fuzzy rendszerek i

48
Fuzzy Rendszerek I. Dr. Kóczy László 1 / 1

Upload: chesmu

Post on 12-Jan-2016

35 views

Category:

Documents


1 download

DESCRIPTION

1 / 1. Fuzzy Rendszerek I. Dr. K óczy László. An Example. 1 / 2. A class of students (E.G. M.Sc. Students taking „Fuzzy Theory”) The universe of discourse : X. “Who does have a driver’s licence?” A subset of X = A (Crisp) Set  (X) = CHARACTERISTIC FUNCTION. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Fuzzy Rendszerek I

Fuzzy Rendszerek I.

Dr. Kóczy László

1 / 1

Page 2: Fuzzy Rendszerek I

An Example• A class of students

(E.G. M.Sc. Students taking „Fuzzy Theory”)

• The universe of discourse: X

• “Who does have a driver’s licence?”• A subset of X = A (Crisp) Set (X) = CHARACTERISTIC FUNCTION

• “Who can drive very well?” (X) = MEMBERSHIP FUNCTION

1 0 1 1 0 1 1

0.7 0 1.0 0.8 0 0.4 0.2

FUZZY SET

1 / 2

Page 3: Fuzzy Rendszerek I

History of fuzzy theory

• Fuzzy sets & logic: Zadeh 1964/1965-• Fuzzy algorithm: Zadeh 1968-(1973)-• Fuzzy control by linguistic rules: Mamdani & Al. ~1975-• Industrial applications: Japan 1987- (Fuzzy boom), Korea

Home electronicsVehicle controlProcess controlPattern recognition & image processingExpert systemsMilitary systems (USA ~1990-)Space research

• Applications to very complex control problems: Japan 1991-E.G. helicopter autopilot

1 / 3

Page 4: Fuzzy Rendszerek I

An application exampleOne of the most interesting applications of fuzzy computing: “FOREX” system.

1989-1992, Laboratory for International Fuzzy Engineering Research (Yokohama, Japan) (Engineering – Financial Engineering)

To predict the change of exchange rates (FOReign EXchange)

~5600 rules like:“IF the USA achieved military successes on the past day [E.G. in the Gulf War] THEN ¥/$ will slightly rise.”

Inputs

FOREX Predictio

nFuzzy Inference Engine

(Observations)

1 / 4

Page 5: Fuzzy Rendszerek I

Another Example

What is fuzzy here?

- What is the tendency of the ¥/$ exchange rate?“It’s MORE OR LESS falling” (The general tendency is “falling”, there’s no big interval of rising, etc.)

- What is the current rate?Approximately 88 ¥/$ Fuzzy number

- When did it first cross the magic 100 ¥/$ rate? SOMEWHEN in mid 1995

1993 1994 1995 Time

¥/$

100

1 / 5

Page 6: Fuzzy Rendszerek I

A complex problem

Many components, very complex system. Can AI system solve it? Not, as far as we know. But WE can.

Our car, save fuel, save time, etc.

1 / 6

Page 7: Fuzzy Rendszerek I

Definitions• Crisp set:

• Convex set:A is not convex as aA, cA, butd=a+(1-)c A, [0, 1].B is convex as for every x, yB and[0, 1] z=x+(1-)y B.

• Subset:

• x• y

c •

• a

• b• d

Crisp set A

B

aAbA

• x• y

A

BIf xA then also xB.

AB

1 / 7

Page 8: Fuzzy Rendszerek I

1 / 8

Definitions• Equal sets:

If AB and BA then A=B if not so AB.

• Proper subset:If there is at least one yB such that yA then AB.

• Empty set: No such x.

• Characteristic function:A(x): X{0, 1}, where X the universe.0 value: x is not a member,1 value: x is a member.

Page 9: Fuzzy Rendszerek I

1 / 9

DefinitionsA={1, 2, 3, 4, 5, 6}

• Cardinality: |A|=6.• Power set of A:

P (A)={{}=Ø, {1}, {2}, {3}, {4}, {5}, {6}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6}, {5, 6}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}, {3, 5, 6}, {4, 5, 6}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 2, 4, 5, 6}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}}.|P (A)|=2|6|=64.

Page 10: Fuzzy Rendszerek I

1 / 10

Definitions• Relative complement or difference:

A–B={x | xA and xB}B={1, 3, 4, 5}, A–B={2, 6}.C={1, 3, 4, 5, 7, 8}, A–C={2, 6}!

• Complement: where X is the universe.Complementation is involutive:Basic properties:

• Union:AB={x | xA or xB}

For

AXA AA

X

,X

n

1iiii i somefor Ax|xA Ii|A

XAA

AA

XXA

(Law of excluded middle)

Page 11: Fuzzy Rendszerek I

1 / 11

Definitions• Intersection:

AB={x | xA and xB}.

For

• More properties: Commutativity: AB=BA, AB=BA. Associativity: ABC=(AB)C=A(BC),

ABC=(AB)C=A(BC). Idempotence: AA=A, AA=A. Distributivity:

A(BC)=(AB)(AC),A(BC)=(AB)(AC).

n

1iiii i allfor Ax|xA Ii|A

AA

AXA

A(Law of contradiction)

Page 12: Fuzzy Rendszerek I

1 / 12

Definitions• More properties (continued):

DeMorgan’s laws:

• Disjoint sets: AB=.

• Partition of X:

BABA

BABA

Iiiiii XA ,AA ,Ii|Ax

21

xNi|A

AA

AX

6i

ji

6

1ii

Page 13: Fuzzy Rendszerek I

1 / 13

Summarize propertiesInvolution

Commutativity AB=BA, AB=BA

AssociativityABC=(AB)C=A(BC),ABC=(AB)C=A(BC)

DistributivityA(BC)=(AB)(AC),A(BC)=(AB)(AC)

Idempotence AA=A, AA=A

Absorption A(AB)=A, A(AB)=A

Absorption of complement

Abs. by X and AX=X, A=

Identity A=A, AX=A

Law of contradiction

Law of excl. middle

DeMorgan’s laws

AA

BABAA

BABAA

AA

XAA

BABABABA

Page 14: Fuzzy Rendszerek I

1 / 14

Membership functionCrisp set Fuzzy set

Characteristic function Membership function

A:X{0, 1} A:X[0, 1]

10x 2A51

1

17x1017x71

10x55x2.0

17x5x0

B 2AC

Page 15: Fuzzy Rendszerek I

1 / 15

Membership function (2)• More general Idea:

L-Fuzzy set, A: XL, L has a linear (full) or partial ordering.

• Vector valued fuzzy set:A: x[0, 1]n=[0,1]…[0,1] (n times).

• Fuzzy measure:g: P (x)[0, 1]Degree of belonging to a crisp subset of the universe.

Example:’teenager’=13..19 years old, ‘twen’=20..29 years old,‘in his thirties’=30..39 years old, etc.X={Years of men’s possible age}‘teenager’Xg(‘Susan is a twen’)=0.8,g(‘Susan is a teenager’)=0.2,g(‘Susan is in her thirties’)=0.1.Best guess has highest measure.

Page 16: Fuzzy Rendszerek I

1 / 16

Definitions• Fuzzy set of type 2: 1,0 P

~: X

• Level N:

0

X1 X2 X

1 1

2A

P~P~

1,0)x(~: P 1-k 1k)x(~~)x(~ )P(P P 1-kk

x)x(~ P0

Page 17: Fuzzy Rendszerek I

1 / 17

Definitions• Interval valued fuzzy set:

even

• C(Y) is the family of convex subsets of Y, i.e.

P(Y)• C([0,1]) is the family of all intervals

• e.g.:

1,0~X: P 1,0CX:

)x(

0

X

1

]0.1,9.0[)x(

Page 18: Fuzzy Rendszerek I

1 / 18

Definitions• Relation of various classes of sets discussed

Crisp Set

Fuzzy Set

Interval V’D

Type N-1

Type 2

Type N

Vector V’D

L-Fuzzy

Page 19: Fuzzy Rendszerek I

1 / 19

Some basic concepts of fuzzy setsEle-

mentsInfant Adult Young Old

5 0 0 1 0

10 0 0 1 0

20 0 .8 .8 .1

30 0 1 .5 .2

40 0 1 .2 .4

50 0 1 .1 .6

60 0 1 0 .8

70 0 1 0 1

80 0 1 0 1

Page 20: Fuzzy Rendszerek I

1 / 20

Some basic concepts of fuzzy sets

• Support: supp(A)={x | A(x)>0}. supp:Infant=0, so supp(Infant)=0.If |supp(A)|<, A can be defined

A=1/x1+ 2/x2+…+ n/xn.

• Kernel (Nucleus, Core): Kernel(A)={x | A(x)=1}.

xx~ PP

n

1iii x/A

xA x/xA

Page 21: Fuzzy Rendszerek I

1 / 21

Definitions• Height:

• height(old)=1 height(infant)=0– If height(A)=1 A is normal– If height(A)<1 A is subnormal– height(0)=0

• -cut: Strong Cut:

– Kernel:– Support:

• If A is subnormal, Kernel(A)=0

))x((sup))x((max)A(Height Ax

Ax

})x(|x{A A

})x(|x{A A }20,10,5{Young 8.0 }10,5{Young 8.0

}1)x(|x{A A1 }0)x(|x{A A0

IFAA

Page 22: Fuzzy Rendszerek I

1 / 22

Definitions

• Level set of A:

• Convex fuzzy set:

– A is convex if for every x,yX and [0,1]:

– All sets on the previous figure are convex FS’s

}Xxsomefor)x(|{ AA

nX

))y(),x(min()y)1(x( AAA

Page 23: Fuzzy Rendszerek I

1 / 23

Definitions• Nonconvex fuzzy set:

• Convex fuzzy set over R 2

=0.2=0.4

=0.6=0.8

Kernel

x1

x2

Page 24: Fuzzy Rendszerek I

1 / 24

Definitions• Fuzzy cardinality of FS A:

Fuzzy number

for all A

A~

AA~

2/13/3.04/6.05/4.06/2.07/1.0dl~

O

Page 25: Fuzzy Rendszerek I

1 / 25

Definitions• Fuzzy number: Convex and normal fuzzy set of

– Example 1:

height(N(r))=1

for any r1, r2: N(r*)= N(r1+(1- )r2) min(N(r1), N(r2))

– Example 2: “Approximately equal to 6”

0r2

1

N

r*r1

otherwise0

]9,3[rif3

6r1)r(N

09

1

N(r)

63

Page 26: Fuzzy Rendszerek I

1 / 26

Definitions• Flat fuzzy number:

There is a,b (ab, a,b) N(r)=1 IFF r[a,b]

(Extension of ‘interval’)• Containment (inclusion) of fuzzy set

AB IFF A(x) B(x)– Example: Old Adult

• Equal fuzzy sets

A=B IFF AB and AB If it is not the case: AB

• Proper subset

AB IFF AB and A B– Example: Old Adult

Page 27: Fuzzy Rendszerek I

1 / 27

Definitions• Extension principle:

How to generalize crisp concepts to fuzzy?Suppose that X and Y are crisp sets

X={xi}, Y={yi} and f: XY

If given a fuzzy set

The latter is understood that if for

xA P~

ISYPBTHENxAn

iii )(

~/

1

n

iii

n

iii xfxfAfB

11

//

THENjxFORxfy nij

iji |

ijji yxfxy |max

0 iij yTHENxIF

Page 28: Fuzzy Rendszerek I

1 / 28

Definitions– Example

X={a,b,c}

Y={d,e,f}

• Arithmetics with fuzzy numbers:Using extension principle

a+b=c (a,b,c )

A+B=C

dc

fb

da

f

fdY

cbaX

Af

A

/5./8.

/8./5./1.

?

~~,

CISWHAT

CEVENPBA

Page 29: Fuzzy Rendszerek I

1 / 29

Example

nbaban BAba

C

|,minmax,

0

1 C

0 1 2 3 4 5 6 7 8 9 10 11 12

A B

n a b min(A,B)3 0 3 0

4 0

1

4

3

0

0

5 0

1

2

5

4

3

0

0.5

0

6 0

1

2

3

6

5

4

3

0

0.5

0.5

7 0

1

...

7

6

0

0.5

n a b min(A,B)7 2

3

4

5

4

3

1

0.5

0

8 1

2

3

4

7

6

5

4

0

0.5

0.5

0

9 2

3

4

7

6

5

0

0.5

0

10 3

4

7

6

0

0

11 4 7 0

Page 30: Fuzzy Rendszerek I

1 / 30

Definitions

• Fuzzy set operations defined by L.A. Zadeh in 1964/1965

• Complement: • Intersection:• Union:

x1x AA x,xminx BABA x,xmaxx BABA

(x):

B,Ax1B,Ax0

Page 31: Fuzzy Rendszerek I

1 / 31

Definitions

A B A AB AB 1-A min max

0 0 1 0 0 1 0 00 1 1 0 1 1 0 11 0 0 0 1 0 0 11 1 0 1 1 0 1 1

This is really a generalization of crisp set op’s!

Page 32: Fuzzy Rendszerek I

1 / 32

Classical (Two valued) logic• Classical (two valued logic):

Any logic – Means of a reasoning propositions: true (1) or false (0). Propositional logic uses logic variables, every variable stands for a proposition. When combining LV’s new variables (new propositions) can be constricted.Logical function:f: v1, v2, …, vn vn+1

• different logic functions of n variables exist. E.G. if n=2, 16 different logic functions (see next page).

n22

Page 33: Fuzzy Rendszerek I

1 / 33

Logic functions of two variables v2

v1

1100

1010

Adopted name Symbol Other names used

w1 0000 Zero fn. 0 Falsum

w2 0001 Nor fn. v1v2 Pierce fn.

w3 0010 Inhibition v1>v2 Proper inequality

w4 0011 Negation v2 Complement

w5 0100 Inhibition v1<v2 Proper inequality

w6 0101 Negation v1 Complement

w7 0110 Excl. or fn. v1v2 Antivalence

w8 0111 Nand fn. v1v2 Sheffer Stroke

w9 1000 Conjunction v1v2 And function

w10 1001 Biconditional v1v2 Equivalence

w11 1010 Assertion v1 Identity

w12 1011 Implication v1v2 Conditional, ineq.

w13 1100 Assertion v2 Identity

w14 1101 Implication v1v2 Conditional, ineq.

w15 1110 Disjunction v1v2 Or function

w16 1111 One fn. 1 Verum

Page 34: Fuzzy Rendszerek I

1 / 34

Definitions

• Important concern:How to express all logic fn’s by a few logic primitives (fn’s of one or two lv’s)?

A system of lp’s is (functionally) complete if all LF’s can be expressed by the FNs in the system.

A system is a base system if it is functionally complete and when omitting any of its elements the new system isn’t functionally complete.

Page 35: Fuzzy Rendszerek I

1 / 35

Definitions• A system of LFN’s is functionally complete if:

– At least one doesn’t preserve 0– At least one doesn’t preserve 1– At least one isn’t monotonic– At least one isn’t self dual– At least one isn’t linear

• Example: AND , NOT

ONLYBY

EXPRESSEDBECANNOTBA

BABABABA

A

A

A

01,10,01,10

11

00

Page 36: Fuzzy Rendszerek I

1 / 36

Definitions• Importance of base systems, and functionally

complete systems.Digital engineering:Which set of primitive digital circuits is suitable to construct an arbitrary circuit?

• Very usual: AND, OR, NOT (Not easy from the point of view of technology!)

• NAND (Sheffer stroke)

• NOR (Pierce function)

• NOT, IMPLICATION (Very popular among logicians.)

Page 37: Fuzzy Rendszerek I

1 / 37

Definitions• Logic formulas:

– E.G.: Let’s adopt +,-,* as a complete system. Then:

– Similarly with -,, etc.• There are infinitely many ways to describe a LF in an

equivalent way– E.G.: A, , A+A, A*A, A+A+A, etc.

• Canonical formulas, normal form– DCF– CCF– Logic formulas with identical truth values are named

equivalent

A

BABABABA

BABAABBA

• If A and B are LFs, then A+B, A*B are LFs• There are no other LFsv

• 0 and 1 are LFs• If v is a LF is a LF

a=b

Page 38: Fuzzy Rendszerek I

1 / 38

Definitions• Always true logic formulas:

Tautology: AA+A

• Always false logic formulas:Contradiction: A

• Various forms of tautologies are used for didactive inference = inference rules– Modus Ponens:

(a*(ab))b

– Modus Tollens:

– Hypothetical Syllogism:((a b)*(b c)) (a c)

– Rule of Substitution:If in a tautology any variable is replaced by a LF

then it

remains a tautology.

A

aba*b

Page 39: Fuzzy Rendszerek I

1 / 39

Definitions

• These inference rules form the base of expert systems and related systems (even fuzzy control!)

• Abstract algebraic model:Boolean Algebra

B=(B,+,*,-)B has at least two different elements (bounds): 0 and 1+ some properties of binary OPs “+” and “*”, and unary OP “-”.

Page 40: Fuzzy Rendszerek I

1 / 40

Properties of boolean algebras

B1. Idempotence a+a=a, a·a=a

B2. Commutativity a+b=b+a

B3. Associativity (a+b)+c=a+(b+c),

(a·b)·c=a·(b·c)

B4. Absorption a+(a·b)=a, a·(a+b)=a

B5. Distributivity a·(b+c)=(a·b)+(a·c),

a+(b·c)=(a+b)·(a+c)

B6. Universal bounds a+0=a, a+1=1

a·1=a, a·0=0

B7. Complementarity a+a=1, a·a=0, 1=0

B8. Involution (a+b)= a · b

B9.Dualization (a·b)= a +b

Lattice

Page 41: Fuzzy Rendszerek I

1 / 41

Definitions

• Correspondences defining isomorphisms between set theory, boolean algebra and propositional logic

Set theory

Boolean algebra

Propositional logic

P(X) B F(V)

+

*

- - -

X 1 1

0 0

Page 42: Fuzzy Rendszerek I

1 / 42

Definitions• Isomorphic structure of crisp set and logic

operations = boolean algebra

• Structure of propositions:x is P

– x2=Dr.Kim P(x2)=FALSE!

B.A.

Lattice

TRUEPREDICATE

PSUBJECT

x

190cm above isKóczy Dr.

1

Page 43: Fuzzy Rendszerek I

1 / 43

Definitions

• Quantifiers:– (x) P(x): There exists an x such

that x is P– (x) P(x): For all x, x is P– (!x) P(x): x and only one x such that x is P

Page 44: Fuzzy Rendszerek I

1 / 44

Definitions• Two valued logic questioned since B.C.

Three valued logic includes indeterminate value: ½Negation: 1-a, differ in these logics.

• Examples:

ab Łukasiewicz

Bochvar

Kleene

Heyting

Reichenbach

00 0011 0011 0011 0011 0011

0½ 0½1½ ½½½½ 0½1½ 0½10 0½1½

01 0110 0110 0110 0110 0110

½0 0½½½ ½½½½ 0½½½ 0½00 0½½½

½½ ½½11 ½½½½ ½½½½ ½½11 ½½11

½1 ½11½ ½½½½ ½11½ ½11½ ½11½

10 0100 0100 0100 0100 0100

1½ ½1½½ ½½½½ ½1½½ ½1½½ ½1½½

11 1111 1111 1111 1111 1111

Page 45: Fuzzy Rendszerek I

1 / 45

Definitions

• No difference from classical logic for 0 and 1.

But: are not true!

• Quasi tautology: doesn’t assume 0. Quasi contradiction: doesn’t assume 1.

• Next step?

1aa ,0aa

Page 46: Fuzzy Rendszerek I

1 / 46

N-valued logic• N-valued logic:

Degrees of truth(Lukasiewicz, ~1933)

1,

1

2,...,

1

1,0Tn n

n

n

b-a-1baa)-bmin(1,1ba

ba,maxbaba,minba

a-1a

LOGIC

PRIMITIVES

Page 47: Fuzzy Rendszerek I

1 / 47

Definitions• Ln n=2, … ,

(0) Classical LogicIf T is extended to [0,1] we obtain (T1

) L1 with continuum

truth degrees

• L1 is isomorphic with fuzzy set

It is enough to study one of them, it will reveal all the facts above the other.

• Fuzzy logic must be the foundator of approximate reasoning, based on natural language!

Rational truth values

Page 48: Fuzzy Rendszerek I

1 / 48

Fuzzy Proportion• Fuzzy proportion: X is P

‘Tina is young’, where:‘Tina’: Crisp age, ‘young’: fuzzy predicate.

Fuzzy sets expressing linguistic terms for ages

Truth claims – Fuzzy sets over [0, 1]

• Fuzzy logic based approximate reasoning is most important for applications!