a 0.901 0.996 1.004 1.218   0.193 0.26093.3b 1.0 1.0

    373.2 7.1b 0.0 0.0

    27.0a

    0.084 0.756 1.287 1.007 0.245 0.35435.2a 0.123 0.820 1.240 1.006 0.208 0.29746.5a 0.181 0.871 1.178 1.014 0.150 0.27660.1a 0.250 0.907 1.144 1.024 0.111 0.27287.9a 0.392 0.947 1.105 1.036 0.064 0.254100.4a 0.460 0.958 1.084 1.048 0.033 0.252116.6a 0.541 0.968 1.077 1.081   0.004 0.305140.8a 0.669 0.980 1.057 1.116   0.055 0.332153.3a 0.740 0.985 1.042 1.152   0.101 0.350179.8a 0.904 0.995 1.003 1.202   0.181 0.234198.4b 1.0 1.0

    408.2 30.4b 0.0 0.092.0a 0.099 0.693 1.206 1.005 0.182 0.259108.3a 0.125 0.745 1.205 1.005 0.181 0.257157.1a 0.206 0.837 1.179 1.008 0.157 0.247242.4a 0.350 0.909 1.143 1.027 0.108 0.280262.1a 0.387 0.920 1.127 1.027 0.093 0.263304.8a 0.461 0.938 1.112 1.035 0.071 0.272

    138   W.-P. Tai et al. / Fluid Phase Equilibria 384 (2014) 134–142

  • 8/16/2019 Furfural-FPE-2014

    6/9

     Table 6  (Continued)

    T (K)   P (kPa)   x1   y1   g 1   g 2   ln (g 1/g 2) (GE/RT)/ x1 x2

    346.1a 0.536 0.951 1.092 1.062 0.027 0.302402.4a 0.651 0.967 1.050 1.083   0.030 0.263433.5a 0.715 0.974 1.031 1.112   0.075 0.256512.3a 0.857 0.987 1.014 1.271   0.226 0.375591.4b 1.0 1.0

    a u(T )=0.1K;  u(P )=0.1%;  u( x1)=0.005; u( y1)=0.005.b Calculated from the extended Antoine equation.

     Table 7

    VLE data of furan (1)+ furfural (2)a.

    T (K)   P (kPa)   x1   y1   g 1   g 2   ln(g 1/g 2) (GE/RT)/ x1 x2

    353.2 5.9b 0.0 0.044.7a 0.08 0.875 1.180 1.012 0.153 0.32785.4a 0.164 0.939 1.169 1.016 0.141 0.282135.4a 0.271 0.965 1.141 1.031 0.101 0.295194.8a 0.401 0.979 1.111 1.049 0.057 0.296214.4a 0.459 0.982 1.067 1.085   0.016 0.297248.0a 0.541 0.986 1.044 1.130   0.079 0.319291.3a 0.642 0.990 1.028 1.187   0.144 0.344315.7a 0.703 0.992 1.014 1.225   0.189 0.335360.0a 0.802 0.995 1.007 1.279   0.239 0.342410.4a 0.918 0.998 0.995 1.371   0.320 0.285452.4b 1.0 1.0

    373.2 13.5b 0.0 0.084.7a 0.073 0.845 1.501 1.014 0.392 0.631148.9a 0.155 0.915 1.330 1.043 0.243 0.608212.2a 0.248 0.944 1.208 1.070 0.121 0.525319.2a 0.405 0.968 1.119 1.110 0.008 0.447348.7a 0.459 0.972 1.077 1.152   0.068 0.446408.5a 0.548 0.979 1.053 1.181 -0.115 0.418471.1a 0.656 0.985 1.009 1.244   0.210 0.359514.1a 0.721 0.988 0.997 1.315   0.277 0.369591.3a 0.820 0.993 0.999 1.323   0.281 0.337668.1a 0.920 0.997 0.996 1.395   0.337 0.314735.8b 1.0 1.0

    408.2 46.4b 0.0 0.0185.8a 0.080 0.754 1.392 1.020 0.311 0.605273.7a 0.140 0.835 1.281 1.048 0.201 0.624432.5a 0.257 0.900 1.162 1.105 0.050 0.590648.6a 0.411 0.942 1.106 1.133   0.025 0.475

    709.4a

    0.457 0.950 1.087 1.138   0.045 0.437823.3a 0.547 0.961 1.050 1.192   0.127 0.427963.1a 0.653 0.972 1.020 1.251   0.204 0.4001058.6a 0.719 0.978 1.011 1.296   0.248 0.3981220.8a 0.821 0.987 1.007 1.319   0.270 0.3741402.8a 0.931 0.995 1.002 1.430   0.355 0.4171521.0b 1.0 1.0

    a u(T )=0.1K;  u(P )=0.1%;  u( x1)=0.005; u( y1)=0.005.b Calculated from the extended Antoine equation.

     Table 8

    Results of thermodynamics consistency tests.

    Consistency test indexa GE/RT coef cientb ln(g 1/g 2) coef cientc

    T  (K)   d   A I 1   I 2   C 0   C 1   C 2   D0   D1   D2   D3

    2-Methylfuran (1) + furfuryl alcohol (2)353.2 4.92 (+) 0.55 (+) 5.8 (+) 7.4 (+) 0.710 0.336 0.394 0.005 0.791 0.269 0.287373.2 4.08 (+) 0.73 (+) 17.1 (+) 18.5 (+) 0.759 0.227 0.423   0.007 0.727 0.180 0.275408.2 4.22 (+) 2.10 (+) 11.2 (+) 7.7 (+) 0.787 0.293 0.137 0.021 0.853 0.231 0.068

    Isopropyl alcohol (1) + furfuryl alcohol (2)353.2 4.90 (+) 2.61 (+) 8.9 (+) 16.0 (+) 0.358 0.037   0.127 0.026 0.259 0.035   0.037373.2 2.24 (+) 2.34 (+) 7.5 (+) 11.8 (+) 0.280   0.007 0.011 0.023 0.237   0.010 0.052408.2 2.20 (+) 1.37 (+) 9.5 (+) 8.5 (+) 0.257 0.059 0.060 0.014 0.271 0.102 0.053

    Furan (1) + furfural (2)353.2 1.92 (+) 1.24 (+) 18.2 (+) 11.3 (+) 0.226 0.028   0.027   0.012 0.264 0.044   0.063373.2 2.47 (+) 0.40 (+) 3.2 (+) 25.3 (+) 0.327   0.152 0.033 0.004 0.369   0.105 0.019408.2 1.52 (+) 1.35 (+) 21.2 (+) 5.4 (+) 0.338   0.109 0.066   0.013 0.316   0.070 0.051

    (+): passes the consistency test.a Criteria for passing the thermodynamic consistency tests:  d

  • 8/16/2019 Furfural-FPE-2014

    7/9

    where   n   is the number of data points and  si   is the standarddeviation of the measured variable   i. In the correlations, thevalues of   s    were set to   s P = 0.1%,   s T =0.1K,   s  x1= 0.1%, ands  y1= 1%. The optimization has been made with the aid of Aspen Properties software.  Table 9  lists the physical propertiesof each constituent compound which are needed in thedata correlation.   Tables 10–12   report the correlated results

    from the Wilson–HOC, the NRTL-HOC, and the UNIQUAC-HOCmodels, respectively. The smoothed curves in   Figs. 2–4represent the calculated results. As can been seen from thetabulated values and the graphs, the data correlations aresatisfactory and the average absolute relative deviations(AARD) obtained from these three thermodynamic modelsare comparable.

    [

    0 0.2 0.4 0.6 0.8 1

     x1 , y1

    0

    200

    400

    600

    800

          P       /       k       P     a

    353.15 K

    373.15 K

    408.15 K

    NRTL-HOC

    Wilson-HOC

    UNIQUAC-HOC

    Fig. 2.   VLE of 2-methylfuran (1)+ furfural alcohol (2) at 353.2,373.2, and 408.2K (solidsymbols: experimental liquid phase; opensymbols: experimental vaporphase; circle:353.2 K; square: 373.2 K; triangle: 408.2 K; long dashed line: NRTL-HOC; short dashed line: Wilson–HOC; solid line: UNIQUAC-HOC).

    [

    0 0.2 0.4 0.6 0.8 1

     x1 , y1

    0

    400

    800

    1200

    1600

          P       /       k       P     a

    353.15 K

    373.15 K

    408.15 K

    NRTL-HOC

    Wilson-HOC

    UNIQUAC-HOC

    Fig. 3.   VLE of isopropyl alcohol (1)+ furfuryl alcohol (2)at 353.2,373.2, and408.2K(solid symbols: experimental liquid phase; open symbols: experimental vaporphase; circle: 353.2 K; square: 373.2 K; triangle: 408.2K; long dashed line: NRTL-

    HOC; short dashed line: Wilson–

    HOC; solid line: UNIQUAC-HOC).

    [

    0 0.2 0.4 0.6 0.8 1

     x1 , y1

    0

    200

    400

    600

          P       /       k       P     a

    353.15 K

    373.15 K

    408.15 K

    NRTL-HOC

    Wilson-HOC

    UNIQUAC-HOC

    Fig. 4.  VLE of furan (1)+ furfural (2) at 353.2, 373.2, and 408.2K (solid symbols:experimental liquid phase; open symbols: experimental vapor phase; circle:353.2K; square: 373.2K; triangle: 408.2K; long dashed line: NRTL-HOC; short

    dashed line: Wilson–

    HOC; solid line: UNIQUAC-HOC).

    140   W.-P. Tai et al. / Fluid Phase Equilibria 384 (2014) 134–142

  • 8/16/2019 Furfural-FPE-2014

    8/9

     Table 9

    Properties of the constituent compounds.

    Compound MWa (gmol1)   T bb (K)   T c

    b (K) 102 P cb (kPa)   V c

    b (m3 mol1)   Z cc hd Rg

    d (Å) qd r d vd md (Debye)

    2-Methylfuran 82.10 337.0 528.0 47.20 247 0.266 0.00e 2.983e 2.6280e 3.1338e 0.249e 0.650f 

    Furan 68.07 304.5 490.2 55.00 218 0.294 0.00 2.559 1.7400 2.4021 0.202 0.660Furfural 96.08 434.9 670.2 56.60 252 0.256 0.58 3.350 2.5000 3.1721 0.368 3.598Furfuryl alcohol 98.10 443.2 632.0 53.50 263 0.268 0.00 3.422 2.6760 3.3784 0.734 1.919Isopropyl alcohol 60.10 355.3 508.3 47.65 222 0.250 1.32 2.760 2.5276 2.9137 0.663 1.661

    a Taken from National Institute of Standards and Technology (NIST) Chemistry WebBook  [13].b Taken from thermodynamic databank of Aspen Plus process simulation package.c Estimated from  Z c= (P cV c)/(RTc).d Taken from thermodynamic databank of Aspen Plus process simulation package, except for 2-methylfuran.e Obtained from Aspen Plus property estimation by entering MW,  T b,T c,  P c,  V c and molecular structure.f  Taken from McClellan [18].

     Table 10

    Correlated results from the Wilson–HOC model.

    Mixture (1)+ (2)   T  (K)   a12a a21

    a b12a (K)   b21

    a (K)   DP /P  AARDb (%)   DT/T AARDb (%)   D x1/ x1 AARDb (%)   D y1/ y1 AARD

    b (%)

    2-Methylfuran +furfuryl alcohol 353.2   0.5190   1.2203 205.5 34.3 0.21 0.17 0.15 0.20373.2 0.52 0.38 0.40 1.03408.2 0.20 0.11 0.12 0.29

    Isopropyl alcohol + furfuryl alcohol 353.2 0.2879   0.6752   27.4 19.5 0.07 0.08 0.04 0.09

    373.2 0.11 0.10 0.11 0.27408.2 0.07 0.05 0.04 0.37

    Furan + furfural 353.2   7.2661 4.2939 2537.5   1582.1 0.20 0.10 0.18 0.22373.2 0.34 0.15 0.26 0.32408.2 0.30 0.15 0.23 0.71

    a Binary parameters in the Wilson model: ln Aij= aij+ bij/T .b AARD: average absolute relative deviation, dened as   DP  =P AARDð%Þ ¼ 100% =n

    Pnk¼1   jP 

    cal P expj =P exp

    k,   DT =T AARDð%Þ ¼ 100%=n S

    n

    k¼1   jT cal T expj=T exp

    k,

    D y1= y1 AARDð%Þ ¼ 100%=n Sn

    k¼1   j y1cal  y1

    expj= y1exp

    k, D x1= x1 AARD  %ð Þ ¼ 100%n   S

    n

    k¼1j x1

    cal  x1exp j

     xexp1

    k

    , where  n  is the number of data points.

     Table 11

    Correlated results from the NRTL-HOC model.

    Mixture (1)+ (2)   T  (K)   a12a a21

    a b12a (K)   b21

    a (K)   DP /P  AARDb (%)   DT /T  AARDb (%)   D x1/ x1 AARDb (%)   D y1/ y1 AARD

    b (%)

    2-Methylfuran+ furfuryl alcohol 353.2 1.6859 0.1097   154.3   126.8 0.23 0.18 0.15 0.20373.2 0.55 0.40 0.42 1.05408.2 0.19 0.11 0.12 0.32

    Isopropyl alcohol + furfuryl alcohol 353.2 0.9864   0.5469   63.0 57.4 0.07 0.09 0.04 0.09373.2 0.11 0.10 0.11 0.27408.2 0.06 0.05 0.04 0.36

    Furan + furfural 353.2   6.1195 8.9728 2243.6   3158.3 0.20 0.10 0.18 0.22373.2 0.37 0.18 0.28 0.34408.2 0.28 0.14 0.22 0.70

    a Binary parameters in the NRTL model:  t ij= aij+ bij/T  and  a = 0.3 for all binary systems.b AARD: average absolute relative deviation, dened as   DP =P AARDð%Þ ¼ 100%=n S

    n

    k¼1   jP cal P expj=P exp

    k,   DT =T AARDð%Þ ¼ 100%=n

    Pnk¼1   jT 

    cal T expj=T exp

    k,

    D y1= y1 AARDð%Þ ¼ 100%=n Sn

    k¼1   j ycal1    y

    exp1   j= y

    exp1

    k

    , D x1= x1 AARDð%Þ ¼ 100%n   Sn

    k¼1j xcal1    x

    exp1   j

     xexp1

    k, where n  is the number of data points.

     Table 12Correlated results from the UNIQUAC-HOC model.

    Mixture (1)+ (2)   T  (K)   a12a a21

    a b12a (K)   b21

    a (K)   DP /P  AARDb (%)   DT /T  AARDb (%)   D x1/ x1 AARDb (%)   D y1/ y1 AARD

    b (%)

    2-Methylfuran +furfuryl alcohol 353.2   0.6592 0.0385   8.5 82.0 0.22 0.18 0.15 0.21373.2 0.53 0.39 0.41 1.05408.2 0.19 0.11 0.12 0.31

    Isopropyl alcohol + furfuryl alcohol 353.2   0.4936   0.3252 18.6   18.4 0.07 0.08 0.04 0.09373.2 0.11 0.10 0.11 0.27408.2 0.07 0.05 0.04 0.37

    Furan +furfural 353.2 2.7895 5.2360   912.8 1717.0 0.21 0.11 0.19 0.23373.2 0.37 0.17 0.28 0.35408.2 0.31 0.16 0.24 0.74

    a Binary parameters in the UNIQUAC model:  t i j= exp (aij+ bij/T ).b AAD: average absolute relative deviation, dened as   DP =P AARDð%Þ ¼ 100%n   S

    n

    k¼1jP cal P exp j

    P exp

    k,   DT =T AARDð%Þ ¼ 100%n   S

    n

    k¼1jT cal T exp j

    T exp

    k,

    D y1= y1AARDð%Þ ¼100%

    n   Sn

    k¼1j ycal

    1   y

    exp1

      j

     yexp1 k, D x1= x1AARDð%Þ ¼

    100%n   S

    n

    k¼1j xcal

    1   x

    exp1

      j

     xexp1 k, where  n  is the number of data points.

    W.-P. Tai et al. / Fluid Phase Equilibria 384 (2014) 134–142   141

  • 8/16/2019 Furfural-FPE-2014

    9/9

    5. Conclusion

    Twenty three new vapor pressure data of 2-methylfuran aremeasured in at temperatures ranging from 353 to 409 K andcorrelated with the extended Antoine equation. Isothermal VLEdata are also determined experimentally with a static apparatusfor the binary systems of 2-methylfuran + furfuryl alcohol, isopro-pyl alcohol + furfuryl alcohol, and furan+ furfural at temperaturesat 353.2,373.2, and 408.2 K. No azeotropes are found in these threeinvestigated systems. The experimental results revealed that allthese three systems are positive deviation from Raoult’s law. TheWilson–HOC, the NRTL-HOC, and the UNIQUAC-HOC models canaccurately correlate the new VLE data obtained from this study.The parameters determined from this study are useful for theprocess simulation and design for the systems containing furfuraland its derivatives.

     Acknowledgements

    The authors gratefully acknowledge the  nancial support fromthe National Science Council, Taiwan, through Grant No. NSC102-2622-E011-006-CC1. The authors thank to Prof. J. Ward, Prof. I.L.Chien, and Prof. C.L. Chen for valuablediscussions and also thank to

    Dr. B.S. Gupta for density measurement.

    References

    [1]   S.G. Wettstein, D.M. Alonso, E.I. Gürbüz, J.A. Dumesic, Curr. Opin. Chem. Eng.1(2012) 218–224.

    [2]  A.B. Merlo, V. Vetere, J.F. Rugerra, M.L. Casella, Catal. Commum. 10 (2009)1665–1669.

    [3]  G.M. Wilson, J. Am. Chem. Soc. 86 (1964) 127–130.[4]  H. Renon, J.M. Prausnitz, AIChE J. 14 (1968) 135 –144.[5]  D.S. Abrams, J.M. Prausnitz, AIChE J. 21 (1975) 116 –128.[6]  A.S. Smith, J.F. La Bonte, Ind. Eng. Chem. 44 (1952) 2740–2743.[7]  M. Nala, E. Auger, I. Gedik, N. Ferrando, M. Dicko, P. Paricaud, F. Volle, P.J.

    Passarello, J.C.D. Hemptinne, P. Tobaly, P. Stringari, C. Coquelet, D. Ramju-gernath, P. Naidoo, R. Lugoc, Fluid Phase Equilib. 337 (2013) 234 –245.

    [8]  H. Guerrero, C. Lafuente, F. Royo, L. Lomba, B. Ginner, Energy Fuels 25 (2011)3009–3013.

    [9]   TRC, Thermodynamic Tables Non-Hydrocarbons, Thermodynamic ResearchCenter, Texas A&M University, College Station, TX, 1966 .

    [10]  M.J. Lee, C.H. Hu, Fluid Phase Equilib. 109 (1995) 83–98.[11]  S.M. Hwang, M.J. Lee, H.M. Lin, Fluid Phase Equilib. 172 (2000) 183–196.[12]  C. Eon, C. Pommier, G. Guiochon, J. Chem. Eng. Data 16 (1971) 408–410.[13] NIST Chemistry WebBook, NIST Standard Reference Database No. 69-March

    2003 Release, National Institute of Standard and Technology, USA, 2003.Available from http://webbook.nist.gov/chemistry/.

    [14]  K.A. Kobe, A.E. Ravicz, S.P. Vohra, J. Chem. Eng. Data 1 (1956) 50 –56.[15]  C.F. Spencer, R.P. Danner, J. Chem. Eng. Data 17 (1972) 236–241.[16]   J.G. Hayden, J.P. O’Connell, Ind. Eng. Chem. Process Des. Dev. 14 (1975)

    209–216.[17]  K. Kojima, H.M. Moon, K. Ochi, Fluid Phase Equilib. 56 (1990) 269 –284.[18]   A.L.McClellan,Tablesof Experimental Dipole Moments,W.H. Freemanand Co.,

    San Francisco, London, 1963.

    142   W.-P. Tai et al. / Fluid Phase Equilibria 384 (2014) 134–142

    http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0005http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0005http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0005http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0005http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0010http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0010http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0010http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0010http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0015http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0015http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0015http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0020http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0020http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0020http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0025http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0025http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0025http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0030http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0030http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0030http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0030http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0035http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0035http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0035http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0035http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0035http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0040http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0040http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0040http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0040http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0045http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0045http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0050http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0050http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0050http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0055http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0055http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0055http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0060http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0060http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0060http://webbook.nist.gov/chemistry/http://webbook.nist.gov/chemistry/http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0070http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0070http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0070http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0075http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0075http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0075http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0075http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0080http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0080http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0080http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0080http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0080http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0080http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0085http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0085http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0085http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0090http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0090http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0090http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0090http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0085http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0080http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0080http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0075http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0070http://webbook.nist.gov/chemistry/http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0060http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0055http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0050http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0045http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0045http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0040http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0040http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0035http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0035http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0035http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0030http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0025http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0020http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0015http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0010http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0010http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0005http://refhub.elsevier.com/S0378-3812(14)00597-4/sbref0005