generation of bioenergy and biofertilizer on a sustainable rural property 2011 biomass and...

10
bioma s s a n d bioen e r gy 35 (2011) 2608 e2618 Available at www.sciencedirect.com http://www.elsevier.com/locate/biombioe Generation of bioenergy and biofertilizer on a su stainable rural property Sonia Valle Walter Borges de Oliveira 1 , Alexandre Bevilacqua Leoneti* , Glauco Mateus Magrini Caldo, Marcio Mattos Borges de Oliveira Department of Administration e FEA-RP e University of Sa˜o Paulo (USP) - Av. Bandeirantes 3900, Monte Alegre, 14040-905, Ribeira˜o Preto, SP, Brazil article info Article history: Received 4 February 2010 Received in revised form 21 February 2011 Accepted 22 February 2011 Available online 3 April 2011 Keywords: Sustainability Biodigester Biodiesel Biofertilizer Biogas 1. Introduction abstract Energy sources have become a focus of legal, ethical, social and economic p ressures due to increasing environmental problems. Nonrenewable energy sources are being i ncreasingly replaced by other sources that are renewable and less pollutive, with techn ologies aimed at sustainability. Companies that adopt alternative forms of energy will be able to increase their competitiveness and use wastes to generate energy, which i s an ecological and economical ef ciency approach. In the interior of the state of Sa˜o Paulo, Brazil, a rural producer of pork crackling and coffee evaluated the entire production cycle of his products and wastes, seeking to achieve energy self suf ciency and identify new possibilities for gains through cost reductions. Biodiesel, soap and detergent are produced w ith the waste animal fat left from the production of pork crackling. Pig farm wastes bec ome biomass for a biodigester, which produces suf cient biogas to keep the piglets warm, dr y the coffee, fry the pork crackling, and generate electricity, among other uses. The biofer tilizer produced by the biodigester helps fertilize coffee and corn plantations. The purpose of this article is to demonstrate the ecological and economic feasibility of the project. The r esearch method used here is a case study involving qualitative analyses of en vironmental and social variables and quantitative analyses of economic variables. It is concluded that the investment made in this project yields excellent returns, with savings of 100% in fuels, 50% in electric energy and 40% in fertilizer, in addition to gains from t

Upload: monica-caballero-guzman

Post on 17-Dec-2015

212 views

Category:

Documents


0 download

DESCRIPTION

Generation of Bioenergy and Biofertilizer

TRANSCRIPT

biomassandbioenergy35(2011)2608e2618

Availableatwww.sciencedirect.com

http://www.elsevier.com/locate/biombioe

Generationofbioenergyandbiofertilizeronasustainableruralproperty

SoniaValleWalterBorgesdeOliveira1,AlexandreBevilacquaLeoneti*,GlaucoMateusMagriniCaldo,MarcioMattosBorgesdeOliveiraDepartmentofAdministrationeFEA-RPeUniversityofSaoPaulo(USP)-Av.Bandeirantes3900,MonteAlegre,14040-905,RibeiraoPreto,SP,Brazil

articleinfo

Articlehistory:Received4February2010Receivedinrevisedform21February2011Accepted22February2011Availableonline3April2011

Keywords:SustainabilityBiodigesterBiodieselBiofertilizerBiogas

1.Introduction

abstract

Energysourceshavebecomeafocusoflegal,ethical,socialandeconomicpressuresduetoincreasingenvironmentalproblems.Nonrenewableenergysourcesarebeingincreasinglyreplacedbyothersourcesthatarerenewableandlesspollutive,withtechnologiesaimedatsustainability.Companiesthatadoptalternativeformsofenergywillbeabletoincreasetheircompetitivenessandusewastestogenerateenergy,whichisanecologicalandeconomicalefciencyapproach.IntheinteriorofthestateofSaoPaulo,Brazil,aruralproducerofporkcracklingandcoffeeevaluatedtheentireproductioncycleofhisproductsandwastes,seekingtoachieveenergyselfsufciencyandidentifynewpossibilitiesforgainsthroughcostreductions.Biodiesel,soapanddetergentareproducedwiththewasteanimalfatleftfromtheproductionofporkcrackling.Pigfarmwastesbecomebiomassforabiodigester,whichproducessufcientbiogastokeepthepigletswarm,drythecoffee,frytheporkcrackling,andgenerateelectricity,amongotheruses.Thebiofertilizerproducedbythebiodigesterhelpsfertilizecoffeeandcornplantations.Thepurposeofthisarticleistodemonstratetheecologicalandeconomicfeasibilityoftheproject.Theresearchmethodusedhereisacasestudyinvolvingqualitativeanalysesofenvironmentalandsocialvariablesandquantitativeanalysesofeconomicvariables.Itisconcludedthattheinvestmentmadeinthisprojectyieldsexcellentreturns,withsavingsof100%infuels,50%inelectricenergyand40%infertilizer,inadditiontogainsfromtheproductsdevelopedwiththewastes.2011ElsevierLtd.Allrightsreserved.

andbytheriskofclimatechangescausebytheintensiveuseofenergysourcesthatgenerategreenhousegas(GHG)emissions.

Theenergycrisisandtheenvironmentalproblemsresultingfromtheuseofpollutiveandnonrenewablesourcesofenergyhavechangedtheworldwidescenarioonthistheme,leadingtothesearchforsustainablesolutionsinthethreeambits:economic,environmentalandsocial.Theseaspectscanbetranslatedbythevolatilityoftheworldsfossilfuelmarkets

Newmodelsofenergyproductionandconsumptionmustbedevelopedusingrenewablesourcesofenergysuchaswind,solar,biomass,andoceanenergyproducedbywaves,currentsandtides.Theadoptionofgreenandsustainabletechnologiesinthelifestyleofsocietiesisanimportantsolutiontotheproblemofenergy[1].However,oneofthegreatestchallenges

*Correspondingauthor.Tel.:551636024751(USP).E-mailaddresses:[email protected](S.V.WalterBorgesdeOliveira),[email protected](A.B.Leoneti),[email protected](M.M.BorgesdeOliveira).

1

Tel.:551636024751(USP)

0961-9534/$eseefrontmatter2011ElsevierLtd.Allrightsreserved.doi:10.1016/j.biombioe.2011.02.048

biomassandbioenergy35(2011)2608e26182609

ofthistaskistheintroductionofmajorchangesinenviron-mentsadaptedtotraditionalformsofenergy,notonlyfromthetechnologicalstandpointbutalsofromthehumanaspectofadaptationtoandcomfortablenesswithexistinginstalla-tions,whichmaybethemoredifcultaspecttoovercome.Anypossiblealternativesforthesolutionofenvironmentalproblemswillbestronglyweightedbytheeconomicfactor.AccordingtoNagelandMeyer[2],ecologicalsolutionsusuallyleadtoeconomysavingsbecausereducingtheconsumptionofrawmaterialsandenergy,recyclingorreusingproductsarebothecologicallyandeconomicallysound.Hence,ecologicalandeconomicefciencymustbeachieved.Althoughbiomasshasahighenergypotential,theprac-ticesofitsexploitationrequirecomprehensivemanagement,sincethesepracticesmaybeveryharmfultotheenviron-ment,notonlyintermsofundesirableemissionsbutalsoduetotheenvironmentaldegradationresultingfromunbalancedexploitation.TheguidelinesoftheKyotoProtocolencouragetheuseofrenewableandlesspollutiveenergysourcesindevelopingcountries.ThegoalproposedattheUnitedNationsClimateChangeConferenceheldin1997inKyoto,Japan,isanaveragereductionof5.2%inGHGemissionsbetween2008and2012.Thegoalreferstothelevelofgasesemittedintotheatmo-spherein1990.Thisreductionisencouragedbythepossibilityfordevelopingcountriestonegotiatetheirreductions,ach-ievedbyCleanDevelopmentMechanisms(CDM),withdevel-opedcountriesthroughthesaleofcarboncredits.InBrazil,theuseofbiomassasanenergysourceisincreasingyearafteryear,seekingtoencouragethevaluationofenvironmentalandeconomicaspects.Thus,alcohol,bio-diesel,biogas,sugarcanebagasse-poweredthermoelectricplants,andothers,havebeengaininggroundintheBrazilianscenario,replacingtraditionalfossilfuels.Inthe1970sand80stherewasastrongincentivefortheinstallationofruralbiodigestersinnortheasternBrazil,althoughtheprogramsubsequentlylostmomentum.Withthepossibilityofcarboncreditsales,thisenergymodalityregaineditsformerposition,asdidothermethanegeneratingprocesses.Biodiesel,anotherrenewablesourceofenergy,hasbecomeafocusofattentioninrecentyears,mainlyduetoitschar-acteristicsofreducedpollutionanditsreasonablysimpleproductiontechnique.Theuseofbiodieselreducestheemissionsofcarbonmonoxide(CO),particulatematerial(PM),sulfuroxide(SOx),totalhydrocarbons(HC),andalargepartofthetoxichydrocarbonswithcarcinogenicpotential.Fromtheeconomicstandpoint,biodieselcanbeproducedfromseveraltypesofoilsandfats,bothvegetableandanimal,includingwastefats.Concomitantlytotheuseofalternativeenergysources,wastesandby-productsofproductionprocesseshavealsogainedground,demonstratingtheimportanceofcostreduc-tionswithaviewtosustainabledevelopment.

2.Objectives

Thispaperaimstodemonstratetheecologicalandeconomicfeasibilityofaruralenterpriseforpigbreedingand

processing,andcoffeeandcornproduction,basedontheconceptsofsustainability.Thespecicobjectivesweretoevaluatethepossibilityofusingthewastesgeneratedontheproperty;evaluatethepossibleenergysourcescompatiblewiththeenterprise;andanalyzetheitsenvironmentalandsocialvariables.

3.Theoreticalreferences

Energyisoneofthemostimportantresourcesfortheeconomicdevelopmentofacountry[3].Energysourcescanbedividedintotwogroups:biomass(alsocalledtraditional)andnon-biomass(alsocalledcommercial)[4].Biomass,whichiscomposedoforganicmatterproducedbybiologicalprocessesinvolvingthecaptureofsolarenergy,hasahighenergypotentialwhichisalsorenewable.Thevariousformsofbiomassincludewood,plants,foodrests,animalexcrements,domesticsewage,industrialwastewaters,andseveralotherelementsorresiduesoforganiccomposition.Uponundergoingconversionprocessessuchasburning,digestionbymicroorganisms,fermentation,chemicalreaction,andothers,theseproductsgeneratecaloricenergyorbiogas.InthepaperofDemirbasandDemirbas[3],theauthorssaythatthedecreasingreservesoffossilfuelsandtheirpotentialrisktotheenvironment,suchastheemissionofgreenhousegasesintotheatmosphere,hasledtothedevelopmentofrenewableenergysources,sustainabledevelopmentandeco-friendlyconcepts.Nevertheless,althoughrenewableenergyhasbeentheobjectofspecialattentioninmanycountries,onaglobalscalelessthan15%ofthemainsupplyofenergycomesfromthismodality[5].AccordingtoBrazilsMinistryofMinesandEnergy(MME)[6],theenergymatrixof43.8%ofthecountrysenergysourcesisrenewable,dueinlargeparttotheintensiveuseofwoodandhydroelectricenergy.However,solarandwindenergystillrepresentonlyaminorfractionofthetotalenergysupplyinmostcountries,includingBrazil.Themajorchallengeliesinintegratingahighfractionofintermittentresourcesasalargepartoftherenewableenergyintheelectricpowersupply,andinincludingthetransportsectorinthesestrategies[5].

3.1.Generationofbiogasbybiomass

Methane(CH4)isoneoftheGHGswithaglobalwarmingpotential23-foldgreaterthanthatofcarbondioxide(CO2),andahighenergypower.Methaneemissionsintotheatmosphereoriginatefrommanysources,suchasanaerobicbiodegrada-tion,ruminantdigestion,biomassburning,etc[7].Thesesourcesarenaturalandanthropogenic,theformerrepre-senting40%andthelatter60%ofthetotalmethaneemissions.Bothnaturalandanthropogenicsourcesmayinvolvedegradationprocessesbymicroorganisms,whichcanbedividedintoaerobic,facultativeandanaerobicdegradation[8].Theconditionsofthemediuminwhichdegradationoccurs,withthepresenceorabsenceofoxygen,willdenetheconsortiumofmicroorganismsthatactinthedecompositionoftheorganicmatter.Inanaerobicdegradation,oxygenistoxictomicroorganisms,andcarbondioxideandmethane,whicharepresentinbiogas,areeliminatedasdegradationby-

2610

biomassandbioenergy35(2011)2608e2618

products.Theproductionofmethaneinanaerobicsystemsisduetomethanogenicmicroorganisms.Theaveragecompositionofbiogasproducedbyanaerobicdegradationvariesfrom50to80%ofmethaneand20e50%ofcarbondioxide,besidestracesofothergases[9].Biodigestersareoptimizedanaerobicdegradationsystemsthatuseabout50%oforganicwastesto50%ofdilutionliquid,whichmaybewater(especiallyrainwater),sewage,oranyotherliquidefuentthatisnotharmfultothesystem[10].Iftheorganicwastesarenotsufcientlydissolvedinwater,thepercentageofliquidshouldbeincreasedinordertoreachamoisturecontentofabout90%.Itisimportanttopointoutthatanaerobicdegradation,andthereforethebiodigester,requireshightemperaturestoachieveitsmaximumefciency,asdemonstratedinastudybyCastroandCortez[12],whofoundthat31Cistheoptimaltemperatureforthedegradationofcattlemanure.Oneofthepossiblesolu-tionstomaintainthesehightemperaturesisproposedbyAxaopoulusandPanagakis[9],whosuggesttheuseofsolarheatinginbiodigesterstreatingpigmanureinGreece,wheresolarcollectorswereinstalledonthecanvascover,providinganaveragetemperatureof35Cinsidethebiodigester.Someoftheadvantagesoftheuseofbiodigesters,inadditiontothepossibleuseofbiogas,aretheuseofwastesthatwouldotherwisebepollutiveifdischargeddirectlyintotheenvironment,duetotheirhighloadoforganicmatter,andthereductionofodorsresultingfromthispractice[13];theremovalofpathogensthatreinfesttheanimalsthatfeedonpasturesfertilizedwithuntreatedwastes;theproductionofbiosolidsthatcanbeusedasorganicfertilizersinagriculture;theproductionofbiofertilizersorbioliquids,alsorichinnutrients,forfarming,aquacultureorasleaffertilizers[11].Domesticsewagecanbetreatedbyanaerobicprocessessuchasupowanaerobicsludgeblanket(UASB)reactors,whichremove60e80%ofthebiochemicaloxygendemand(BOD)andgenerate65e80%ofmethane[14].AccordingtoLiedl,BombardiereandChateld[15],degradation-generatedbiosolidsorbioliquidscanbeusedjointlywithmineralfertilizersinavarietyofvegetablecultures,providingayieldcomparabletothatobtainedwiththeexclusiveuseofmineralfertilizer,andreducingthecostoftheproductionprocess.Biogasgeneratedbyanaerobicdegradationcontainsabout65%ofmethaneand35%ofcarbondioxide[16].Onecubicmeterofbiogasisequivalentto3.47kgofwood,0.63Lofkerosene,0.61Lofdieseloil,1.5kgofcoal,1.25kW/hofelectricity,0.45kgofliqueedpetroleumgas,and0.5kgofbutane,andcanbegeneratedfromthedegradationof13kgofmanure[17].Methanecanbeusedasanenergysourceinvarioustypesofequipment,suchasstoves,engines,generators,lightingingeneral,heatersforhomesandanimals,refrigerators,green-houses,graindryers,incubators,etc[18].Althoughanaerobicdegradationmayproduceunpleasantodors,methaneisodorless.Biogasthatemitsunpleasantodorsprobablycontainsothergasessuchashydrosulfuricgas.Themethanegeneratedintheabovedescribedbiomassdegradationprocessescanbechanneledtosmallplantswhereitwillbeusedtorunengine-drivenpowergenerators.Methaneproductionisadvantageousifitinvolvestheopti-mizationofprocesses,reachinghighefciencyasafunctionofinvestmentsininstallations[19].

Ineconomicterms,biogascanprovidesignicantenergybenetswhenitsproductioniscontrolledandinvestmentscangeneratenancialreturns,includingthecostsofnesandalignmentwithenvironmentallegislation[11].Thesolidwastesofagriculturerepresentapotentialenergysourceifconvertedintomethane[16].Inruralareasorvillagesnotconnectedtotheenergygrid,orwhichseektoreducetheirelectricpowerexpenses,theavailabilityofbiogasrepresentsnotonlyanimprovementinthequalityoflifeoftheirresidentsbutalsoabusinessopportunity[3].Itshouldbekeptinmindthat,inadditiontotheaforementionedbenets,thereisthepossibilityofsellingcarboncredit.Brazilalreadyhasseveralprojectsthatincludecleandevelopmentmechanisms(CDM)forthesaleofcarboncredits.AccordingtotheMinistryofMinesandEnergy[20],45ofthe207carbonsequestrationprojectsregisteredattheUnitedNationsuptoApril2006wereBrazilianprojects.ThereductionofmethaneemissionsispresentinthreeprojectsthatarealreadyissuingRenewableEnergyCerticates(RECs):thesanitarylandllsofNovaGerar(RJ)andBandeirantes(SP)andtheSadiabiodigesterprojectinwhich3.5thousandsmallfarmersparticipate,mainlypigfarmersinthestatesofSantaCatarinaandParana.Thesearchforenergyselfsufciencyisastrongincentiveforthedevelopmentofprojectsthattakethebestpossibleadvantageoftheenergypotentialofaproductiveplant,beitrural,industrialorurban.AnexampleofthissearchispresentedbyAngoneseetal.[21],whoevaluatedtheenergyefciencyofaswineproduc-tionsystemwithtreatmentofwastesinabiodigesterinthemunicipalityofOuroVerdedoOeste(PR).Theauthorsdemonstratedthepossibilityofmaximizingtheenergypotentialofpigfarmwaste,withintheproductionstructureitself,reducingtheenvironmentalimpactscausedbythedisposaloftheseuntreatedwastesintheenvironment.Accordingtotheirstudy,theproductionofwasteshasaconsiderableenergyvalueofabout30%ofthesystemstotalenergyoutput,sinceitsusecanminimizetheimportationofenergyfortheentiresystem.

3.2.Biodiesel

Biodieselisaneconomicallycompetitiveandenvironmentallyfriendlyalternativefuelobtainedfromrenewablesources[22].InBrazil,theNationalPetroleumAgencys(ANP)Adminis-trativeRuleno.255/2003establishedapreliminaryspecica-tionfortheuseofbiodieselinmixturesofupto20%(B20),whichissimilartotheEuropeanandAmericanspecications,butwithsomemeasureofexibilitytomeetthecharacteris-ticsofthenationalrawmaterials.Asfortheeconomicaspects,Demirbas[16]comparesthecostsofprojectsinvolvingbiodiesel(originatingfrombothvegetableoilsandanimalfat)againstdieselprices,presentingnumbersthatdemonstratethatthelatterisstillacheaperenergysource,atleastintheUnitedStatesandinsomeEuropeancountries(i.e.,whilethecostofbiodieseloscillatesfromUS$0.30to0.69,thepriceofdieselvariesfromUS$0.20to0.24).Theuseofbiodieselisjustiedbypositiveexternalities,someofthemainonesbeingtheinterestandengagementof

biomassandbioenergy35(2011)2608e26182611

asignicantportionoflocalpopulationsinthecauseofenvironmentalconservation.Biodieselproductioncostsdependessentiallyonthecostoftherawmaterial,thevegetableoiloranyotherfattysubstance,andthecostsofindustrialprocessing.Thus,thecostofvegetableoilgenerallyrepresentsabout88%ofthecostofbiodieselwhenitisproducedinhighcapacityplants,whichisthereasonfortheinterestinreducingthecostsofrawmaterials,sothateventuallythefattymaterialcanbeobtainedfromindustrialwastes,suchasusedfryingoilandanimalgrease[23].ThepotentialmarketforbiodieselinBrazilisdeterminedbythemarketofpetroleum-derivedproductsandbytheobligatorymixtureofupto5%ofbiodieselindiesel,asestablishedbyLaw11097of13January2005.Thepurposeofthislaw,whichregulatestheintroductionofbiodieselintheBrazilianenergymatrix,istoincreasetheparticipationofbiofuelsinthenationalenergymatrix,basedoneconomic,socialandenvironmentalconsiderations[24].ThetotaldemandfordieseloilinBrazilin2007wasintheorderof41.5millioncubicmeters,whiletheproductionofbiodieselthatyearwas402thousandcubicmeters[25].Theuseofbiofuelsingeneralreducesthemainlocalemissionsassociatedwithdiesel,notablythatofparticulatematerial,aswellascarbonmonoxideandhydrocarbons,SOxesulfuroxide,exceptNOxenitrogenoxides(2e4%,withB20)[26].Moreover,biofuelsarenontoxicandbiodegradableformsofenergywhosewidespreadusewouldcontributeconsiderablytoreducepollutioninlargeurbancentersandpopulationconglomeratesaroundtheworld.

3.3.Alternativeusesofwastesonruralproperties

Withthereductionoftheprotmarginineveryproductivesector,theaimshouldbetoseektheminimumlossofanyinputandthemaximumefciencyofeveryprocess.Inthissense,ruralpropertiesshouldseetheirwastesasrawmate-rials,encouragingresearchandthequestforsustainablealternativesfortheirprocesses[10].Adescriptionisgivenbelowofseveralresearchesandcasesofexploitationofby-productsfromcoffeecultivationandtheproductionofbio-diesel,expandingthelistofwastesmentionedearlierherein.RathinaveluandGraziosi[27]presentseveralalternativesfortheuseofcoffeeprocessingby-products.Instudiesofpigfeed,theauthorsclaimthatcornmaybereplacedbydehy-dratedcoffeepulpinupto16%ofthetotalfeed,withnoharmfuleffectsintermsofweightincreaseorfoodconver-sion.Anotheruseforcoffeepulptheymentionistheproductionoforganicfertilizerbycomposting,withareten-tiontimeofthreeweeks.Coffeehuskscanalsobeusedtogenerateenergybyburning.Anotherstudyontheuseofcoffeeby-productswaspre-sentedbyRibeiroFilhoetal.[28],whostudiedtheirsubstitutionofgroundcornwithhusksandcobs(GCHC)inFresian-Zebucrossbredbullocksinthepost-weaningphase.Theauthorsconcludedthatitisfeasibletosubstituteupto30%ofGCHCwithcoffeehusksinthefeedconcentrate.Intheproductionofbiodiesel,themainresidueisglycerin,whichisoftenusedasarawmaterialintheproductionofsoaps.However,theliteraturelistsotherpossibleusesof

glycerin,asacomponentofanimalfeedandasaco-substrateinbiodigesters[29].TheuseofglycerininpigfeedisdiscussedintheworkofHoltkamp,RottoandGarcia[30].Theseauthorsstatethatrawglycerinfrombiodieselproductioncontainsapproximately85%ofglycerol,10%ofwaterand3e7%ofsalts,withagrossenergyof3600e3750kcal/kg,dependingonitspurity(pureglycerolcontains4305kcal/kgofgrossenergy).Theauthorsstudiesonpigsinthefatteningphaseindicatethatglycerolishighlypalatableanddigestibleandthat10%canbeaddedtopigfeed,improvingitandmaintainingthepigsgrowthperformance.Anotheruseforglycerinfrombiodieselproductionisinbio-digesters[31].Thisresearcherreportsthattheadditionof6%ofglycerininabiodigesterdegradingswinemanurecanincreasetheproductionofmethaneinthesystembyabout180%.

4.Method

Thepresentresearchwasbasedonthecasestudymethod,whichYin[32]denesasempiricalquestioningthatinvesti-gatesacontemporaryphenomenonwithitsreallifecontexts,whentheboundariesbetweenthephenomenonandthecontextarenotclearlyevident,andinwhichmultiplesourcesofevidenceareused.ItwasdecidedtostudyasinglecasebecausethisphenomenonisarecentoneinBrazil.ThisresearchwasconductedonaruralpropertyinthemunicipalityofCaconde(SP),situated290kmfromSaoPaulo,ontheborderwithMinasGerais.Thepropertycovers250haandinvolvesdifferentactivities:pigproductionandporkprocessing,coffeeplanta-tions,andcornplantationsfortheproductionofpigfeed.Throughthisresearch,wesoughttoascertainhowandwhythechangesontheanalyzedpropertywereimple-mented,andtomakeasubsequentevaluationoftheadvan-tagesgainedfromtheinvestment.Yin[32]suggeststhatsixsourcesofevidenceshouldbeused,asfaraspossible,toobtainagoodcasestudy,namely:(1)documentation,(2)lerecords,(3)interviews,(4)directobservations,(5)participantobservations,and(6)physicalartifacts.Indocumentationusedinthisresearchconsistedofcerticatespresentedbyoneoftheowners,Mr.JoaoPauloMuniz,aswellasanalysesofthequalityofthebiodiesel,thepatentsforbiodieselproductionfrompigandcowfat,andnewspaperandjournalarticlesabouttheenterprise.Theprincipaldataforthestudywerecollectedfromsemi-structuredinterviewswithMr.Muniz,whichwereheldatthestudysite.Thedirectobservationsofthedifferentactivitiesonthepropertyenabledustofollow-uponthedatapresentedbytheinterviewee,andprovidedamoredetailedandsafeviewoftheresearchobjects.Asforthephysicalartifacts,thevisitcoveredtheactivitiesandproductsdevelopedorusedonthefarm,providingdirectcontactwithpracticallyallofthem,thusfacilitatingourunderstandingofthepigbreedingprocess,porkprocessing,andtheproductionofpigfeed,biogas,biofertilizer,electricpower,biodiesel,soap,toiletsoap,detergentandcompostedfertilizer.

2612

biomassandbioenergy35(2011)2608e2618

Thetheoreticalfoundationforthecasestudywasaresearchofnationalandinternationalbibliographicsources.Theenvi-ronmentalandsocialvariableswereanalyzedqualitatively,andseveralquantitativeanalyseswereusedtoevaluatetheeconomicvariables.

5.Casestudy:Pork-Terra

Thecasestudywascarriedoutonaruralpropertyof250halocatedinthemunicipalityofCaconde(SP),whosemainactivitiesarepigbreeding,porkprocessing,coffeeplantationsandcorngrownforanimalfeed.Thefamilybusiness,calledPork-Terra,isownedbythreepartners,afather,son(JoaoPauloMuniz)anduncle.Thepigbreedingactivityonthepropertydatesbackto1980,buttheprocessingofprimeporkcutsandthefabricationofporkcracklingstartedabout20yearsago.Severalhygiene,environmentalandeconomicaspectsledthepartnerstoreviewthefarmsproductiveprocess.Theexpansionofpigproductionledtoasignicantincreaseinthevolumeofmanure,causingproblemswithneighborsandwiththeenvironment,withunpleasantodors,iesandthelaunchingofwastesintoastream.Feedingtheanimalsrequiredplantingcorn,whichbeganin1980,requiringfertilizers,asdidthecoffeeplantations,anolderactivitydatingbackto1920.Theareasoccupiedtodaybyplantationsconsistof90haofcornand75haofcoffee.Itshouldbenotedthat100%ofthecorngrownonthefarmisdestinedfortheproductionoffeedforthefarmspigs.Thevariousformsofenergy(electric,dieselandgas)neededformeatprocessing,aswellasforthefarmsotheractivities,theemployeeshomesandthefarmsvehicles,wasalsosubstantial.Inadditiontoenergy,largequantitiesofsoaparealsousedtomaintainproperhygieneconditionsinthefacilities.Withthehelpofqualiedprofessionals,evaluationsweremadeofthepossibilitiesforeliminatingproblemsand,particularly,theuseofwastestogenerateenergy,fertilizers,animalfeed,andotherproductsrequiredforthefarmsprocesses.Approximatelytwoyearsago,thebiodigesterswereinstalledandstudiesonbiodieselproductionfrompigfatwereinitiated.Today,Munizholdsapatentfortheproductionofbiodieselfrompigfatandisawaitingnewsaboutapatentheledforbiodieselproductionfromcowfat,whichheexpectswilltakeanothervemonths.TheinitialinvestmentinthemodicationsonthefarmwasaboutR$100,000.00,includingthebiodigestersandtheminibiodieselprocessingplant.However,thebusinessmanclaimsthatthesavingsresultingfromtheenterprisemorethancompensatesfortheinvestment,besidestheenviron-mentalandsocialbenetsithasyielded.

5.1.Pigbreedingandporkprocessing

Thepigbreedingenterprisecomprises200breedersows(Fig.1eright),fromwhichoriginatethe80pigsslaughteredperweekfortheporkprocessingenterprise.100%ofthe

processedporkcutscomefromthefarmitself,withporkcracklingrepresentingthemosttraditionalproductofthemix.Tomaintainthehygieneinallthepigbreedingfacilities,constantwashingisdone,whichrendersthemanuresuf-cientlymoisttobesenttothefarmsbiodigesters.Afterthepigletsareweanedattheageof21days,theyaretakentoacompartmentwherebiogasisusedforheatingtoabout35C(Fig.1eleft).Twobiodigestersreceivethewastesfromtheseactivities.Thepigfatteningandslaughteringfacilitiessupplythewastesforathirdbiodigester,includingthebloodleftafterslaughtering.Porkprocessingiscarriedoutusing100%ofgasproducedinthebiodigesters,whichdrivestheboilerthatheatsthewaterusedforskinningtheanimals.Theproductmixconsistsofprimecuts,sausages,smokedporkandporkcrackling.Theproductsarevacuum-packed,manyofthemrequiringonlycoolingandnotfreezing.Thefatisrenderedandsenttothebiodieselproductionplant.

5.2.Processingofswinewastes:biogasandbiofertilizer

Threebiodigesterscalledminibiodigesters,whoseconstructionissimpleandfast,wereinstalledtoprocessthewastesfrompigproductionandporkprocessing.Theconstructionofabiodigesterconsistsofdiggingatrenchwithanearthdiggingmachine,liningthebottomandsidesofthetrenchwithaplasticcanvastopreventpercolationoftheliquidintotheground,andcoveringthistankwithanothercanvas,whichinatesasbiogasisproduced(Fig.2eleft).Munizstatesthatinthecoldestseason,biogasproductiondecreases,recoveringpromptlyinthewarmermonths.Itshouldbepointedoutthatthereisnounpleasantodorinthesurroundingsofthebiodigester-biofertilizertankset.After30e40daysofdegradation,theresiduefromthebiodigesteristransferredtoanopentrench,alsolinedwithcanvas,nexttothebiodigesters,wherethebiofertilizeriscollected(Fig.2eright).Theanalysisofthebiofertilizerproducedonthefarmindicatedconcentrationsof0.5e4.0%ofnitrogen,0.5e5.0%ofphosphorus,and0.5e3.0%ofpotassium,andabout90e95%ofwater.Thebiofertilizerisusedinthecoffeeandcornplantations,althoughitcontributeswithonly40%ofthetotalfertilizerrequired,andiscomplementedwithindustrialfertilizer,sincetheexclusiveuseofbiofertilizerhasprovedinsufcienttosupplythenutrientsneededtomaintainproductionatthelevelobtainedusingonlyindustrialfertilizer.Allthebiogasproducedinthebiodigestersisusedonthepropertyitselftogenerate50%ofitselectricpowerneeds,includingthe17homesofemployeesand50%oftheofthecoldstoragewarehouse,aswellasthevariousstovesforporkprocessingandfatrendering,preparationofemployeesmeals,productionofbiodieselandpuricationofglycerin,aswellasforheatingthepigletnursery,andforcoffeedrying.Toreducethecorrosionpowerofthebiogas,Munizexplainsthatapurierintheformofacoilwasbuiltafewmetersunderground,throughwhichthebiogaspasses,startingatabout35C,thetemperatureatwhichitexitsthe

GraciasporevaluarWondersharePDFEditor.

Solopuedeconvertir5pginasconlaversindeprueba.

Paraconseguirtodaslaspginasconvertidasdebecomprarelprogramaen:

http://cbs.wondershare.com/go.php?pid=1161&m=db