fusion

101
JAERI-Data/Code—98-021 JAERI-Data/Code 98-021 JP9808029 DATA COLLECTION OF FUSION NEUTRONICS BENCHMARK EXPERIMENT CONDUCTED AT FNS/JAERI August 1998 Fujio MAEKAWA, Chikara KONNO, Yoshimi KASUGAI, Yukio OYAMA and Yujiro IKEDA 29-43 B * £ t) ffl 9L Pfr Japan Atomic Energy Research Institute

Upload: fghjhgf

Post on 31-Oct-2014

50 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Fusion

JAERI-Data/Code—98-021

JAERI-Data/Code98 -021 JP9808029

DATA COLLECTION OF FUSION NEUTRONICSBENCHMARK EXPERIMENT CONDUCTED AT FNS/JAERI

August 1 9 9 8

Fujio MAEKAWA, Chikara KONNO, Yoshimi KASUGAI,Yukio OYAMA and Yujiro IKEDA

2 9 - 4 3B * £ =£ t) ffl 9L Pfr

Japan Atomic Energy Research Institute

Page 2: Fusion

(T319-1195

- (=r3i9-ii95 S*ft

This report is issued irregularly.

Inquiries about availability of the reports should be addressed to Research Information

Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute,

Tokai-mura, Naka-gun, Ibaraki-ken, 319-1195, Japan.

©Japan Atomic Energy Research Institute, 1998

Page 3: Fusion

JAEKI-Data/Code 98-021

Data Collection of Fusion Neutronics Benchmark Experiment Conducted at FNS/JAERI

Fujio MAEKAWA, Chikara KONNO, Yoshimi KASUGAI,

Yukio OYAMA and Yujiro IKEDA

Department of Materials Science

Tokai Research Establishment

Japan Atomic Energy Research Institute

Tokai-mura, Naka-gun, Ibaraki-ken

(Received July 1, 1998)

Fusion neutronics benchmark experimental data have been continued at the

Fusion Neutronics Source (FNS) facility in JAERI. This report compiles unpublished

results of the in-situ measurement experiments conducted by the end of 1996.

Experimental data of neutron spectra in entire energy range, dosimetry reaction rates,

gamma-ray spectrum and gamma-ray heating rates are acquired for five materials of

beryllium, vanadium, iron, copper and tungsten. These experimental data along with

data previously reported are effective for validating cross section data stored in evaluated

nuclear data files such as JENDL.

Keywords : Fusion Neutronics, Benchmark Experiment, Data Collection, FNS,

Beryllium, Vanadium, Iron, Copper, Tungsten

Page 4: Fusion

JAERI-Data/Code 98-021

WM FNS"??

(1998^ 7 j !

m (FNS)

- K i , 1996

- ^ 11 ^ ^ 7 r

: T319-1195

Page 5: Fusion

JAERI-Data/Code 98-021

Contents

1. Introduction - 1

2. Clean Benchmark Experiment — ------- ---- 2

2.1 Experimental Configuration 2

2.2 Source Condition -- --- 3

2.3 Measurement Techniques - - -- 4

2.3.1 Neutron Spectrum in MeV Energy Region by NE213 4

2.3.2 Neutron Spectrum in keV Energy Region by Proton

Recoil Gas Proportional Counters - 6

2.3.3 Neutron Spectrum in eV Energy Region by the

Slowing Down Time Method - 8

2.3.4 Foil Activation Method -- 11

2.3.5 Tritium Production Rate with Li-Containing Pellet 13

2.3.6 Cherencov Radiation Counting Method for 32P Activities - -- 14

2.3.7 Gamma-Ray Spectrum by BC537 17

2.3.8 Gamma-Ray Heating Rate by TLD -- 18

3. Experimental Data - --•- 21

3.1 Beryllium - - - —- 21

3.2 Vanadium - - 22

3.3 Iron 22

3.4 Copper - - -•• 23

3.5 Tungsten - 23

4. Summary - 25

Acknowledgment — - -.-- 25

References - 26

Appendix Input Data of MCNP - —-- 79

Page 6: Fusion

JAERI-Data/Code 98-021

1. \tKtbK - - - 1

2. ?*)->t>i-'?~-9W&. - — - 2

2.1 Hi&Eg - - 2

2.2 £H«# - - - - ----- 3

2.3 ' fUJgf£#T - - - — - - 4

2.3.1 NE213 K£2> MeV x ^ ^ - M ^ t t ^ ^ h )V - 4

2.3.2 Kfm=?-'ft*ycm\%M^£z> k e v ^ * ^ - ^ ^

cfjf^X^^ Ml/ 6

2.3.3 m&ffiffi&Kl:2>eVx-*A'*f-ffi&<7)q'&=?'Z<<9\>fr- 8

2.3.4 &MMm - - 11

2.3.5 1Jf>AM^^7f(ai>fVf'?A4^ 13

2.3.6 f-^^>3 7S:l«^^J:^32P»:ltfg - 14

2.3.7 B C 5 3 7 K = f c & 7 # l U ^ Ml' ;-•—-. - 17

2.3.8 TLD K £ Z r $m§&1fc& 18

3. mmr-? ----- - - - — 21

3.1 ^ ' J V 1 ) ^ — - - 21

3.2 Aty^A • 22

3.3 $; 22

3.4 iH • - 23

3.5 r/Wf> - 23

4. tttb 25

m n 25##» 26

ft §1 M C N P ^ A ^ r ' - ^ —- 79

IV

Page 7: Fusion

JAERI-Data/Code 98-021

1. Introduction

Since the first operation of the Fusion Neutronics Source (FNS) facility^ in 1981,a number of fusion neutronics benchmark experiments for various materials have beenconducted by using D-T neutrons at FNS. These experimental data have contributed toimprovement and validation of evaluated nuclear data files, such as the JapaneseEvaluated Nuclear Data Library 2) (JENDL) and the Fusion Evaluated Nuclear DataLibrary 3) (FENDL), which are used for nuclear designs of fusion reactors and manyother applications.

The benchmark experiments at FNS are classified into two categories: (1) theTime-Of-Flight (TOF) neutron spectrum measurement and (2) the in-situ neutron andgamma-ray measurement; the latter is so-called the clean benchmark experiment.Experimental data obtained by the end of 1992 have been already summarized in severalJAERI reports 4'8). Since then, experimental efforts have still been continued mainly inthe clean benchmark experiment for fusion relevant important materials including Vand W. Also, there have been development of new measurement techniques.

There are several distinctive features in the comprehensive clean benchmarkexperiment;

(i) whole energy neutron spectrum with a combination of three techniques, i.e., anNE213 spectrometer, proton recoil gas proportional counters and. the slowingdown time method for the energy regions of MeV, keV and eV, respectively,

(ii) many dosimetry reaction rates by the foil activation method to provide spectrumindices,

(iii) secondary gamma-ray spectrum and heating rate,(iv) secondary gamma-ray data associated with both the threshold and the (n,y)

reactions,(v) thick experimental assemblies suitable to investigate transport effects for deeply

penetrated 14-MeV neutrons as well as multiply scattered low energy neutrons,and

(vi) negligibly small background neutrons from outside of the assembly because theexperimental assemblies function as a shield materials against the backgroundneutrons by themselves.

Table 1 summarizes materials and measured quantities in the clean benchmarkexperiments by the end of 1996. This report compiles numerical experimental data andfigures for beryllium, vanadium, iron, copper and tungsten, which have not been reportedso far. Experimental data contained in this report are indicated by black circles inTable 1.

- 1 -

Page 8: Fusion

JAERI-Data/Code 98-021

2. Clean Benchmark Experiment

2.1 Experimental Configuration

The experimental configuration was basically the same as the previous one47).Table 2.1.1 summarizes dimensions of the experimental assemblies. The experimentalassemblies of beryllium, copper and tungsten were made by stacking bricks of (50.7 ~50.8 mm)3 with thin aluminum support frames in quasi-cylindrical shapes. Figure 2.1.1shows an example view of the copper assembly. The vanadium assembly was a cube of(254 mm)3. Four side surfaces and a rear surface of the vanadium assembly was coveredwith a graphite reflector of 51 mm in thickness, as shown in Fig. 2.1.2, to reduce leakageneutrons from the rather small assembly and incoming background neutrons from theoutside. The iron assembly had a real cylindrical shape as shown in Fig. 2.1.3. Severalexperimental channels for insertion of detectors were set on the lateral surface of theassembly, and detectors were placed on the central axis of the assembly. The experimentalassemblies were apart from the experimental room walls and floor at least 4 m, and thediameters and thicknesses of the assemblies were large. Hence, contribution of thebackground neutrons and gamma-rays coming from the room walls and floor on themeasured quantities was negligibly small.

The experimental assembly was located in front of the neutron source at a distanceof 200 mm from the target. The tritium target of ~ 3.7 x 1011 Bq was bombarded by adeuteron beam of 350 keV energy to produce D-T neutrons. A number of source D-Tneutrons produced during a measurement was determined by the associated alpha-particledetector 9) with accuracy of 2~3 %. For on-line measurements such as spectrummeasurements, a counter was inserted into one of the experimental channels and ameasurement was performed during neutron generation. The similar measurement wasrepeated changing the detector position one by one. For off-line measurements such asirradiation of dosimetry foils and TLD, samples were located in the plural detectorchannels at the same time, and irradiated simultaneously for necessary period of time (5minutes ~ 10 hours).

o

Page 9: Fusion

JAERI-Data/Code 98-021

2.2 Source Condition

The D-T neutron source can be roughly described as an isotropic point 14-MeVneutron source. The source neutron spectrum and intensity, however, depend slightlyon the emission angle with respect to the deuteron beam direction. The angle-dependentsource characteristics were investigated experimentally and theoretically in detail, anda source subroutine of the Monte Carlo transport calculation code MCNP-410) has beenestablished to simulate the source condition precisely. n ) Although use of the sourcesubroutine is recommended to give the best results, the source spectrum of neutronsemitted toward the 0 degree direction can be used as the incident neutron spectrum onthe whole front surface of the assembly. It has revealed that there is no serious degradationin the calculated results. The source neutron spectrum toward the 0 degree is shown inFig. 2.2.1, and input cards of MCNP for description of the source spectrum are shown inFig. 2.2.2. The s i l and spl cards indicate upper neutron energies of the energy bins inMeV and probabilities in the bins, respectively. The d i r and vec parameters with thesb2 card are used for variance reduction with the source biassing method. The weightof a source neutron specified by the wgt parameter, 1.1261, is larger than 1.0 becausegenerated D-T neutrons are emitted to the forward direction more than the backwarddirection with respect to the deuteron beam direction.

The tritium target region is also a source of gamma-rays, namely, target gamma-rays, by interaction of the source neutrons with structural materials of the target.Consideration of the target gamma-rays, however, is not needed in calculations of gamma-ray heating rates because contribution of the target gamma-ray to the measured heatingrates has been already subtracted in the experimental data. On the other hand, thetarget gamma-ray contribution is involved in the measured gamma-ray spectra. Thecontribution at the detector positions deep inside the experimental assemblies is negligible,at most a few percentage, because the experimental assembly largely attenuate thetarget gamma-rays. Accordingly, it is not necessary to consider the target gamma-raysin transport calculations for the clean benchmark experiments.

- 3 -

Page 10: Fusion

JAERI-Data/Code 98-021

2.3 Measurement Techniques

2.3.1 Neutron Spectrum in MeV Energy Region by NE213

NE213 SpectrometerA 14 mm-diameter spherical NE213 liquid organic scintillator12) is used as the

fast neutron spectrometer. An NE213 liquid of 1.38 x 103 mm3 is contained in a sphericalcell of Pyrex glass of 1 mm in thickness. A sectional view of the detector is shown in Fig.2.3.1. The scintillator is mounted on a photomultiplier tube (Hamamatsu Photonics,R647-02) with a quartz light guide of 11 mm diameter and 5 mm length. One side of thelight glass is shaped in sphere so as to fit the light guide to the surface of the glass cell.The glass cell and the light guide are coated with the NE560 reflector paint made ofMgO.

MeasurementMeasurements were carried out by inserting the detector into the experimental

channel hole of 22 mm (j). Figure 2.3.2 shows the electronic circuit used for themeasurements. Output signals from the anode were terminated by a 100 k£l register atthe input of the pre-amplifier. The output signals from the pre-amplifier were then fedto a delay-line amplifier. For the neutron-gamma-separation, the rise time discriminationtechniques was used. The rise time and pulse height data were taken in a two-dimensionalarray. Typical measuring time for each experimental run was 2000 sec. The neutronintensity was adjusted so that counting rates do not exceed 2000 cps.

Data ProcessingThe two dimensional data were separated into neutron and gamma-ray events,

and a pulse height spectrum due to only neutrons was obtained. The pulse heightspectrum was then unfolded to obtain neutron energy spectrum by the FORIST code 13)

using the neutron response matrix previously determined.14) The response matrix iscalculated by a Monte Carlo method, while the responses in specially important energyregions, i.e., 13.6 to 14.8 MeV, are directly measured and replaced with the calculatedresponse. The FORIST code provides the appropriate energy resolution function byinternal iteration. The resolution function, defined as the window function W(E) in thecode, is given together with the unfolded results for each run. The spectrum observed,0obs(E), is expressed as follows:

2a\E)

where &true(E) is the true neutron spectrum without any deformation, and

(2-1)

- 4 -

Page 11: Fusion

JAERI-Data/Code 98-021

The obtained spectrum at the front surface of the experimental assembly has an oscillatorystructure caused by the unfolding procedure due to mismatching between the real detectorresponse function and the used one. At the position, since the 14-MeV peak flux isusually by more than two orders of magnitude larger than the flux around 5-10 MeVregion, the flux error in the 5-10 MeV region is by two orders of magnitude moresensitive to the error of the peak flux through the response function. In the deepposition, some small and broad oscillation below 8 MeV is sometimes seen. This ispartly due to the incompleteness of neutron and gamma-ray separation. A fraction ofgamma-rays increase with the depth and then some of y-ray contribution are counted asthe neutron events.

Error AssessmentThe accuracy of the neutron response in the neutron energy range of 13.6 to 14.8

MeV is about 2 % which was experimentally confirmed. However, the calculated lightoutput response corresponding to the proton energy below ~ 2 MeV gives a relativelypoor representation. Hence, the errors increase in the lower energy range by accumulationof errors in the higher energy range, especially for the case where 14 MeV neutrons aredominant. Table 2.3.1 summarizes the systematic errors which are estimated from theunfolded results for measurement of mono-energetic neutrons of 14.8 MeV. The error inthe range below the peak energy is generated by the mismatch of the response for 14.8MeV neutrons. The fraction in the table denotes the ratio of the error in the interestedenergy range due to the response error to that of the peak flux around 14 MeV. Herethe energy dependent error is represented as:

Error{ %) for #(£„) = ( fraction) x 0peak x 100. (2-3)

If the peak flux around 14 MeV is, for example, ten times larger than the flux below 10MeV, the proton spectra in the range of 6 to 10 MeV might be distorted by -10 to -20 % ,at maximum.

The energy calibration error also affects the unfolded results. The effects ofvariation in the energy axis are about 3 % above 10 MeV and less than 2 % for 1 to 10MeV range, respectively. Lastly, there is the common error of 2 % for the neutronsource intensity. The overall error range was 4 % for the flux above 10 MeV and 10 - 20% below 10 MeV depending on the spectrum shape.

- 5 -

Page 12: Fusion

JAERI-Data/Code 98-021

2.3.2 Neutron Spectrum in keV Energy Region by Proton Recoil Gas Proportional Counters

Proton Recoil Gas Proportional CountersA small counter head, a new data acquisition technique and the related electronics

for proton-recoil gas proportional counter (PRC) were developed15'16) by E. F. Bennett atArgonne National Laboratory to measure the neutron spectrum inside the experimentalassembly in the frame of the JAERI/USDOE collaboration program on fusion blanketneutronics. Experimental details for the iron assembly is described in the reference17).

The counter has a cylindrical shape as shown in Fig. 2.3.3. It is made of type 304stainless steel of 0.41 mm in thickness. The outer diameter of the counter is 19 mm toattain better spatial resolution with respect the depth in the experimental assemblywhile the effective length of the counter is 127 mm. The thickness of the anode wire is20 jxm. Field tubes are also added to define the active counter volume. The counter isinserted into an experimental hole of 21 mm in diameter with its pre-amplifier.

There are two types of counter to measure neutron spectrum in a wide energyrange. Both counters are identical in their dimensions, but different gases are filled in.Hydrogen gas at 0.5677 MPa (5.789 kgf/cm2) with 1 percent of CH4 is filled in onecounter for low-energy neutrons from 3 keV to 150 keV while 50-50 mixture of hydrogenand argon gases with 1.8 percent of nitrogen at 0.6102 MPa (6.222 kgf/cm2) are filled inanother counter for high-energy neutrons from 150 keV to 1 MeV. Argon atoms reduceranges of recoiled proton since they have large stopping power. Energy scale is calibratedby using the peak at 27 keV corresponding to the resonance valley of iron cross sectionand the thermal peak at 626 keV of the 14N(n,p)14C reaction.

Electronics and MeasurementA new data acquisition technique 15) was developed to reduce overall time for

measurement and data process. In the conventional technique, several runs changinghigh voltages many times are needed to obtain a spectrum, while in the new technique,data are taken by a single measurement run using high voltage sweep in a ramp shape.

The block diagram of the data acquisition system is shown in Fig. 2.3.4. Aspecially designed small preamplifier of 20 mm x 20 mm x 200 mm, which could beinserted in the experimental assembly, was attached to the counter head. Time-dependentsaw-tooth shape voltage was generated by an analog function generator. The voltagewas supplied to a programmable high-voltage DC/DC converter, and then, output highvoltage, which changed slowly with a period of 165 seconds in the saw-tooth shape, wassupplied to the counter. The high voltage ranged from 3000 to 4200 V and from 2400 to3000 V for hydrogen and hydrogen/argon counters, respectively. The generated highvoltage was monitored using a dividing resistance, which scaled down the high voltageby ~ 1/500. Test pulses of which rise time was larger than that of pulses caused byionizing events were fed to the preamplifier.

One of the counters was inserted in the experimental assembly or attached onthe front surface of the assembly. Measurement was performed with generating D-T

- 6 -

Page 13: Fusion

JAERI-Data/Code 98-021

neutrons at the target. Measurement with the other counter was also performed.Two analog pulse amplifiers were used for pulse shape discrimination against

gamma ray events. One was an simple integration amplifier (Y-amplifier) to producedoutput signals proportional to input pulse heights, i. e., recoiled proton energies. Theother amplifier (X-amplifier) had a much shorter shaping time constant compared withthe Y-amplifier. The output signal was proportional to the pulse height of input signalas well as the reciprocal of rise time of the input signal. The output signals of X-amplifier,Y-amplifier and the dividing resistor were digitized into 4096 channels by an analog-digitalconverter using a multiplexer and logical circuits. The digitized data are taken to apersonal computer through an interface board of LSI 8255A. The data acquisitionprogram calculated 1) ratios of pulse heights for the X-amplifier to those of the Y-amplifier,which was proportional to the reciprocal of the rise times, 2) gas multiplication factorscorresponding to the applied high voltage and 3) the recoiled proton energies in logarithmicscale by using the output signals from the Y-amplifier and the gas multiplication factors,event by event. The ratios of X/Y and the recoiled proton energies were stored in a twodimensional array (32 channels x 512 channels).

Data ProcessingIn the off-line data processing, recoil proton events and test pulse events were

separated by using the rise time information for each recoiled proton energy. The testpulse events were used to estimate dead time loss and to normalize recoil proton events.Neutron spectra &(E) was derived using the following equation,

'no-

where N:S:o(E):D(E):

" N-S-a(E) o{E) dE '

hydrogen atom number,source neutron strength,n-p scattering cross-section, andrecoil proton spectrum.

Error Assessment

E "W (2.4)

Possible error sources of this technique are gas pressure (hydrogen atom number),n-p scattering cross section, fitting error for differentiation of recoil proton spectrum dueto count statistics and calibration of recoil proton energy. The fitting error is thelargest, ~ 3-10 % above 10 keV, while the other errors are expected to be less than 1%.Neutron spectra below 10 keV tend to become smaller due to the uncertainty of theW-value, which is the average energy loss per ion pair. The error due to W-value is notincluded in the experimental errors.

- 7 -

Page 14: Fusion

JAERI-Data/Code 98-021

2.3.3 Neutron Spectrum in eV Energy Region by the Slowing Down Time Method

MeasurementNeutron spectra in the energy region below 10 keV were measured by the Slowing

Down Time (SDT) method1820) in the beryllium, vanadium, iron and copper assemblies.The technique utilizes characteristics of neutron slowing down in a medium incorporatingwith a pulsed neutron source. A measurement for the tungsten assembly was alsoattempted, but it was not in successful due to practically too small number of neutronsin the energy region of interest.

A BF3 gas proportional counter of 14 mm in outer diameter and 99 mm ineffective length containing 96 % boron-10 enriched BF3 gas of 71.5 kPa was used forneutron detection. The effective number of boron-10 atoms in the counter was determinedas 2.18 x 1020 with accuracy of 3 % by utilizing a standard thermal neutron field. Thecounter was inserted into one of the experimental holes of the experimental assembly.

Pulsed neutrons, typically 1 us in pulse width and 200 us in pulse interval, wereinjected into the experimental assembly. The pulse interval of 200 us was determined inthe manner that all neutrons disappear in the experimental assembly in the time range.A block diagram of the electronic circuit employed is shown in Fig. 2.3.5. Timing signalsof the BF3 counter prepared by a constant fraction timing circuit triggered to start thetime-to-pulse-height convertor (TPHC). Timing signals from a master pulse generatorwere delayed for about 160 us, and fed into TPHC as stop signals. Electronic noisesignals and gamma-ray events were rejected by pulse height discrimination. Time-spectraof the 10B(n,a) reaction rate was recorded by a multi-channel analyzer. Typical countingtime and total number of generated neutrons were 20 - 60 minutes and 0.1-1 x 1012

neutrons, respectively.To calibrate the energy scale of the measured time-spectra, the resonance filter

method and the capture-gamma method were adopted with various resonance filterssuch as Mn (1.1 mm thickness), Co (0.2 mm), Cu (2 mm), In (0.1 mm), W (0.2 mm) andAu (0.04 mm). The energies of the resonance peaks were in a range from 1.46 eV of Into 579 eV of Cu. In the resonance filter method, the BF3 counter was covered with one ofthe filters, and time-spectra of the 10B(n,(x) reaction rate were measured in just the sameway as without the filters. For the capture-gamma method, an argon gas proportionalcounter was used. Time-spectra of detected gamma-ray events were measured with andwithout the resonance filters.

Rejection of Thermal Neutron Events in the Beryllium Experiment19)

Since the neutron capture cross section of beryllium was extremely small, therewere a great number of thermal neutrons in the assembly. Most of detection events bythe BF3 counter, more than 99 %, were caused by the thermal neutrons. Hence countingrates for object neutrons between 0.3 eV and 10 keV had to be suppressed in a very lowlevel to keep total counting rates constant. In addition, it took a long time to decay outthermal neutron fluxes in the assembly, the neutron pulse interval of 15 ms was required

Page 15: Fusion

JAERI-Data/Code 98-021

to confirm disappearance of thermal neutrons from the assembly. Measurement withthe long pulse interval was inefficient due to very low counting rate, which must bemuch less than neutron pulse generation rate for the electronic circuit employed in themeasurement. In this case, the counting rate had to be less than 10 cps.

To reduce the thermal neutron detection, the BF3 counter was covered with acadmium sleeve of 1 mm in thickness. The thermal neutron detection was almostcompletely eliminated by the Cd sleeve, and time-spectra could be measured with thepulse intervals of 200 [is. Accordingly, neutron spectra between 1 eV and 10 keV wereobtained with the necessary correction of neutron absorption by the cadmium sleeve.

Data ProcessingThe used filter materials have prominent resonance peaks in their neutron cross

sections. When two time-spectra, with and without a resonance filter, were compared, asmall dip and peak were observed in the time-spectrum with the resonance filter for theresonance filter method and the capture-gamma method, respectively. Since the dip andpeak were produced by the prominent resonance peak of the filter materials, the timedifference between the neutron generation and the dip and peak just corresponded tothe neutron slowing down time from the source energy to the resonance peak energy.By adopting this principle, neutron slowing down times could be determined experimentallyfor all the time-spectra with the filters.

The energy calibration curve, E(t), was calculated from time-dependent neutronenergy spectra, <p(t,E), given by transport calculations. The E(t) is given as,

fJ(j)(t,E)-E-dE

(2-5)J <t>(t,E)-dE

The measured slowing down times did not always agree with the calculated curve. Toattain good agreement between both, the time origin of the calculation was adjusted.Figure 2.3.6 shows examples of the calibration curves for the beryllium and copperassemblies.

The time-scale of the measured time-spectrum of the 10B(n,cx) reaction rate wasconverted into an energy-scale by using the adjusted calibration curve to obtain anenergy-spectrum of the reaction, C(E). Finally, neutron energy-spectra (j)(E) werederived in the energy range between 0.3 eV and 10 keV by taking account of the crosssection of 10B(n,a) reaction o(E), the number of effective 10B atoms in the counter N, thenumber of neutrons generated during the measurement Yn, a self-shielding correctionfactor of the counter fss(E) and a correction factor for the effective 10B cross sectionweighted by broadened neutron spectrum at a moment centered at E fa(E) . The <t>(E)is given as,

d>(E)= ^ . (2-6)a(E)-N-Yn-fJE)-fa(E)

- 9 -

Page 16: Fusion

JAERI-Data/Code 98-021

Experimental UncertaintyExperimental uncertainties associated with the measured spectra are summarized

in Table 2.3.2. The overall experimental uncertainties are dominated mostly by theuncertainties of the energy calibration curves. The lowest and highest energies calibratedare 1.4 eV and 579 eV. In the energy ranges outside the calibration energies, roughlybelow 1 eV and above 1 keV, the adjusted calibration curves are used. Especially in thehigher energy region above 1 keV where the slowing down time is short, larger uncertaintiesin the calibration curves are involved due to, in particular, the extrapolation process.Thus the experimental uncertainties for the energy region between 1 and 10 keV arelarger than those below 1 keV, as indicated in Table 2.3.2. In the energy range below 1keV, experimental uncertainties are around 10 %.

Energy Resolution and Correction FactorThe energy resolution and the correction factor are estimated by time-dependent

Monte Carlo transport calculations by the manner explained elsewhere 18). Table 2.3.2also summarizes typical energy resolution.

The best energy resolution of about 50~60 % for vanadium, iron and copper, andthat of 130 % for beryllium are consistent with the theoretically expected values18). Theenergy resolution for vanadium, iron and copper in energy regions where large resonancepeaks exist on their cross section, roughly above 300 eV, is worse than the theoreticalresolution. Energy resolution of a measured neutron spectrum at energy E comes froma divergence of neutron energy at a moment when mean neutron energy is E. If aresonance peak exists near the mean neutron energy E, it increases the divergence ofneutron energy, and also, energy resolution of the measured neutron spectrum near thepeak.

The correction factor for the effective 10B(n,a)7Li cross section fa(E), appeared inEq. (2-6), is defined as a ratio of the cross section at a discrete energy E to the crosssection averaged with a neutron spectrum at the moment when a mean neutron energyis E. Hence, better energy resolution gives a smaller correction factor. For vanadium,iron and copper, the correction factors for the energy range below 1 keV are less than 3%, and they increase up to 20 % with increase of energy. For these three materials andberyllium, the correction factors were not so large as at most 20 %.

- 1 0 -

Page 17: Fusion

JAERI-Data/Code 98-021

2.3.4 Foil Activation Method

Dosimetry ReactionsThe reaction rates were measured by the foil activation technique. To give

spectral indices for wide energy range, plural reactions with different threshold energieswere applied. Also some (n,y) reactions were added in the reaction rate measurement.In Table 2.3.3, reactions used are listed with their effective threshold energies. Fourdosimetry reactions, i.e., the 27Al(n,a)24Na, 93Nb(n,2n)92mNb, 115In(n,n')115mIn and197Au(n,y)198Au reactions, were commonly used for all the experiments because offacilitating the comparative study of neutronics products on different materialconfigurations. Cross sections of the dosimetry reactions taken from JENDL DosimetryFile21) are shown in Figs. 2.3.7 and 2.3.8.

Activation Foils and IrradiationTypical sample size was 10 mm in diameter and 1 mm in thickness for activation

foils except indium and gold. Indium foils had a dimension of 10 x 10 x 1 mm3. In orderto minimize the self-shielding effect for the 197Au(n,y)198Au reaction, gold foils with a sizeof 10 x 10 x 0.001 mm3 were adopted. The other ordinary threshold foils were set in theexperimental drawer channels for the axial distribution measurement.

The foils were irradiated for 4 - 1 0 hours with D-T neutrons and total neutronyields at the target required were 2 to 5 x 1015 n. Neutron yield was monitored by theassociated a-particle counting method. The irradiation history was recorded by usingthe multi-channel scaling (MCS) for the decay correction during irradiation.

Reaction Rate DeterminationAfter the irradiation, gamma-rays were measured with high-pure Ge detectors.

The detector efficiencies were calibrated by using the standard calibration gamma-raysources.

Reaction rate, RR, were derived from the corresponding gamma-ray peak countswith necessary corrections. The RR is given as,

(2-7)where,

A: decay constant (/sec),O. gamma-ray peak counts,A atomic mass,£ detector efficiency,W. sample weight,Na: Avogadro's number,a: natural abundance of the target element,b: gamma-ray branching ratio,

-i -i

Page 18: Fusion

JAERI-Data/Code 98-021

Y. neutron source strength (/sec)Sa: correction factor for the decay during irradiation,m. gamma-ray self absorption correction factor,I? irradiation time,fcc: cooling time, andtm: collection time.

The neutron yield fluctuation monitored with the MCS was used for the correctionof Sa. Counting loss due to coincidental sum-peak in the cascade gamma-rays wascorrected.

Experimental Error and UncertaintyMajor sources of the error for the reaction rate were the gamma-ray counting

statistics (0.1 ~ several %) and the detector efficiency ( 2 - 3 %). The error for sum-peakcorrection was estimated less than 2 % depending on the decay mode and fraction ofmultiple gamma-ray cascade. The error for the decay correction was reflected from theerror of half-life of the activity. If the half-life was accurate, the error for the saturat ionfactor should be less t h a n 1 % even for the short half-life activities.

The other errors associated with foil weight, gamma-ray self-absorption, irradiationtime, cooling time and counting time were negligibly small. The error for neutron yieldwas est imated to be 2 %. The overall error for the major par t of reaction rate ranged 3 ~6 %. Some data for high threshold reaction in the deep positions suffered from poorcounting statistics due to low activation rate.

- 1 2 -

Page 19: Fusion

JAERI-Data/Code 98-021

2.3.5 Tritium Production Rate with Li-Containing Pellet

Tritium production rates for lithium-6 and -7 in the beryllium assembly weremeasured with lithium-containing pellets. The tritium production cross sections takenfrom the JENDL Dosimetry File are shown in Figs. 2.3.9 and 2.3.10. The conventionalexperimental technique was adopted for the preparation of the Li-containing pellets andthe irradiations while a newly developed technique was employed for the preparation ofsamples for liquid scintillation counting. The new technique is described in detail inRefs. 22) and 23).

Preparation of Li-Containing Pellet and IrradiationDetector pellets of 12.8 mm in diameter and 2 mm in thickness were produced by

cold-pressing lithium carbonate (LigCOg) powder at ~ 6 ton/cm2 for 10 seconds. Weightof the pellets was ~ 0.45 g. Two types of lithium carbonate powder, lithium-6 enrichedat 95.616 ± 0.005 atom % and lithium-7 enriched at 99.934 ±0.005 atom %, were used tomeasure the 6Li(n,a)T and 7Li(n,n'<x)T reaction rates, respectively. The pellets wereembeded in the beryllium experimental assembly, and irradiated by D-T neutrons for ~10 hours. Total nomber of neutrons generated during the irradiation was 1.00 x 1016.

Chemical Processing and MeasurementAn irradiated pellet was put into a Teflon vial of 20 ml. A binary-acid solvent

which contained 0.81 ml of HN03 (61%) and 0.17 ml of CH3COOH (100 %) was pouredinto the vial to solve the pellet. At the beginning of the solution for 5 minutes, the vialwas cooled in cold water to remove heat of disolution. After 12 hours, 17 ml of liquidscintillation cocktail (Clear-Sol) was added in the vial, and the vial was shaked to obtaina complete mixture. Tritium activity in the sample was measured by a low backgroundliquid scintillation counting system (OKEN LSC-7100). The external standard ratiomethod was adopted for determination of counting efficiency for each sample. Thetypical counting efficiencies were ~ 22 %. The tritium activity was normalized by thestandard tritium water provided by National Institute of Standard and Technology ofU.S. Tritium production rates for the 6Li(n,a)T and 7Li(n,n'a)T reactions were deducedby considering the isotopic enrichments of lithium-6 and -7. The typical experimentalerror was 4.5 %.

1 3 -

Page 20: Fusion

JAERI-Data/Code 98-021

2.3.6 Cherencov Radiation Counting Method for 32P Activities

Outline of the Cherenkov Radiation Counting MethodSince a large number of radioactive nuclides exhibit P-ray emission above 263

keV, the threshold energy for the excitation of Cherenkov radiation in water, Cherenkovresponse can be used for measurements of P-activity. There are remarkable advantagesof this technique in terms of extreme simplicity of sample preparation and the ability tocount in aqueous systems without use of organic fluors. The main disadvantage is lowdetection efficiency compared with liquid scintillation counting. All the decay eventscannot be detected because there is a finite number of P-rays that fall below the Cherenkovthreshold. The theoretical efficiency is ~ 86% when all the P-rays above the Cherenkovthreshold are detected, however, the experimental detection efficiency is about twotimes less than the theoretical result when the ordinary liquid scintillation countingequipment is used.

Reaction rates of the 31P(n,y)32P, 32S(n,p)32P and 35Cl(n,a)32P reactions weremeasured by the Cherenkov radiation counting method. As all of the reactions producethe 32P activity which emits high energy (maximum energy = 1.711 MeV) P-rays, theyare suitable for the method. Cross section of the reactions are shown in Figs. 2.3.9 and2.3.10. The cross section for the 32S(n,p)32P reaction is taken from the JENDL DosimetryFile while the other two cross sections are taken from FENDL/A-2.0 24). Especially, crosssection of the 32S(n,p)32P and 35Cl(n,cc)32P reactions are investigated in detail elsewhere25).

Pellet PreparationThe selected compounds for the pellets are listed in Table 2.3.4. Natural phosphor-,

sulfur- and chlorine-containing compounds in powder form were chosen because of theavailability of these compounds in high purity (analytical grade), the ease of forming thepowder into pellets and their good water solubility. It was investigated that impuritieswhich may present in the powder have low activation cross sections. Special care waspaid to the phosphorus content in the sulfur- and chlorine-containing powder becausethe 31P(n,y)32P reactions produce the same nuclide of interest, mainly with low-energyneutrons. In order to estimate activities from 31P impurities, measurements of 32Pactivity in pellets with and without Cd covers was made. No difference between the twopellets was observed. Thus it was concluded that there was no interference due tophosphorus contamination in the 32S(n,p)32P and 35Cl(n,a)32P reaction rate measurements.

The powder was pressed into pellets of known and reproducible area with adiameter of 12 mm and 1 mm thickness under a pressure of about 7 ton/cm2. Althoughpellets were pressed without extraneous binding agent, they did not powder or crackunder normal handling and irradiation conditions. The pellets were contained in thinaluminum foil to protect them from contamination during irradiations.

- 14 -

Page 21: Fusion

JAERI-Data/Code 98-021

Experimental Assembly and IrradiationBeryllium blocks of typical 50.8 x 50.8 x 101.6 mm3 were stacked to make the

assembly in the form of quasi-cylindrical slab of 630 mm in equivalent diameter and 456mm in thickness. The central part of this assembly with dimensions of 50.8 x 50.8 mm2

served as an experimental channel. During the construction of the assembly, irradiationpellet packets were sandwiched between two beryllium blocks in the experimental channel.Gap widths for the pellets between two adjacent beryllium blocks were about 3 mm. Apellet packet was also attached on the front surface of the experimental assembly. Thesample positions were -1, 52, 157, 261 and 366 mm, measured from the front surface ofthe assembly. After construction, the slab assembly was positioned at 200 mm distancefrom the 14-MeV neutron source.

The pellets were irradiated for ten hours withD-T neutrons. Total neutron yieldwas 1.01 X 1016 n. The irradiation history was recorded by using multi-channel scaling(MCS) to allow for the decay correction during irradiation.

Measurement of Induced ^-activityAfter neutron irradiation the 32P activity produced in the pellets was measured

with the Cherenkov radiation counting method. As no scintillator is required andchemical quenching is absent, sample preparation is extremely simple and the techniqueis ideal for the assay of 32P in an aqueous solution. Also this technique allows for areduction of experimental error because self-absorption and self-scattering correctionsare not necessary for determination of absolute ^-activity. Since Cherenkov radiationformed only small proportion of the total energy losses, a liquid scintillation countingsystem (Oken LSC-7100) capable of detecting very weak light pulses was used for thismeasurement.

In order to eliminate the effect of absorption of phosphorous-32 onto vial walls,60 (ig of inactive NH4PH2O2 carrier was dissolved in 15 ml of water before dissolution ofthe pellet. Aqueous solutions were assayed in 20 ml opaque teflon vials which werefound to yield a higher counting efficiency than low background glass vials presumablyowing to diffusion of the directional Cherenkov emissions.

Impurities in the irradiated pellets were analyzed by their radioactive decays.Counting immediately after the irradiation showed existance of some short-lived radio-active nuclides in the pellets. The most important radio-nuclei was the 31Si (T1/2 = 2.62hours) formed by the 34S(n,oc)31Si reaction. After one day cooling, these activities eliminated.It was considered that the 35S (T1/2 = 87 days) and 33P (T1/2 = 25.3 days) radionuclideswhich could be formed in the pellet gave no counts because their ^-energies were belowthe Cherenkov threshold in water. With these precautions, the measured ^-activity wasfound to decay with the exact half-life of 32P. For a few selected irradiated pellets, thedecay was followed for seven half-lives and no impurity activity was observed.

Although the 33S(n,np)32P reaction contributed to the production of 32P activities,it was not considered in this measurement. The omission was justified because ofconsiderably low isotopic abundance of 32S and relatively low cross section of the

- 15 -

Page 22: Fusion

JAERI-Data/Code 98-021

33S(n,np)32P reaction around 14 MeV.The counting efficiency was determined by adding 1 ml of a certified solution of

32P activity (2.5% accuracy), obtained from Commissariat a l'Energie Atomique / France,to a vial containing the solution of interest. Variations of solution volume gave aninsignificant effect on counting efficiency in the range from 12 to 17 ml. Efficiency (e)was calculated by the following equation:

Number of32P decays per minute

where, AT, - number of counts per minute after adding of standard solution, andN2 - number of counts per minute before adding of standard solution.

As a result, the counting efficiency of 32P was found to be 52.2 %. Although this is lowerthan the efficiency of liquid scintillation counting, the minimum detectable level of 32Pactivity was much lower than the liquid scintillation counting methd because theCherenkov background activity was lower and the volume of the aqueous sample forcounting was much lager.

The reaction rate, RR, was then derived from the (3-ray counts following applicationof the necessary corrections. The RR is given as,

e-W-N^a-b-Y-S^l-exp^X-t^-exp^X-t^-^-exii-X-t^Y

(2-9)where,

X : decay constant (1/sec),C : Cherenkov counts,A : atomic mass,e : counting efficiency,Na : Avogadro's number,a : natural abundance of the target nuclei,b : branching ratio,Y : neutron source strength (n/sec),Sg : correction factor for the decay during irradiation, andticm : irradiation, cooling, and collection times, respectivily.

The neutron yield fluctuation monitored with MCS was used for determining the correctionfactor Sa.'a*

Experimental ErrorMajor sources of the error in the reaction rate were the counting efficiency of

Cherenkov radiation (3.1 %), the neutron yield (2 %) and the counting statistics (1 %).The errors associated with weight, irradiation time, cooling time and counting time wereestimated to be less than 0.2 %. A typical experimental error for the reaction rate was3.8 %.

- 1 6 -

Page 23: Fusion

JAERI-Data/Code 98-021

2.3.7 Gamma-Ray Spectrum by BC537

Gamma-Ray SpectrometerPrompt gamma-ray spectra in the assembly were measured by an in-situ gamma-

ray spectrometer. Because hydrogen and boron nuclei have large cross section for low-energy neutrons and emit unnecessary gamma-rays following the 1H(n,y)2H and10B(n, a)7Li* reactions, the spectrometer is specially designed. Hydrogen-1 nuclei containedin usual organic scintillator and boron-10 nuclei in boric-silicic glass container areeliminated by using the deuterated liquid organic scintillator, BC537 (BICRON, USA),with a quartz glass container. Figur 2.3.11 illustrates the spectrometer. The scintillatoris in spherical shape of 40 mm in diameter. Outer dimensions of the detector are 48 mmin diameter and 262 mm in length including a photomultiplier assembly.

MeasurementThe spectrometer was inserted into the experimental channel of 50 mm in diameter

or 51 mm x 51 mm square, and void space around cables connected to the spectrometerwas filled with the same material as the assembly. Pulse height spectra from thespectrometer were measured during D-T neutron irradiation. The electronic circuitemployed for the measurement is shown in Fig. 2.3.12. The pulse shape discriminationtechnique was adopted to reject neutron events from gamma-ray events. Two differentgains were simultaneously adopted to obtain gamma-ray spectra in a wide energy range.Energy scales of the measured pulse-height spectra were calibrated with 1.275 MeVgamma-rays from a sodium-22 source. In a measurement of prompt gamma-rays, it isimportant to explicitly reject decay gamma-rays emitted by disintegrations of radioactivenuclei produced by activation reactions. To measure pulse height spectra due to decaygamma-rays accurately, the pulsed neutron method 26) was adopted. Figure 2.3.13illustrates the pulsed neutron method.

Data ProcessingThe measured pulse-height spectra after subtraction of decay gamma-ray spectra

were unfolded with the FORIST code 13) to obtain the energy spectra. The responsematrix used in the unfolding procedure was calculated with the MARTHA code 27). Asthe original MARTHA code was for NaI(Tl) scintillators, the cross section data in thecode was replaced for the BC537 scintillator.

It was confirmed that a number of gamma-rays from several calibrated sourcescan be estimated with an accuracy of 3% by the same procedure. In general, however,the measured spectrum fluxes in these assemblies were observed larger than those withan ideal infinitesimal detector, because attenuation of gamma-ray fluxes in the detectorwas smaller than that in the materials of the assemblies. To correct the overestimation,the measured spectra were normalized to the measured gamma-ray heating rates byTLD because the detector size effect of the TLD measurement was negligibly small. Thenormalization factor, F, was determined by the following formula;

- 17 -

Page 24: Fusion

JAERI-Data/Code 98-021

HTW \~$?(E)-f(E)-dE* V S ( 2 - 1 0 )

f (peY

xp(E)-f(E)-dE f <j)f(E)-f(E)-dEJ Eo JO

whereH™: measured gamma-ray heating rate with TLD,<j)°*p(E): measured gamma-ray spectrum,(f>yal(E): calculated gamma-ray spectrum, andf(E): gamma-ray KERMA factors.

In Eq. (2-10), the lack of the experimental spectrum below the lowest energy Eo issupplemented by considering the shape of a calculated gamma-ray spectrum, i.e., ratiosof gamma-ray heating rates above Eo to total gamma-ray heating rates were multiplyedas shown in Eq. (2-10). The factors are calculated for all the detector positions, andfound to be nearly constant around 0.68. Hence the factor of 0.68 is commonly adoptedto all the measured spectra.

Experimental UncertaintyAs to be explained in the next section, typical experimental uncertainties of the

gamma-ray heating rate measured by TLDs range between 7 ~ 15 %. The gamma-rayspectra are normalized to the gamma-ray heating rates. About 10 % of uncertainties areintroduced by the normalization procedure. All of the rest of experimental uncertainties,such as statistical errors, uncertainties of the response functions, determination of sourceD-T neutrons and subtraction of decay gamma-rays, are less than 5 %. Therefore, totalexperimental uncertainties are approximately 15 ~ 20 %. Note that only the statisticalerorrs are indicated to the experimental data shown in the chapter 3.

2.3.8 Gamma-Ray Heating Rate by TLD

Experimental MethodGamma-ray heating rate increases monotonously as a function of atomic numbers

of probe materials. Basing on this principle, gamma-ray heating rates of materials canbe deduced by interpolating the gamma-ray heating rates measured by several types ofthermoluminescence dosimeters (TLDs) having different atomic numbers.28' Gamma-rayheating rates in vanadium, iron and tungsten assembles were measured with applyingthe interpolation method. Three types of TLDs, Mg2Si04 (MSO, effective atomic numberZeff = 11.1), Sr2Si04 (SSO, Zeff = 32.5) and Ba2Si04 (BSO, Zeff = 49.9), were selected forthe measurements. The atomic numbers of vanadium and iron, 23 and 26, respectively,were positioned between the effective atomic numbers of MSO and SSO. Although theBSO, whihc has fairly large atomic number of nearly 50, was used, the atomic number of

- 18

Page 25: Fusion

JAERI-Data/Code 98-021

tungsten, 74, was still higher than that of BSO. Hnece, gamma-ray heating rates oftungsten were derived by extrapolations.

IrradiationFour or six samples of each type of TLD were packed in an aluminum foil. The

sample packets were inserted in the experimental channels and also put on the frontsurfaces of the assemblies. Irradiations were performed twice for short and long timesto provide the optimum absorbed dose to the TLDs depending on the location. The shortirradiation with source neutron yields of 0.5 ~ 1 x 1014 were for TLDs located near theD-T neutron source, while the long irradiation with source neutron yields of 1 ~ 2 x 1015

were for deeper positions far from the D-T neutron source.

Data ReductionOne week after the irradiation, thermoluminescence (TL) was measured by a

TLD reader (Kasei Optonix, KYOKKO 2500). The measured TLs of four or six samplesof each type of TLD are averaged. Neutron contributions to the response of TLDs werecalculated by using neutron response functions and neutron energy spectra at eachposition, and were subtracted from the total responses. The neutron response functionswere given by Yamaguchi et al. 29) Fractions of the neutron response to the totalresponse were 20 ~ 50% at the front surface of the assemblies, and decrease to less than5% at the deeper locations. The obtained TL was converted to gamma-ray heating ratesof each type of TLD by correcting the differences of mass energy absorption coefficientsof air and the TLD materials. Gamma-ray heating rates of vanadium and iron werederived by interpolations of the measured gamma-ray heating rates of MSO and SSO interms of their effective atomic numbers. Uncertainties due to the interpolation procedurewere considered to be small because the heating rates of MSO and SSO were nearly thesame within ~ 10%. As for tungsten, gamma-ray heating rates measured by BSO wereextrapolated with the help of calculated gamma-ray heating rates for BSO (Zeff=49.9)and tungsten (Z=74). Finally, contributions of target gamma-rays which were emittedfrom the target by interactions of source D-T neutrons with the structural materialswere calculated and subtracted from the measured gamma-ray heating rates. Thefractions of target gamma-rays to the total gamma-ray heating rates were ~ 20 % at thefront surface of the assemblies, and smaller than 3% at the positions deeper than 100mm.

Experimental ErrorError sources of the measured gamma-ray heating rates are as follows.

Statistical deviation of four TLDs 5 - 15 %Number of neutrons generated 2-3 %Calibration of the TLD reader 5 %

1 9 -

Page 26: Fusion

JAERI-Data/Code 98-021

In the subtraction of target gamma-rays and neutron response, the following uncertaintiesare added to the above errors according to the quadratic propagation of error.

Response functions for neutrons 30 %Neutron energy spectra 10 %Target gamma-ray 20 %

Overall errors for the obtained gamma-ray heating rates of vanadium and iron are ~10% except the positions at the front surface of the assemblies where errors are 20 ~ 25%. For tungsten, the overall experimental errors are rather large about 20 % even inthe experimental assembly due to the extrapolation.

- 2 0 -

Page 27: Fusion

JAERI-Data/Code 98-021

3. Experimental Data

3.1 Beryllium

The first benchmark experiment on beryllium had been already conducted in1988. The experimental data have been already reported in Ref. 6), and results of theexperimental analysis have been discussed in Kef. 30). After that, a neutron spectrumbetween leV and lOkeV, and dosimetry reaction rates of 6Li(n,a)3T,7Li(n,na)3T,31P(n,y)32P,32S(n,p)32P and 35Cl(n,a)32P reactions were measured. Table 3.1.1 summarizes the atomicdensities of the beryllium assembly.

The measured neutron spectrum between 1 eV and 10 keV is shown in Fig. 3.1.1with previously obtained neutron spectra above 3 keV, and Table 3.1.2 summarizes thenumerical data. Although experimental errors of the newly measured spectrum above 1keV are rather large, the presently measured spectrum is combined smoothly with thepreviously measured data by PRC.

The measured dosimetry reaction rates are listed in Table 3.1.3. The tritiumproduction rates by the 6Li(n,cc)3T and 7Li(n,noc)3T reactions have been also measured inthe previous experiment. Although the detector positions are different from the presentand the previous experiment, both data are consistent each other. When the two non-threshold reaction rates, i.e., 6Li(n,oc)3T and 31P(n,y)32P reactions, are compared withtransport calculations with considering the impurities shown in Table 3.1.2, theexperimental data are always smaller than the calculated results. This reason could beexplained by possible unknown impurities introduced in the beryllium assembly. Mostof the non-threshold reactions in the beryllium assembly are caused by thermal neutronsbecause the radiative neutron capture cross section of beryllium is extremely small anda great number of neutrons are accumulated in the thermal energy region. If impuritiesexist in the beryllium assembly, the thermal neutron flux is largely reduced by neutroncapture reactions by the impurities. This impurity effect results in smaller experimentalreaction rates for the non-threshold reactions.

The measured three threshold reactions, i.e., the 7Li(n,na)3T, 32S(n,p)32P and35Cl(n,a)32P reactions, are almost in proportion with each other. The measured non-threshold reactions, i.e., 6Li(n,a)3T and 31P(n,y)32P reactions, are also in proportion witheach other. The proportional characteristic indicates that the 32S(n,p)32P and 35Cl(n,a)32Preactions and the 31P(n,y)32P reaction can be used as reaction indeces for tritium productionreactions, the7Li(n,na)3T and6Li(n,a)3T reactions, respectively, required for fusion blanketbenchmark experiments. The advantages of the indeces are (1) the simplicity forpreparation of samples for the Cherenkov radiation counting compared with the samplesfor the tritium counting with a liquid scintillation counting system, and (ii) high countingrates of the 32P measurement with the Cherenkov radiation counting method comparedto the tritium measurement with the liquid scintillation counting method. In fact, the32P activity can be measured at all the detector positions owing to the high counting rate

- 21 -

Page 28: Fusion

JAERI-Data/Code 98-021

while the tritium measurement of the 7Li(n,na)3T reaction is limited only up to the 52mm depth in the beryllium assembly.

3.2 Vanadium

The leakage neutron spectrum measurement from spherical vanadium shells of35 and 105 mm in thickness in the energy range above 0.07 MeV done by Mollendorff etal. was the unique existing benchmark experiment. 31) For validation of low energyneutron cross sections and secondary gamma-ray data for vanadium, there had been nobenchmark experimental data. The experiment was performed under the IEA collaborationon the sub-task "Fusion Neutronics" for the Work Item #1 "Integral Experiment foradvanced structural and breeder materials". Our benchmark experiment providescomprehensive experimental data, i.e., neutron energy spectra in the entire energyregion, various dosimetry reaction rates, gamma-ray spectra and gamma-ray heatingrates, needed for validation of nuclear data files. The experimental data related to lowenergy neutrons below 70 keV and secondary gamma-ray data are the first benchmarkexperimental data on vanadium. Results of experimental analysis are briefly reportedin Ref. 32).

Table 3.2.1 summarises the atomic densities of the vanadium assembly and thesurrounding graphite reflector. The measured neutron spectra by the three methods atthe positions of 76 mm and 178 mm in depth are shown in Figs. 3.2.1 and 3.2.2. Thenumerical data of the spectra measured by the NE213, PRC and the SDT method areshown in Tables 3.2.2 ~ 3.2.4, respectively. Table 3.2.5 summarises integral neutronfluxes derived from the measured neutron spetra. The meausred dosimetry reactionrates are shown in Table 3.2.6. The measured gamma-ray spectra at the positions of 76mm and 178 mm in depth are shown in Figs. 3.2.3 and 3.2.4. The numerical data of thespectra are shown in Table 3.2.7. Table 3.2.8 summarises the measured gamma-rayheating rates of vanadium.

3.3 Iron

The first benchmark experiment on iron was conducted in 1986, and neutronspectra > 2 MeV and dosimetry reaction rates in an iron assembly of 1000 mm indiameter and 950 m in thickness were measured. The results were reported in Ref. 33).Neutron spectra of 3 keV - 1 MeV in the same iron assembly were measured in 1990,and the results were published in Ref. 34). Then, the experiment was extended forlower energy neutrons and secondary gamma-rays. Neutron spectra below 10 keV weremeasured in 1993, and results of the experimental analysis were published in Ref. 20).Gamma-ray spectra and gamma-ray heating rates were measured in 1994, and resultsof the experimental analysis were published in Ref. 26). This report summarizes these

- 2 2 -

Page 29: Fusion

JAERI-Data/Code 98-021

experimental data.Table 3.3.1 summarizes the atomic densities of the iron assembly. The measured

neutron spectra by the three methods at various positions are shown in Fig. 3.3.1. Thenumerical data of the spectra measured by the NE213, PRC and the SDT method areshown in Tables 3.3.2 ~ 3.3.4, respectively. Table 3.3.5 summarizes integral neutronfluxes derived from the measured neutron spectra. The measured neutron spectra inthe energy range of 2 ~ 10 MeV by NE213 seems to be distorted by the unfoldingprocess. Comparisons of the measured neutron spectra with calculations in the energyrange are sometimes not meaningful. The integral fluxes are useful for numericalcomparison of the measured and calculated neutron spectra. The measured dosimetryreaction rates are shown in Table 3.3.6.

The measured gamma-ray spectra at the positions of 100, 300, 500 and 700 mmin depth are shown in Figs. 3.3.2 ~ 3.3.5. The numerical data of the spectra are shownin Table 3.3.7. Table 3.3.8 summarizes the measured gamma-ray heating rates of iron.These experimental gamma-ray data on iron are useful for validating gamma-rayproduction cross section in evaluated nuclear data files at various incident neutronenergy. According to the detailed experimental analysis, more than 90 % of observedgamma-rays at the 100 mm position are produced by neutrons of > 1 MeV mainlyinducing the threshold reactions. At the 500 and 700 mm positions, contributions ofneutrons of > 1 MeV on gamma-ray production are less than 10 % while most of gamma-raysare produced by low energy neutrons of 1 eV ~ 1 MeV mainly with the (n,y) reactions.

3.4 Copper

A benchmark experiment on copper was performed in 1991. The experimentaldata have been summarized in Ref. 7), and also published with analytical results inRefs. 35) and 36). After that, low energy neutron spectra below 10 keV were measured.The experimental data of the low energy neutron spectra are included in this report.

Table 3.4.1 summarizes the material specifications of the copper assembly. Neutronspectra at four positions in the copper assembly measured by the SDT method areshown in Figs. 3.4.1 ~ 3.4.4 together with the previously obtained neutron spectra byNE213 and PRC. The neutron spectra measured by the three methods connect smoothlyat the joint energy at ~ 5 keV and 1 MeV. Numerical data of the neutron spectra by theSDT method are shown in Table 3.4.2.

3.5 Tungsten

A benchmark experiment on tungsten was conducted in 1993. Experimentaldata for neutron spectra from 14 MeV to 3 keV, dosimetry reaction rates, gamma-rayspectra and gamma-ray heating rates were obtained. The results were reported briefly

- 23 -

Page 30: Fusion

JAERI-Data/Code 98-021

in Ref. 37). All the experimental data are included in this report.Table 3.5.1 summarizes the material specifications of the tungsten assembly.

The tungsten is not pure, but an alloy with a small amount of nickel and copper. Themeasured neutron spectra by NE213 and PRC at three positions of 76, 228 and 380 mmin the tungsten assembly are shown in Figs. 3.5.1 ~ 3.5.3. The numerical data of thespectra measured by the NE213 and PRC are given in Tables 3.5.2 and 3.5.3, respectively.A measurement of neutron spectra below 10 keV by the SDT method was attempted.However, it could not be made because of too low neutron flux in the energy range. Themeasured dosimetry reaction rates are shown in Table 3.5.4.

The measured gamma-ray spectra at the three positions in the tungsten assemblyare shown in Figs. 3.5.4 ~ 3.5.6. The numerical data of the spectra are given in Table3.5.5. Table 3.5.6 summarizes the measured gamma-ray heating rates of tungsten.Most of the observed gamma-rays at the front surface of the assembly, 0 mm, areproduced by high energy neutrons of > 1 MeV. At 76 mm, both halves of observedgamma-rays are produced by neutrons of > 1 MeV and 0.01 ~ 1 MeV. At 228 and 380mm, low energy neutrons of 1 keV ~ 1 MeV contribute predominantly to produce secondarygamma-rays.

- 2 4 -

Page 31: Fusion

JAERI-Data/Code 98-021

4. Summary

Efforts to acquire fusion neutronics experimental data have been continued onthe clean benchmark experiment at FNS/JAERI. Experimental data for new materials,i.e., vanadium and tungsten, were obtained. Several experiments which had beenperformed previously were extended to complete more comprehensive experimental dataset with introducing new experimental techniques. Especially, experimental data relatedto low energy neutrons and secondary gamma-rays were supplemented.

These experimental data have been contributed to benchmark test of recentevaluated nuclear data files, such as JENDL-3.2, JENDL Fusion File and FENDIVE-2.0.These data are expected to serve for further benchmark test of forthcoming evaluatednuclear data files, and then, for more accurate nuclear designs of fusion reactors.

Acknowledgment

The authors gratefully acknowledge the operating staff of FNS for their operationof FNS. They wish to express their gratitude to Drs. H. Maekawa and M. Sugimoto fortheir great support to the work.

The authors also gratefully acknowledge the co-experimentalists for their effortsto obtain the experimental data. Dr. Y. Verzilov, who was a visiting scientist of JAERIfrom Russia, contributed the tritium and32P measurements for the beryllium experimentby introducing new experimental techniques. Drs. I. Murata and Kokooo from Osakauniversity contributed to the vanadium experiment. Dr. K. Oishi contributed significantlyfor the iron experiment.

- 2 5 -

Page 32: Fusion

JAERI-Data/Code 98-021

References

1) Nakamura T., Maekawa H., Ikeda Y. and Oyama Y.: "A DT Neutron Source forFusion Neutronics Experiments at the JAERI", Proc. International. Ion Eng.Congress - ISIAT '83 & IAPT '83, Kyoto, Japan, Vol. 1, pp. 567-570 (1983).

2) Shibata K, et al.: "Japanese Evaluated Nuclear Data Library, Version-3 -- JENDL-3--", JAERI 1319 (1990).

3) Ganesan S. and McLaughin P. K., "FENDL/E Evaluated Nuclear Data Library ofNeutron Nuclear Interaction Cross-Sections and Photon Production Cross-Sectionsand Photon-Atom Interaction Cross Sections for Fusion Applications Version 1.0 ofMay 1994", IAEA-NDS-128, International Atomic Energy Agency (1995).

4) Maekawa H., et al.: "Fusion Blanket Benchmark Experiments on a 60 cm-thickLithium-Oxide Cylindrical Assembly", JAERI-M 86-182 (1986).

5) Maekawa H., et al.: "Benchmark Experiments on a 60 cm-thick Graphite CylindricalAssembly", JAERI-M 88-034 (1988).

6) Sub Working Group of Fusion Reactor Physics Subcommittee (Ed.): "Collection ofExperimental Data for Fusion Neutronics Benchmark", JAERI-M 94-014 (1994).

7) Maekawa F., et al.: "Benchmark Experiment on a copper Slab Assembly Bombardedby D-T Neutrons", JAERI-M 94-038 (1994).

8) Konno C, et al.: "Bulk Shielding Experiments on Large SS316 AssembliesBombarded by D-T Neutrons Volume I: Experiment", JAERI-Research 94-043(1994).

9) Maekawa H., Ikeda Y., Oyama Y., Yamaguchi S. and Nakamura T.: "NeutronYield Monitors for the Fusion Neutronics Source (FNS) -- for 80° Beam Line --",JAERI-M 83-219 (1983).

10) Briesmeister J. F. (Ed.): "MCNP - A General Monte Carlo N-Particle TransportCode, Version 4A", LA-12625-M, Los Alamos National Laboratory (1993).

11) Maekawa F., et al.: "Bulk Shielding Experiments on Large SS316 AssembliesBombarded by D-T Neutrons Volume II: Analysis", JAERI-Research 94-044 (1994).

12) Oyama Y., Tanaka S., Tsuda K, Ikeda Y. and Maekawa H.: Nucl. Instrum. Meth.,A256, 333 (1987).

13) FORIST Spectrum Unfolding Code: Radiation Shielding Information Center, OakRidge National Laboratory, PSR-92 (1975).

14) Nakashima H.: "Study on Shielding Design Methods for Fusion Reactors UsingBenchmark Experiments", pp. 20-45, JAERI-M 92-025 (1992, in Japanese).

- 26

Page 33: Fusion

JAERI-Data/Code 98-021

15) Bennett E. F.: "A Continuous Mode Data Acquisition Technique for Proton RecoilProportional Counter Neutron Spectrometers", ANL/FPP/TM-239, Argonne NationalLaboratory (1989).

16) Bennett E. F.: "Induction Filtering for Proportional Counter Amplifiers",ANL/FPP/TM-234, Argonne National Laboratory (1989).

17) Konno C, Ikeda Y., Kosako K., Oyama Y., Maekawa H., Nakamura T. and BennettE. F.: Fusion Eng. Des., 18, 297 (1991).

18) Maekawa F. and Oyama Y.: Nucl. Instrum. Meth., A372, 262 (1996).

19) Maekawa F. and Oyama Y.: "Measurement of Low Energy Neutron Spectrumbelow 10 keV Inside Various Media with the Slowing Down Time Method", Proc.9th International Symposium on Reactor Dosimetry, Prague, Czech Republic, Sep.2-6, 1996, to be published (1998).

20) Maekawa F. and Oyama Y.: Nucl. Sci. Eng., 125, 205 (1997).

21) Nakazawa M., Kobayashi K., Iwasaki S., Iguchi T., Sakurai K., Ikeda Y. andNakagawa T.: "JENDL Dosimetry File", JAERI 1325 (1991).

22) Verzilov Y., Maekawa F. and Oyama Y.: J. Nucl. Sci. Technol., 33, 390 (1996).

23) Verzilov Y., Maekawa F., Oyama Y. and Maekawa H.: "A New Method of ExtractingTritium Produced in Neutron Irradiated Lithium-Containing Pellets for LiquidScintillation Counting", JAERI-Research 94-042 (1994).

24) Pashchenko A. B.: "Summary Report for IAEA Consultants' Meeting on Selectionof Evaluations for the FENDL/A-2 Activation Cross Section Library", INDC(NDS)-341, International Atomic Energy Agency (1996).

25) Verzilov Y., Maekawa F., Oyama Y. and Ikeda Y.: Fusion Eng. Des., 37, 95 (1997).

26) Maekawa F., Oyama Y., Konno C, Wada M. and Ikeda Y.: Nucl. Sci. Eng., 126,187 (1997).

27) Saito K. and Moriuchi S.: Nucl. Instrum. Meth. 185, 299 (1981).

28) Tanaka S. and Sasamoto N: J. Nucl. Sci. Technol., 22, 109 (1985).

29) Yamaguchi S., et al.: Fusion Eng. Des., 10, 163 (1989).

30) Maekawa H., et al.: Fusion Technol., 19, 1949 (1991).

31) Mollendorff U., et al.: "A 14-MeV Neutron Transmission Experiment on Vanadium",Proc. 19th Symposium on Fusion Technology, Lisbon, September 16-21, 1996, pp.1575-1578 (1997).

32) Maekawa F., et al.: "Benchmark Experiment on Vanadium Assembly with D-TNeutrons - In-situ Measurement -", Proc. '97 Symposium on Nuclear Data,JAERI/Tokai, Nov. 27-28, 1997, JAERI-Conf 98-003, pp. 168-173 (1998).

- 27 -

Page 34: Fusion

JAERI-Data/Code 98-021

33) Oishi K, Ikeda Y., Konno C. and Nakamura T.: "Measurement and Analysis ofNeutron Spectra in a Large Cylindrical Iron Assembly Irradiated by 14 MeVNeutrons", Proc. 7th International. Conference Radiation Shielding, Bournemouth,United Kingdom, Sept. 12-16, 1988, pp. 331-340, United Kingdom Atomic EnergyAuthority, Winfrith and the Organization for Economic Cooperation andDevelopment, Nuclear Energy Agency (1988).

34) Konno C, Ikeda Y., Kosako K., Oyama Y., Maekawa H., Nakamura T. and BennetE. F.: Fusion Eng. Des., 18, 297 (1991).

35) Konno C, Maekawa F., Oyama Y., Ikeda Y. and Maekawa H.: Fusion Eng. Des.,28, 745 (1995).

36) Maekawa F., Oyama Y., Konno C, Ikeda Y. and Maekawa H.: Fusion Eng. Des.,28, 753 (1995).

37) Maekawa F., Konno C, Oyama Y., Wada M., Uno Y. and Ikeda Y.: "BenchmarkExperiment on Tungsten Assembly Bombarded with D-T Neutrons", Proc.International Conference on Nucl. Data for Science and Technology, Trieste, Italy,May 19-24, 1997, pp. 1218-1220 (1998).

- 2 8 -

Page 35: Fusion

Table 1 Summary of experimental data obtained so far in the clean benchmark experiment conducted at FNS.

ICO

Material

HO

Be

C

V

Fe

Cu

W

SS316

Neutron Spectrum

NE213Scintillator

(1), (3)

(3)

(2), (3)

(4)

(5)

P-RecoilCounter

(3)

(4)

(5)

SlowingDown Time

(5)

Reaction Rate

FoilActivation

(1), (3)

(3)

(2), (3)

(4)

(5)

FissionChamber

(1), (3)

(3)

(2), (3)

(5)

Li-Pellet

(1). (3)

(3 ) ,#

Li-GlassScintillator

(1). (3)

r (3)

32p

Counting

Gamma-RaySpectrum

BC537Scintillator

(4)

(5)

Gamma-RayHeating

TLD

(4)

(5)

(1) JAERI-M 86-182(2) JAERI-M 88-034(3) JAERI-M 94-014(4) JAERI-M 94-038(5) JAERI-Research 94-043

Q Experimental data are contained in this report.

16so

Iooo

Page 36: Fusion

JAERI-Data/Code 98-021

Table 2.1.1 Dimensions of the experimental assemblies.

Material

Beryllium

Vanadium

Iron

Copper

Tungsten

Dimension [mm]

629 <j) x 4561 quasi-cylinder

254 x 254 x 254 cube

with a graphite reflector of 51 mm in thickness

1000 <(> x 950 t cilinder

629 <f> x 608 t quasi-cylinder

629 (|> x 507 t quasi-cylinder

Table 2.3.1 Systematic errors in various energy range involved in the neutron spectra measured

by the NE213 spectrometer. Errors expected in the range below 10 MeV originate

from the response error of 14.8 MeV neutrons.

Energy range[MeV]

>108.3 - 10.15.8 - 8.34.1 - 5.82.0-4.11.1 - 2.0

Efficiency

± 2 %222

22

EnergyCalibration

± 3 %2222

2

NeutronSource

± 2 %222

22

Response Shape[fraction*1 ]

1~ - 0.02- -0 .01

~ - 0.001- + 0.01~ + 0.01

Total

± 4 %- 20 %*2

- 11%*2

- 3.4%*2

+ 3.5%*2

+ 3.5%*2

*1 Ratio of the error due to the response to the peak flux around 14 MeV.*2 Example in the case of Opeak/^(EJ ~ 10.

- 3 0 -

Page 37: Fusion

JAERI-Data/Code 98-021

Table 2.3.2 Typical qualities of the measured neutron spectra by the SDT method in the four

experimental assemblies.

Medium

BeV

Fe, Cu

Energy resolutionbelow 1 keV in

FWHM [%]

13050 ~ 10050 - 200

Correction factorsfor effective cross

sections [%]

122 - 1 01-20

Overall experimental uncertainty

< 1 keV [%]

7-1211-406-18

l-10keV[%]

12-26

20-63

Table 2.3.3 Dosimetry Reactions used in the foil activation method.

Reaction

27Al(n,a)24Na56Fe(n,p)56Mn90Zr(n,2n)89Zr93Nb(n,2n)92mNb115In(n,n')U5mIn186W(n,y)187W197Au(n,y)198Au

Half-Life

15.02 h

2.579 h

3.268 d

10.15 d

4.486 h

23.85 h

2.694 d

Abundance

(%)

100.0

91.72

51.45

100.0

95.7

28.4

100.0

y-rayEnergy

(keV)

1368.6

846.8

909.2

934.5

336.3

479.5

411.8

y-rayBranching

(%)

100.0

98.9

99.01

99.0

45.8

23.4

95.5

ThresholdEnergy(MeV)

5

5

12

9

0.34...

Table 2.3.4 Characteristics of the compounds used in the P measurement

Reaction

31P(n,y)32P

32S(n,p)32P

35Cl(n,a)32P

ThresholdEnergy (MeV)

...

2.3

3.7

Compound

NH4PH2O2

CH3SO2CH3

NH4C1

Purity

99.9

99.9

99.6

Isotopic Content

3 1 p .

3 2 S-3 3 S-3 4 S-3 6 S-

i—1

r—(

CO

CO

100.0

95.020.754.220.02

- 75.47• 24.23

31 -

Page 38: Fusion

JAERI-Data/Code 98-021

Table 3.1.1 Material specification for the beryllium assembly.

Atomic Density [xlO atoms/cm ]

BeC0

AlFe

r1

-51.2152 x 107.7109 x 104.9713 x 10"4

2.9013 x 10"5

2.4678 x 10-5

Table 3.1.2 Neutron spectrum in the beryllium assembly measured by the SDT method in the

unit of [n / cm2/ lethargy / source].

Neutron Energy [MeV]

1.26e-062.00e-063.16e-065.01e-067.94e-061.26e-052.00e-053.16e-055.01e-057.94e-051.26e-042.00e-043.16e-045.01e-047.94e-041.26e-032.00e-033.16e-035.01e-037.94e-03

Flux at z=127iran

2.35e-052.31e-052.29e-052.32e-052.31e-052.39e-052.37e-052.38e-052.42e-052.43e-052.51e-052.52e-052.59e-052.61e-052.71e-052.68e-052.83e-052.94e-053.16e-053.16e-05

Absolute Error

1.63e-061.60e-061.60e-061.62e-061.62e-061.69e-061.70e-061.73e-061.79e-061.85e-062.28e-062.38e-062.58e-062.81e-063.22e-063.57e-064.36e-065.29e-066.77e-068.15e-06

Table 3.1.3 Measured dosimetry reaction rates in the beryllium assembly in the unit of [reactions

/ atom / source]. Numbers in the parenthesis are percentage errors.

Position

[mm]

- 152

157261366470

6Li(n,CC)T

2.00e-253.49e-252.74e-251.31e-259.47e-27

(4.5)(4.5)(4.5)(4.5)(4.5)

L i ( n , n

6.93e-295.06e-29

'a)T

(4.5)(10.0)

Reaction31P(n,y

4.82e-298.27e-296.34e-293.03e-292.36e-30

3 2 p

(3.8)(3.8)(3.8)(3.8)(3.8)

3 2S{n,p)

5.53e-294.00e-291.36e-294.16e-301.20e-302.96e-31

32P

(3.8)(3.8)(3.8)(3.8)(3.8)(3.8)

35Cl(n,OC)32P

2.79e-292.00e-296.73e-292.07e-306.00e-311.52e-31

(3.8)(3.8)(3.8)(3.8)(3.8)(3.8)

- 3 2 -

Page 39: Fusion

JAERI-Data/Code 98-021

Table 3.2.1 Material specification for the vanadium assembly.

Chemical Composition

Weight Density

Vanadium

V 99.777 wt%Al 0.073 wt%Si 0.108 wt%Fe 0.042 wt%

6.033 [g/cm3]

G r a p h i t e

C 100 wt%

1.625 [g/cm3]

Table 3.2.2 Neutron spectra in the vanadium assembly measured by the NE213 spectrometerin the unit of [n / cm2 / lethargy / source].

Neutron Energy[MeV]

1.553e+001.633e+001.717e+001.805e+001.897e+001.995e+002.097e+002.204e+002.317e+002.436e+002.561e+002.692e+002.830e+002.975e+003.128e+003.288e+003.457e+003.634e+003.820e+004.016e+004.222e+004.439e+004.666e+004.906e+005.157e+005.422e+005.700e+005.992e+006.299e+006.622e+006.961e+007.318e+007.694e+008.088e+008.503e+008.939e+009.397e+009.879e+001.039e+011.092e+011.148e+011.207e+011.268e+011.334e+011.402e+011.474e+011.549e+011.629e+011.712e+011.800e+01

Flux a tz= 76 nra

5.17e-055.05e-054.72e-054.36e-054.10e-054.03e-054.12e-054.30e-054.41e-054.33e-054.05e-053.69e-053.38e-053.13e-052.91e-052.69e-052.50e-052.39e-052.32e-052.23e-052.05e-051.83e-051.63e-051.45e-051.26e-051.04e-058.41e-067.36e-067.93e-069.75e-06l . l l e - 0 51.06e-057.84e-063.26e-069.21e-081.96e-067.46e-061.16e-051.13e-058.56e-068.78e-061.05e-058.31e-065.04e-052.29e-044.02e-042.97e-041.32e-047.31e-053.29e-05

AbsoluteError

2.44e-062.47e-062.17e-061.95e-062.11e-062.19e-062.10e-062.05e-061.98e-061.94e-062.01e-061.86e-061.73e-061.81e-061.76e-061.69e-061.54e-061.31e-061.18e-061.26e-061.36e-061.34e-061.28e-061.31e-061.36e-061.43e-061.51e-061.55e-061.69e-061.88e-061.94e-062.20e-062.57e-062.80e-063.22e-064.10e-064.53e-064.62e-065.22e-065.20e-065.17e-066.38e-068.42e-061.17e-051.35e-053.09e-059.26e-061.57e-058.94e-062.09e-06

Window[%]

32.531.932.333.032.831.830.428.426.625.525.426.427.428.128.528.327.626.826.125.324.623.923.322.722.221.721.120.620.019.519.018.518.017.617.216.816.415.915.515.114.814.514.414.413.213.213.213.213.814.4

Flux a tz= 178 mm

1.65e-051.71e-051.72e-051.68e-051.62e-051.57e-051.54e-051.54e-051.53e-051.47e-051.36e-051.23e-05l . l l e - 0 51.01e-059.34e-068.74e-068.42e-068.36e-068.31e-067.97e-067.22e-066.28e-065.37e-064.63e-064.08e-063.70e-063.45e-063.33e-063.31e-063.31e-063.16e-062.86e-062.63e-062.61e-062.91e-063.19e-062.88e-062.86e-063.55e-063.94e-064.17e-064.51e-064.56e-061.06e-053.96e-057.01e-055.68e-053.06e-051.74e-057.06e-06

AbsoluteError

8.26e-078.00e-077.44e-078.14e-078.52e-077.88e-077.60e-077.67e-077.53e-076.82e-076.75e-076.25e-075.65e-075.54e-074.88e-074.60e-074.26e-073.87e-073.68e-073.71e-073.69e-073.55e-073.37e-073.34e-073.34e-073.41e-073.55e-073.63e-073.86e-074.22e-074.38e-074.87e-075.63e-076.05e-076.77e-078.57e-079.29e-079.41e-071.08e-061.05e-061.04e-061.24e-061.58e-062.20e-062.48e-065.64e-061.73e-062.90e-061.60e-063.42e-07

Window[%]

31.229.428.527.927.326.926.125.024.223.924.124.825.826.727.126.725.624.523.523.022.823.023.022.722.221.721.120.620.019.519.018.518.017.617.216.816.415.915.515.114.814.514.414.413.213.213.212.612.612.5

- 3 3 -

Page 40: Fusion

Table 3.2.3

JAERI-Data/Code 98-021

Neutron spectra in the vanadium assembly measured by the PRC in the unit of [n/ cm2 / lethargy / source]. (1/2)

Neutron Energy[MeV]

2.003e-022.098e-022.197e-022.301e-022.410e-022.524e-022.644e-022.769e-022.901e-023.039e-023.183e-023.334e-023.493e-023.659e-023.833e-024.016e-024.207e-024.408e-024.618e-024.838e-025.068e-025.310e-02

' 5.564e-025.829e-026.108e-026.399e-026.705e-027.025e-027.361e-027.713e-028.082e-028.468e-028.873e-029.297e-029.742e-021.017e-011.066e-011.117e-011.170e-011.226e-011.285e-011.346e-01

l!478e-011.549e-011.623e-011.701e-011.783e-011.868e-011.958e-012.051e-012.150e-012.253e-012.361e-012.474e-012.592e-012.717e-012.847e-012.983e-013.126e-013.276e-013.433e-013.598e-013.771e-013.951e-014.141e-014.339e-014.547e-014.766e-01

Flux atz=76nim

6.61e-066.92e-064.70e-066.85e-064.95e-06

-1.75e-061.04e-065.83e-067.04e-067.18e-065.64e-061.06e-059.82e-068.39e-068.85e-068.99e-069.57e-061.07e-051.24e-051.30e-051.71e-052.90e-052.73e-051.80e-051.15e-056.14e-061.55e-053.03e-051.47e-051.25e-052.32e-052.74e-054.30e-055.09e-053.53e-056.06e-055.15e-053.31e-053.69e-053.20e-054.50e-054.99e-054.95e-055.70e-055.17e-055.20e-055.51e-054.13e-053.64e-053.96e-054.33e-054.40e-055.84e-054.91e-054.73e-055.49e-056.58e-055.77e-055.37e-054.89e-055.21e-055.72e-055.81e-056.38e-056.33e-056.68e-057.36e-057.43e-056.76e-05

AbsoluteError

2.51e-062.48e-062.53e-062.55e-062.61e-062.65e-062.72e-062.78e-062.85e-062.90e-062.94e-062.98e-063.03e-063.06e-063.15e-063.19e-063.26e-063.32e-063.41e-063.51e-063.63e-063.72e-063.83e-063.91e-064.06e-064.26e-064.45e-064.62e-064.81e-064.98e-065.27e-065.49e-065.69e-065.88e-066.13e-065.56e-065.34e-065.10e-064.95e-064.83e-064.72e-064.64e-064.51e-064.42e-064.34e-064.25e-064.20e-064.10e-064.10e-064.07e-064.07e-064.04e-064.02e-064.00e-063.99e-063.97e-063.95e-063.93e-063.93e-063.98e-064.04e-064.16e-064.31e-064.41e-064.56e-064.67e-064.83e-064.95e-065.12e-06

Neutron Ennergy

2.2.2.2.2.2.2.2.2.3.3.3.3.3.3.4.4.4.4.4.5.5.5.5.6.6.6.7.7.7.8.8.8.9.9.1.

i-»

1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.2.2.2.2.2.2.3.3.3.3.3.3.4.4.4.4.4.

[MeV]

003e-02098e-02197e-02301e-02410e-02524e-02644e-02769e-02901e-02039e-02183e-02334e-02493e-02659e-02833e-02016e-02207e-02408e-02618e-02838e-02068e-02310e-02564e-02829e-02108e-02399e-02705e-02025e-02361e-02713e-02082e-02468e-02873e-02297e-02742e-02033e-01082e-01134e-01189e-01245e-01305e-01367e-01433e-01502e-01574e-01649e-01728e-01811e-01897e-01988e-01084e-01183e-01288e-01398e-01513e-01633e-01759e-01892e-01030e-01176e-01328e-01487e-01655e-01830e-01013e-01206e-01408e-01619e-01841e-01

Flux atz=178mra

1.497e-063.892e-064.711e-063.667e-063.585e-063.736e-063.554e-062.688e-062.753e-061.909e-062.355e-063.990e-067.049e-065.657e-064.031e-066.655e-066.454e-066.237e-066.023e-066.249e-061.015e-051.447e-051.658e-059.478e-065.430e-064.972e-065.249e-068.137e-061.079e-057.240e-066.350e-061.618e-052.226e-052.289e-052.064e-053.386e-053.513e-054.063e-052.928e-052.447e-052.292e-052.371e-052.505e-052.690e-052.889e-052.678e-052.403e-052.064e-051.869e-051.831e-052.191e-052.509e-052.807e-052.569e-052.546e-053.076e-053.153e-052.654e-052.487e-052.118e-052.565e-052.936e-053.110e-053.010e-053.025e-053.280e-053.124e-053.343e-053.565e-05

AbsoluteError

8.430e-078.480e-078.550e-078.600e-078.720e-078.800e-078.960e-079.040e-079.230e-079.360e-079.590e-079.750e-079.900e-071.000e-061.020e-06l.Q30e-061.050e-061.070e-061.100e-061.130e-061.170e-061.210e-061.240e-061.270e-061.320e-061.380e-061.440e-061.510e-061.570e-061.650e-061.730e-061.810e-061.890e-061.960e-062.040e-062.490e-062.370e-062.260e-062.160e-062.080e-062.020e-061.970e-061.930e-061.890e-061.860e-061.810e-061.790e-061.760e-061.750e-061.750e-061.740e-061.730e-061.720e-061.700e-061.700e-061.680e-061.670e-061.660e-061.660e-061.690e-061.730e-061.770e-061.820e-061.870e-061.920e-061.980e-062.040e-062.090e-062.150e-06

- 3 4 -

Page 41: Fusion

JAERI-Data/Code 98-021

Table 3.2.3 Continued. (2/2)

Neutron Energy[MeV]

4.994e-015.234e-015.485e-015.748e-016.023e-016.312e-016.615e-016.933e-017.265e-017.614e-017.979e-018.362e-018.763e-019.183e-019.624e-011.009e+00

Flux a tz=76mm

7.10e-057.85e-057.96e-059.10e-058.17e-057.45e-058.14e-057.53e-057.33e-057.33e-058.72e-058.38e-059.08e-057.83e-058.77e-051.07e-04

AbsoluteError

5.27e-065.43e-065.61e-065.73e-065.91e-066.06e-066.29e-066.49e-066.74e-067.02e-067.29e-067.55e-067.86e-068.21e-068.59e-069.02e-06

Neutron Ennergy[MeV]

5.073e-015.316e-015.571e-015.838e-016.118e-016.412e-016.719e-017.042e-017.379e-017.733e-018.104e-018.493e-018.901e-019.328e-019.775e-011.024e+00

Flux a tz=178mm

3.160e-053.213e-053.614e-053.440e-053.832e-054.095e-053.712e-053.791e-053.579e-053.844e-054.210e-053.608e-053.222e-053.541e-053.159e-054.053e-05

AbsoluteError

2.210e-062.270e-062.340e-062.410e-062.470e-062.540e-062.610e-06

' 2.680e-062.760e-062.840e-062.910e-063.010e-063.100e-063.250e-053.380e-063.560e-06

Table 3,2.4 Neutron spectra in the vanadium assembly measured by the SDT method in theunit of [n / cm2 / lethargy / source].

Neutron Energy[MeV]

1.179e-061.638e-062.276e-063.162e-064.394e-066.105e-068.483e-061.179e-051.638e-052.276e-053.162e-054.394e-056.105e-058.483e-051.179e-041.638e-042.276e-043.162e-04

Flux at2=76mm

8.58e-101.80e-093.73e-095.35e-099.48e-091.61e-082.41e-083.11e-086.55e-088.54e-081.24e-071.85e-072.90e-073.93e-075.88e-079.97e-071.81e-063.11e-06

AbsoluteError

1.14e-102.18e-104.27e-106.10e-101.07e-091.84e-092.83e-093.88e-098.55e-091.19e-081.88e-083.10e-085.39e-088.66e-081.49e-073.00e-076.47e-071.39e-06

Flux a tz=178mm

1.20e-093.40e-095.60e-099.02e-091.53e-082.43e-083.91e-086.26e-088.91e-081.24e-071.90e-072.75e-073.42e-075.80e-077.60e-071.22e-062.02e-063.47e-06

AbsoluteError

1.72e-104.14e-106.59e-101.04e-091.76e-092.82e-094.65e-097.89e-091.18e-081.76e-082.96e-084.75e-086.67e-081.31e-071.98e-073.73e-077.52e-071.58e-06

Table 3.2.5 Integral neutron fluxes in the vanadium assembly derived from the measuredneutron spectra in the unit of [n /cm2/ source].

Energy Range

> 10 MeV2-10 MeV

0.1-1 MeV20-100 keV10-100 eV

1-10 eV

z=76mm

6.317e-053.223e-051.415e-042.387e-053.861e-072.202e-08

Error

7 %

1 5 %

5 %

7 %

20 %1 2 %

z=178mm

1.265e-051.134e-056.954e-051.256e-055.473e-073.221e-08

Error

7 %

1 0 %

5 %

7 %

2 0 %

1 2 %

- 3 5 -

Page 42: Fusion

JAERI-Data/Code 98-021

Table 3.2.6 Measured dosimetry reaction rates in the vanadium assembly in the unit of[reactions / atom / source].

React ion z=0mm Error z=76mm Error z=178mm Error

27Al(n,a)24Na93Nb(n,2n)92mNb

1 1 5 In(n ,n ' ) x l 5 m In197Au(n,y)198Au

2.32e-29 7.73e-311.00e-28 3.51e-303.40e-29 l . l l e - 3 0

6.42e-30 2.17e-312.55e-29 8.42e-312.68e-29 8.91e-311.62e-28 5.26e-30

1.34e-30 4.37e-325.27e-30 1.86e-319.16e-30 3.13e-311.56e-28 5.30e-30

Table 3.2.7 Gamma-ray spectra in the vanadium assembly measured by the BC-537spectrometer in the unit of [photons / cm2 / lethargy / source]. (1/2)

Photon Energy[MeV]

3.311e-013.467e-013.631e-013.802e-013.981e-014.169e-014.365e-014.571e-014.786e-015.012e-015.248e-015.495e-015.754e-016.026e-016.310e-016.607e-016.918e-017.244e-017.586e-017.943e-018.318e-018.710e-019.120e-019.550e-011.000e+001.047e+001.097e+001.148e+001.202e+001.259e+001.318e+001.380e+001.445e+001.514e+001.585e+001.660e+001.738e+001.820e+001.906e+001.995e+002.089e+002.188e+002.291e+002.399e+002.512e+002.630e+00

Flux atz=76mm

5.505e-054.969e-054.568e-054.096e-053.589e-053.251e-053.187e-053.330e-053.559e-053.756e-053.795e-053.599e-053.235e-052.898e-052.742e-052.734e-052.733e-052.669e-052.602e-052.629e-052.791e-053.029e-053.210e-053.200e-052.966e-052.628e-052.366e-052.268e-052.315e-052.472e-052.751e-053.169e-053.741e-054.425e-054.983e-055.036e-054.517e-053.754e-053.002e-052.364e-051.957e-051.799e-051.744e-051.694e-051.667e-051.706e-05

AbsoluteError

2.942e-062.194e-062.141e-062.071e-061.822e-061.667e-061.593e-061.620e-061.678e-061.692e-061.713e-061.755e-061.651e-061.553e-061.477e-061.404e-061.377e-061.348e-061.329e-061.326e-061.367e-061.445e-061.474e-061.457e-061.402e-061.350e-061.321e-061.272e-061.287e-061.346e-061.500e-061.631e-061.848e-061.952e-062.116e-062.142e-062.002e-061.799e-061.572e-061.316e-061.093e-061.004e-069.540e-078.969e-078.860e-079.058e-07

Window[%]

26.527.527.627.327.126.726.125.524.924.624.624.825.225.525.826.026.025.825.424.824.123.423.023.123.624.325.025.325.024.022.620.819.017.516.516.116.417.218.419.821.021.922.522.722.521.9

Flux atz=178mm

2.177e-051.926e-051.697e-051.451e-051.244e-051.155e-051.178e-051.244e-051.302e-051.319e-051.275e-051.174e-051.055e-05.9.588e-068.983e-06.8.656e-068.534e-068.609e-068.908e-069.391e-069.948e-061.042e-051.067e-051.055e-059.996e-069.112e-068.201e-067.555e-067.364e-067.684e-068.514e-069.880e-061.192e-051.463e-051.713e-051.782e-051.605e-051.299e-051.011e-058.126e-067.052e-066.603e-066.388e-066.193e-066.033e-065.987e-06

AbsoluteError

1.136e-068.398e-078.507e-077.745e-076.633e-076.091e-075.617e-075.669e-075.970e-075.955e-075.779e-075.923e-075.586e-075.205e-074.942e-074.591e-074.445e-074.412e-074.456e-074.527e-074.710e-074.946e-074.971e-074.899e-074.759e-074.646e-074.525e-074.277e-074.237e-074.368e-074.750e-075.197e-076.042e-076.288e-077.208e-077.276e-076.909e-076.195e-075.453e-074.542e-073.884e-073.588e-073.397e-073.194e-073.140e-073.177e-07

Window[%]

25.726.927.427.427.426.826.025.324.624.424.524.925.425.926.226.326.325.925.424.724.023.222.822.923.424.024.825.425.524.823.621.920.018.016.716.116.317.118.219.420.421.021.421.721.721.5

- 3 6 -

Page 43: Fusion

JAERI-Data/Code 98-021

Table 3.2.7 Continued. (2/2)

Photon Energy[MeV]

2.754e+002.884e+003.020e+003.162e+003.311e+003.467e+003.631e+003.802e+003.981e+004.169e+004.365e+004.571e+004.786e+005.012e+005.248e+005.495e+005.754e+006.026e+006.310e+006.607e+006.918e+007.244e+007.586e+007.943e+008.318e+008.710e+009.120e+009.550e+001.000e+011.047e+011.097e+011.148e+011.202e+011.259e+011.318e+011.380e+011.445e+011.514e+01

Flux at2=76mm

1.820e-051.990e-052.157e-052.266e-052.303e-052.278e-052.220e-052.194e-052.224e-052.249e-052.180e-051.992e-051.758e-051.591e-051.527e-051.493e-051.394e-051.240e-051.127e-051.091e-051.051e-059.275e-067.528e-066.079e-065.154e-064.412e-063.629e-062.827e-062.054e-061.372e-069.282e-078.276e-079.513e-071.010e-068.262e-074.914e-072.062e-075.930e-08

AbsoluteError

9.391e-079.772e-071.012e-061.040e-061.068e-061.112e-061.068e-069.309e-071.074e-061.269e-061.114e-068.269e-077.806e-077.092e-077.194e-077.752e-076.603e-076.963e-076.514e-075.627e-076.078e-074.867e-074.079e-073.992e-073.731e-074.063e-074.787e-075.159e-074.729e-074.043e-074.439e-074.787e-074.146e-073.413e-072.659e-071.648e-077.235e-082.156e-08

Window[%]

21.120.319.519.219.119.320.321.722.723.724.925.325.325.525.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.7

Flux atz=178mm

6.118e-066.442e-066.936e-067.589e-068.282e-068.670e-068.425e-067.623e-066.621e-065.880e-065.763e-066.212e-066.625e-066.371e-065.473e-064.62"5e-064.415e-064.604e-064.450e-063.682e-062.812e-062.373e-062.260G-062.077e-061.733e-061.392e-061.134e-069.221e-077.392e-076.034e-075.103e-074.294e-073.365e-072.317e-071.337e-076.174e-082.175e-085.562e-09

AbsoluteError

3.243e-073.316e-073.415e-073.560e-073.767e-073.986e-073.856e-073.284e-073.749e-074.493e-073.983e-072.924e-072.674e-072.659e-072.909e-073.064e-072.740e-072.896e-072.689e-072.352e-072.425e-071.937e-071.623e-071.554e-071.363e-071.227e-071.157e-071.129e-071.074e-079.629e-088.242e-087.031e-086.313e-085.620e-084.241e-082.444e-081.016e-082.925e-09

Window[%]

21.120.419.618.918.618.720.221.723.224.625.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.7

Table 3.2.8 Measured gamma-ray heating rates of vanadium in the unit of [Gy / source neutron].

Gamma_Heat

z=0mm

7.42E-16 1

Error

.51E-16 7

z=76itm

.25E-16

Error

6.75E-17

z=178mm

2.23E-16 2

Error

.14E-17

Table 3.3.1 Material specification for the iron assembly.

Atomic Density [xlO24 atoms/cm3]

FeSi

0.0834900.000249

CMn

0.0007270.000716

- 3 7 -

Page 44: Fusion

JAERI-Data/Code 98-021

Table 3.3.2 Neutron spectra in the iron assembly measured by the NE213 spectrometer in theunit of [n / cm2 / lethargy / source]. (1/3)

NeutronEnergy [MeV]

2.02.22.42.62.83.03.23.43.63.84.04.24.44.64.85.05.25.45.65.86.06.26.46.66.87.07.27.47.67.88.08.28.48.68.89.09.29.49.69.8

10.010.210.410.610.811.011.211.411.611.812.012.212.412.612.813.013.213.413.613.814.014.214.414.614.815.015.215.415.615.816.016.216.416.616.817.017.217.417.617.818.0

Flux atz=16mm

2.34e-52.86e-53.33e-53.43e-53.22e-52.90e-52.68e-52.54e-52.34e-52.04e-51.75e-51.58e-51.50e-51.39e-51.17e-58.55e-65.67e-64.42e-65.55e-68.78e-61.29e-51.62e-51.76e-51.65e-51.36e-59.67e-65.97e-63.39e-62.16e-61.85e-61.72e-61.37e-69.76e-71.02e-61.78e-63.03e-64.12e-64.43e-63.62e-61.77e-6

-7.53e-7

Abs,Error

2.26e-62.28e-62.21e-62.12e-62.10e-62.67e-63.24e-63.17e-62.62e-62.21e-62.33e-62.62e-62.74e-62.72e-62.80e-62.94e-63.05e-63.23e-63.44e-63.56e-63.68e-63.96e-64.36e-64.66e-64.74e-64.85e-65.22e-65.82e-66.39e-66.82e-67.13e-67.46e-68.02e-68.94e-61.01e-51.12e-51.19e-51.21e-51.21e-51.23e-5

-7.53e-7-3.53e-6-3.53e-6-6.25e-6-6.25e-6-8.76e-6-1.lle-5-1.31e-5-1.44e-5-1.44e-5-1.23e-5-7.48e-6-4.12e-77.78e-61.61e-52.54e-53.95e-56.60e-51.15e-41.95e-43.11e-44.61e-46.32e-48.05e-49.58e-41.07e-31.13e-31.13e-31.07e-39.66e-48.34e-46.91e-45.55e-44.36e-43.39e-42.66e-42.14e-41.78e-41.53e-41.34e-41.18e-41.03e-48.76e-5

-8.76e-6-1 lle-5-1.31e-5-1.44e-5-1.44e-5-1.23e-5-7.48e-6-4.12e-72.01e-52.15e-52.20e-52.18e-52.25e-52.51e-52.85e-53.12e-53.32e-53.63e-54.16e-54.77e-55.21e-55.18e-54.63e-53.64e-52.47e-51.61e-51.71e-52.27e-52.66e-52.76e-52.60e-52.26e-51.85e-51.44e-51.08e-57.84e-65.62e-64.02e-6

Window[%]

36.134.633.231.830.729.728.727.827.026.225.424.724.123.623.022.522.121.721.321.020.620.219.919.519.218.918.618.418.117.917.717.517.317.116.916.716.616.416.216.015.815.715.515.315.114.914.814.614.514.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.013.012.212.212.212.513.514.414.414.414.414.414.414.414.414.4

Flux atz=41mm

2.69e-53.01e-53.41e-53.54e-53.38e-53.08e-52.82e-52.63e-52.47e-52.31e-52.19e-52.10e-51.98e-51.76e-51.44e-51.07e-57.65e-66.18e-66.77e-69.06e-61.19e-51.40e-51.45e-51.34e-51.15e-59.76e-68.91e-68.83e-68.86e-68.25e-66.73e-64.82e-63.44e-63.40e-64.84e-67.25e-69.75e-61.14e-51.16e-59.97e-66.72e-62.35e-6-2.39e-6-6.76e-6-1.02e-5-1.23e-5-1.30e-5-1.22e-5-1.00e-5-6.86e-6-3.17e-65.12e-74.15e-68.88e-61.76e-53.50e-56.68e-51.18e-41.90e-42.82e-43.87e-44.92e-45.85e-46.53e-46.87e-46.85e-46.47e-45.83e-45.02e-44.15e-43.32e-42.59e-42.00e-41.56e-41.24e-41.03e-48.80e-57.71e-56.81e-55.97e-55.14e-5

Abs.Error

1.70e-61.71e-61.68e-61.63e-61.61e-61.87e-62.17e-62.12e-61.82e-61.59e-61.64e-61.79e-61.84e-61.84e-61.87e-61.94e-62.00e-62.11e-62.23e-62.29e-62.36e-62.53e-62.78e-62.95e-63.01e-63.05e-63.26e-63.62e-63.97e-64.25e-64.43e-64.60e-64.90e-65.43e-66.13e-66.77e-67.16e-67.30e-67.32e-67.41e-67.71e-68.17e-6

-2.39e-6-6.76e-6-1.02e-5-1.23e-5-1.30e-5-1.22e-5-1.00e-5-6.86e-6-3.17e-61.21e-51.31e-51.34e-51.32e-51.36e-51.51e-51.71e-51.88e-52.02e-52.22e-52.55e-52.95e-53.20e-53.18e-52.85e-52.24e-51.51e-59.85e-61.04e-51.39e-51.64e-51.70e-51.60e-51.40e-51.14e-58.90e-66.67e-64.85e-63.48e-62.48e-6

Window[%]

36.134.633.231.830.729.728.727.827.026.225.424.724.123.623.022.522.121.721.321.020.620.219.919.519.218.918.618.418.117.917.717.517.317.116.916.716.616.416.216.015.815.715.515.315.114.914.814.614.514.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.113.112.212.212.212.613.514.414.414.414.414.414.414.414.414.4

Flux atz=66nun

2.74e-52.85e-53.08e-53.13e-52.95e-52.70e-52.51e-52.38e-52.25e-52.10e-51.93e-51.78e-51.65e-51.53e-51.37e-51.15e-59.08e-67.28e-66.78e-67.66e-69.42e-61.13e-51.24e-51.27e-51.22e-51.12e-51.02e-59.51e-69.21e-69.09e-68.84e-68.30e-67.53e-66.78e-66.26e-66.03e-65.99e-66.00e-66.03e-66.07e-66.08e-65.87e-65.16e-63.70e-61.45e-6

-1.38e-6-4.22e-6-6.34e-6-6.98e-6-5.63e-6-2.26e-62.74e-68.82e-61.58e-52.46e-53.73e-55.67e-58.57e-51.26e-41.76e-42.34e-42.92e-43.43e-43.81e-44.01e-44.02e-43.83e-43.50e-43.06e-42.59e-42.12e-41.71e-41.36e-41.08e-48.72e-57.19e-56.06e-55.19e-54.48e-53.83e-53.23e-5

Abs.Error

1.32e-61.29e-61.26e-61.23e-61.21e-61.34e-61.51e-61.48e-61.29e-61.16e-61.19e-61.27e-61.28e-61.27e-61.29e-61.34e-61.38e-61.44e-61.52e-61.56e-61.60e-61.70e-61.85e-61.96e-62.00e-62.03e-62.17e-62.38e-62.59e-62.74e-62.84e-62.95e-63.15e-63.49e-63.93e-64.33e-64.58e-64.66e-64.66e-64.70e-64.90e-65.20e-65.46e-65.56e-65.56e-6

-1.38e-6-4.22e-6-6.34e-6-6.98e-6-5.63e-6-2.26e-67.61e-68.23e-68.50e-68.50e-68.73e-69.59e-61.07e-51.17e-51.25e-51.40e-51.65e-51.94e-52.14e-52.13e-51.91e-51.51e-51.00e-56.06e-66.35e-68.87e-61.08e-51.14e-51.08e-59.54e-67.89e-66.19e-64.66e-63.42e-62.46e-61.75e-6

Window[%]

36.134.633.231.830.729.728.727.827.026.225.424.724.123.623.022.522.121.721.321.020.620.219.919.519.218.918.618.418.117.917.717.517.317.116.916.716.616.416.216.015.815.715.515.315.114.914.814.614.514.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.313.412.512.512.512.613.614.414.414.414.414.414.414.414.414.4

- 38 -

Page 45: Fusion

JAERI-Data/Code 98-021

Table 3.3.2 Continued. (2/3)

NeutronEnergy [MeV]

2.02.22.42.62.83.03.23.43.63.84.04.24.44.64.85.05.25.45.65.86.06.26.46.66.87.07.27.47.67.88.08.28.48.68.89.09.29.49.69.8

10.010.210.410.610.811.011.211.411.611.812.012.212.412.612.813.013.213.413.613.814.014.214.414.614.815.015.215.415.615.816.016.216.416.616.817.017.217.417.617.818.0

Flux atz=116mm

1.78e-l1.78e-l1.83e-l1.79e-l1.67e-l1.54e-l1.44e-l1.35e-l1.26e-l1.15e-l1.04e-l9.47e-28.81e-28.20e-27.46e-26.61e-25.87e-25.47e-25.45e-25.73e-26.17e-26.54e-26.64e-26.35e-25.71e-24.93e-24.24e-23.81e-23.65e-23.70e-23.82e-23.93e-23.98e-23.97e-23.95e-23.95e-24.00e-24.04e-24.03e-23.91e-23.70e-23.41e-23.02e-22.47e-21.68e-26.67e-3

-3.92e-3-1.24e-2-1.60e-2-1.33e-2-4.11e-31.09e-23.19e-26.10e-21.03e-l1.67e-l2.60e-l3.91e-l5.59e-l7.60e-l9.78e-l1.19e+01.38e+01.51e+01.57e+01.55e+01.47e+01.32e+01.15e+09.536-17.70e-l6.08e-l4.78e-l3.78e-l3.07e-l2.57e-l2.21e-l1.94e-l1 71e-ll!48e-l1.26e-l

Abs, WindowError

6.88e-36.56e-36.28e-36.11e-35.93e-36.20e-3

• 6.65e-36.51e-35.85e-35.39e-35.41e-35.60e-35.66e-35.66e-35.76e-35.92e-36.02e-36.23e-36.55e-36.69e-36.79e-37.08e-37.63e-38.12e-38.23e-38.33e-38.83e-39.67e-31.05e-2l.lle-21.15e-21.19e-21.27e-21.40e-21.57e-21.72e-21.82e-21.85e-21.86e-21.87e-21.94e-22.05e-22.14e-22.19e-22.19e-22.18e-2

-3.92e-3-1.24e-2-1.60e-2-1.33e-2-4.11e-32.99e-23.23e-23.30e-23.28e-23.36e-23.71e-24.18e-24.56e-24.89e-25.44e-26.35e-27.48e-28.20e-28.20e-27.34e-25.75e-23.88e-22.32e-22.38e-23.37e-24.10e-24.35e-24.16e-23.68e-23.05e-22.40e-21.81e-21.33e-29.52e-36.79e-3

%]

36.134.633.231.830.729.728.727.827.026.225.424.724.123.623.022.522.121.721.321.020.620.219.919.519.218.918.618.418.117.917.717.517.317.116.916.716.616.416.216.015.815.715.515.315.114.914.814.614.514.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.313.412.612.612.612.613.614.414.414.414.414.414.414.414.414.4

Flux atz=216mm

5.02e-34.75e-34.64e-34.41e-34.01e-33.62e-33.33e-33.14e-32.94e-32.73e-32.52e-32.33e-32.15e-31.97e-31.79e-31.61e-31.48e-31.39e-31.37e-31.40e-31.46e-31.52e-31.54e-31.48e-31.36e-31.19e-31.01e-38.69e-47.80e-47.35e-47.17e-47.12e-47.21e-47.47e-47.92e-48.47e-49.01e-49.42e-49.59e-49.48e-49.06e-48.37e-47.56e-46.80e-46.21e-45.80e-45.49e-45.14e-44.72e-44.33e-44.24e-44.84e-46.67e-41.05e-31.73e-32.84e-34.50e-36.80e-39.74e-31.32e-21.69e-22.04e-22.33e-22.52e-22.59e-22.53e-22.36e-22.09e-21.78e-21.466-21.16e-28.98e-36.95e-35.456-34.406-33.70e-33.22e-32.86e-32.55e-32.26e-31.95e-3

Abs.Error

1.76e-41.55e-41.43e-41.34e-41.28e-41.28e-41.31e-41.27e-41.18e-41.10e-41.08e-41.09e-41.10e-41.10e-4l.lle-41.12e-41.14e-41.17e-41.21e-41.23e-41.24e-41.28e-41.35e-41.43e-41.45e-41.47e-41.55e-41.67e-41.81e-41.92e-41.98e-42.05e-42.17e-42.39e-42.68e-42.93e-43.08e-43.12e-43.12e-43.16e-43.30e-43.49e-43.64e-43.67e-43.64e-43.60e-43.61e-43.67e-43.80e-44.05e-44.45e-44.94e~45.32e-45.44e-45.40e-45.51e-46.06e-46.82e-47.44e-48.00e-48.97e-41.06e-31.25e-31.38e-31.39e-31.24e-39.72e-46.50e-43.75e-43.76e-45.50e-46.85e-47.34e-47.10e-46.31e-45.28e-4•4.18e-43.16e-42.32e-41.66e-41.18e-4

Window[%]

35.034.133.131.830.729.728.727.827.026.225.424.724.123.623.022.522.121.721.321.020.620.219.919.519.218.918.618.418.117.917.717.517.317.116.916.716.616.416.216.015.815.715.515.315.114.914.814.614.514.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.413.512.812.812.812.813.714.414.414.414.414.414.414.414.414.4

Flux atz=316iran

1.52e-41.43e-41.26e-41.08e-49.27e-58.10e-57.28e-56.70e-56.22e-55.80e-55.46e-55.18e-54.88e-54.51e-54.04e-53.54e-53.10e-52.79e-52.68e-52.77e-52.97e-53.15e-53.20e-53.09e-52.88e-52.65e-52.48e-52.38e-52.34e-52.30e-52.24e-52.17e-52.11e-52.08e-52.07e-52.07e-52.07e-52.05e-52.02e-51.98e-51.92e-51.82e-51.68e-51.48e-51.25e-51.02e-58.59e-68.34e-61.00e-51.37e-51.90e-52.52e-53.18e-53.88e-54.78e-56.17e-58.42e-51.18e-41.66e-42.25e-42.92e-43.57e-44.13e-44.52e-44.67e-44.57e-44.25e-43.76e-43.17e-42.56e-41.99e-41.51e-41.14e-48.64e-56.79e-55.59e-54.82e-54.27e-53.82e-53.39e-52.94e-5

Abs.Error

4.94e-64.32e-63.79e-63.27e-62.98e-62.82e-62.73e-62.61e-62.40e-62.24e-62.18e-62.19e-62.19e-62.18e-62.18e-62.20e-62.23e-62.28e-62.36e-62.39e-62.42e-62.50e-62.64e-62.76e-62.80e-62.82e-62.95e-63.19e-63.42e-63.59e-63.70e-63.80e-64.01e-64.41e-64.91e-65.36e-65.63e-65.72e-65.72e-65.78e-65.99e-66.33e-66.62e-66.72e-66.67e-66.59e-66.56e-66.62e-66.82e-67.24e-67.90e-68.72e-69.39e-69.68e-69.67e-69.93e-61.08e-51.19e-51.29e-51.39e-51.59e-51.91e-52.27e-52.51e-52.52e-52.26e-51.77e-51.16e-56.57e-66.87e-61.02e-51.26e-51.35e-51.30e-51.15e-59.58e-67.57e-65.74e-64.21e-63.03e-62.16e-6

Window[%]

32.031.130.730.129.629.328.727.827.026.225.424.724.123.623.022.522.121.721.321.020.620.219.919.519.218.918.618.418.117.917.717.517.317.116.916.716.616.416.216.015.815.715.515.315.114.914.814.614.514.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.413.512.812.812.812.813.714.414.414.414.414.414.414.414.414.4

- 3 9 -

Page 46: Fusion

JAERI-Data/Code 98-021

Table 3.3.2 Continued. (3/3)

NeutronEnergy [MeV]

2.02.22.42.62.83.03.23.43.63.84.04.24.44.64.85.05.25.45.65.86.06.26.46.66.87.07.27.47.67.88.08.28.48.68.89.09.29.49.69.8

10.010.210.410.610.811.011.211.411.611.812.012.212.412.612.813.013.213.413.613.814.0

' 14.214.414.614.815.015.215.415.615.816.016.216.416.616.817.017.217.417.617.818.0

Flux atz=416mm

5.00e-64.68e-63.49e-62.62e-62.17e-61.90e-61.74e-61.64e-61.52e-61.38e-61.25e-61.14e-61.05e-69.69e-79.04e-78.48e-77.97e-77.56e-77.25e-77.04e-76.89e-76.76e-76.60e-76.42e-76.20e-75.93e-75.59e-75.19e-74.81e-74.50e-74.30e-74.19e-74.14e-74.17e-74.26e-74.43e-74.64e-74.81e-74.89e-74.85e-74.73e-74.58e-74.43e-74.31e-74.20e-74.09e-73.99e-73.96e-74.09e-74.44e-75.03e-75.83e-76.86e-78.23e-71.02e-61.33e-61.80e-62.44e-63.27e-64.24e-65.26e-66.21e-67.00e-67.51e-67.70e-67.55e-67.10e-66.43e-65.62e-64.75e-63.93e-63.19e-62.58e-62.09e-61.73e-61.45e-61.24e-61.07e-69.17e-77.80e-76.51e-7

Abs, WindowError [

1.46e-71.32e-71.04e-78.27e-87.27e-86.56e-86.06e-85.66e-85.20e-84.85e-84.65e-84.59e-84.57e-84.54e-84.55e-84.57e-84.58e-84.66e-84.77e-84.84e-84.87e-84.97e-85.20e-85.41e-85.47e-85.50e-85.78e-86.23e-86.66e-86.93e-87.10e-87.33e-87.76e-88.50e-89.41e-81.02e-71.07e-71.09e-71.09e-7l.lle-71.15e-71.21e-71.26e-71.26e-71.25e-71.23e-71.22e-71.24e-71.27e-71.35e-71.47e-71.62e-71.74e-71.77e-71.74e-71.77e-71.96e-72.22e-72.44e-72.61e-72.90e-73.38e-73.94e-74.33e-74.34e-73.90e-73.07e-72.03e-71.18e-71.20e-71.74e-72.16e-72.32e-72.23e-71.98e-71.65e-71.31e-79.92e-87.29e-85.23e-83.71e-8

%]

29.528.828.628.729.029.228.727.827.026.225.424.724.123.623.022.522.121.721.321.020.620.219.919.519.218.918.618.418.117.917.717.517.317.116.916.716.616.416.216.015.815.715.515.315.114.914.814.614.514.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.413.512.712.712.712.713.614.414.414.414.414.414.414.414.414.4

Flux atz=516mm

1.17e-61.07e-66.03e-73.76e-73.18e-72.81e-72.61e-72.50e-72.38e-72.25e-72.13e-71.99e-71.83e-71.66e-71.51e-71.40e-71.32e-71.27e-71.23e-71.20e-71.15e-71.09e-71.01e-79.36e-88.54e-87.77e-87.14e-86.70e-86.42e-86.18e-85.91e-85.60e-85.35e-85.24e-85.33e-85.55e-85.79e-85.94e-85.93e-85.78e-85.53e-85.28e-85.07e-84.90e-84.76e-84.62e-84.47e-84.31e-84.18e-84.07e-84.00e-84.02e-84.25e-84.95e-86.51e-89.41e-81.41e-72.09e-72.99e-74.05e-75.19e-76.28e-77.20e-77.83e-78.09e-77.96e-77.48e-76.72e-75.80e-74.83e-73.91e-73.10e-72.44e-71.94e-71.58e-71.33e-71.15e-71.01e-78.96e-87.86e-86.77e-8

Abs.Error

2.84e-82.69e-81.75e-81.29e-81.13e-89.97e-98.76e-98.04e-97.44e-96.93e-96.58e-96.39e-96.20e-96.03e-95.94e-95.85e-95.72e-95.69e-95.72e-95.72e-95.66e-95.59e-95.70e-95.81e-95.92e-95.89e-96.10e-96.46e-96.85e-97.16e-97.37e-97.53e-97.86e-98.52e-99.42e-91.02e-81.07e-81.07e-81.08e-81.09e-81.14e-81.19e-81.24e-81.24e-81.22e-81.20e-81.20e-81.20e-81.24e-81.31e-81.44e-81.59e-81.71e-81.75e-81.72e-81.75e-81.93e-82.18e-82.39e-82.58e-82.88e-83.39e-83.96e-84.36e-84.37e-83.92e-83.08e-82.04e-81.20e-81.23e-81.78e-82.19e-82.35e-82.25e-81.99e-81.66e-81.31e-89.88e-97.22e-95.17e-93.67e-9

Window[%]

27.927.126.927.828.629.228.727.827.026.225.424.724.123.623.022.522.121.721.321.020.620.219.919.519.218.918.618.418.117.917.717.517.317.116.916.716.616.416.216.015.815.715.515.315.114.914.814.614.514.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.413.512.712.712.712.713.714.414.414.414.414.414.414.414.414.4

Flux atz=716mm

3.91e-83.06e-82.17e-81.60e-81.25e-81.00e-88.92e-98.85e-99.05e-99.20e-99.30e-99.36e-99.31e-99.04e-98.57e-97.94e-97.21e-96.53e-96.09e-96.01e-96.21e-96.36e-96.18e-95.53e-94.56e-93.52e-92.72e-92.37S-92.46e-92.85e-93.27e-93.57e-93.73e-93.82e-93.90e-93.90e-93.74e-93.37e-92.87e-92.41e-92.13e-92.12e-92.38e-92.81e-93.29e-93.67e-93.81e-93.69e-93.38e-93.04e-92.86e-92.95e-93.34e-94.01e-95.00e-96.44e-98.54e-91.15e-81.55e-82.03e-82.56e-83.07e-83.50e-83.78e-83.88e-83.78e-83.52e-83.13e-82.67e-82.21e-81.77e-81.40e-81.10e-88.62e-96.82e-95.43e-94.33e-93.43e-92.67e-92.03e-91.50e-9

Abs.Error

1.33e-99.43-106.69-105.30-104.69-105.04-105.74-105.75-105.16-104.73-105.12-105.66-105.81-105.67-105.63-105.83-106.05-106.27-106.44-106.45-106.49-106.74-107.13-107.45-107.56-107.67-108.09-108.77-109.47-101.01e-91.05e-91.08e-91.09e-91.12e-91.21e-91.34e-91.45e-91.49e-91.48e-91.46e-91.47e-91.51e-91.57e-91.62e-91.67e-91.73e-91.80e-91.86e-91.94e-92.07e-92.29e-92.59e-92.89e-93.11e-93.26e-93.41e-93.62e-93.76e-93.79e-94.16e-95.20e-96.84e-98.54e-99.71e-99.94e-99.09e-97.28e-94.88e-92.59e-92.15e-93.54e-94.73e-95.31e-95.32e-94.90e-94.21e-93.43e-92.65e-91.96e-91.38e-99.32-10

Window[%]

28.829.630.130.330.329.728.727.827.026.225.424.724.123.623.022.522.121.721.321.020.620.219.919.519.218.918.618.418.117.917.717.517.317.116.916.716.616.416.216.015.815.715.515.315.114.914.814.614.514.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.414.4

- 4 0 -

Page 47: Fusion

Table 3.3.3

JAERI-Data/Code 98-021

Neutron spectra in the iron assembly measured by the PRC in the unit of [n / cm2

/lethargy/source]. (1/4)

NeutronEnergy[MeV]

3.09e-033.23e-033.37e-033.51e-033.67e-033.83e-034.00e-034.18e-034.36e-034.56e-034.76e-034.98e-035.20e-035.44e-035.68e-035.94e-036.21e-036.49e-036.79e-037.10e-037.43e-037.77e-038.13e-038.51e-038.90e-039.31e-039.74e-031.02e-021.07e-021.12e-021.17e-021.22e-021.28e-021.34e-021.40e-021.47e-021.54e-021.61e-021.69e-021.77e-021.85e-021.94e-022.03e-022.13e-022.23e-022.33e-022.44e-022.56e-022.68e-022.81e-022.94e-023.08e-023.23e-023.38e-023.54e-023.71e-023.88e-024.07e-024.26e-024.47e-024.68e-024.90e-025.14e-025.38e-025.64e-025.91e-026.19e-026.48e-026.79e-02

Flux atz=110inm

5.94e-021.90e-029.48e-033.37e-025.32e-029.96e-032.74e-023.18e-023.83e-022.67e-022.53e-023.71e-024.32e-024.01e-023.18e-022.25e-023.17e-023.21e-027.75e-032.39e-022.54e-021.39e-023.64e-022.94e-023.52e-025.42e-024.13e-023.80e-022.44e-022.46e-026.72e-024.59e-025.78e-024.90e-024.60e-024.79e-028.00e-026.22e-027.98e-026.34e-026.09e-027.79e-028.83e-021.37e-011.58e-012.41e-012.78e-012.14e-018.93e-024.45e-025.33e-023.69e-025.55e-025.80e-027.22e-021.33e-016.35e-029.88e-021.32e-01l.lle-011.58e-011.50e-011.35e-011.52e-011.42e-011.78e-012.00e-012.23e-012.44e-01

AbsoluteError

1.68e-021.60e-021.56e-021.52e-021.48e-021.44e-021.41e-021.38e-021.36e-021.33e-021.32e-021.29e-021.28e-021.25e-021.25e-021.24e-021.23e-021.23e-021.23e-021.22e-021.23e-021.23e-021.24e-021.26e-021.28e-021.29e-021.31e-021.33e-021.35e-021.37e-021.39e-021.41e-021.43e-021.44e-021.47e-021.49e-021.51e-021.53e-021.55e-021.57e-021.59e-021.61e-021.63e-021.65e-021.65e-021.64e-021.63e-021.61e-021.62e-021.63e-021.68e-021.71e-021.75e-021.79e-021.82e-021.86e-021.89e-021.92e-021.97e-021.99e-022.03e-022.06e-022.09e-022.13e-022.18e-022.21e-022.25e-022.28e-022.31e-02

NeutronEnergy[MeV]

3.05e-033.18e-033.32e-033.46e-033.62e-033.78e-033.94e-034.12e-034.30e-034.49e-034.69e-034.90e-035.12e-035.36e-035.60e-035.85e-036.12e-036.40e-036.69e-037.00e-037.32e-037.66e-038.01e-038.38e-038.77e-039.17e-039.60e-031.00e-021.05e-021.10e-021.15e-021.21e-021.26e-021.32e-021.38e-021.45e-021.52e-021.59e-021.66e-021.74e-021.82e-021.91e-022.00e-022.09e-022.19e-022.30e-022.40e-022.52e-022.64e-022.76e-022.89e-023.03e-023.18e-023.33e-023.49e-023.65e-023.82e-024.01e-024.20e-024.40e-024.61e-024.83e-025.06e-025.30e-025.55e-025.82e-026.09e-026.38e-026.69e-02

Flux atz=210mrti

1.79e-033.48e-032.74e-033.44e-031.62e-031.90e-032.58e-032.10e-033.07e-032.00e-032.73e-033.33e-032.34e-032.08e-033.63e-032.69e-032.19e-032.58e-031.83e-038.84e-041.37e-036.65e-041.70e-031.92e-032.56e-033.90e-033.38e-033.01e-034.12e-034.48e-034.94e-034.40e-034.93e-034.80e-034.86e-033.88e-035.44e-036.12e-035.62e-035.70e-037.00e-038.05e-038.83e-031.04e-021.43e-022.20e-022.49e-022.23e-021.43e-026.40e-031.34e-032.71e-033.41e-035.39e-034.43e-036.27e-038.79e-038.34e-036.80e-031.10e-021.23e-029.17e-031.13e-021.08e-021.19e-021.21e-021.79e-021.92e-021.99e-02

AbsoluteError

1.01e-039.65e-049.39e-048.92e-048.81e-048.50e-048.40e-048.22e-048.09e-047.93e-047.81e-047.72e-047.61e-047.52e-047.45e-047.39e-047.34e-047.27e-047.27e-047.26e-047.25e-047.30e-047.38e-047.52e-047.61e-047.78e-047.83e-047.97e-048.05e-048.17e-048.28e-048.35e-048.47e-048.58e-048.70e-048.80e-048.92e-049.07e-049.16e-049.32e-049.42e-049.55e-049.61e-049.72e-049.72e-049.70e-049.52e-049.37e-049.22e-049.30e-049.45e-049.72e-049.91e-041.01e-031.04e-031.06e-031.07e-031.10e-03l.lle-031.13e-031.15e-031.17e-031.19e-031.21e-031.23e-031.26e-031.27e-031.29e-031.30e-03

NeutronEnergy[MeV]

3.01e-033.14e-033.27e-033.42e-033.56e-033.72e-033.89e-034.06e-034.24e-034.43e-034.62e-034.83e-035.05e-035.28e-035.52e-035.77e-036.03e-036.30e-036.59e-036.89e-037.21e-037.54e-037.89e-038.25e-038.64e-039.04e-039.46e-039.89e-031.04e-021.08e-021.13e-021.19e-021.24e-021.30e-021.36e-021.43e-021.49e-021.56e-021.64e-021.71e-021.79e-021.88e-021.97e-022.06e-022.16e-022.26e-022.37e-022.48e-022.60e-022.72e-022.85e-022.99e-023.13e-023.28e-023.43e-023.59e-023.77e-023.95e-024.13e-024.33e-024.54e-024.75e-024.98e-025.22e-025.47e-025.73e-026.00e-026.29e-026.59e-02

Flux atz=310mm

1.02e-042.32e-042.21e-041.48e-041.99e-041.84e-041.20e-042.25e-042.23e-042.20e-042.17e-042.50e-042.26e-042.15e-041.77e-042.41e-042.25e-041.69e-041.14e-041.48e-041.04e-046.40e-058.00e-051.73e-041.64e-042.41e-042.98e-042.41e-043.93e-043.56e-043.35e-043.96e-043.30e-043.81e-044.57e-044.41e-044.50e-044.92e-045.27e-043.95e-045.69e-047.08e-047.36e-049.61e-041.23e-031.75e-032.11e-031.95e-031.25e-036.53e-042.68e-041.47e-043.44e-042.97e-043.96e-044.56e-045.03e-046.54e-046.41e-046.76e-047.48e-047.64e-047.78e-048.14e-048.20e-041.03e-031.14e-031.29e-031.41e-03

AbsoluteError

6.19e-055.95e-055.79e-055.53e-055.42e-055.29e-055.18e-055.06e-054.97e-054.87e-054.81e-054.72e-054.67e-054.59e-054.56e-054.50e-054.48e-054.45e-054.44e-054.43e-054.43e-054.45e-054.49e-054.56e-054.64e-054.71e-054.78e-054.84e-054.89e-054.95e-055.01e-055.07e-055.14e-055.20e-055.28e-055.33e-055.41e-055.47e-055.54e-055.61e-055.68e-055.76e-055.78e-055.81e-055.81e-055.75e-055.62e-055.46e-055.37e-055.37e-055.43e-055.55e-055.67e-055.81e-055.90e-056.03e-056.12e-056.23e-056.33e-056.44e-056.54e-056.64e-056.76e-056.87e-056.99e-057.09e-057.18e-057.25e-057.31e-05

- 41 -

Page 48: Fusion

ICO

+ I I I I I I I I I 1 f i i 1 I I I I I I I I I I t I I I f I | | | | | 1 | I 1 I I I I I I I I I 1 I I t I t I I I

P M H ^

] C O C O O ^

hJPiPiF^PiPiHHHI^MHMPaPi

I I I I I I I I ! I 1 I I 1 I I^D ^D CD CD CD CD D CD CD f^ f" <^ CD CD CD CD

0 1 0 \ C H ^ O W O W i t P U

t I I I I I I I I I I I I I I I

< T ) ( T > f l > f D f D ( D C t ) f D f D n ) n > ( 1 5 f D <D- fl){T)(t>(0(D{T>{T)ffin){T)<T>(l>fD(T)n)(T>(T)(T)<D{©fl)(T>CDn)(T)^<D(I>{D{T)O{T)n)<t)^rorDfDn)fl>(0fD(D{l>+ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

PJMM

w ^ w m w o D s j o w w w o o D ^ u u i w o p o i w f c w c o ^u^(^co^JP i^<»^J(^o^

(I)(II(DO(I)(DI0(D(II(IlO(D(D(D(tt(l)(D(D(D(D(D(0(l)(l)(D(D(D(ll(B(D(l)(DIDO(l}(D(D(l)(l)(Dffl(l)ll)(DO(IlffiI I 1 l l l I I I I I I I I I I l I l l l l l l l l l l I I l l l l I I I I I i I l l l I I l I I I I I I I l l l l

' H H P H H I

ooooooooooooooooooooooooooo

W P W I P U U

I I I I I I I I I I I I I I t I I I I I I t I Ioooooooooooooooooooooooo

I t I 1 I I I I i l l

j u ^co<^pro

I t t I I t I I t I I I I I I I I I ( I I ICD CD CD ^D CD CD CD C5 C5 ** CD CD C^ CD CD CD ^D ^D ^D ^D CD CD

^ o o i C 7 i o o o < ^ a \D ( b ( D ( T ( D ( D ( T ( D < I r oI i I I I I I I I f I I ! I I I I I I I I I t I I I I I I I I

s

I! H

(11ft

uS

ICO

CO

CO

oo&I

I

CO

o

Page 49: Fusion

cocooocococoaaooa^oooocororococooococococococococococooooorooooococooooooo^O O O O O O' O O O O O O O O O O O O O O O O O O O O O O O O O O O' CO O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Ot i i i i i r i i i I i i i I i i i i i i i t i i i t i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

^coc\^noDHlno^oo3^H'*\ l 'C7lo^o1H OJ in ininoiHmvonfM wvo ro > o ro

c c r r c ^o vo vo * o vo ^> >j? r~- c— c— t

I J I J i ] 1 I ! 1 I 1 I I I I I I I I I I I I i I I I I I I 1 I 1 1 I I I I I I I I I t I I I I 1 I I I I I

TOrniniHtHu^^covo^t^^OTovoo^c^qi^^co^rocn^OTrHcocDc^r^in^r^^

WHojfNin

rocoromrnoro<^rorocnroc^rnroc^rnrnMrororornro<^O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

I I I 1 I t I I I I 1 I I I I I I I I I I I I I I I I I t I i I I I I I I I I I I I 1 I I I I 1 i I I I I t I I I t 1 I ( ( I t [ I I I I I

^^^vocT>^coroo>^c$u>o^cooorHrH

COOOCnO^CJ>HHHHHHHHHHHHHHH(NrJO]C^(NlM(NWM

00

i i i i i i i j i i ( i

ooo^oDc^

i ^

oooooooooooooooooooooooooooooooooooooooooooooooooI I I I I I I I ! ! I t I t I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I i I I I Il ) j D D < l ) ^ l > ( U U l U l J d ) < U < U D < l J f l ) ( U O Q J < l ) ( U ^

HHH^ocNlnH(Jlo^ln^^oco^omCT\^Jlnocoorsn

CO

[

I I I I i I I I I I ! i I I I i I I I 1 i I I I 1 I I i I i I I I I i ! i I i I I I I I i I 1 1 1 i ) i i

CO

IoO

cococo

2

V0 VO VO t p VO VO VO VO VO VO VO VO VD VO VO VO VO VO VO VO VO VO VO VO VO VO VO VO VO VO VO VO VO VO 'VD VO VO VD VO VO VO VO VD VO VO VO VO VO VO VD VO VO VD VO VO ^O VO VD1 VO VO VO VO VO VD VD VO VO VO VD VOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOI 1 I I I I I I I 1 I I I 1 I t I I I I I I I I I t I I I I I I I I 1 I I I I I I I I I ! 1 I I I I I I I I I 1 I I I I I I I I I I 1 I i t

»n^n^o^colno^^^nloo^ml/^^o^o^^wO'ffHO^^o^n^OlCO^HO l |*^o^lno^^^•t D^D^^^cocooo<^o^ooHHHlNolC^JHOcrlcooocoo^ooHCNnn"!J lnvo^^cocJ\CJ^oHH^^

1 CO CO CO CO CO CO CO CO CO *^^ ^^^ ^Ji J^ ^^^ ^P *^l Hiji ^^1 ^^^ CO ^O CO ^O CO *^^ ^ ^ ^^1 ^ j i j ^ j i ^T jt 51 ^^1 ^^* *^^ "^i * Ji *hiji t^i O I*) t^i

iininLnini/iinuiinininu^ini^inin^^^^ininintnininininLninininin in in in in in in in f} C O C O C O CO CO CO C ^ C O CO C O ^ C O CO C O CO CO C O CO CO C ^ CO CO CO C 5 CO ^ C O CO C O C O CO CO CO CO

t I I I I I I I I I 1 1 I t I I I I I I I I I I 1 I I I I i I I ! I I I I 1 I I i I I I I I t I I I Iv ^ G ) C ) < V ( U < l ) Q ) v V < U ( l ) v l ) Q J Q v l J Q } v 1 ) v l ) v 1 ) ( i ) v V < U Q } < U < D < D < D < l ) t yoc^c^ro^^OO^H^H^^OHln^ool^o^o^ff^^x)lIl0^oo^^D'Jrooo•3l^^r^oH«)OH^^lnHO•* l<3lM

ic^^o%vo^cocx>rHinc30c»^winino incx>vDo>ovovDt o^votHOcooivoinroocoo

I I I I I I I I I I I f ! I !tyl)Q)l){])<l)(U(Ul)(U(D])(Dl)l)

rH CO rH <H C30 , } VD O l C71 <H

cnrorocorororocorornrorococNCSCN<NCNc^c^O]c^O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

I I 1 I I 1 I I 1 1 I I I t 1 ! I I I I I I 1 t I I I I t t I 1 i : I I I I I I I I I 1 ( i t I 1 I t I t ' I I I IO ) a > v T ) < D < U ( D v l > a } < D a ) t U < U ( D ( U < D < D < D Q ) v l ) v V v l ) v V < U Q > < l > < U < D v ^ v V

0<)C^CNCO^O>^HCT\t^in^cnrOfOrO^VDOTrH^COrOCO^iHOTr^VOr^COO^HHM^^n^^l0^vD^coc^oH^^^^^lnvoooQOcNfOln^cooc^l'!JlVDO^HrovDo^H•>a'^-

Page 50: Fusion

JAERI-Data/Code 98-021

Table 3.3.3 Continued. (4/4)

NeutronEnergy[MeV]

7.12e-027.46e-027.82e-028.19e-028.58e-028.99e-029.42e-029.87e-021.03e-011.08e-011.14e-011.19e-011.25e-011.31e-011.37e-011.44e-011.50e-011.58e-011.64e-011.72e-011.80e-011.89e-011.98e-012.08e-012.18e-012.28e-012.39e-012.50e-012.62e-012.75e-012.88e-013.02e-013.16e-013.32e-013.48e-013.64e-013.82e-014.00e-014.19e-014.39e-014.60e-014.82e-015.06e-015.30e-015.55e-015.82e-016.10e-016.39e-016.70e-017.02e-017.35e-017.71e-018.08e-018.46e-018.87e-019.30e-019.74e-011.02e+00

Flux atz=410mm

8.81e-059.24e-051.03e-049.08e-056.99e-056.19e-059.29e-059.54e-059.04e-051.03e-041.37e-041.79e-041.90e-041.67e-041.26e-041.16e-041.40e-041.57e-041.46e-041.63e-041.59e-041.18e-048.71e-051.06e-041.30e-041.42e-041.38e-041.44e-041.70e-041.88e-042.03e-042.30e-042.17e-041.90e-041.89e-041.83e-041.49e-041.08e-049.41e-051.04e-041.21e-041.23e-041.25e-041.18e-041.23e-041.42e-041.62e-041.58e-041.23e-048.62e-056.38e-054.84e-054.33e-054.69e-054.47e-053.95e-053.43e-052.82e-05

AbsoluteError

5.20e-065.25e-065.29e-065.34e-065.42e-065.50e-065.60e-065.67e-065.74e-065.80e-065.87e-065.93e-066.00e-066.06e-066.20e-066.32e-066.51e-066.64e-064.52e-064.34e-064.16e-064.04e-063.96e-063.90e-063.83e-063.75e-063.67e-063.60e-063.51e-063.42e-063.30e-063.16e-063.03e-062.89e-062.77e-062.65e-062.54e-062.46e-062.41e-062.37e-062.33e-062.29e-062.27e-062.25e-062.24e-062.18e-062.10e-061.97e-061.83e-061.71e-061.64e-061.59e-061.56e-061.53e-061.48e-061.42e-061.37e-061.32e-06

NeutronEnergy[MeV]

7.01e-027.34e-027.70e-028.06e-028.45e-028.85e-029.28e-029.72e-021.02e-011.07e-011.12e-011.17e-011.23e-011.29e-011.35e-011.41e-011.48e-011.57e-011.64e-011.72e-011.80e-011.89e-011.98e-012.08e-012.18e-012.28e-012.39e-012.50e-012.62e-012.75e-012.88e-013.02e-013.16e-013.32e-013.48e-013.64e-013.82e-014.00e-014.19e-014.39e-014.60e-014.82e-015.06e-015.30e-015.55e-015.82e-016.10e-016.39e-016.70e-017.02e-017.35e-017.71e-018.08e-018.46e-018.87e-019.30e-019.74e-011.02e+00

Flux atz=610mm

1.24e-051.28e-051.38e-051.25e-051.09e-058.22e-069.04e-061.08e-051.19e-051.35e-051.56e-051.97e-052.32e-052.32e-051.69e-051.29e-051.46e-051.39e-051.78e-051.81e-051.69e-051.36e-051.08e-051.20e-051.44e-051.41e-051.36e-051.48e-051.83e-051.95e-051.94e-052.24e-052.04e-051.65e-051.66e-051.54e-051.22e-058.02e-067.07e-067.68e-068.34e-068.89e-068.47e-068.15e-068.43e-069.49e-061.05e-059.54e-066.75e-064.19e-062.78e-062.10e-061.86e-061.78e-061.93e-061.74e-061.39e-061.00e-06

AbsoluteError

5.64e-075.67e-075.70e-075.73e-075.76e-075.82e-075.91e-076.00e-076.03e-076.06e-076.12e-076.12e-076.15e-076.15e-076.21e-076.30e-076.42e-074.47e-074.26e-074.05e-073.87e-073.72e-073.63e-073.54e-073.42e-073.33e-073.24e-073.18e-073.06e-072.94e-072.80e-072.65e-072.49e-072.34e-072.20e-072.08e-071.96e-071.88e-071.81e-071.77e-071.72e-071.68e-071.65e-071.61e-071.58e-071.51e-071.41e-071.27e-071.14e-071.02e-079.63e-089.12e-088.94e-088.52e-088.22e-087.59e-087.05e-086.60e-08

NeutronEnergy[MeV]

6.90e-027.23e-027.58e-027.94e-028.32e-028.72e-029.13e-029.57e-021.00e-011.05e-011.10e-011.15e-011.21e-011.27e-011.33e-011.39e-011.46e-011.50e-011.57e-011.64e-011.72e-011.80e-011.89e-011.98e-012.08e-012.18e-012.28e-012.39e-012.50e-012.62e-012.75e-012.88e-013.02e-013.16e-013.32e-013.48e-013.64e-013.82e-014.00e-014.19e-014.39e-014.60e-014.82e-015.06e-015.30e-015.55e-015.82e-016.10e-016.39e-016.70e-017.02e-017.35e-017.71e-018.08e-018.46e-018.87e-019.30e-019.74e-011.02e+00

Flux atz=810mm

1.48e-061.31e-061.67e-061.79e-061.53e-061.10e-061.02e-061.25e-061.45e-061.49e-061.72e-062.13e-062.66e-062.86e-062.43e-061.63e-061.42e-061.37e-061.45e-061.91e-062.20e-061.96e-061.45e-061.12e-061.27e-061.44e-061.49e-061.47e-061.58e-061.90e-062.02e-061.99e-062.20e-061.99e-061.48e-061.46e-061.37e-061.02e-066.69e-075.26e-075.74e-076.81e-076.73e-076.17e-076.31e-076.30e-076.66e-077.55e-076.82e-074.47e-072.70e-071.63e-071.12e-079.23e-089.25e-089.54e-088.63e-086.53e-085.08e-08

AbsoluteError

6.62e-086.63e-086.66e-086.65e-086.65e-086.68e-086.75e-086.82e-086.89e-086.92e-086.96e-086.94e-086.95e-086.89e-086.87e-086.90e-087.00e-085.48e-085.21e-084.97e-084.69e-084.44e-084.23e-084.09e-083.98e-083.87e-083.75e-083.63e-083.51e-083.37e-083.21e-083.02e-082.81e-082.62e-082.42e-082.25e-082.10e-081.95e-081.85e-081.78e-081.73e-081.68e-081.63e-081.58e-081.54e-081.48e-081.42e-081.29e-081.15e-089.92e-098.59e-097.89e-097.41e-097.09e-096.77e-096.39e-095.90e-095.31e-094.85e-09

- 4 4 -

Page 51: Fusion

Table 3.3.4

JAERI-Data/Code 98-021

Neutron spectra in the iron assembly measured by the SDT method in the unit of[n / cm2 / lethargy / source]. (1/2)

NeutronEnergy [MeV]

2.82e-073.55e-074.47e-075.62e-077.08e-078.91e-071.12e-061.41e-061.78e-062.24e-062.82e-063.55e-064.47e-065.62e-067.08e-068.91e-061.12e-051.41e-051.78e-052.24e-052.82e-053.55e-054.47e-055.62e-057.08e-058.91e-051.12e-041.41e-041.78e~042.24e-042.82e-043.55e-044.47e-045.62e-047.08e-048.91e-041.12e-031.41e-031.78e-032.24e-032.82e-033.55e-034.47e-035.62e-037.08e-038.91e-03

Flux atz=110inm

4.18e-052.25e-042.14e-045.24e-046.94e-046.35e-041.17e-031.31e-031.54e-031.64e-032.43e-032.77e-033.08e-033.27e-034.13e-033.97e-034.84e-034.93e-034.80e-036.13e-036.48e-037.59e-037.83e-037.05e-037.39e-038.09e-038.00e-038.21e-039.09e-038.58e-039.17e-039.86e-031.07e-021.29e-021.34e-021.36e-021.51e-021.88e-022.01e-021.95e-021.90e-022.09e-022.30e-022.20e-022.81e-023.60e-02

AbsoluteError

7.04e-062.02e-052.03e-053.91e-054.98e-054.79e-057.89e-058.78e-051.03e-041.10e-041.55e-041.77e-041.97e-042.11e-042.62e-042.59e-043.11e-043.22e-043.23e-044.03e-044.32e-045.04e-045.30e-045.00e-045.34e-045.90e-046.05e-046.36e-047.12e-047.05e-047.69e-048.42e-049.24e-04l.lle-031.19e-031.27e-031.43e-031.80e-031.98e-032.02e-032.07e-032.35e-032.71e-032.72e-033.51e-034.64e-03

Flux atz=210mm

6.09e-062.84e-052.72e-057.01e-059.21e-059.12e-051.60e-041.78e-042.13e-042.40e-043.23e-043.57e-043.95e-044.46e-045.46e-045.31e-046.04e-046.33e-046.68e-047.63e-048.30e-048.57e-048.78e-049.07e-049.33e-049.95e-041.01e-031.14e-031.16e-031.06e-031.04e-031.23e-031.29e-031.34e-031.35e-031.55e-031.65e-031.88e-032.05e-032.24e-032.20e-032.17e-032.59e-032.39e-032.94e-033.28e-03

AbsoluteError

5.65e-071.82e-061.79e-064.10e-065.31e-065.32e-068.97e-069.99e-061.19e-051.34e-051.79e-051.98e-052.19e-052.48e-053.02e-052.97e-053.37e-053.56e-053.78e-054.32e-054.73e-054.94e-055.12e-055.35e-055.58e-056.02e-056.25e-057.13e-057.40e-056.99e-057.04e-058.37e-059.02e-059.61e-059.99e-051.17e-041.29e-041.51e-041.72e-041.95e-042.02e-042.09e-042.58e-042.52e-043.25e-043.84e-04

Flux atz=310mm

1.62e-061.28e-064.25e-065.34e-067.46e-061.08e-051.41e-051.65e-052.13e-052.37e-052.92e-053.32e-053.68e-054.30e-054.46e-055.44e-055.93e-056.77e-056.54e-056.46e-057.23e-057.93e-058.43e-058.15e-059.03e-059.08e-059.51e-051.00e-049.96e-059.04e-058.39e-051.04e-041.15e-041.18e-041.25e-041.29e-041.61e-041.69e-041.81e-041.82e-042.03e-042.10e-042.46e-041.72e-042.35e-042.67e-04

AbsoluteError

1.36e-071.21e-072.94e-073.60e-074.83e-076.72e-078.57e-079.96e-071.27e-061.41e-061.72e-061.96e-062.17e-062.53e-062.64e-063.20e-063.51e-064.01e-063.94e-063.96e-064.45e-064.91e-065.28e-065.24e-065.85e-066.02e-066.42e-066.89e-067.08e-066.74e-066.55e-068.05e-069.05e-069.54e-061.04e-051.10e-051.38e-051.51e-051.67e-051.75e-052.01e-052.16e-052.65e-052.04e-052.79e-053.32e-05

- 4 5 -

Page 52: Fusion

JAERI-Data/Code 98-021

Table 3.3.4 Continued. (2/2)

NeutronEnergy [MeV]

2.82e-073.55e-074.47e-075.62e-077.08e-078.91e-071.12e-061.41e-061.78e-062.24e-062.82e-063.55e-064.47e-065.62e-067.08e-068.91e-061.12e-051.41e-051.78e-052.24e-052.82e-053.55e-054.47e-055.62e-057.08e-058.91e-051.12e-041.41e-041.78e-042.24e-042.82e-043.55e-044.47e-045.62e-047.08e-048.91e-041.12e-031.41e-031.78e-032.24e-032.82e-033.55e-034.47e-035.62e-037.08e-038.91e-03

Flux atz=410rnm

1.09e-072.61e-072.88e-075.27e-077.00e-078.60e-071.28e-061.50e-061.95e-062.15e-062.53e-062.94e-063.23e-063.85e-064.17e-064.76e-064.83e-065.25e-065.43e-066.13e-066.58e-066.69e-067.09e-067.22e-067.66e-067.59e-068.08e-068.02e-068.47e-067.62e-067.80e-068.74e-069.33e-061.04e-051.13e-051.26e-051.33e-051.41e-051.28e-051.49e-051.61e-051.72e-051.61e-051.67e-051.94e-052.28e-05

AbsoluteError

8.71e-091.73e-081.92e-083.24e-084.21e-085.11e-087.36e-088.62e-08l.lle-071.22e-071.43e-071.67e-071.83e-072.18e-072.37e-072.70e-072.76e-073.02e-073.15e-073.57e-073.86e-073.97e-074.26e-074.40e-074.72e-074.78e-075.17e-075.26e-075.65e-075.29e-075.56e-076.30e-076.89e-077.78e-078.67e-079.91e-071.08e-061.19e-061.13e-061.35e-061.52e-061.69e-061.68e-061.83e-062.20e-062.68e-06

Flux atz=610mm

1.90e-084.15e-086.46e-089.44e-081.15e-071.51e-072.28e-072.62e-073.13e-073.90e-074.57e-075.35e-075.96e-076.11e-077.26e-078.14e-078.51e-078.88e-079.83e-071.05e-061.09e-061.12e-061.20e-061.26e-061.33e-061.31e-061.33e-061.45e-061.29e-061.24e-061.42e-061.48e-061.58e-061.82e-061.97e-062.14e-062.30e-062.37e-062.63e-062.77e-062.89e-062.86e-062.62e-063.20e-063.09e-064.13e-06

AbsoluteError

1.57e-09 .2.89e-094.21e-095.88e-097.09e-099.09e-091.33e-081.53e-081.82e-082.24e-082.62e-083.05e-083.41e-083.52e-084.17e-084.69e-084.94e-085.19e-085.76e-086.22e-086.54e-086.76e-087.35e-087.77e-088.36e-088.45e-088.77e-089.63e-088.99e-088.91e-081.03e-071.09e-071.19e-071.39e-071.54e-071.71e-071.90e-072.03e-072.32e-072.53e-072.75e-072.86e-072.78e-073.45e-073.54e-074.81e-07

Flux atz=810mm

3.38e-095.69e-099.88e-091.27e-081.78e-082.12e-082.99e-083.44e-084.32e-084.82e-086.03e-086.56e-087.99e-088.50e-089.38e-081.06e-071.14e-071.24e-071.36e-071.41e-071.32e-071.57e-071.65e-071.65e-071.77e-071.70e-071.74e-071.73e-072.07e-071.88e-071.72e-071.86e-072.25e-072.17e-072.68e-072.83e-072.93e-073.28e-073.50e-073.49e-073.70e-073.44e-073.81e-073.60e-074.35e-075.21e-07

AbsoluteError

2.99e-104.45e-106.91e-108.60e-101.16e-091.37e-091.86e-092.13e-092.63e-092.94e-093.62e-093.97e-094.78e-095.12e-095.67e-096.43e-096.96e-097.58e-098.37e-098.77e-098.45e-091.00e-081.07e-081.10e-081.19e-081.18e-081.24e-081.27e-081.51e-081.44e-081.39e-081.53e-081.84e-081.86e-082.28e-082.47e-082.64e-083.01e-083.31e-083.46e-083.81e-083.78e-084.28e-084.29e-085.22e-086.36e-08

- 46 -

Page 53: Fusion

JAERI-Data/Code 98-021

Table 3.3.5 Integral neutron fluxes in the iron assembly derived from the measured neutronspectra in the unit of [n / cm2 / source]. Numbers in the parenthesis are percentageerrors.

DetectorPosition

[mm]

110210310410610810

Detector

Position[mm]

110210310410610810

0.1-1 MeV

1.57e-049.62e-055.43e-052.98e-059.27e-062.77e-06

(5)(5)(5)(5)(5)(5)

0.1-1 keV

2.38e-062.80e-062.44e-062.13e-061.21e-064.82e-07

(8)(8)(8)(8)(8)(8)

Energy Range

10-100

2.91e-052.46e-051.91e-051.33e-056.43e-062.54e-06

keV

(5)(5)(5)(5)(5)(5)

Energy Range

10-100

1.50e-061.86e-061.74e-061.48e-068.51e-073.41e-07

eV

(6)(6)(6)(6)(6)(6)

5.5.4.3.2.8.

577631

1-10 keV

12e-06 (11)38e-06 (11)67e-06 (11)76e-06 (11)22e-06 (11)59e-07 (11)

1-10 eV

.83e-07 (6)

.80e-07 (6)

.29e-07 (6)

.53e-07 (6)

.79e-07 (6)

.49e-07 (6)

Table 3.3.6 Measured dosimetry reaction rates in the iron assembly in the unit of [reactions /atom / source]. Numbers in the parenthesis are percentage errors.

Detector

Position[mm]

0100200300400500700

Detector

Position[mm]

0100200300400500700

27Al(n,a)

2.51e-053.85e-066.29e-071.21e-072.20e-083.89e-09

93Nb(n,2n)

1.09e-041.08e-052.55e-064.63e-078.53e-081.55e-08

2<Na

(2.7)(2.8)(2.8)(3.1)(3.5)(5.9)

S2mNb

(2.9)(3.0)(2.7)(3.2)(3.3)(4.7)

Reaction

56Fe(n,p)

2.18e-053.38e-065.41e-071.06e-071.48e-083.51e-09

56Mn

(2.6)(2.7)(3.0)(3.0)(3.9)(5.6)

Reaction

115In(n,n')

3.24e-051.83e-055.12e-061.41e-063.89e-071.14e-072.06e-08

115mln

(2.6)(2.6)(2.9)(2.9)(3.4)(5.6)(13.)

90Zr(n,2n)

1.96e-042.64e-054.14e-067.02e-071.49e-072.74e-085.57e-09

197Au(n,g)

1.41e-046.21e-048.18e-047.42e-046.49e-045.10e-042.58e-04

89m+gZr

(2.7)(2.7)(2.7)(2.9)(3.6)(4.5)(8.9)

198Au

(3.4)(3.0)(2.8)(3.1)(3.2)(3.2)(3.3)

- 47 -

Page 54: Fusion

JMOoouip»'JOJvouitovoaM>JO-jt^too^]inwp*vooocriSky3rfi.OUltOP1tOifc«-«3lt tO|-»h-1Winu)UlPiy)-J-J--JCOOlA>

n^UlOOJlDlOCDsl-JOOOOOOOOOOOOOOOOOOOOOOO

+ + + + + + + + + + + + + + + + + + + + + + + + -l-1- + -|. + + + + + + + + 4. + + + + + + + + + + + + + + + + + + + + + + + f [ | | | i | | | | | | | | | | | i i | | |ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooH»P*MP1MHP1PiPiPiOOOOOOOOOOOOOOOaOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOP*MP*P1PiPiPiP»PiP»p»P»P»P*P1P*P*P1P*MPiPi

Ln^incoto^coOTto^->Jo^otOi>cop>ooib.toi»JcriOinvotoi&in-oiDDifci^Ha)03VOCOU^LnpuiHO^WUJOUPO^WWC003W<^PO^^Oa^U10iCOCDUlPK30WWWkDvJU3

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo(D{DII)0(D{D(I)(D{Dfl)l1)(D(DIII{D{DlII<tl(I)(I)O(D<P(1)(i(1)(D<D(D(D(D(1)(D(b(t>(D(DIDID(l}(D(D(D(D(I)(DI I I I I I I I I f I I t i I 1 I I I 1 I I I < I I I ! I I I I I I I I f I I I ( I 1 I I I I I I f I 1 I I I I I I I t I I I I I 1 I I I 1 I I I I I i I I I

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooor iui inuiai inininuiai inininininint/ i inai(Ji inui i / i inui inininiJi inin(j i inininui inin(^

JO\<l-0-J-»J-vJ--J-J-J-JC^COCOCOCOVi>^COOOy>^P1PiPlP1PiP» P* P1 H

p» to to OJ p* us it* inoooooooooI I I I I I I I Iooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo1 t t I 1 I I I i I I I i I I I 1 I f I I I I i I I i I I I I 1 I I I I I I I I i I I I 1 I I I I I I I I I I I I I I t I I I i I I I i I Ioooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

IJp*MP*P»tOtOCOtOtOtOtOtOtOCONJCOtOtOWtO[ON)tOCON)tO

COOO\>JCOU)HOPUOP

coooo^

000000000.000000000000000000000000000000000000000000000 0,000 000000000000000000 0 00000(DfD:fDfl)(Tlfl)(I)fD{D{D(t)(Dfl)(D(Dfl)(D(D (D (D (D (D (D (V ( D f D ( D ( D ( D ( D f l ) ( D ( D fl) (D (D (D (D (D (DCD{Dfl)fl)fl)(Dfl)(D(D(D{D (D{D(DfD :(D(D(Dfl)fl)(D{Il{D(DfD(D(DfD{D(t'fl'(D(D(DfD(D(t)(D{DrD(T)(Di i i i i i i i i t i i i i i i i i i i i i t i i i i i i i ( i i i i i i i i i i i i i i i i i i i i i i i i, i i i i; i i i t i i i i i t i i ( i i i i i i i i i t

P»MOOOOOO O O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO O.O OOOOOOOOOOOOOOOOOOOOOO

r o^ en j **J J o en o^ o^ o^ o\ o^ o^ c^ o^ o\ en en en CT\ G\ O^ O^ O^ O^ O^ en o\

naiininincTi i^Jcop»p»p iP iP'P1«3Cocococop^p iMP>p»P iP iP*P iP1ri^(t*a\rf*co-JCo*»u>cop»uicoo\totjTp*voinin'^ _ __

o o'ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooI 1 I I I I I 1 t I i I I 1 1 I I I i I I I I I I I I I I I I I I I I I I I I 1 1 I I I I I 1 i i I I ! I I I I 1 I I I I I I I 1 I I 1 I ! I I I I I I I i I f I IMMOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOpOOOOOO

CO CO CO CO CO CO 00 00.00 CO CO CO CO CO CO CO 00 CO 00 CO CO CO CO 03 CO 00 00 CO CO 00 03 CO C0ODC0O3C0C000-J~J1 -J-J-J

^)

0 0

a,

JDCO00

icr

1JCco

?soa.

0 0

oto

ftdoenw

CD

o

BCD

Page 55: Fusion

JAERI-Data/Code 98-021

Table 3.3.7 Continued. (2/2)

Photon Energy[MeV]

3.630e-013.800e-013.980e-014.170e-014.370e-014.570e-014.790e-015.010e-015.250e-015.490e-015.750e-016.030e-016.310e-016.610e-016.920e-017.240e-017.590e-017.940e-018.320e-018.710e-019.120e-019.550e-011.000e+001.047e+001.097e+001.148e+001.202e+001.259e+001.318e+001.380e+001.445e+001.514e+001.585e+001.660e+001.738e+001.820e+001.906e+001.995e+002.089e+002.188e+002.291e+002.399e+002.512e+002.630e+002.754e+002.884e+003.020e+003.162e+003.311e+003.467e+003.631e+003.802e+003.981e+004.169e+004.365e+004.571e+004.786e+005.012e+005.248e+005.495e+005.754e+006.026e+006.310e+006.607e+006.918e+007.244e+007.586e+007.943e+008.318e+008.710e+009.120e+009.550e+001.000e+011.047e+011.097e+011.148e+011.202e+011.259e+011.318e+011.380e+011.445e+011.514e+01

Flux atz=100mm

3.320e-073.800e-074.490e-075.260e-075.800e-075.840e-075.290e-07 '"4.340e-073.360e-072.650e-072.300e-072.240e-072.360e-072.630e-073.010e-073.460e-073.780e-073.760e-073.340e-072.680e-072.110e-071.790e-071.700e-071.750e-071.850e-071.970e-072.070e-072.130e-072.170e-072.210e-072.250e-072.300e-072.310e-072.280e-072.220e-072.150e-072.110e-072.120e-072.180e-072.260e-072.370e-072.470e-072.550e-072.600e-072.640e-072.680e-072.730e-072.780e-072.830e-072.880e-072.910e-072.960e-073.060e-073.240e-073.420e-073.500e-073.410e-073.260e-073.220e-073.320e-073.470e-073.740e-074.380e-075.380e-076.000e-075.320e-073.540e-071.880e-071.040e-077.460e-085.780e-084.070e-082.480e-081.350e-087.080e-093.890e-092.100e-099.830e-103.560e-109.340e-ll

AbsoluteError

2.370e-082.460e-082.350e-082.170e-082.980e-083.870e-083.430e-082.250e-081.860e-081.710e-081.530e-081.450e-081.460e-081.510e-081.610e-081.750e-081.780e-081.860e-081.840e-081.530e-081.400e-081.280e-081.210e-081.170e-081.160e-081.180e-081.200e-081.220e-081.220e-081.220e-081.220e-081.240e-081.270e-081.290e-081.300e-081.300e-081.310e-081.330e-081.350e-081.360e-081.390e-081.440e-081.460e-081.470e-081.510e-081.600e-081.720e-081.790e-081.720e-081.750e-082.280e-082.830e-082.720e-082.190e-082.130e-082.330e-082.590e-082.800e-082.600e-082.360e-082.190e-081.950e-081.830e-081.990e-082.260e-081.960e-081.350e-081.080e-087.010e-094.8506-094.090e-093.370e-092.540e-091.880e-091.460e-091.110e-097.680e-104.370e-101.850e-105.460e-ll

Window[%]

27.626.525.825.425.024.925.425.825.926.026.326.325.624.623.422.321.721.922.823.824.825.425.825.725.725.725.725.725.525.425.325.325.425.525.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.724.221.618.816.616.618.220.723.525.725.725.725.725.725.725.725.725.725.725.7

Flux atz=300mm

9.620e-089.250e-089.260e-089.990e-081.180e-071.470e-071.780e-071.920e-071.800e-071.430e-071.020e-077.220e-086.100e-086.040e-086.270e-086.550e-086.770e-086.910e-086.970e-086.870e-086.570e-086.110e-085.660e-085.370e-085.300e-085.390e-085.550e-085.730e-085.920e-086.110e-086.350e-086.630e-086.910e-087.110e-087.130e-086.990e-086.810e-086.670e-086.640e-086.710e-086.860e-087.070e-087.300e-087.540e-087.790e-088.050e-088.310e-088.580e-088.850e-089.090e-089.220e-089.260e-089.350e-089.720e-081.040e-071.120e-071.150e-071.110e-071.030e-071.010e-071.080e-071.180e-071.240e-071.300e-071.510e-071.850e-072.060e-071.830e-071.200e-075.880e-082.740e-081.770e-081.360e-089.130e-095.060e-092.390e-091.060e-094.780e-102.180e-108.970e-ll2.990e-ll7.350e-12

AbsoluteError

5.690e-095.860e-096.070e-096.330e-096.410e-097.160e-098.900e-098.690e-097.780e-098.400e-096.750e-095.600e-095.210e-093.780e-093.670e-093.660e-093.680e-093.680e-093.690e-093.740e-093.730e-093.590e-093.470e-093.480e-093.520e-093.540e-093.570e-093.640e-093.720e-093.770e-093.780e-093.790e-093.840e-093.920e-094.010e-094.070e-094.120e-094.150e-094.190e-094.280e-094.360e-094.420e-094.520e-094.650e-094.740e-094.800e-094.950e-095.260e-095.680e-095.890e-095.670e-095.810e-097.550e-099.330e-098.990e-097.290e-097.030e-097.740e-098.670e-099.190e-098.570e-098.040e-097.600e-096.850e-096.500e-097.350e-098.230e-096.570e-094.320e-093.300e-091.650e-091.110e-098.210e-106.210e-104.310e-102.900e-102.070e-101.560e-101.040e-105.530e-ll2.170e-ll6.010e-12

Window[%]

28.128.227.326.025.124.724.624.825.526.126.226.226.426.526.326.025.725.525.525.525.625,825.825,825.825.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.724.121.618.615.813.815.517.820.923.725.625.625.725.725.725.725.725.725.725.7

- 4 9 -

Page 56: Fusion

JAERI-Data/Code 98-021

Table 3.3.8 Measured gamma-ray heating rates of iron in the unit of [Gy / source neutron].

DetectorPosition

[mm]

050100200300

GammaHeating

9.10e-161.17e-155.30e-161.32e-163.55e-17

Error

[%]

25.710.810.59.3

10.0

DetectorPosition

[mm]

400500600700800

GammaHeating

1.36e-177.18e-184.92e-183.08e-182.00e-18

Error[%]

10.210.68.58.28.0

Table 3.4.1 Material specification for the copper assembly.

Copper Purity: > 99.99% Weight Density: 8.93 [g/cm3]

Table 3.4.2 Neutron spectra in the copper assembly measured by the SDT method in the unitof [n / cm2 / lethargy / source].

NeutronEnergy[MeV]

2.82e-073.55e-074.47e-075.62e-077.08e-078.91e-071.12e-061.41e-061.78e-062.24e-062.82e-063.55e-064.47e-065.62e-067.08e-068.91e-061.12e-051.41e-051.78e-052.24e-052.82e-053.55e-054.47e-055.62e-057.08e-058.91e-051.12e-041.41e-041.78e-042.24e-042.82e-043.55e-044.47e-045.62e-047.08e-048.91e-041.12e-031.41e-031.78e-032.24e-032.82e-033.55e-034.47e-035.62e-037.08e-038.91e-03

Flux atz=76mm

l.lle-092.28e-092.62e-093.09e-093.70e-094.51e-094.22e-095.11e-098.26e-091.09e-081.46e-081.93e-082.51e-082.99e-083.83e-084.47e-085.56e-086.75e-088.14e-081.03e-071.10e-071.29e-071.41e-071.73e-071.78e-071.97e-072.40e-072.50e-072.96e-073.02e-073.78e-074.43e-074.99e-076.33e-079.40e-071.32e-061.63e-061.77e-061.63e-062.19e-062.06e-062.92e-063.90e-066.02e-068.23e-069.20e-06

AbsoluteError

1.63e-102.68e-103.05e-103.53e-104.14e-104.92e-104.88e-105.77e-108.34e-101.05e-091.35e-091.72e-092.18e-092.58e-093.24e-093.77e-094.65e-095.63e-096.79e-098.61e-099.35e-09l.lle-081.25e-081.55e-081.67e-081.91e-082.40e-082.64e-083.28e-083.56e-084.71e-085.89e-087.14e-081.02e-071.60e-072.50e-073.43e-074.18e-074.32e-076.39e-076.58e-071.04e-061.57e-062.79e-064.57e-065.95e-06

Flux atz=228mm

4.45e-104.98e-107.53e-101.24e-091.46e-092.69e-094.61e-096.36e-091.10e-081.43e-082.27e-082.91e-083.89e-084.92e-086.77e-088.63e-081.06e-071.21e-071.38e-071.68e-071.94e-072.24e-072.42e-072.71e-073.05e-073.37e-074.27e-074.41e-074.47e-074.61e-075.91e-075.99e-077.30e-079.60e-071.41e-061.83e-062.48e-062.50e-062.25e-063.37e-063.21e-064.26e-065.49e-068.36e-061.09e-051.14e-05

AbsoluteError

9.54e-ll1.07e-101.41e-101.97e-102.28e-103.46e-105.12e-106.63e-101.02e-091.29e-091.90e-092.40e-093.12e-093.90e-095.26e-096.66e-098.15e-099.44e-091.08e-081.33e-081.56e-081.84e-082.04e-082.35e-082.73e-083.14e-084.55e-084.96e-085.30e-085.76e-087.73e-088.37e-081.07e-071.50e-072.37e-073.39e-075.13e-075.84e-075.83e-079.62e-071.02e-061.50e-062.20e-063.83e-065.93e-067.21e-06

Flux atz=380mm

3.67e-103.77e-105.77e-101.09e-091.52e-092.42e-094.76e-094.69e-098.94e-091.22e-081.93e-082.52e-083.23e-084.15e-085.63e-086.32e-088.18e-081.01e-071.12e-071.26e-071.49e-071.71e-071.87e-071.97e-072.29e-072.47e-072.65e-072.47e-072.85e-073.34e-074.14e-074.15e-074.84e-076.82e-079.50e-071.33e-061.74e-061.77e-061.68e-061.64e-062.11e-062.82e-063.48e-064.24e-066.81e-066.83e-06

AbsoluteError

8.77e-ll9.36e-ll1.24e-101.87e-102.38e-103.29e-105.31e-105.46e-108.86e-101.15e-091.68e-092.14e-092.69e-093.39e-094.50e-095.08e-096.51e-097.99e-099.01e-091.03e-081.23e-081.43e-081.61e-081.75e-082.10e-082.36e-083.05e-083.02e-083.59e-084.32e-085.58e-085.95e-087.31e-081.06e-071.60e-072.42e-073.56e-074.10e-074.29e-074.63e-076.47e-079.67e-071.35e-061.87e-063.53e-064.14e-06

Flux atz=532mm

7.87e-101.49e-091.59e-091.81e-091.66e-092.75e-093.19e-094.11e-095.55e-096.72e-099.95e-091.20e-081.73e-081.63e-082.39e-082.70e-083.35e-084.14e-084.79e-085.26e-085.70e-086.82e-087.58e-088.04e-088.52e-081.03e-079.76e-08l.lle-071.32e-071.64e-071.76e-071.92e-072.20e-072.52e-073.61e-075.73e-076.29e-077.26e-075.93e-076.08e-077.72e-079.52e-071.16e-061.76e-062.53e-062.13e-06

AbsoluteError

1.32e-102.03e-102.20e-102.49e-102.48e-103.52e-104.04e-104.96e-106.29e-107.43e-101.01e-091.20e-091.63e-091.60e-092.21e-092.51e-093.06e-093.74e-094.34e-094.83e-095.33e-096.42e-097.28e-097.96e-098.73e-091.07e-081.08e-081.27e-081.57e-082.03e-082.31e-082.69e-083.26e-084.02e-086.07e-081.05e-071.29e-071.69e-071.52e-071.70e-072.37e-073.22e-074.38e-077.57e-071.28e-061.26e-06

- 5 0 -

Page 57: Fusion

JAERI-Data/Code 98-021

Table 3.5.1 Material specification for the tungsten assembly.

Chemical Composition

Weight Dens i ty

W 94.8 wt%Cu 2 .1 wt%Ni 3.1 wt%

18.05 [g/cm3]

Table 3.5.2 Neutron spectra in the tungsten assembly measured by the NE213 spectrometerin the unit of [n / cm2 / lethargy / source].

NeutronEnergy [MeV]

1.041e+01.095e+01.151e+01.210e+01.272e+01.337e+01.406e+01.478e+01.553e+01.633e+01.717e+01.805e+01.897e+01.995e+02.097e+02.204e+02.317e+02.436e+02.561e+02.692e+02.830e+02.975e+03.128e+03.288e+03.457e+03.634e+03.821e+04.016e+04.222e+04.439e+04.666e+04.906e+05.157e+05.422e+05.700e+05.992e+06.299e+06.622e+06.961e+07.318e+07.694e+08.088e+08.503e+08.939e+09.397e+09.879e+01.039e+l1.092e+l1.148e+l1.207e+l1.268e+l1.334e+l1.402e+l1.474e+l1.549e+l1.629e+l1.712e+l1.800e+l

Flux a tz=76mm

6.11e-55.69e-55.28e-54.97e-54.81e-54.78e-54.86e-54.99e-55.09e-55.07e-54.88e-54.48e-53.97e-53.45e-53.00e-52.63e-52.34e-52.14e-52.00e-51.89e-51.77e-51.64e-51.53e-51.44e-51.35e-51.22e-51.06e-59.04e-67.89e-67.16e-66.59e-65.92e-65.10e-64.35e-63.85e-63.72e-63.95e-64.23e-64.40e-64.76e-65.29e-65.29e-64.98e-65.16e-65.83e-6

"7.19e-68.84e-68.65e-68.88e-61.80e-54.71e-51.13e-41.88e-41.80e-49.98e-54.14e-52.41e-51.44e-5

Abs,Error

1.86e-61.87e-61.89e-61.79e-61.60e-61.48e-61.51e-61.53e-61.55e-61.53e-61.44e-61.35e-61.34e-61.21e-61.04e-69.42e-78.67e-77.74e-77.25e-76.87e-76.67e-76.96e-77.48e-77.63e-77.19e-76.59e-76.24e-76.20e-76.50e-76.83e-77.26e-77.72e-78.01e-78.57e-79.26e-79.68e-71.08e-61.21e-61.26e-61.43e-61.68e-61.81e-62.06e-62.60e-62.86e-62.96e-63.37e-63.35e-63.34e-63.96e-64.07e-65.05e-66.21e-66.42e-62.93e-63.20e-62.27e-65.29e-7

Window[%]

42.542.442.241.740.839.337.535.533.832.532.032.032.633.333.833.833.532.832.031.230.529.729.028.327.626.826.125.324.523.923.322.722.221.721.120.620.019.519.018.518.017.617.216.816.415.915.515.114.814.514.414.414.414.414.413.713.112.4

Flux atz=228mm

5.73e-65.24e-64.73e-64.21e-63.70e-63.23e-62.86e-62.60e-62.42e-62.30e-62.19e-62.04e-61.88e-61.72e-61.58e-61.47e-61.39e-61.30e-61.21e-6l . l l e - 69.95e-78.95e-78.18e-77.63e-77.18e-76.70e-76.15e-75.58e-75.01e-74.51e-74.06e-73.68e-73.40e-73.25e-73.07e-72.69e-72.33e-72.38e-72.83e-73.14e-72.99e-72.87e-73.29e-73.98e-74.54e-74.77e-74.79e-74.95e-75.64e-78.87e-72.09e-64.70e-66.95e-65.91e-62.92e-61.14e-66.29e-73.84e-7

Abs.Error

1.85e-71.99e-71.92e-71.52e-71.31e-71.28e-71.08e-79.33e-88.986-87.92e-86.88e-86.34e-85.81e-85.31e-84.81e-84.39e-84.14e-83.88e-83.66e-83.43e-83.29e-83.26e-83.35e-83.32e-83.19e-83.02e-82.89e-82.896-82.96e-83.05e-83.20e-83.37e-83.46e-83.65e-83.91e-84.07e-84.43e-84.92e-85.06e-85.76e-86.65e-87.04e-87.95e-89.84e-81.08e-7l . l l e - 71.25e-71.22e-71.21e-71.42e-71.45e-71.76e-72.22e-72.50e-71.07e-71.20e-79.10e-82.38e-8

Window[%]

34.934.834.934.935.035.135.435.535.335.03 4 . 73 4 . 534.234.033.833.332.732.131.631.030.429.729.028.327.626.826.125.324.523.923.322.722.221.721.120.620.019.519.018.518.017.617.216.816.415.915.515.114.814.514.414.414.414.414.414.414.414.4

Flux a tz=380mni

3.13e-72.78e-72.54e-72.43e-72.44e-72.50e-72.52e-72.41e-72.13e-71.75e-71.39e-71.15e-71.02e-79.66e-89.26e-88.82e-88.29e-87.72e-87.10e-86.45e-85.82e-85.27e-84.82e-84.39e-83.96e-83.56e-83.26e-83.03e-82.85e-82.75e-82.72e-82.72e-82.65e-82.51e-82.32e-82.15e-82.07e-82.11e-82.13e-82.10e-82.12e-82.16e-82.19e-82.39e-82.58e-82.48e-82.44e-82.61e-82.89e-84.55e-81.00e-72.08e-73.06e-72.70e-71.24e-72.69e-81.10e-81.13e-8

Abs.Error

1.18e-81.06e-81.08e-89.57e-97.61e-97.17e-97.54e-97.42e-96.46e-95.65e-95.45e-94.52e-93.56e-93.43e-93.11e-92.61e-92.34e-92.18e-92.02e-91.94e-91.83e-91.76e-91.79e-91.76e-91.69e-91.60e-91.57e-91.59e-91.63e-91.68e-91.74e-91.83e-91.87e-91.93e-92.04e-92.08e-92.19e-92.39e-92.47e-92.73e-93.08e-93.28e-93.63e-94.41e-94.79e-94.97e-95.49e-95.36e-95.26e-96.04e-96.34e-97.43e-99.64e-91.25e-84.92e-96.18e-94.59e-91.24e-9

Window[%]

37.137.437.036.034.632.730.930.231.032.133.434.835.534.934.133.332.331.731.430.930.329.729.028.327.626.826.125.324.523.923.322.722.221.721.120.620.019.519.018.518.017.617.216.816.415.915.515.114.814.514.414.414.414.414.414.414.414.4

- 51 -

Page 58: Fusion

Table 3.5.3

JAERI-Data/Code 98-021

Neutron spectra in the tungsten assembly measured by the PRC in the unit of [n /cm2 / lethargy / source]. (1/2)

NeutronEnergy[MeV]

5.00e-035.23e-035.46e-035.71e-035.97e-036.24e-036.53e-036.83e-037.14e-037.47e-037.81e-038.17e-038.55e-038.94e-039.36e-039.79e-031.03e-021.07e-021.12e-021.18e-021.23e-021.29e-021.35e-021.41e-021.48e-021.55e-021.62e-02

Flux atz=76mm

1.52e-056.01e-061.04e-059.84e-068.83e-061.25e-055.47e-061.83e-051.68e-051.36e-051.54e-051.93e-056.90e-061.54e-051.76e-051.57e-052.45e-051.93e-059.27e-061.42e-051.07e-051.42e-051.45e-051.70e-055.93e-075.37e-065.40e-06

1.70e-02-1.98e-061.78e-021.86e-021.95e-022.04e-022.14e-022.24e-022.34e-022.45e-022.57e-022.69e-022.82e-022.95e-023.09e-023.24e-023.40e-023.56e-023.73e-023.90e-024.09e-024.29e-024.49e-024.70e-024.93e-025.16e-025.41e-025.67e-025.94e-026.22e-026.52e-026.83e-027.16e-027.50e-027.86e-028.23e-028.63e-029.04e-029.47e-029.92e-02

1.63e-051.50e-052.23e-051.70e-052.81e-059.36e-061.90e-052.69e-052.79e-051.79e-052.08e-052.76e-053.15e-052.63e-052.57e-053.61e-053.51e-053.71e-055.50e-054.57e-056.49e-055.29e-055.90e-055.41e-054.46e-055.89e-057.00e-057.15e-057.25e-056.42e-056.68e-051.17e-041.27e-041.10e-041.04e-049.03e-058.11e-051.31e-04

AbsoluteError

4.97e-064.97e-065.00e-065.09e-065.12e-065.21e-065.24e-065.30e-065.39e-065.39e-065.42e-065.42e-065.51e-065.54e-065.63e-065.69e-065.69e-065.79e-065.79e-065.91e-065.97e-066.09e-066.12e-066.24e-066.36e-066.48e-066.63e-066.82e-066.94e-067.06e-067.18e-067.30e-067.42e-067.57e-067.69e-067.88e-067.97e-068.12e-068.30e-068.42e-068.63e-068.78e-068.94e-069.12e-069.30e-069.48e-069.66e-069.78e-069.94e-061.01e-051.03e-051.05e-051.07e-051.09e-05l.lle-051.13e-051.15e-051.18e-051.20e-051.23e-051.27e-051.31e-051.36e-051.41e-051.47e-051.53e-05

NeutronEnergy[MeV]

3.11e-033.24e-033.38e-033.53e-033.68e-033.85e-034.02e-034.20e-034.38e-034.58e-034.78e-035.00e-035.23e-035.46e-03

Flux atz=228mm

3.21e-065.25e-066.01e-062.41e-064.69e-063.27e-062.69e-062.93e-064.31e-066.05e-061.82e-062.60e-064.48e-064.34e-06

5.71e-03 -4.26e-075.97e-036.24e-036.53e-036.83e-037.14e-037.47e-037.81e-038.17e-038.55e-038.94e-039.36e-039.79e-031.03e-021.07e-021.12e-021.18e-021.23e-021.29e-021.35e-021.41e-021.48e-021.55e-021.62e-021.70e-021.78e-021.86e-021.95e-022.04e-022.14e-022.24e-022.34e-022.45e-022.57e-022.69e-022.82e-022.95e-023.09e-023.24e-023.40e-023.56e-023.73e-023.90e-024.09e-024.29e-024.49e-024.70e-024.93e-025.16e-025.41e-025.67e-025.94e-02

7.71e-073.56e-065.21e-066.61e-066.90e-061.19e-064.69e-062.94e-065.73e-067.94e-065.71e-067.89e-066.63e-065.72e-064.68e-063.65e-064.25e-063.70e-064.26e-061.81e-063.91e-064.08e-068.45e-066.55e-066.71e-063.37e-061.29e-068.01e-061.56e-051.21e-056.07e-069.18e-061.23e-059.54e-061.06e-058.44e-061.64e-051.32e-051.53e-051.83e-051.54e-052.41e-052.65e-052.19e-052.11e-052.29e-053.10e-052.64e-052.11e-052.26e-052.27e-05

AbsoluteError

1.90e-061.84e-061.81e-061.78e-061.74e-061.74e-061.71e-061.70e-061.69e-061.67e-061.66e-061.66e-061.69e-061.70e-061.73e-061.76e-061.79e-061.82e-061.81e-061.84e-061.85e-061.87e-061.91e-061.92e-061.94e-061.96e-061.97e-061.99e-061.99e-062.03e-062.04e-062.09e-062.11e-062.16e-062.20e-062.24e-062.28e-062.30e-062.36e-062.38e-062.41e-062.48e-062.52e-062.56e-062.58e-062.62e-062.66e-062.71e-062.74e-062.79e-062.84e-062.87e-062.92e-062.97e-063.00e-063.06e-063.06e-063.12e-063.12e-063.15e-063.18e-063.21e-063.24e-063.27e-063.30e-063.36e-06

Neutron

Energy[MeV]

3.11e-033.24e-033.38e-033.53e-033.68e-033.85e-034.02e-034.20e-034.38e-034.58e-034.78e-035.00e-035.23e-035.46e-035.71e-035.97e-036.24e-036.53e-036.83e-037.14e-037.47e-037.81e-038.17e-038.55e-038.94e-039.36e-039.79e-031.03e-021.07e-021.12e-021.18e-021.23e-021.29e-021.35e-021.41e-021.48e-021.55e-021.62e-021.70e-021.78e-021.86e-021.95e-022.04e-022.14e-022.24e-022.34e-022.45e-022.57e-022.69e-022.82e-022.95e-023.09e-023.24e-023.40e-023.56e-023.73e-023.90e-024.09e-024.29e-024.49e-024.70e-024.93e-025.16e-025.41e-025.67e-025.94e-02

Flux atz=380mm

8.26e-073.60e-079.03e-075.54e-077.03e-075.80e-076.77e-071.07e-064.93e-075.95e-076.92e-076.99e-072.63e-084.63e-075.46e-078.37e-076.47e-076.30e-078.53e-076.75e-079.33e-071.12e-061.20e-068.84e-077.42e-071.18e-061.16e-065.33e-071.13e-069.08e-071.02e-06l.lle-066.14e-073.45e-073.83e-077.82e-071.00e-061.09e-061.02e-061.19e-061.00e-061.43e-061.71e-062.16e-061.88e-061.89e-061.28e-061.61e-062.26e-062.44e-062.58e-062.67e-063.00e-063.32e-063.11e-063.49e-063.81e-063.98e-064.19e-064.40e-064.36e-064.44e-064.10e-062.82e-063.18e-064.16e-06

AbsoluteError

2.97e-072.87e-072.86e-072.82e-072.76e-072.76e-072.69e-072.68e-072.64e-072.62e-072.60e-072.61e-072.65e-072.69e-072.74e-072.75e-072.78e-072.81e-072.84e-072.86e-072.90e-072.91e-072.94e-072.95e-073.00e-073.01e-073.06e-073.06e-073.09e-073.15e-073.18e-073.21e-073.27e-073.30e-073.39e-073.45e-073.51e-073.54e-073.60e-073.67e-073.73e-073.79e-073.85e-073.88e-073.91e-073.94e-074.00e-074.06e-074.12e-074.15e-074.21e-074.24e-074.27e-074.30e-074.33e-074.36e-074.39e-074.39e-074.42e-074.39e-074.42e-074.42e-074.45e-074.48e-074.54e-074.60e-07

- 5 2 -

Page 59: Fusion

JAERI-Data/Code 98-021

Table 3.5.3 Continued. (2/2)

11111111

NeutronEnergy[MeV]

,04e-01.09e-01.14e-01.20e-01.25e-01.31e-01.38e-01.44e-01

11111111

Flux atz=76mm

.29e-04

.08e-04

.36e-04

.53e-04

.43e-04

.37e-04

.49e-04

.84e-04

11111122

AbsoluteError

.58e-05

.65e-05

.71e-05

.78e-05

.85e-05

.94e-05

.02e-05

.12e-05

NeutronEnergy[MeV]

6.22e-026.52e-026.83e-027.16e-027.50e-027.86e-028.23e-028.63e-029.04e-029.47e-029.92e-021.04e-011.09e-011.14e-011.20e-011.25e-011.31e-011.38e-011.44e-011.53e-011.60e-011.68e-011.76e-011.84e-011.93e-012.02e-012.12e-012.22e-012.33e-012.44e-012.56e-012.68e-012.81e-012.94e-013.09e-013.23e-013.39e-013.55e-013.72e-013.90e-014.09e-014.28e-014.49e-014.70e-014.93e-015.17e-015.41e-015.67e-015.95e-016.23e-016.53e-016.84e-017.17e-017.51e-017.88e-018.25e-018.65e-019.06e-019.50e-019.95e-01

Flux atz=228mm

2.31e-053.43e-052.97e-052.91e-054.02e-054.47e-053.81e-053.28e-053.90e-053.88e-053.77e-054.59e-053.72e-053.34e-054.12e-054.23e-053.63e-054.31e-055.28e-053.07e-053.12e-053.74e-053.49e-053.53e-053.43e-053.48e-053.18e-053.22e-053.54e-053.08e-053.12e-053.30e-052.95e-053.05e-052.99e-052.89e-052.77e-052.71e-052.75e-052.69e-052.79e-052.54e-052.43e-052.33e-052.20e-052.24e-052.25e-052.12e-051.97e-051.77e-051.82e-051.61e-051.54e-051.45e-051.23e-051.16e-051.14e-051.07e-058.66e-067.74e-06

AbsoluteError

3.42e-063.45e-063.48e-063.51e-063.57e-063.63e-063.73e-063.82e-063.91e-064.03e-064.12e-064.24e-064.36e-064.48e-064.66e-064.79e-064.94e-065.12e-065.27e-062.10e-062.01e-061.91e-061.83e-061.75e-061.68e-061.62e-061.57e-061.51e-061.46e-061.42e-061.37e-061.33e-061.29e-061.25e-061.22e-061.18e-061.15e-06l.lle-061.08e-061.05e-061.01e-069.80e-079.48e-079.30e-079.10e-078.87e-078.60e-078.35e-078.06e-077.81e-077.66e-077.50e-077.34e-077.18e-077.07e-076.92e-076.82e-076.63e-076.49e-076.39e-07

NeutronEnergy[MeV]

6.22e-026.52e-026.83e-027.16e-027.50e-027.86e-028.23e-028.63e-029.04e-029.47e-029.92e-021.04e-011.09e-011.14e-011.20e-011.25e-011.31e-011.38e-011.44e-011.51e-011.58e-011.65e-011.73e-011.82e-011.90e-011.99e-012.09e-012.19e-012.29e-012.40e-012.52e-012.64e-012.77e-012.90e-013.04e-013.18e-013.34e-013.50e-013.66e-013.84e-014.02e-014.22e-014.42e-014.63e-014.85e-015.09e-015.33e-015.59e-015.85e-016.13e-016.43e-016.74e-017.06e-017.40e-017.75e-018.13e-018.51e-018.92e-019.35e-019.80e-01

Flux atz=380mm

4.46e-064.80e-064.83e-065.36e-065.95e-065.47e-065.64e-065.54e-065.23e-065.59e-065.35e-065.42e-065.57e-065.18e-064.75e-064.59e-064.41e-064.58e-065.57e-064.16e-064.31e-064.39e-064.24e-064.17e-064.23e-063.87e-063.70e-063.70e-063.63e-063.51e-063.34e-063.35e-063.12e-062.70e-062.80e-062.76e-062.58e-062.49e-062.36e-062.29e-062.30e-062.09e-061.76e-061.83e-061.74e-061.68e-061.53e-061.53e-061.29e-061.18e-061.19e-061.02e-061.00e-069.09e-077.60e-076.85e-076.19e-075.79e-075.47e-074.85e-07

AbsoluteError

4.57e-074.60e-074.63e-074.63e-074.66e-074.73e-074.7 6e-074.88e-074.94e-075.03e-075.12e-075.21e-075.30e-075.39e-075.54e-075.63e-075.79e-076.00e-076.12e-072.40e-072.27e-072.14e-072.03e-071.92e-071.83e-071.74e-071.67e-071.59e-071.53e-071.45e-071.39e-071.34e-071.28e-071.23e-071.18e-071.14e-071.09e-071.05e-071.01e-079.66e-089.25e-088.85e-088.50e-088.23e-087.94e-087.68e-087.37e-087.07e-086.80e-086.48e-086.31e-086.13e-085.96e-085.80e-085.61e-085.46e-085.35e-085.22e-085.00e-084.94e-08

- 5 3 -

Page 60: Fusion

Table 3.5.4

JAERI-Data/Code 98-021

Measured dosimetry reaction rates in the tungsten assembly in the unit of [reactions/ atom / source]. Numbers in the parenthesis are percentage errors.

Detector

Position[ram]

076

2 2 8380507

Detector

Position[mm]

076

2 2 8380507

27Al(n,a)

2.34e-294.27e-301.64e-316.60e-331.69e-33

186W(n,y)

2.27e-295.22e-291.58e-292.56e-301.69e-30

Na

(2.9)(3.1)(3.1)(4.7)(3.1)

1 8 7 W

(3.1)(3.1)(3.0)(2.9)(2.9)

Reaction

93Nb(n,2n

1.01e-281.64e-296.00e-312.56e-324.72e-33

92mrn>( 2 . 9 )( 3 . 3 )( 3 . 2 )( 3 . 5 )( 3 . 2 )

Reaction

197Au(n,y)

7.26e-291.51e-284.41e-298.23e-301.07e-29

198,Au

( 3 . 8 )( 4 . 7 )( 4 . 9 )( 7 . 7 )( 4 . 8 )

115

31942

In(n,n'

04e-2947e-2977e-3171e-3232e-32

. 115m

( 2 .( 3 .( 3 .( 7 .( 5 .

I n

9)0)9)2)7)

Table 3.5.5 Gamma-ray spectra in the tungsten assembly measured by the BC-537 spectrometerin the unit of [photons / cm2 / lethargy / source]. (1/2)

PhotonEnergy[MeV]

3.020e-l3.162e-l3.311e-l3.467e-l3 .631e-l3.802e-l3.981e-l4 .169e- l4 .365e- l4 .571e- l4 .786e- l5.012e-l5.248e-l5.495e-l5.754e-l6.026e-l6.310e-l6.607e-l6.918e-l7 .244e-l7 .586e-l7 .943e- l8.318e-l8.710e-l9.120e-l9.550e-l1.000e+01.047e+01.097e+01.148e+01.202e+01.259e+01.318e+01.380e+01.445e+0

Flux a tz=76mm

2.14e-51.90e-51.74e-51.67e-51.64e-51.66e-51.70e-51.79e-51.93e-52.14e-52.39e-52.65e-52.80e-52.78e-52.58e-52.32e-52.13e-52.09e-52.16e-52.28e-52.40e-52.52e-52.60e-52.65e-52.64e-52.59e-52.52e-52.48e-52.52e-52.62e-52.74e-52.82e-52.85e-52.81e-52.74e-5

Abs.Error

1.07e-61.16e-61.09e-61.05e-61.04e-61.07e-61.06e-61.05e-61.07e-61.12e-61.16e-61.20e-61.27e-61.33e-61.29e-61.24e-61.19e-61.13e-61.13e-61.14e-61.16e-61.18e-61.21e-61.24e-61.25e-61.21e-61.21e-61.23e-61.26e-61.30e-61.34e-61.38e-61.42e-61.42e-61.40e-6

Window[%1

29.629.329.128.928.628.328.127.927.526.926.325.825.525.525.826.126.326.225.925.424.824.323.923.623.423.323.022.521.921.220.419.819.319.018.9

Flux a tz=228mm

1.99e-61.81e-61.73e-61.74e-61.80e-61.91e-62.07e-62.30e-62.65e-63.11e-63.66e-64.17e-64.44e-64.33e-63.87e-63.30e-62.91e-62.80e-62.89e-63.06e-63.23e-6.3.38e-63.49e-63.55e-63.53e-6'3.42e-63.26e-63.12e-63.07e-63.11e-63.20e-63.33e-63.51e-63.73e-63.90e-6

Abs.Error

1.30e-71.42e-71.37e-71.35e-71.40e-71.46e-71.48e-71.47e-71.53e-71.65e-71.75e-71.81e-71.94e-72..03e-71.92e-71.83e-71.72e-71.59e-71.56e-71.56e-71.59e-71.61e-71.63e-71.68e-71.69e-71.63,e-71.59e-71.57e-71.57e-71.57e-71.61e-71.66e-71.75e-71.84e-71.90e-7

Window[%]

29.829.529.228.928.628.328.127.827.326.525.825.124.724.925.425.826.226.426.225.725.324.824.424.124.024.124.324.524.524.223.622.821.920.920.1

Flux a tz=380mm

2.18e-72.13e-72.15e-72.24e-72.38e-72.55e-72.80e-73.17e-73.72e-74.46e-75.34e-76.15e-76.58e-76.38e-75.61e-74.69e-74.05e-73.83e-73.92e-74.15e-74.41e-74.64e-74.82e-74.91e-74.87e-74.70e-74.47e-74.27e-74.17e-74.19e-74.32e-74.52e-74.80e-75.10e-75.35e-7

Abs.Error

1.73e-81.90e-81.85e-81.86e-81.95e-82.06e-82.09e-82.08e-82.19e-82.40e-82.56e-82.64e-82.88e-83.02e-82.78e-82.66e-82.47e-82.24e-82.18e-82.17e-82.19e-82.21e-82.26e-82.33e-82.34e-82.25e-82.19e-82.17e-82.17e-82.15e-82.18e-82.25e-82.37e-82.50e-82.61e-8

Window[%]

29.829.529.228.928.628.328.127.827.226.325.424.724.324.625.225.826.226.526.325.925.525.024.624.324.324.424.724.925.024.924.523.722.821.720.8

5 4 -

Page 61: Fusion

JAERI-Data/Code 98-021

Table 3.5.5 Continued. (2/2)

PhotonEnergy[MeV]

1.514e+01.585e+01.660e+01.738e+01.820e+01.906e+01.995e+02.089e+02.188e+02.291e+02.399e+02.512e+02.630e+02.754e+02.884e+03.020e+03.162e+03.311e+03.467e+03.631e+03.802e+03.981e+04.169e+04.365e+04.571e+04.786e+05.012e+05.248e+05.495e+05.754e+06.026e+06.310e+06.607e+06.918e+07.244e+07.586e+07.943e+08.318e+08.710e+09.120e+09.550e+01.000e+l1.047e+l1.097e+l1.148e+l1.202e+l1.259e+l1.318e+l1.380e+l1.445e+l1.514e+l

Flux a tz=76mm

2.67e-52.63e-52.61e-52.61e-52.63e-52.63e-52.57e-52.52e-52.53e-52.55e-52.49e-52.41e-52.36e-52.28e-52.13e-51.98e-51.84e-51.72e-51.66e-51.62e-51.50e-51.34e-51.19e-51.06e-59.58e-68.68e-67.51e-66.07e-64.70e-63.74e-63.25e-62.92e-62.46e-61.90e-61.47e-61.26e-61.10e-68.93e-76.82e-75.46e-74.796-74.276-73.57e-72.716-71.77e-78.82e-82.37e-8

-7.30e-9-1.22e-8-6.95e-9~2.33e-9

Abs.Error

1.35e-61.33e-61.33e-61.31e-61.31e-61.33e-61.28e-61.26e-61.27e-61.24e-61.20e-61.17e-61.15e-61.09e-61.05e-69.66e-79.07e-78.28e-77.90e-77.63e-76.17e-76.39e-76.78e-75.99e-74.35e-74.03e-73.66e-72.92e-72.83e-72.39e-72.18e-71.98e-71.69e-71.84e-71.49e-71.17e-71.16e-71.05e-79.35e-88.58e-88.63e-89.21e-89.17e-87.56e-85.24e-85.43e-86.51e-8

-5.69e-8-3.48e-8-1.48e-8-4.31e-9

Window[%]

18.718.518.318.017.717.417.016.616.215.815.515.114.914.714.614.614.614.614.715.416.818.419.721.422.923 .824 .525 .425 .725 .725 .725 .725 .725 .725.725 .725 .725:725 .725.725.725.725.725.725.725.725.725.725.725.725.7

Flux a tz=228mm

3.97e-63.95e-63.91e-63.93e-63.98e-64.01e-64.01e-63.98e-64.00e-64.10e-64.22e-64.22e-64.07e-63.86e-63.68e-63.53e-63.37e-63.19e-62.97e-62.85e-62.80e-62.65e-62.39e-62.13e-61.87e-61.58e-61.30e-61.04e-68.22e-76.79e-75.95e-75.25e-74.33e-73.27e-72.38e-71.77e-71.34e-79.92e-87.24e-85.62e-84.69e-83.94e-83.12e-82.28e-81.60e-81.15e-88.35e-95.39e-92.71e-99.73-102.40-10

Abs.Error

1.95e-71.96e-72.00e-72.00e-72.03e-72.05e-72.00e-72.00e-72.05e-72.03e-72.01e-72.01e-71.97e-71.88e-71.83e-71.73e-71.65e-71.53e-71.46e-71.40e-71.22e-71.19e-71.28e-71.16e-78.61e-88.52e-87.65e-86.05e-85.91e-84.90e-83.69e-83.13e-82.34e-82.14e-81.72e-81.34e-81.36e-81.32e-81.43e-81.63e-81.65e-81.28e-87.98e-91.20e-81.63e-81.49e-89.78e-94.84e-91.96e-96.86-101.91-10

Window[%]

19.619.219.018.818.518.217.817.416.916.415.915.515.215.014.814.614.514.414.314.515.116.117.018.419.921.122.423.824.825.325.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.725.7

Flux a tz=380mm

5.52e-75.62e-75.68e-75.73e-75.77e-75.79e-75.80e-75.81e-75.90e-76.05e-76.14e-76.10e-75.93e-75.67e-75.46e-75.29e-75.06e-74.83e-74.67e-74.41e-74.02e-73.72e-73.41e-72.98e-72.55e-72.26e-72.03e-71.74e-71.36e-71.01e-77.89e-86.86e-85.93e-84.63e-83.38e-82.67e-82.30e-81.87e-81.31e-88.22e-95.13e-93.37e-92.37e-91.86e-91.58e-91.26e-98.35-104.32-101.70-105.06-111.11-11

Abs.Error

2.70e-82.77e-82.86e-82.89e-82.94e-82.98e-82.91e-82.92e-82.99e-82.98e-82.93e-82.93e-82.89e-82.78e-82.73e-82.59e-82.48e-82.30e-82.19e-82.12e-81.81e-81.64e-81.74e-81.66e-81.21e-81.13e-81.05e-88.24e-97.85e-96.75e-94.90e-94.03e-93.07e-92.61e-92.06e-91.53e-91.55e-91.43e-91.41e-91.53e-91.65e-91.60e-91.23e-91.01e-91.33e-91.61e-91.46e-99.66-104.67-101.65-104.18-11

Window[%]

20.019.519.118.818.618.317.917.516.916.416.015.615.215.014.814.514.314.114.0 '14.114.615.716.718.019.520.521.823.224.224.925.525.525.525.525.525 .725 .725 .725 .725 .72 5 . 725 .725 .725 .725 .725 .725 .72 5 . 725 .725 .725 .7

Table 3.5.6 Measured gamma-ray heating rates of tungsten in the unit of [Gy / source neutron].

DetectorPosition

[mm]

076

2 2 8380

GammaHeating

5.41G-165.95e-169.38e-171.26e-17

Error[%]

58191718

- 5 5 -

Page 62: Fusion

JAERI-Data/Code 98-021

Aluminum Frame

d

Fig. 2.1.1 Experimental assembly of copper.

5 6 -

Page 63: Fusion

JAERI-Data/Code 98-021

Horizontal Sectional View View from the Source

Detector Positionsat 0,76.2, 177.8

Experimental Channels

—*-2

Vanadium

Graphite

Unit: mm

Vertical Sectional View

Fig. 2.1.2 Experimental assembly of vanadium.

- 5 7 -

Page 64: Fusion

JAERI-Data/Code 98-021

d+ - >

Beam Duct

\Titanium-Tritium Target

-950-

x x x x x x x x x x M I U I I x x x x x x x x x x x

\ \ s \ \" \ v * v \ \'VV\'\'\'V\'\''\'\'VV'<f t / S * t t f V f ' ' f ' ' ' r ' ' f ' ' ' '

X S S > \ \ \ \ \S > \ \ \ , \ _S \ .X . \ > .S > N S >

mm>;11OV / n /

-V-610

• f s / .. S \ X N/ s / / ,. \ \ \ X

x'x'x'

'x'x'x

, .

Experimental Hole(filled with an iron prug)

unit in mm

Fig. 2.1.3 Experimental assembly of iron when a BF3 counter is inserted.

I 10°

e 10-1

£ 10"

CO

II0)

10

10

10

"3

"4

-5

1 ' ' ' > 1

10-1I 1 1 1 1 , 1 , i i , [

10°Neutron Energy [MeV]

Fig. 2.2.1 Source neutron spectrum emitted toward the 0 degree from the target.

- 5 8 -

Page 65: Fusion

JAERI-Data/Code 98-021

scl Source Neutron Spectrum for FNSsdef erg=dl dir=d2 vec=0sb2 -31 4.0sil 1.0010-11

5.3156-076.4758-067.8891-059.6110-043.3546-031.1709-022.8087-025.2474-029.8035-021.8315-013.4217-016.3927-011.1943+001.9691+002.6914+003.6787+005.0282+006.8728+009.3940+001.0645+011.1510+011.2445+011.3456+011.4550+01

spl 0 .02.2732-091.8398-073.8068-068.7622-061.4791-054.4237-054.8831-058.3190-051.7906-047.0593-041.3867-032.2042-032.5765-031.4298-031.3760-031.2861-031.0018-036.9228-044.1280-049.1407-051.1227-044.1363-044.6458-043.0897-02

3.2241-078.7640-071.0677-051.3007-041.2341-034.3073-031.5034-023.1827-025.9461-021.1109-012.0754-013.8774-017.2438-011.3533+002.0961+002.8650+003.9160+005.3525+007.3161+009.9999+001.0812+011.1691+011.2641+011.3668+011.4779+011.5142-074.2225-092.2450-073.0541-067.8013-061.7624-054.6320-055.0292-059.7450-053.7225-048.0965-041.5803-032.3040-032.7699-031.3270-031.4329-031.2741-038.8451-046.2956-043.5649-049.3708-051.6798-047.4899-049.1020-042.3565-01

0 1 pos=

1.4449-061.7603-052.1445-041.5846-035.5307-031.9304-023.6065-026.7378-021.2588-012.3517-014.3936-018.2084-011.5335+002.2313+003.0498+004.1686+005.6978+007.7879+001.0157+011.0983+011.1875+011.2840+011.3883+011.5012+01

7.4848-091.3922-072.2612-061.4320-052.8404-056.1572-055.7202-051.0531-044.9933-049.5392-041.6473-032.5211-032.8528-031.3489-031.4558-031.1711-037.9827-045.1710-049.0768-057.9567-051.5985-047.8183-042.6083-034.0901-01

1TR NWCT at 0 Degree0 0 -20 wgt=1.1261

2.3823-062.9023-053.5357-042.0346-037.1016-032.1874-024.0867-027.6349-021.4264-012.6649-014.9786-019.3013-011.7377+002.3752+003.2465+004.4374+006.0652+008.2902+001.0317+011.1156+011.2062+011.3042+01.1.4102+011.5248+01

1.4264-081.6817-076.9372-061.1820-052.4899-053.7185-056.9230-051.2632-045.3824-041.0785-031.8238-032.5709-032.5945-031.3820-031.3518-031.1937-037.9293-045.0750-048.2287-058.8737-051.6563-045.1771-049.5007-042.2296-01

3.9278-064.7850-055.8293-042.6125-039.1186-032.4787-024.6308-028.6515-021.6163-013.0197-015.6415-011.0540+001.8498+002.5284+003.4559+004.7236+006.4564+008.8249+001.0480+011.1331+011.2252+011.3248+011.4324+011.5488+01

8.3975-082.9754-077.2049-061.6544-053.7633-055.3362-058.0602-051.4874-046.0762-041.2232-032.0605-032.5872-031.3898-031.4312-031.4053-031.0563-037.5872-045.1007-049.2862-058.7841-052.1025-044.5938-045.1474-031.4419-01

Fig. 2.2.2 Input cards of the MCNP-4 code to describe the source spectrumof neutrons emitted toward 0 degree from the target.

5 9 -

Page 66: Fusion

JAERI-Data/Code 98-021

14 NE213 scinlillotorlight guide

7optical fiber

• « .(in

30

12/ &

154 7

191"

(

PMT

Fig. 2.3.1 Sectional view of the 14 mm<() small sphere NE213 neutron spectrometer.

PMTNE213 R647-02 100kQ

LEDPulser

Pre Amp.

- HV 800V

GainStabiliser

Delay LineAmp.

\ t

RiseTime toPulse HeightConverter

CANIMPA/

i

tERRAPC

f

PC/AX

Fig. 2.3.2 Schematic diagram of electronic circuit for the NE213 spectrometer.

- 60 -

Page 67: Fusion

JAERI-Data/Code 98-021

1 mil diameterstainless wire anode

\

Center Line

pressure boundary

l

63.5 mnr

10 mil field tube

-127 mm-

227 mm-

OD=19.0mmI D=18.2 mm

Fig. 2.3.3 Sectional view of the proton recoil gas proportional counter (PRC).

| Pre-Amplifier \-

Test Pulser

ProgrammableHigh Voltage

/ \ / \Function

Generator

-jX-AmplifterJ—|

-JY-Amplifier}

DividingResister

I/F EPSONPC-286V

Fig. 2.3.4 Block diagram of the data acquisition system for PRC.

- 6 1 -

Page 68: Fusion

JAERI-Data/Code 98-021

+2000V +1400VNeutron Generator

VNE213

HV HV

CFD

Master n nPulse JLJL

BF3

GDG

20|is

start stoi

7Ar

PA PA

,160(isAMP

GDG

IX10,3|AS

CFT-SCA

TPHC

|stop start

TPHC

ADC

DA

Gate

ADC

^Neutron PulsedMonitor]

f Time- v v

4.75JJS

ADC

AIMPulse Height

Spectrum

MCA

HV:PA:AMP:CFT-SCA:

TPHC:DA:CFD:GDG:ADC:AIM:MCA:

High Voltage Power SupplyPre-AmplifierAmplifierConstant Fraction Timing

Single Channel AnalyzerTime-to-Pulse Height ConvertorDelay AmplifierConstant Fraction DiscriminatorGate and Delay GeneratorAnalog-Digital ConvertorAcquisition Interface ModuleMulti-Channel Analyzer

NAIGD-112AJAERI 124ORTEC 571CANBERRA 2035A

ORTEC 567CANBERRA 1457CANBERRA 1428AORTEC 416ACANBERRA 6075CANBERRA ND556CANBERRA Genie

Fig. 2.3.5 Block diagram of the electronic circuit employed for the slowing downtime method.

- 62 -

Page 69: Fusion

JAERI-Data/Code 98-021

104r

& 1 0 2r

©C

LJJ

I 101

10"1

\ \ . Beryllium v Copper

f \ Cu (580eV)\

! Mo (45eV)\

f Au (4.

-

, , , , , 1 , 1

\

\

91eVTV

n(1.46eV)

i i i y

Mn (336eV) j

v Co(132eV) :

* \

V

I 111

"TTTT^"

\W(18.8eV) :

/

10° 101

Slowing Down Time [us]

Fig. 2.3.6 Examples of the calibration curves for the beryllium and copperassemblies: experimental data (open diamonds) and calculated curves(solid lines).

g"t>CD

CO

CO

2o

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

i i i i i

27AI(n,a)24Na (x3)56Fe(n,p)56Mn (x3)90Zr(n>2n)89Zr (x0.5)93Nb(n,2n)92mNb115ln(n,n')115mln

• • * • » « ^ " ^ »

! • : / . /

i i i i 1 . i i i

•m

0

y^-^x \

Kl N0 5 10 15

Neutron Energy [MeV]20

Fig. 2.3.7 Threshold dosimetry cross sections used for the foil activationexperiments taken from JENDL Dosimetry File.

~ 63 -

Page 70: Fusion

JAERI-Data/Code 98-021

I '"I ' " I ' I ' " I ' ' " " " I

Neutron Energy [MeV]

Fig. 2.3.8 Non-threshold dosimetry cross sections used for the foil activation experimentstaken from JENDL Dosimetry File.

0.5

0.4

tion

oQ)

CO

Cro

ss

0.3

0.2

0.1

0.0

7Li(n,nofT32S(n,p)32P

5CI(n,a)32P

5 10 15Neutron Energy [MeV]

20

Fig. 2.3.9 The 7Li(n,n'a)3T and 32S(n,p)32P cross sections taken from JENDL Dosimetry

File and the 35Cl(n,a)32P cross section from FENDL/A-2.0.

- 6 4 -

Page 71: Fusion

JAERI-Data/Code 98-021

10

10

1COCO

8 10-3

10"5

? 'I I ' " ' " " I ' " " ' " I l l r m " i ro|- . iniiii|-rniiT77[ i iTm|

• j Q - 7 h l l l l l i n l I ! I , | I I I II,Mil I I,,mil i muni I Yl.m.l I I ml . i.iim

10'8 10"6 10"4 10'2 10° in2

Neutron Energy [MeV]10

Fig. 2.3.10 The 6Li(n,a)3T cross section taken from JENDL Dosimetry File and the 31P(n,y)32Pcross section from FENDL/A-2.0.

•262-

Pfiotomuitip 11er Tube

_r

B r e e d e rC i r c u i t

: -HYLight Pulse

Dynode Sig.Anode Sig.

Gas R e s e r v o i r \ G l a s s Containerf immt) / i t -Metal /Optical Fiber/ Magnetic S h i e l d / for Gain S t ab i l i z ingAlumfnium Cap

Fig. 2.3.11 The 40 mm <j> spherical gamma-ray spectrometer.

- 65 -

Page 72: Fusion

JAERI-Data/Code 98-021

Scintillator(B(>537)

fPMTl

LightPulser

_VGainStabilizer

Low Gain

anti. coin.

Master Oscillatorof the Accelerator

7 Y .HighGain[PLA]

coin anti.

Time Gate forRejection of Decay

Gamma-Rays

PMT: Photomultiplier TubeHV : High Voltage Power SupplyPS : Power SupplyPA: PreamplifierPulser: Research PulserDLA : Delay Line AmplifierRHC : Risetime to Height ConvertorSCA : Single Channel AnalyzerGDG : Gate & Delay GeneratorSealer: Timer & SealerDA: Delay AmplifierLG : Linear Gate & Slow CoincidenceGG : Dual Gate GeneratorADC : Analog to Digital ConvertorMCA: Multichannel Analyzer

Fig. 2.3.12 Schematic diagram of the electronic circuit employed for the gamma-rayspectrum measurement.

6 6 -

Page 73: Fusion

JAERI-Data/Code 98-021

Neutron Irradiation

Time

Decay Gamma-RaysDue to Former

Irradiation

Prompt Gamma-Rays

Decay Gamma-RaysDue to This Irradiation

Time

(a) Usual Method 10min.

Neutron Pulses

Time- •

Decay Gamma-Rays Prompt Gamma-Rays

Time

BG 1 FG 1 BG I FG (2ms^ I BG I FG(1ms) Time Window

(b) Pulsed Neutron Method

Fig. 2.3.13 Explanation of prompt gamma-ray measurement with (a) an usual method and(b) the pulsed neutron method for rejection of decay gamma-rays.

- 67 -

Page 74: Fusion

J A E R I - D a t a / C o d e 9 8 - 0 2 1

10 -3

oCO i n -410

CO

10

"I ' ' " " " I ' M l l l l l i

NE213PRCSDTJENDL Fusion File

BERYLLIUMz=127mm

-5

10i nml i t i 11ml i i 11 mil i i t inn! i i i i mil t i 11 mil i i 111 in

10-5 10 "3 10 - 1

Neutron Energy [MeV]10

Fig. 3.1.1 Neutron spectrum at z= 127 mm in the beryllium assembly.

- 68 -

Page 75: Fusion

JAERI-Data/Code 98-021

10 -2

£ 10

CO

ix

10

10

-4

-5

-610

10 "7

£ 10Q)

10

-8

-9

VANADIUMz=76mm

i i mil > i i i mil i i i i mil i i i i iiill

NE213PRC

• SDTJENDL-FFEFF-3FENDL-1

10 ' 6 10 ' 5 10 "4 10-3 10 '2 10 10Neutron Energy [MeV]

10

Fig. 3.2.1 Neutron spectrum at z= 76 mm in the vanadium assembly.

10

I 10o

E> 10

X

10

10

-6

-7

I 10'83CD

10

1 I I I 1 M i l I I I I H I M I M i l l

VANADIUMz=178 mm

l i mil i i i Mini

_ . . . - EFF-3FENDL-1

-9

10' 6 10 "5 10 "4 10 ' 3 10 "2 10-1 10° 10

mil I I M I in I ) i i ) m i l i t i i m i l )

NE213PRC

• SDTJENDL-FF

Neutron Energy [MeV]

Fig. 3.2.2 Neutron spectrum at z= 178 mm in the vanadium assembly.

- 6 9 -

Page 76: Fusion

JAERI-Data/Code 98-021

I 10 "4 r

oCO

X

LU

10 -5 _

-

- - - - -

I—' '—I—,

W 1

-

o Expt.irMni r r

" FENDL-1

VANADIUM

z = 76 mm ~

-

-

10 -1 10 u

Gamma-Ray Energy [MeV]10

Fig. 3.2.3 Gamma-ray spectrum at z= 76 mm in the vanadium assembly.

I

||o

CO

&CO

f

10 -5

i 10'

I I T - l I |

10 -1

Expt.JENDL-FFEFF-3FENDL-1

VANADIUM

z = 178 mm

10°Gamma-Ray Energy [MeV]

10

Fig. 3.2.4 Gamma-ray spectrum at z= 178 mm in the vanadium assembly.

- 70

Page 77: Fusion

JAERI-Data/Code 98-021

10*

10'

tron

Neu

iirc

e

oCO

CO

10

10

10

E 1 n-5

X

2 10'CD

10 -7

10"

10 '

| I I I M l l l j , l | I I I I T T T T J

• SDT Method

• PRC• NE213

z=110mm (x10000) / • • *• • • •

• • • • •

^•* z=210mm (x1000) ^ • • v

• • • • *

•• • z=310mm (x100)

• * • •

z=410mm (x10), • • • • • • • '

» • • • •

• • • • • • • * •I * • • • • • • ' •: • • • • • * z=610mm (x3)• • *.+

»• • •

: •z=810mm

, , , , , , , , ! . . , . , , , , ! i , _ L , ,l , . , I . , i , . . , , !

I I , IM,I |

z=116mm(x10000)

z=216mm(x1000)

z=316mm(x100)

z=416mm(x10)

z=516mm(x5)

z=716mm(x2)

10'6 10"5 10"4 10"3 10"2 10"1 101 102

Neutron Energy [MeV]

Fig. 3.3.1 Neutron spectra in the iron assembly.

71 -

Page 78: Fusion

JAERI-Data/Code 98-021

10

c2

•+—»

CD

IO

CO

iCO

X

10 -5

10 -6

10

' ' I

o Expt.— JENDL-3.2

JENDL-FFFENDL-1

1 ' ' • ' \ , ' I i

IRON

z = 100 mm

10°Gamma-Ray Energy [MeV]

10

Fig. 3.3.2 Gamma-ray spectrum at z= 100 mm in the iron assembly.

10 -5

2

o2

CO

X

10

10 -7

10 -1

o Expt.JENDL-3.2JENDL-FFFENDL-1

' ' i I I 1 I I

10°Gamma-Ray Energy [MeV]

10

Fig. 3.3.3 Gamma-ray spectrum at z= 300 mm in the iron assembly.

- 7 2 -

Page 79: Fusion

JAERI-Data/Code 98-021

10 -6

3

CD||o

CO

£ io-7

X

E

10 -1

o Expt.JENDL-3.2JENDL-FFFENDL-1

1 ' i • i i i i -

1 M l l i

IRON

z = 500 mm

10°Gamma-Ray Energy [MeV]

10

Fig. 3.3.4 Gamma-ray spectrum at z= 500 mm in the iron assembly.

5x

10

Expt.JENDL-3.2JENDL-FFFENDL-1

' ' • ' ' • L J _

10

l - I - l T-T|

IRON

z = 700 mm

10°Gamma-Ray Energy [MeV]

10

Fig. 3.3.5 Gamma-ray spectrum at z= 700 mm in the iron assembly.

- 7 3 -

Page 80: Fusion

JAERI-Data/Code 98-021

10 -3

I1 10 "4

COPPERz=76mm

I I I M 1 1 1

NE213PRC

• SDTJENDL-FF

10- 6 10 5 10- 4 10 "3 10 -2 10-1

Neutron Energy [MeV]10

Fig. 3.4.1 Neutron spectrum at z= 76 mm in the copper assembly.

io-4

10 ^

rm i i 111 in i i 111in i i i u i i i 111 III r

COPPERz=228 mm

NE213PRC

• SDTJENDL-FF

I I I m i I I I I n i l i I I I m i

10 ^ 10 '5 10 4 1 0 ' 3 10 ~2 10- 1 1 0 ° 10Neutron Energy [MeV]

Fig. 3.4.2 Neutron spectrum at z= 228 mm in the copper assembly.

- 7 4 -

Page 81: Fusion

JAERI-Data/Code 98-021

10 ' 6 10 "5 10 4 10 "3 10 "2 10-1 10° 10 1

Neutron Energy [MeV]

Fig. 3.4.3 Neutron spectrum at z= 380 mm in the copper assembly.

10

ron

vieu

t/S

ourc

e f

_eth

argy

1i-—»

X

10

10

10

10

10EL

2 10

-5

-6

-7

-8

-9

-10

: COPPERf z=532 mm

NE213PRC

• SDTJENDL-FF

, , , , , , mm , t I

fi : 1

-=j "

, ,

IMU

ll

|

§ 10 -6 10 10 ' 4 10 ' 3 10-2 10 "1 10° 10Neutron Energy [MeV]

Fig. 3.4.4 Neutron spectrum at z= 532 mm in the copper assembly.

- 75 -

Page 82: Fusion

JAERI-Data/Code 98-021

10 -3 _|©

CD|

10

at

j§ 10LL

1 1 1 1 11II 1

o NE213PRC

: JENDL-FF

-

I lit

rill ,11,

fr i i i

TUNGSTENz= 76 mm

w

-

i i

ii

o -

o

-4 _

-5 _

10 10 -2 10 -1 10 10Neutron Energy [MeV]

Fig. 3.5.1 Neutron spectrum at z= 76 mm in the tungsten assembly.

§ 10 "4o NE213

PRCJENDL-FF

TUNGSTENz= 228 mm

10 1.0 10Neutron Energy [MeV]

Fig. 3.5.2 Neutron spectrum at z= 228 mm in the tungsten assembly.

- 7 6 -

Page 83: Fusion

10

CD

| 10

oCO

! 1 0

LL

-5

-6 -

-7 _

1010 -3

JAERI-Data/Code 98-021

I 1

-

1 1

1 1

11 1

i 1 1 1

d• i * i

i t 1 1 1 1 1 1 i i i i

o NE213PRCJENDL-FF

i i i i i i i i i I I I

l 11 l i l l l l 11 l

TUNGSTEN \z=380mm :

\# :,, is

10 -2 10 -1 10Neutron Energy [MeV]

10

Fig. 3.5.3 Neutron spectrum at z= 380 mm in the tungsten assembly.

10

10 "5

c2CD

O

OCO

Jg 10

XiZ

10

-6ir —

10 -1

JENDL-FFFENDL-1

, , , , 1

1 ' ' ' ' I

TUNGSTEN

z = 76 mm

10°Gamma-Ray Energy [MeV]

10

Fig. 3.5.4 Gamma-ray spectrum at z= 76 mm in the tungsten assembly.

- 7 7 -

Page 84: Fusion

JAERI-Data/Code 98-021

10 -5

I

3O

CO

X

C L

10

1010 -1

o Expt.JENDL-3.2JENDL-FFFENDL-1

, i i i , i

1 ' ' • ' i

TUNGSTEN

z = 228 mm

10°Gamma-Ray Energy [MeV]

10

Fig. 3.5.5 Gamma-ray spectrum at z= 228 mm in the tungsten assembly.

10 -6

ICD

CO

(0

-7

10x

EL

i i I i

10 -1

o Expt.JENDL-3.2JENDL-FFFENDL-1

TUNGSTEN

z = 380 mm

10° 10 1

Gamma-Ray Energy [MeV]

Fig. 3.5.6 Gamma-ray spectrum at z= 380 mm in the tungsten assembly.

- 7 8 -

Page 85: Fusion

JAERI-Data/Code 98-021

Appendix Input Data of MCNP

Examples of input data for MCNP calculations are given. Figures A-l ~ A-5show the input data for beryllium, vanadium, iron, copper and tungsten, respectively.

Analysis of Beryllium Experimentc1c23456789101112c20

123456789

10111213

c273132

***** front2 4 .921-5

air+ 1

***** Beryllium11111111111

11111111111

.2215-1

.2215-1

.2215-1

.2215-1

.2215-1

.2215-1

.2215-1

.2215-1

.2215-1

.2215-1

.2215-1

+2+3+4+5+ 6+7+8+ 9+ 10+ 11+12

region-2 -27region-3-4-5-6-7-8-9-10-11-12-13

***** external void0 -1

pzpzpzPZPZpzpzPZpzpzPZPZpz

czczcz

: +:L3 :

-27-27-27-27-27-27-27-27-27-27-27

*****

*****

*****+27

-1202530323540464750566067

3124

.00

.00

.22

.00

.68

.67

.00

.13

.89

.00

.56

.00

.03

.50

.00

.00

$$$$$$SS$$$S$

$

$$$$$S$$$$$

$Sourcereacreac

n-specreac

reacn-spec

reac

reac

imp:n 1 1 1 2 2 2 4 4 4 8 8 8 0c ***************************************c * source specification cards

sdef erg=dl pos=0 0 0 vec=0 0 1 dir=d2 wgt=lsb2 -31 4.0sil 1.0010-11

5.3156-076.4758-067.8891-059.6110-043.3546-031.1709-022.8087-025.2474-029.8035-021.8315-013.4217-016.3927-011.1943+001.9691+002.6914+003.6787+005.0282+006.8728+009.3940+001.0645+011.1510+011.2445+01

3.2241-078.7640-071.0677-051.3007-041.2341-034.3073-031.5034-023.1827-025.9461-021.1109-012.0754-013.8774-017.2438-011.3533+002.0961+002.8650+003.9160+005.3525+007.3161+009.9999+001.0812+011.1691+011.2641+01

1.4449-061.7603-052.1455-041.5846-035.5307-031.9304-023.6065-026.7378-021.2588-012.3517-014.3936-018.2084-011.5335+002.2313+003.0498+004.1686+005.6978+007.7879+001.0157+011.0983+011.1875+011.2840+01

2.3826-062.9023-053.5357-042.0346-037.1016-032.1874-024.0867-027.6349-021.4264-012.6649-014.9786-019.3013-011.7377+002.3752+003.2465+004.4374+006.0652+008.2902+001.0317+011.1156+011.2062+011.3042+01

.1261

3.9278-064.7850-055.8293-042.6125-039.1186-032.4787-024.6308-028.6515-021.6163-013.0197-015.6415-011.0540+001.8498+002.5284+003.4559+004.7236+006.4564+008.8249+001.0480+011.1331+011.2252+011.3248+01

Fig. A-l Input data of MCNP for the analysis of the beryllium experiment. (1/3)

- 79 -

Page 86: Fusion

JAERI-Data/Code 98-021

spl

ccccml

mtlcm2cm3m4m5m6m7cccfc02fO2:fqO2fs02fmO2

eO2

fcl2fl2:

1.3456+011.4550+010.02.2732-091.8398-073.8068-068.7622-061.4791-054.4237-054.4831-058.3190-051.7906-047.0593-041.3867-032.2042-032.5765-031.4298-031.3760-031.2861-031.0018-036.9228-044.1280-049.1407-051.1227-044.1363-044.6458-043.0897-02

* material

1.3668+011.4779+011.5142-074.2225-092.2450-073.0541-067.8013-061.7624-054.6320-055.0292-059.7450-053.7225-048.0965-041.5803-032.3040-032.7699-031.3270-031.4329-031.2741-038.8451-046.2956-043.5649-049.3708-051.6798-047.4899-049.1020-042.3565-01

1.3883+011.5012+01

7.4848-091.3922-072.2612-061.4320-052.8404-056.1572-055.7202-051.0531-044.9933-049.5392-041.6473-032.5211-032.8528-031.3489-031.4558-031.1711-037.9827-045.1710-049.0768-057.9567-051.5985-047.8183-042.6083-034.0901-01

specification cards

Beryllium4009.41c8016.37c •26000.41cbe.Olt— air7014.37c

1.2152-14.9813-42.4678-5

3.8810-5

6012.41c13027.41c

8016.37cDosimetry Reactions

3006.03y3007.03y5010.03y16032.03y48000.37c

11111

* tally specification cards

1.4102+011.5248+01

1.4264-081.6817-076.9372-061.1820-052.4899-053.7185-056.9230-051.2632-045.3824-041.0785-031.8238-032.5709-032.5945-031.3820-031.3518-031.1937-037.9293-045.0750-048.2287-058.8737-051.6563-045.1771-049.5007-042.2296-01

7.7109-52.9013-4

1.0400-5

neutron energy spectrum (125g) surfacen 2 3 5 6 8

s m e f-31(1)(1 6 103)1.0010-115.3156-076.4758-067.8891-059.6110-043.3546-031.1709-022.8087-025.2474-029.8035-021.8315-013.4217-016.3927-011.1943+001.9691+002.6914+003.6787+005.0282+006.8728+009.3940+001.0645+011.1510+011.2445+011.3456+011.4550+01

9 11 13

(1 3 105)((1 5 107)3.2241-078.7640-071.0677-051.3007-041.2341-034.3073-031.5034-023.1827-025.9461-021.1109-012.0754-013.8774-017.2438-011.3533+002.0961+002.8650+003.9160+005.3525+007.3161+009.9999+001.0812+011.1691+011.2641+011.3668+011.4779+01

neutron reactionn 2 3 5 6 8 9 11 13

(1 3 207)(1 -1 7 -0,

1.4449-061.7603-052.1445-041.5846-035.5307-031.9304-023.6065-026.7378-021.2588-012.3517-014.3936-018.2084-011.5335+002.2313+003.0498+004.1686+005.6978+007.7879+001.0157+011.0983+011.1875+011.2840+011.3883+011.5012+01

(1 4 205).864))

2.3823-062.9023-053.5357-042.0346-037.1016-032.1874-024.0867-027.6349-021.4264-012.6649-014.9786-019.3013-011.7377+002.3752+003.2465+004.4374+006.0652+008.2902+001.0317+011.1156+011.2062+011.3042+011.4102+011.5248+01

rate surface r=2cm

1.4324+011.5488+01

8.3975-082.9754-077.2049-061.6544-053.7633-055.3362-058.0602-051.4874-046.0762-041.2232-032.0605-032.5872-031.3898-031.4312-031.4053-031.0563-037.5872-045.1007-049.2862-058.7841-052.1025-044.5938-045.1474-031.4419-01

*

*

r=2cm

(1 5 107)

3.9278-064.7850-055.8293-042.6125-039.1186-032.4787-024.6308-028.6515-021.6163-013.0197-015.6415-011.0540+001.8498+002.5284+003.4559+004.7236+006.4564+008.8249+001.0480+011.1331+011.2252+011.3248+011.4324+011.5488+01

Fig. A-l Continued. (2/3)

- 8 0 -

Page 87: Fusion

JAERI-Data/Code 98-021

fgl2 s e f mfml2 (1) (1 3 105) fl 3 207) (1 4 205) (1 5 107)

(1 6 103) ((1 5 107) (1 -1 7 -0.864))fsl2 -31fc32 neutron decade spectrum surface r=2cmf32:n 2 3 5 6 8 9 11 13fq32 s m e ffs32 -31fm32 (1) (1 3 105) (1 3 207) (1 4 205) (1 5 107)

(1 6 103) {(1 5 107) (1 -1 7 -0.864))e32 le-7 le-6 le-5 le-4 le-3 le-2 le-1 le+0 le+l le+2<•» * * * * * * * * * * * * * * * * * * * * * * * * *

c * problem cutoff cards *

phys:n 16.0 0.0mode ncut:n 0 0nps 1500000ctme 1000000c *************************c * peripheral cards *

prdmp 10000000 100000 1 1lost 10 10print

Fig. A-l Continued. (3/3)

Analysis of Vanadium Experiment

c * cell carad for Vanadium Assembly *

1 3 4.921e-5 +25 -26 +27 -28 +1 -4 #{+2 -4 -29) $ source regionimp:n=l imp:p=l

2 3 4.92le-5 +2 -3 -29 $ cell detectorimp:n=l imp:p=l

3 3 4.92le-5 +3 -4 -29 $ cell detectorimp:n=l imp:p=l

4 1 -6.033 +5 -6 -29 $ cell detectorimp:n=2 imp:p=2

5 1 -6.033 +8 -9 -29 $ cell detectorimp:n=4 imp:p=4

6 1 -6.033 +21 -22 +23 -24 +4 -7 #4 $ vanadiumimp:n=2 imp:p=2

7 1 -6.033 +21 -22 +23 -24 +7 -10 #5 $ vanadiumimp:n=4 imp:p=4

8 2 -1.625 +25 -26 +27 -28 +4 -7 #(+21 -22 +23 -24 +4 -7)imp:n=l imp:p=l $ graphite

9 2 -1.625 +25 -26 +27 -28 +7 -11 #(+21 -22 +23 -24 +7 -10)imp:n=2 imp:p=2 $ graphite

10 0 -25 : +26 : -27 : +28 : -1 : +11 $ external regionimp:n=0 imp:p=0

c * surface card *

1 pz -21.00 $ source region2 pz -2.00 $ cell detector in front of vanadium3 pz -0.10 $ cell detector in front of vanadium4 pz 0.00 $ front surface of vanadium5 pz 7.37 $ cell detector in vanadium #16 pz 7.87 $ cell detector in vanadium #17 pz 10.00 $ boundary to change cell importance8 pz 17.53 $ cell detector in vanadium #29 pz 18.03 $ cell detector in vanadium #210 pz 25.40 S rear surface of vanadium11 pz 30.48 $ rear surface of graphitec21 px -12.70 $ side surface of vanadium

Fig. A-2 Input data of MCNP for the analysis of the vanadium experiment. (1/3)

- 81 -

Page 88: Fusion

JAERI-Data/Code 98-021

2223242526272829

pxpypypxpxpypycz

+12.70-12.70+12.70-17.78+17.78-17.78+17.78

1.00

$$$$$

S$S

sidesidesidesidesidesidesideside

surfacesurfacesurfacesurfacesurfacesurfacesurfacesurface

ofofofofofofofof

vanadiumvanadiumvanadiumgraphitegraphitegraphitegraphitedetector

c * mode card

mode n p

c * source specification cardsc * a user supplied source subroutine is used.

c * material specification cards

c vanadiumml 23051.41c -0.99777

13027.41c -0.0007314000.41c -0.0010826000.41c -0.00042

c graphitem2 6012.37c 1.0c airm3 7014.37c -23.1

8016.37c -75.618040.37c -1.3

c materials for reaction ratemil 5010.03y 1 $ B-10(n,alpha)ml2 13027.03y 1 $ Al-27(n,alpha)ml3 41093.03y 1 $ Nb-93(n,2n)Nb-92mml4 49115.03y 1 S In-115(n,n')In-115mml5 79197.03y 1 $ Au-197<n,gamma)ml6 92235.03y 1 $ U-235(n,fission)

c * tally specification cardscfgO

fcO4fO4:nfmO4

fqO4

fcl4fl4:nel4

s m e f

reaction rate(2 3) 3 4

(1)(1 14 51)s e f

5(1 11 107)(1 15 102)

m

(1 12 107) (1 13(1 16 18)

neutron spectrum in 125 groups(2 3) 3 4

1.0010-115.3156-076.4758-067.8891-059.6110-043.3546-031.1709-022.8087-025.2474-029.8035-021.8315-013.4217-016.3927-011.1943+001.9691+002.6914+003.6787+005.0282+006.8728+009.3940+001.0645+011.1510+011.2445+011.3456+011.4550+01

53.2241-078.7640-071.0677-051.3007-041.2341-034.3073-031.5034-023.1827-025.9461-021.1109-012.0754-013.8774-017.2438-011.3533+002.0961+002.8650+003.9160+005.3525+007.3161+009.9999+001.0812+011.1691+011.2641+011.3668+011.4779+01

1.4449-061.7603-052.1445-041.5846-035.5307-031.9304-023.6065-026.7378-021.2588-012.3517-014.3936-018.2084-011.5335+002.2313+003.0498+004.1686+005.6978+007.7879+001.0157+011.0983+011.1875+011.2840+011.3883+011.5012+01

2.3823-062.9023-053.5357-042.0346-037.1016-032.1874-024.0867-027.6349-021.4264-012.6649-014.9786-019.3013-011.7377+002.3752+003.2465+004.4374+006.0652+008.2902+001.0317+011.1156+011.2062+011.3042+011.4102+011.5248+01

16)

3.9278-064.7850-055.8293-042.6125-039.1186-032.4787-024.6308-028.6515-021.6163-013.0197-015.6415-011.0540+001.8498+002.5284+003.4559+004.7236+006.4564+008.8249+001.0480+011.1331+011.2252+011.3248+011.4324+011.5488+01

fc24 neutron spectrum in 175 groupsf24:n (2 3) 3 4 5e24 1.00001-11 1.00001e-7 4.13994e-7 5.31578e-7 6.82560e-7 8.76425e-7

Fig. A-2 Continued. (2/3)

- 8 2 -

Page 89: Fusion

JAERI-Data/Code 98-021

1.12535e-6 1.44498e-6 1.85539e-6 2.38237e-6 3.05902e-65.04348e-6 6.47595e-6 8.31529e-6 1.06770e-5 1.37096e-52.26033e-5 2.90232e-5 3.72665e-5 4.78512e-5 6.14421e-51.01301e-4 1.30073e-4 1.67017e-4 2.14454e-4 2.75364e-44.53999e-4 5.82947e-4 7.48518e-4 9.61116e-4 1.23410e-32.03468e-3 2.24867e-3 2.48517e-3 2.61259e-3 2.74654e-33.35463e-3 3.70744e-3 4.30742e-3 5.53084e-3 7.10174e-31.05946e-2 1.17088e-2 1.50344e-2 1.93045e-2 2.18749e-22.41755e-2 2.47875e-2 2.60584e-2 2.70001e-2 2.85011e-23.43067e-2 4.08677e-2 4.63092e-2 5.24752e-2 5.65622e-27.19981e-2 7.94987e-2 8.25034e-2 8.65169e-2 9.80366e-21.16786e-l 1.22773G-1 1.29068e-l 1.35686e-l 1.42642e-l1.57644e-l 1.65727e-l 1.74224e-l 1.83156e-l 1.92547e-l2.12797e-l 2.23708e-l 2.35177e-l 2.47235e-l 2.73237e-l2.94518e-l 2.97211e-l 2.98491e-l 3.01974e-l 3.33733e-l3.87742e-l 4.07622e-l 4.50492e-l 4.97871e-l 5.23397e-l5.78444e-l 6.08101e-l 6.39279e-l 6.72055e-l 7.06512e-l7.80817e-l 8.20850e-l 8.62936e-l 9.07180e-l 9.61640e-l1.10803e+0 1.16484e+0 1.22456e+0 1.28735e+0 1.35335e+01.49569e+0 1.57237e+0 1.65299e+0 1.73774e+0 1.82684e+02.01897e+0 2.12248e+0 2.23130e+0 2.30686e+0 2.34570e+02.38521e+0 2.46597e+0 2.59240e+0 2.72532e+0 2.86505e+03.16637e+0 3.32871e+0 3.67879e+0 4.06570e+0 4.49329e+04.96585e+0 5.22046e+0 5.48812e+0 5.76950e+0 6.06531e+06.59238e+0 6.70320e+0 7.04688e+0 7.40818e+0 7.78801e+08.60708e+0 9.04837e+0 9.51229e+0 1.00000e+l 1.05127e+l1.16183E+1 1.22140E+1 1.25232E+1 1.28400E+1 1.34986E+11.41907E+1 1.45499E+1 1.49183E+1 1.56831E+1 1.64872E+11.73325E+1 1.96403E+1

cfc34 neutron spectrum in each decadef34:n (2 3) 3 4 5e34 le-7 le-6 le-5 le-4 le-3 le-2 le-1 1 2 5 10 20fm34 (1) (1 11 107) (1 12 107) (1 13 16)

(1 14 51) (1 15 102) (1 16 18)cfcll4 gamma-ray spectrum in 40 groupsfll4:p (2 3) 3 4 5ell4 1.0000-02 2.0000-02 3.0000-02 4.5000-02 6.0000-02

8.0000-02 1.0000-01 1.5000-01 2.0000-01 3.0000-014.0000-01 5.0000-01 5.2000-01 6.0000-01 7.0000-018.0000-01 9.0000-01 1.0000+00 1.1300+00 1.2500+001.3800+00 1.5000+00 1.7500+00 2.0000+00 2.2500+002.5000+00 3.0000+00 3.5000+00 4.0000+00 4.5000+005.0000+00 5.5000+00 6.0000+00 6.5000+00 7.0000+007.5000+00 8.0000+00 9.0000+00 1.0000+01 1.2000+011.4000+01

cfcl24 gamma-ray spectrum in 42 groupsfl24:p (2 3) 3 4 5el24 1.000e-03 1.000e-02 2.000e-02 3.000e-02 4.500e-02

6.000e-02 7.000e-02 7.500e-02 1.000e-01 1.500e-012.000e-01 3.000e-01 4.000e-01 4.500e-01 5.100e-015.120e-01 6.000e-01 7.000e-01 8.000e-01 l.OOOe+001.330e+00 1.340e+00 1.500e+00 1.660e+00 2.000e+002.500e+00 3.000e+00 3.500e+00 4.000e+00 4.500e+005.000e+00 5.500e+00 6.000e+00 6.500e+00 7.000e+007.500e+00 8.000e+00 1.000e+01 1.200e+01 1.400e+012.000e+01 3.000e+01 5.000e+01

c^ *********************** **********************c * energy crads *c **********************************************physrn 16.0 0phys:p 30.0 1 0p h y s : e 3 0 . 0 1 1 1 1 0 0 0 0

c * peripheral crads *c **********************************************idum 1rdum 0 0 -20prdmp 1000000000 100000000 0 1lost 10 10print

c * problem cutoff cards *

nps 1000000000ctme 1000000

3.92786e-61.76035e-57.88932e-53.53575e-41.58461e-33.03539e-39.11882e-32.35786e-23.18278e-26.73794e-21.11090e-l1.49956e-l2.02419e-l2.87247e-l3.68832e-l5.50232e-l7.42736e-l1.00259e+01.42274e+01.92050e+02.36525e+03.01194e+04.72367e+06.37628e+08.18731e+01.10517e+l1.38403E+1

1.69046E+1

Fig.A-2 Continued. (3/3)

- 8 3 -

Page 90: Fusion

JAERI-Data/Code 98-021

Analysis of Iron Experiment

c * cell carad for Iron Assembly

c ***** a j _ r region *****1 2 4.9210-5 (+1 -2 -42) : (+2 -3 +41 -42)3 2 4.9210-5 +2 -3 -41 $ cell detecterc ***** test region *****4 1 8.5182-2 +3 -4 -42 $ 0.0 - 1.5 cm5 1 8.5182-2 +4 -5 -42 $ 1.5 - 2.5 cm6 1 8.5182-2 +5 -6 -42 $ 2.5 - 4.0 cm7 1 8.5182-2 +6 -7 -42 $ 4.0 - 5.0 cm8 1 8.5182-2 + 7 - 8 - 4 2 $ 5.0 - 6.5 cm9 1 8.5182-2 +8 -9 -42 $ 6.5 - 10.0 cm10 1 8.5182-2 +9 -10 -42 $ 10.0 - 11.0 cm11 1 8.5182-2 +10 -11 -42 $ 11.0 - 11.5 cm12 1 8.5182-2 +11 -12 -42 $ 11.5 - 20.0 cm13 1 8.5182-2 +12 -13 -42 $ 20.0 - 21.0 cm14 1 8.5182-2 +13 -14 -42 $ 21.0 - 21.5 cm15 1 8.5182-2 +14 -15 -42 $ 21.5 - 30.0 cm16 1 8.5182-2 +15 -16 -42 $ 30.0 - 31.0 cm17 1 8.5182-2 +16 -17 -42 $ 31.0 - 31.5 cm18 1 8.5182-2 +17 -18 -42 $ 31.5 - 40.0 cm19 1 8.5182-2 +18 -19 -42 $ 40.0 - 41.0 cm20 1 8.5182-2 +19 -20 -42 $ 41.0 - 41.5 cm21 1 8.5182-2 +20 -21 -42 $ 41.5 - 50.0 cm22 1 8.5182-2 +21 -22 -42 $ 50.0 - 51.5 cm23 1 8.5182-2 +22 -23 -42 $ 51.5 - 60.0 cm24 1 8.5182-2 +23 -24 -42 $ 60.0 - 61.0 cm25 1 8.5182-2 +24 -25 -42 $ 61.0 - 70.0 cm26 1 8.5182-2 +25 -26 -42 $ 70.0 - 71.5 cm27 1 8.5182-2 +26 -27 -42 $ 71.5 - 80.0 cm28 1 8.5182-2 +27 -28 -42 $ 80.0 - 81.0 cm29 1 8.5182-2 +28 -29 -42 $ 81.0 - 90.0 cm30 1 8.5182-2 +29 -30 -42 $ 90.0 - 91.5 cm31 1 8.5182-2 +30 -31 -42 $ 91.5 - 95.0 cmc ***** rear air region *****32 2 4.9210-5 +31 -32 -41 $ cell detecter33 2 4.9210-5 +31 -32 +41 -42 $c ***** external void *****34 0 -1 : +32 : +42 $c blank delimeter

c **************************************c * surface card *

1 pz -21.0 $ Source2 pz -2.0 $ keV3 pz 0.0 $ foil, TLD4 pz 1.5 $ MeV, NE-g5 pz 2.5 $ foil, TLD6 pz 4.0 $ MeV7 pz 5.0 S foil8 pz 6.5 $ Mey, NE-g9 pz 10.0 $ foil, TLD, g-spec10 pz 11.0 $ keV, eV11 pz 11.5 $ MeV, NE-g12 pz 20.0 $ foil, TLD13 pz 21.0 $ keV, eV14 pz 21.5 $ MeV, NE-g15 pz 30.0 $ foil, TLD, g-spec16 pz 31.0 $ keV, eV17 pz 31.5 $ MeV, NE-g18 pz 40.0 $ foil, TLD19 pz 41.0 $ keV, eV20 pz 41.5 $ MeV, NE-g21 pz 50.0 $ foil, TLD, g-spec22 pz 51.5 $ MeV23 pz 60.0 $ TLD24 pz 61.0 $ keV, eV25 pz 70.0 $ foil, TLD, g-spec26 pz 71.5 S MeV, NE-g27 pz 80.0 $ TLD28 pz 81.0 S keV, eV29 pz 90.0 S TLD30 pz 91.5 $ NE-g31 pz 95.0 $ TLD32 pz 97.0 $ keV

source void

Fig. A-3 Input data of MCNP for the analysis of the iron experiment. (1/4)

- 8 4 -

Page 91: Fusion

JAERI-Data/Code 98-021

41 cz 4.042 cz 50.043 cz 10.0c blank delimeter

c * mode card *

mode n p

c * weight window cards *

ext:n 0 0 O.lz O.lz O.lz 0.lz O.lz O.lz O.lz O.lzO.lz O.lz O.lz O.lz O.lz O.lz O.lz O.lz O.lz O.lzO.lz O.lz O.lz O.lz O.lz O.lz O.lz O.lz O.lz O.lz0 0 0

wwe:n l.Oe-3 1.0 5.0 10.0 16.0wwp:n 5 3 5 0 0wwnl:n $ for eV neutrons

5.0e-2O.3e-21.0e-31.0e-33.0e-41.0e-4

2.0e-20.2e-21.0e-31.0e-32.0e-41.0e-4

1.0e-21.0e-31.0e-31.0e-31.0e-4

0.7e-21.0e-31.0e-37.0e-41.0e-4

1.0e-4 -1wwn2:n $ for keV neutrons

0e-20e-20e-20e-20e-3

3.0e-21.0e-21.0e-21.0e-22.0e-3 1.0e-3

1.0e-3 1.0e-3 l.Oe-3 -1

2.0e-21.0e-21.Oe-21.Oe-21.0e-3

4e-2Oe-20e-20e-3

wwn3:n $ for l-5MeV neutrons

5.Oe-22.Oe-22.0e-32.0e-45.0e-6

5.Oe-21.0e-22.0e-31.0e-42.0e-6

1.0e-6 1.0e-6

5.Oe-25.0e-3l.Oe-35.0e-51.0e-61.0e-6

2.Oe-25.0e-35.0e-42.0e-51.0e-6

-1wwn4:n $ for 5-13 MeV Neutrons

5.Oe-21.5e-23.2e-44.0e-51.2e-63.0e-7

5.Oe-25.0e-33.2e-42.0e-56.0e-73.0e-7

5.Oe-21.5e-31.6e-41.0e-53.0e-7 33.0e-7 -1

1.5e-21.5e-38.0e-55.0e-6

0e-7

0.5e-21.0e-31.0e-35.0e-41.0e-4

1.0e-21.0e-21.0e-25.0e-31.0e-3

2.Oe-23.0e-35.0e-41.0e-51.0e-6

1.5e-26.4e-48.0e-52.5e-63.0e-7

wwn5:n $ for 14 MeV Neutrons

wwe:pwwp:p

7.Oe-21.0e-21.5e-46.4e-62.0e-75.0e-8100.05 3 5 0 0

5.Oe-25.0e-31.5e-43.2e-61.0e-75.0e-8

4.Oe-21.5e-35.0e-51.6e-65.0e-85.0e-8

8.5e-23.Oe-21.5e-31.5e-58.Oe-75.0e-8

-1

2.Oe-25.0e-41.5e-54.0e-75.0e-8

wwnl:p $ for gamma-rays1.0e-l 1.0e-l 1.0e-l 1.0e-l5.Oe-2 5.Oe-2 5.Oe-2 2.Oe-2 2.Oe-22.Oe-2 1.0e-2 7.0e-3 7.0e-3 5.0e-33.0e-3 3.0e-3 2.0e-3 1.4e-3 1.4e-3l.Oe-3 7.0e-4 5.0e-4 3.Oe-4 2.0e-41.0e-4 7.0e-5 5.0e-5 5.0e-5 5.0e-55.0e-5 5.0e-5 5.0e-5 -1

c **********************************************c * source specification cardsc * a user supplied source subroutine is used.

c * material specification cards

c Ironml 26000.41c 0.083490 12000.34c 0.000727

14000.41c 0.000249 25055.41c 0.000716c airm2 7014.34c 3.8810-5 8016.34c 1.0400-5

Fig.A-3 Continued. (2/4)

- 8 5 -

Page 92: Fusion

JAERI-Data/Code 98-021

cm3m4m5m6m7m8m9mlOmilml2ml3ml4cccfcO2

materials for reaction rate5010.03y 1.0 $ B-10(n,alpha)

.0

.0

.0

.0

.0

13027.03y22000.03y25055.34c26056.03y28058.03y30064.03y40090.03y41093.03y49115.03y79197.03y92235.03y

$ Al-27(n,alpha)$ Ti-nat((n,x)Sc-48$ Mn-55(n,gamma)$ Fe-56(n,p)$ Ni-58(n,2n)

0 $ Zn-64(n,p)0 $ Zr-90(n,2n)0 $ Nb-93(n,2n)Nb-92m0 $ In-115(n,n')ln-115m0 $ Au-197(n,gamma)0 $ U-235(n,fission)

& Ni-58(n,p)

tally specification cards

neutron reaction rate surface r=4cmfO2:n 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 2223 24 25 26 27 28 29 30 31

fsO2 -41fqO2 s e f me02 16.0fmO2 (1)

(1 3 107)(1 7 103)

(1(1(1

(1 11 16) (1 12

(1(1(1(1

14813

2)107)103)102)

(1(1(1(1

5914

102)212)103)18)

(1(1

610

102)16)

surface r=4cm

1)207)16)51)

fcl2 neutron energy spectrum (decade)fl2:n 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 2223 24 25 26 27 28 29 30 31

fql2 s f efsl2 -41el2 le-7 le-6 le-5 le-4 le-3 le-2 le-1 le+0 le+l 2e+lfc24 neutron energy spectrum (decade) cellf24:n 3 32e24 le-7 le-6 le-5 le-4 le-3 le-2 le-1 le+0 le+1 2e+lfc32 neutron energy spectrumf32:n 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 2223 24 25 26 27 28 29 30 31

fs32 -41fc44 neutron energy spectrumf44:n 3 32fc62 neutron energy reaction ratef62:n 10 13 16 19 24 28fs62 -43fm62 (1) (1 1 1) (1 1 2) (1 1fclO2 gamma-ray energy spectrumflO2:p 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22

surface r=4cm

cell

surface r=10cm

102)surface r=4cm

fslO2fulO2fqlO2elO2

cfqOeO

23 24 25 26-411 2 3 4s u m e1.0000-028.0000-024.0000-018.0000-011.3800+002.5000+005.0000+007.5000+001.4000+01

s m e f1.0010-115.3156-076.4758-067.8891-059.6110-043.3546-031.1709-022.8087-025.2474-029.8035-021.8315-013.4217-016.3927-01

27 28 29

5 6 7f

2.0000-021.0000-015.0000-019.0000-011.5000+003.0000+005.5000+008.0000+00

3.2241-078.7640-071.0677-051.3007-041.2341-034.3073-031.5034-023.1827-025.9461-021.1109-012.0754-013.8774-017.2438-01

30 31

3.0000-021.5000-015.2000-011.0000+001.7500+003.5000+006.0000+009.0000+00

1.4449-061.7603-052.1445-041.5846-035.5307-03L.9304-023.6065-026.7378-021.2588-012.3517-014.3936-018.2084-01

4.5000-022.0000-016.0000-011.1300+002.0000+004.0000+006.5000+001.0000+01

2.3823-062.9023-053.5357-042.0346-037.1016-032.1874-024.0867-027.6349-021.4264-012.6649-014.9786-019.3013-01

6.0000-023.0000-017.0000-011.2500+002.2500+004.5000+007.0000+001.2000+01

3.9278-064.7850-055.8293-042.6125-039.1186-032.4787-024.6308-028.6515-021.6163-013.0197-015.6415-011.0540+00

Fig. A-3 Continued. (3/4)

- 8 6 -

Page 93: Fusion

JAERI-Data/Code 98-021

1943+009691+006914+006787+000282+008728+003940+000645+011510+012445+013456+014550+01

1.3533+002.0961+002.8650+003.9160+005.3525+007.3161+009.9999+001.0812+011.1691+011.2641+011.3668+011.4779+01

ccc **phys:nphys:pphys:ecut:ncut:pnpsctmec **c *c *idumrdumprdmplostprint

0.011

16.030.030.00 1.0e-l0 0.009910000001000000

.5335+00

.2313+00

.0498+00

.1686+00

.6978+00

.7879+00

.0157+01

.0983+01

.1875+01

.2840+01

.3883+01

.5012+01

problem cutoff cards

1.7377+002.3752+003.2465+004.4374+006.0652+008.2902+001.0317+011.1156+011.2062+011.3042+011.4102+011.5248+01

1-0.5-0.5

1 1 1-0.25-0.25

peripheral crads

7 6 51 2 3 410000010

5 6 7100000

101 1

1.8498+002.5284+003.4559+004.7236+006.4564+008.8249+001.0480+011.1331+011.2252+011.3248+011.4324+011.5488+01

Fig. A-3 Continued. (4/4)

AnalysisC ^ J. -.--

cc1234567891011121314151617181920

cccc12345678

*

2 42 41 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 82 40

of Copper

cell card

.9210-5 1

.9210-5 2

.4627-2 3

.4627-2 4

.4627-2 5

.4627-2 6

.4627-2 7

.4627-2 8

.4627-2 9

.4627-2 10

.4627-2 11

.4627-2 12

.4627-2 13

.4627-2 14

.4627-2 15

.4627-2 16

.4627-2 17

.4627-2 18

.9210-5 19-1

* surface card

pzpzpzpzpzpzpzpz

-21.00-1.000.005.777.60510.1115.0020.37

Experiment

-2-3-4-5-6-7-8-9

-10-11-12-13-14-15-16-17-18-19-20: 20

$$$$$$$

-22-22-22-22-22-22-22-22-22-22-22-22-22-22-22-22-22-22-22: 22

*

n &. gamma spectrumfoil & tldtldn & gamma spectrumfoilchange cell importancefoil

Fig. A-4 Input data of MCNP for the analysis of the copper experiment. (1/3)

- 8 7 -

Page 94: Fusion

JAERT-Data/Code 98-021

91011121314151617181920c2122

c

cccmodewwe:nwwp:nwwe:pwwp:pext:n

wwnl:

wwn2:

wwn3:

wwn4:

wwn5:

wwn6:

wwnl:

cccccccmlGm2cm3m4m5m6m7m8m9mlOmilml2ml 3ml4ml 5ml 6ml 7ml 8

ccc

pz 20.98pz 22.815pz 30.00pz 35.61pz 36.19pz 38.025pz 45.00pz 50.85pz 51.40pz 53.235pz 60.84pz 61.84

cz 3.00cz 31.50

$ tld$ n & gamma spectrum$ change cell importance$ foil$ tld$ n & gamma spectrum$ change cell importance$ foil$ tld$ n & gamma spectrum$ foil & tld$ n & gamma

* mode card

n p. le-4 le-2 1 5

5 3 5 0 01005 3 5 0 0

0 0O.lz O.lzO.lz O.lz

n 1.0e-3 1.0e-31.0e-4 1.0e-41.0e-5 1.0e-5

n 1.0e-2 1.0e-21.0e-3 1.0e-31.0e-4 1.0e-4

n l.Oe-1 l.Oe-11.0e-2 1.0e-25.0e-4 5.0e-4

n l.Oe-1 l.Oe-14.0e-3 2.0e-35.0e-5 5.0e-5

n l.Oe-1 l.Oe-12.0e-3 5.0e-41.0e-5 1.0e-5

n l.Oe-1 l.Oe-17.0e-4 2.0e-41.0e-6 1.0e-6

p l.Oe-1 l.Oe-14.0e-3 2.0e-33.0e-4 3.0e-4

1;

1,1.1.1.1.1.3.1.5.4.1.5.4,2.1.4,5.1.4.1.I

- neutron &

i 16

O.lz O.lzO.lz O.lz0 0.0e-3 1.0e-30e-4 7.0e-5Oe-5 -1,0e-2 1.0e-2Oe-3 7.0e-4Oe-4 -1.Oe-2 2.0e-2Oe-2 7.0e-3Oe-4 -1.Oe-2 2.Oe-2Oe-3 7.0e-4Oe-5 -1.Oe-2 2.Oe-2Oe-4 2.Oe-4Oe-5 -1.Oe-2 2.0e-2Oe-5 4.Oe-5Oe-6 -1.Oe-2 2.Oe-2Oe-3 1.0e-33.Oe-4

* source specificatio cards

spectrum< cylinders centered (

photon *

O.lz O.lzO.lz O.lz

3.Oe-4 1.0e-47.Oe-5 5.Oe-5

3.Oe-3 1.0e-37.Oe-4 5.Oe-4

1.0e-2 1.0e-25.Oe-3 2.0e-3

2.Oe-2 1.0e-25.0e-4 2.Oe-4

2.Oe-2 1.0e-21.0e-4 5.Oe-5

1.0e-2 3.Oe-32.Oe-5 5.Oe-6

2.0e-2 1.0e-21.0e-3 7.Oe-4-1

* material specification cards

29000.41c 1< copper >•

7014.37c 3.8810-5 8016.37c 1.0400-5

5010.03y 1.013027.03y 1.022000.03y 1.025055.03y 1.026054.03y 1.026056.03y 1.027059.37c 1.028058.03y 1.029063.41c 1.029065.41c 1.030064.03y 1.040090.03y 1.041093.03y 1.049115.03y 1.079197.03y 1.092235.03y 1.0

$ B-10$ Al-27$ Ti-0S Mn-55$ Fe-54$ Fe-56$ Co-59$ Ni-58$ Cu-63$ Cu-65$ Zn-64$ Zr-90$ Nb-93$ In-115$ Au-197$ U-235

* tally specification cards

(n,a)(n,a)(n,x)Sc-46 (n(n,g)(n,p)(n,p)(n,2n) (n,g)(n,2n) (n,p)(n,2n) (n,g)(n,2n) (n,g)(n,p)(n,2n)(n,2n)Nb-92m(n,n')In-115m(n,g)(n,f)

12

12

11

51

52

12

55

3

O.lzO.lz

.Oe-4

.Oe-5

.Oe-3

.Oe-4

.Oe-2

.Oe-3

.Oe-3

.Oe-4

.Oe-3

.Oe-5

.Oe-3

.Oe-6

.Oe-3

.0e-4

*

on

1.2.

1.2.

1.1.

5.1.

5.2.

1.2.

5.5.

*

z-axis >--

O.lzO.lz

Oe-4Oe-5

0e-30e-4

Oe-20e-3

Oe-3Oe-4

Oe-3Oe-5

Oe-3Oe-6

0e-3Oe-4

for reaction rate>

,x)Sc-47

(n,a)

<n,a)

*

(r

(n,x)Sc-48

i,p)

Fig. A-4 Continued. (2/3)

- 88 -

Page 95: Fusion

JAERI-Data/Code 98-021

fc2E2:n

fs2fcl2fl2:n

fml2

fsl2el2fql2fc22f22:n

fs22e22fc32f32:p

fs32e32

fqOeO

c 'c '

neutron spectrum2 3 4 5 6

surface7 8 9

12 13 14 15 16 17 18 19-21

neutron reaction rate surf2 3 4 5 6 7 8 9

12 13 14 15 16 17 18 19(1 1 102)(1 5 212)(1 9 102)(1 11 16)(1 13 103)(1 18 18)-2120

s e f

(1 3 107)(1 6 102)(1 9 103)(1 11 102)(1 14 16)

m

10 1120

10 1120

(1 4 107) (1 5 :(1 7 103) (1 8 :(1 9 107) (1 10{1 11 107) (1 12{1 15 16) (1 16

neutron decade spectrum2 3 4 5 6 7 8 9

12 13 14 15 16 17 18 19-21le-7 le-6

surface10 1120

210) (1 5L03) (1 916) (1 1016) (1 1251) (1 17

le-5 le-4 le-3 le-2 le-1 le+0 le+l le+2gamma-ray spectrum surf

2 3 4 5 6 7 8 912 13 14 15 16 17 18 19-211.0000-028.0000-024.0000-018.0000-011.3800+002.5000+005.0000+007.5000+001.4000+01

s m e1.0010-115.3156-076.4758-067.8891-059.6110-043.3546-031.1709-022.8087-025.2474-029.8035-021.8315-013.4217-016.3927-011.1943+001.9691+002.6914+003.6787+005.0282+006.8728+009.3940+001.0645+011.1510+011.2445+011.3456+011.4550+01

2.0000-021.0000-015.0000-019.0000-011.5000+003.0000+005.5000+008.0000+00

f3.2241-078.7640-071.0677-051.3007-041.2341-034.3073-031.5034-023.1827-025.9461-021.1109-012.0754-013.8774-017.2438-011.3533+002.0961+002.8650+003.9160+005.3525+007.3161+009.9999+001.0812+011.1691+011.2641+011.3668+011.4779+01

1 problem cutoff cards

phys:n 20 0phys:p 20 1 0

pnys te ^ u x ±cut:n 0 0.0cut:pnpsctme

C 'c 'c 'idumrdumprdmplostprint

-0.50 0.999-02 -0.510000001000000

1 peripheral cards

10 0 -20100000010

10000010

3.0000-021.5000-015.2000-011.0000+001.7500+003.5000+006.0000+009.0000+00

1.4449-061.7603-052.1445-041.5846-035.5307-031.9304-023.6065-026.7378-021.2588-012.3517-014.3936-018.2084-011.5335+002.2313+003.0498+004.1686+005.6978+007.7879+001.0157+011.0983+011.1875+011.2840+011.3883+011.5012+01

-0.25 0-0.25 0

1 1

10 1120

4.5000-022.0000-016.0000-011.1300+002.0000+004.0000+006.5000+001.0000+01

2.3823-062.9023-053.5357-042.0346-037.1016-032.1874-024.0867-027.6349-021.4264-012.6649-014.9786-019.3013-011.7377+002.3752+003.2465+004.4374+006.0652+008.2902+001.0317+011.1156+011.2062+011.3042+011.4102+011.5248+01

6.0000-023.0000-017.0000-011.2500+002.2500+004.5000+007.0000+001.2000+01

3.9278-064.7850-055.8293-042.6125-039.1186-032.4787-024.6308-028.6515-021.6163-013.0197-015.6415-011.0540+001.8498+002.5284+003.4559+004.7236+006.4564+008.8249+001.0480+011.1331+011.2252+011.3248+011.4324+011.5488+01

*

*

211)16)

103)102)102)

Fig. A-4 Continued. (3/3)

- 8 9 -

Page 96: Fusion

JAERI-Data/Code 98-021

> » Analysis of Tungsten Slab Eperiment April 1994 < «c ***** front air region *****

1 22 2

4.921-5 (+14.921-5 +2

-2 -22) : (+2-3 -21

c ***** t e s t region *****3 14 15 16 17 18 19 110 111 112 113 114 115 116 117 118 119 120 121 122 1

6.423-2 +36.544-2 +36.423-2 +46.544-2 +46.423-2 +56.544-2 +56.423-2 +66.544-2 +66.423-2 +76.544-2 +76.423-2 +86.544-2 +86.423-2 +96.544-2 + 96.423-2 +106.544-2 +106.423-2 +116.544-2 +116.423-2 +126.544-2 +12

c ***** rear air23 224 2

4.921-5 +134.921-5 +13

c ***** external25 0

1234567891011121314

c2122

ext:n

wwe:nwwp:nwwnl:n

wwn2:n

wwn3:n

wwn4:n

wwn5:n

wwe:pwwp:pwwnl:p

wwe:ewwp:ewwnl:e

-1

pzpzpzpzpzpzpzpzpzpzpzpzpzpz

czcz

0 0O.lz O.lzO.lz O.lz

-4 -21-4 +21 -22-5 -21-5 +21 -22-6 -21-6 +21 -22-7 -21-7 +21 -22-8 -21-8 +21 -22-9 -21-9 +21 -22-10 -21-10 +21 -22-11 -21-11 +21 -22-12 -21-12 +21 -22-13 -21-13 +21 -22region *****-14 -21-14 +21 -22void *****: +14 : +22

-21.00-2.000.005.077.60510.1420.2822.81525.3535.4938.02540.5650.7052.70

2.8623.76

O.lz O.lz 0.O.lz O.lz 0.0 0 0

1.0e-3 1.0e-2 1.0 10.05 3 5 0 0$ for eV Neutrons0.08 lr0.00032 lr0.0000025

0.02 lr 00.00008 lr 07r -1

$ for l-10keV Neutrons0.08 lr0.0008 3r

0.03 lr0.0003 lr

$ for 0.01-lMeV Neutrons0.08 lr0.02 3r$ for 1-130.08 lr0.00032 3r

0.08 Ir0.01 lr

MeV Neutrons0.02 lr0.00008 lr

$ for 14 MeV Neutrons0.08 lr0.00032 3r100.05 3 5 0

0.02 lr0.00008 lr

0$ for Gamma-Rays0.4 lr0.004 3r100.05 3 5 0

0.15 lr0.0015 lr

0S for Electrons0.4 lr 0.15 lr

$

$$Sss$$$$$$$$$$$$$$s$$$$$sss$s$$$$$$$

lzlz

-3 +21 -22)cell detecter

0.00 - 5.07 cm

5.07 - 7.605cm

7.605- 10.14 cm

10.14 - 20.28 cm

20.28 - 22.815cm

22.815- 25.35 cm

25.35 - 35.49 cm

35.49 - 38.025cm

38.025- 40.56 cm

40.56 - 50.70 cm

cell detector

Sourcen-specFront Surface#1-1Drawer #1#1-2#2-1Drawer #2#2-2#3-1Drawer #3#3-2Rear Surfacen-spec

O.lz O.lz O.lzO.lz O.lz O.lz

16.0

.005 lr 0.00128

.00002 lr 0.000005

0.0.

0.0.

0.008 3r 0.0030.00008 7r -1

0.08 3r 0.040.005 7r -1

005 3r 0.0012800002 7r -1

005 3r 0.0012800002 7r -1

0.04 3r 0.0150.0004 7r -1

0.04 3r 0.015

$

O.lzO.lz

lrlr

lr

lr

lr

lr

lr

lr

sourc

O.lzO.lz

Fig. A-5 Input data of MCNP for the analysis of the tungsten experiment. (1/4)

- 90 -

Page 97: Fusion

JAERI-Data/Code 98-021

ccccsclsdefsb2sil

spl

ccccml

cm2cm3m4m5m6m7m8m9mlOmilml2ml 3ml4

0.004

* source* a user

3r 0.0015 lr 0.0004 7r

specification cardssupplied source subroutine is used

Source Spectrum for FNS 1TR NWCTerg=dl dir=d2 vec=0 0 1 pos=0-31 4.01.0010-115.3156-076.4758-067.8891-059.6110-043.3546-031.1709-022.8087-025.2474-029.8035-021.8315-013.4217-016.3927-011.1943+001.9691+002.6914+003.6787+005.0282+006.8728+009.3940+001.0645+011.1510+011.2445+011.3456+011.4550+010.02.2732-091.8398-073.8068-068.7622-061.4791-054.4237-054.8831-058.3190-051.7906-047.0593-041.3867-032.2042-032.5765-031.4298-031.3760-031.2861-031.0018-036.9228-044.1280-049.1407-051.1227-044.1363-044.6458-043.0897-02

3.2241-078.7640-071.0677-051.3007-041.2341-034.3073-031.5034-023.1827-025.9461-021.1109-012.0754-013.8774-017.2438-011.3533+002.0961+002.8650+003.9160+005.3525+007.3161+009.9999+001.0812+011.1691+011.2641+011.3668+011.4779+011.5142-074.2225-092.2450-073.0541-067.8013-061.7624-054.6320-055.0292-059.7450-053.7225-048.0965-041.5803-032.3040-032.7699-031.3270-031.4329-031.2741-038.8451-046.2956-043.5649-049.3708-051.6798-047.4899-049.1020-04

'2.3565-01

1.4449-061.7603-052.1445-041.5846-035.5307-031.9304-023.6065-026.7378-021.2588-012.3517-014.3936-018.2084-011.5335+002.2313+003.0498+004.1686+005.6978+007.7879+001.0157+011.0983+011.1875+011.2840+011.3883+011.5012+01

7.4848-091.3922-072.2612-061.4320-052.8404-056.1572-055.7202-051.0531-044.9933-049.5392-041.6473-032.5211-032.8528-031.3489-031.4558-031.1711-037.9827-045.1710-049.0768-057.9567-051.5985-047.8183-042.6083-034.0901-01

* material specification cards

Tungsten74000.42c29000.37c

air7014.37c

0.056000.00364

3.8810-5

28000.37c 0

8016.37c 1materials for reaction rate

5010.03y13027.03y22000.03y25055.03y26056.03y28058.03y28060.03y29063.03y29065.03y30064.03y40090.03y41093.03y

1.0 S1.0 $1.0 $1.0 $1.0 $1.0 $1.0 $1.0 $1.0 $1.0 $1.0 $1.0 $

B-10(n,alpha)

(125-g)

-1

*

0 -20 wgt=1.1261

2.3823-062.9023-053.5357-042.0346-037.1016-032.1874-024.0867-027.6349-021.4264-012.6649-014.9786-019.3013-011.7377+002.3752+003.2465+004.4374+006.0652+008.2902+001.0317+011.1156+011.2062+011.3042+011.4102+011.5248+01

1.4264-081.6817-076.9372-061.1820-052.4899-053.7185-056.9230-051.2632-045.3824-04i.0785-031.8238-032.5709-032.5945-031.3820-031.3518-031.1937-037.9293-045.0750-048.2287-058.8737-051.6563-045.1771-049.5007-042.2296-01

.00580

.0400-5

Al-27(n,alpha)Ti-nat((n,x)Sc-48Mn-55(n,gamma)Fe-56(n,p)Ni-58(n,2n) &Ni-60(n,p)Cu-63(n,2n) &Cu-65(n,2n)Zn-64(n,p)Zr-90(n,2n)

3.9278-064.7850-055.8293-042.6125-039.1186-032.4787-024.6308-028.6515-021.6163-013.0197-015.6415-011.0540+001.8498+002.5284+003.4559+004.7236+006.4564+008.8249+001.0480+011.1331+011.2252+011.3248+011.4324+011.5488+01

8.3975-082.9754-077.2049-061.6544-053.7633-055.3362-058.0602-051.4874-046.0762-041.2232-032.0605-032.5872-031.3898-031.4312-031.4053-031.0563-037.5872-045.1007-049.2862-058.7841-052.1025-044.5938-045.1474-031.4419-01

*

: Ni-58(n,p)

: Cu-63(n,g;

Nb-93(n,2n)Nb-92m

I & Cu-63(

Fig. A-5 Continued. (2/4)

- 9 1 -

Page 98: Fusion

JAERI-Data/Code 98-021

ml5ml 6ml 7ml 8

m21m22m23

cccfc22f22:nfs22fq22e22fm22

fc34f34:nfq34e34fm34

fc42f42:nfs42fc54f54:nfclO2fl02:fsl02ful02fqlO2elO2

fqOeO

ccc

49115.03y74186.03y79197.03y92235.03y

28000.37c29000.37c74000.42c

1.0 $ In-115(n,n')In-115m1.0 $ W-186(n,gamma)1.0 $ Au-197(n,gamma)1.0 $ U-235(n,fission)

1.0 $ Ni(n,gamma)1.0 $ Cu(n,gamma)1.0 $ W(n,gamma)

* tally specification cards

neutron reaction rate3 4 5

-21s e f m16.0(1)(1 6 102)(1 10 16)(1 13 16)(1 18 18)

6 7 8 9

(1 3 107)(1 7 103)(1 10 102)(1 14 16)(1 21 102)

surface10 11 12 13

(1 3 207) (1 4(1 8 16) (1 8(1 10 107) (1 11(1 15 51) (1 16(1 22 102) (1 23

neutron reaction rate2 5 7

s e f m16.0(1)(1 6 102)(1 10 16)(1 13 16)(1 18 18)

11 13 17

(1 3 107)(1 7 103)(1 10 102)(1 14 16)(1 21 102)

19 23cell

(1 3 207) (1 4(1 8 16) (1 8(1 10 107) (1 11(1 15 51) (1 16(1 22 102) (1 23

neutron energy spectrum3 4 5

-216 7 8 9

surEace10 11 12 13

neutron energy spectrum2 5 7 11 13 17

gamma-ray energyp 3 4 5-211 2 3 4s u m e1.0000-028.0000-024.0000-018.0000-011.3800+002.5000+005.0000+007.5000+001.4000+01

s m e f1.0010-115.3156-076.4758-067.8891-059.6110-043.3546-031.1709-022.8087-025.2474-029.8035-021.8315-013.4217-016.3927-011.1943+001.9691+002.6914+003.6787+005.0282+006.8728+009.3940+001.0645+011.1510+011.2445+011.3456+011.4550+01

6 7 8 9

5 6f

2.0000-021.0000-015.0000-019.0000-011.5000+003.0000+005.5000+008.0000+00

3.2241-078.7640-071.0677-051.3007-041.2341-034.3073-031.5034-023.1827-025.9461-021.1109-012.0754-013.8774-017.2438-011.3533+002.0961+002.8650+003.9160+005.3525+007.3161+009.9999+001.0812+011.1691+011.2641+011.3668+011.4779+01

* problem cutoff cards

19 23spectrum

cell

surface10 11 12 13

3.0000-021.5000-015.2000-011.0000+001.7500+003.5000+006.0000+009.0000+00

1.4449-061.7603-052.1445-041.5846-035.5307-031.9304-023.6065-026.7378-021.2588-012.3517-014.3936-018.2084-011.5335+002.2313+003.0498+004.1686+005.6978+007.7879+001.0157+011.0983+011.1875+011.2840+011.3883+011.5012+01

*

4.5000-022.0000-016.0000-011.1300+002.0000+004.0000+006.5000+001.0000+01

2.3823-062.9023-053.5357-042.0346-037.1016-032.1874-024.0867-027.6349-021.4264-012.6649-014.9786-019.3013-011.7377+002.3752+003.2465+004.4374+006.0652+008.2902+001.0317+011.1156+011.2062+011.3042+011.4102+011.5248+01

*

107) (1 5103) (1 916) {1 12

102) (1 17102)

107) (1 5103) {1 916) (1 12

102) (1 17102)

i r=4cm

6.0000-023.0000-017.0000-011.2500+002.2500+004.5000+007.0000+001.2000+01

3.9278-064.7850-055.8293-042.6125-039. 1186-032.4787-024.6308-028.6515-021.6163-013.0197-015.6415-011.0540+001.8498+002.5284+003.4559+004.7236+006.4564+008.8249+001.0480+011.1331+011.2252+011.3248+011.4324+011.5488+01

212)103)103)102)

212)103)103)102)

Fig.A-5 Continued. (3/4)

- 9 2 -

Page 99: Fusion

JAERI-Data/Code 98-021

phys:nphys:p

phys:emodecut:ncut:pcut:enpsctme

c *

idumrdumprdmplostprint

16.0 0.030.0 1

n p0 1.0e-100 0.00990 0.3200000072000

peripheral

6 3 4 51 2 3 4 520000010

0

-0-0-0

crads

620000010

.5

.5

.5

1

-0.25 0-0.25 0-0.25 0

*

1

Fig.A-5 Continued. (4/4)

- 93 -

Page 100: Fusion

(SI)

*

& 2>C BE

nt Ra

m ft m

¥ ffi ft

ffi fls ft

7T^A

7

X

* ft- f-

D ?* 7

y *•<

;l< b*

y -fs? r

)VA

ry

7

y

IB «•

mkgsAK

molcd

rad

sr

* 3

affi iffi

w. % a« & , «J5E,# m •m «c ja y y ?

fE *V, isflit m w.

M ©

S ffi

? y x

9 y x

ai

affi

§ ffi

p<7

-•K

7~

i?

>>

-f

-fe;V

a - h7, Ai —

y

— D

;l/

r 9-

— ^ y

y y)V ~> t) X

— y<

V

y

;V

y

hFA7.

7

-

ffiy

m%HzNPaJ

W

cVF

os

WbTH°Clmlx

Bq

Gy

Sv

s-'m-kg/s2

N/m2

N-mJ/sA-sW/AC/VV/AA/VV-sWb/m2

Wb/A

cd-srlm/m2

s"1

J/kgJ/kg

b

%

J, B

< /I b

mmin,

1, Lt

eVu

h, d

1 eV=1.60218xl0-'9J

1 u =1.66054x10 ""kg

/<A*if-

U

7

— y

— )V

* y -y j- y y

FA

m %Ab

barGalCiR

radrem

1 A=0.1nm=10- | 0 m

1 b=100fm2=10-28m2

1 bar=0.1MPa=105Pa

1 Gal=lcm/s2=10-2m/s2

lCi=3.7xl01 0Bq

lR=2.58xlO-"C/kg

1 rad=lcGy=10- 2 Gy

1 rem=lcSv=10- 2 Sv

1O1S

10' 5

1012

109

106

103

1O2

10'

1 0 " '

10"2

lO"3

10"6

I0~ 9

lO"12

JQ-15

io-'8

m

r

T

7"

b"

7 i

7

mm

7

A'A"D

A

y f-y

rt

Ahr-

E ^

EPTGMkhda

dcmanPfa

(SO1.

2.

3.

4.

! l - 5c J; S o kt£L, 1 eV

bar, barnfc'J:

N(=10 5 dyn)

1

9.80665

4.44822

kgf

0.101972

1

0.453592

lbf

0.224809

2.20462

1

K lPa - s (N-s /m 2 )=10P(#TX)(g / ( cm-s ) )

3

MPa(=10bar)

1

0.0980665

0.101325

1.33322 x 10""

6.89476XUT3

kgf /cm 2

10.1972

1

1.03323

1.35951 xlO-3

7.03070 xlO"2

atm

9.86923

0.967841

1

1.31579 xIO"3

6.80460xl0"2

mmHg(Tor r )

7.50062 xlO3

735.559

760

1

51.7149

Ibf/ in2(psi)

145.038

14.2233

14.6959

1.93368 xlO"2

1

X

+1i±4i

Hi&

J(=107 erg)

1

9.80665

3.6x10"

4.18605

1055.06

1.35582

1.60218 xlO"'9

kgf-m

0.101972

1

3.67098 xlO5

0.426858

107.586

0.138255

1.63377 xlO"20

kW-h

2.77778 xKT7

2.72407 xlO"6

1

1.16279 XKT6

2.93072xl0-4

3.76616 xlO"7

4.45050 xlO^26

cal(frfiffi)

0.238889

2.34270

8.59999 xlO5

1

252.042

0.323890

3.82743 xlO-20

Btu

9.47813 xlO-4

9.29487 xlO"3

3412.13

3.96759 xlO'3

1

1.28506X10"3

1.51857X10-22

ft-lbf

0.737562

7.23301

2.65522 xlO6

3.08747

778.172

1

1.18171 xlO"19

eV

6.24150 xlO'8

6.12082 xlO19

2.24694 xlO25

2.61272 xlO19

6.58515 xlO21

8.46233X1018

1

1 cal= 4.18605J (IrffiS-)

= 4.184J (fsft^)

= 4.1855J (15°C)

= 4.1868J

i PSC&JS*

= 75 kgf-m/s

= 735.499W

Bq Ci

2.70270x10-"

1

Gy

1

0.01

rad

100

1ffi

C/kg

2.58x10-

R

3876

1

Sv

1

0.01

rem

100

1

Page 101: Fusion

DATA COLLECTION OF FUSION NEUTRONICS BENCHMARK EXPERIMENT CONDUCTED AT FNS/JAERI