ghita m

Upload: nicolae-ghita

Post on 08-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/7/2019 Ghita M

    1/22

    211Figure17.19.2:

  • 8/7/2019 Ghita M

    2/22

    17.20 Pistonwith2ndOrderTranslationHydraulic Piston

    P,QA

    M

    x

    K

    BRollers

    Figure17.20.1: MassSpringDamperSystemwithHydraulicPiston

    ThefigureaboveshowsalargestagewithmassM(kg)drivenbyahydraulicpiston. ThehydraulicpistonisdrivenbyapressuresourceP(t)(N/m2)withavolumeflowQ(t) (m3/s)(theflowresistanceof

    the

    piping

    is

    ignored).

    The

    piston

    has

    aforce/pressure

    relationship

    of

    F=P*A,

    and

    thus

    Q

    =

    Ax.

    (a) FindthedifferentialequationforthissystemintermsofaninputP(t)andanoutputx. Note:

    Ignoretherollerdynamics.(b) GivenM=5000kg,K=250,000N/m,B=75,000N*s/m,andA=0.1m2 showthatthetransfer

    functionfromthepressure inputPtoflowQ(thefluidicadmittance) isgivenbyQ 0.01s

    (s) =P 5000s2+ 75,000s+250,000

    (c) ThesystemhasbeenheldinequilibriumwithP=500kPa=500,000N/m2 whenthepressureis

    removed

    suddenly

    at

    t=0.

    That

    is,

    P(t)=P0(1-us(t)).

    Find

    and

    make

    adimensioned

    plot

    ofQ(t). Usethetransferfunctionfrompartb)forthiscalculationeven ifyouwerenotabletoderiveit.

    212

  • 8/7/2019 Ghita M

    3/22

    17.21 PoleZeroBodeMatching

    Six pole/zero plots labeled A-F are shown below. The following page has eight Bode plots labeled 1-8.

    Match each of the six pole/zero plots to its corresponding Bode plot. Your solution should consist of

    a list of letters A through F with the corresponding Bode plot number directly next to it.

    No partial credit will be given.

    50

    A 100 B50

    0Im 0Im

    -50

    -100

    -100 -80 -60-50

    -40Re

    -20 0 -100 -80 -60 -40 -20 0Re

    100

    C 100 D50 50

    0Im 0Im

    -50 -50

    -100

    -300 -250 -200-100

    -150Re

    -100 -50 0 -50 -40 -30 -20 -10 0 10Re

    50

    E40

    60 F20

    0Im 0Im

    -20

    -40

    -150 -100-50

    Re-50 0 -50 -40 -30 -20 -10 0 10

    -60

    Re

    Figure17.21.1:

    213

  • 8/7/2019 Ghita M

    4/22

    1-1

    0 2 0-2

    LogMagnitude

    -1

    LogMagnitude

    Phaseo

    -3

    -180

    -90

    0

    101

    101

    102

    102

    Frequency r/s

    103

    103

    Phaseo

    10

    0

    -2

    100

    -180

    -90

    0

    10

    1

    101

    Frequency r/s

    10

    2

    102

    3-1

    41

    LogMagnitude

    Phaseo

    100

    -2

    LogMagnitude

    0

    101

    102

    103 100

    0

    90

    Phaseo

    101 102 103

    100

    -90

    101

    102

    Frequency r/s10

    3 100

    0

    101

    102

    Frequency r/s10

    3

    Phaseo

    510

    0

    -1

    0

    1

    Log

    Magnitude

    100

    -180

    -90

    0

    101

    102

    101

    102

    Frequency r/s

    103

    103

    Phaseo

    6-4

    -3-2-10

    Log

    Magnitude

    -360

    -270

    -180

    -90

    0

    101

    101

    Frequency r/s

    102

    102

    7-1

    0

    LogM

    agnitude

    80

    LogM

    agnitude

    -2 -1

    Phaseo

    -3

    -180

    -90

    0

    101

    101

    102

    102

    103

    103

    Phaseo

    -90

    0

    101

    102

    101

    102

    103

    103

    Frequency r/s Frequency r/s

    Figure17.21.2:214

  • 8/7/2019 Ghita M

    5/22

    17.22 PowerSemiconductorThermalProblemThe thermal system shown below represents large power semiconductor device which is capturedbetweentwoplates. ThedevicehasathermalcapacitanceC1[J/K],anditstemperatureisT1[K].Thermal resistances R1[K/W] and R2[K/W] connect the device to the upper and lower platesrespectively. TheseplatesaremaintainedatambienttemperatureTA[K]. Powerdissipationinthedeviceismodeledasheatflowqin[W]intothedevice. Assumenoheatflowoccursthroughthesidewallsofthedevice.

    Figure17.22.1: Schematicofthermalconfiguration.

    (a) Writethegoverningdifferentialequation intermsofT1 andqin.(b) Assume that in steady state, qin = qo, a constant. What is the steady state temperature

    T1ss?

    215

  • 8/7/2019 Ghita M

    6/22

    17.23 SubmersibleCapsuleHoistSystemA submersible capsule requires in case of malfunction a rescue hoist system, as shown in Figure17.23.1. Thecapsulemass isM,andthehoistcablestiffness isassumedconstantandofvalueK.Thedrumhas inertiaJ,andradiusr. Thedrum isdrivenbyavelocitysourcew(t). Thecapsuleis subject to a drag force equal toFb = bv(t) and to a flotation force Fw. Note: The system isdesigned inawaythatthehoistcablewillbealways intension,undernormaloperation.

    Figure17.23.1: Capsulehoistsystem

    (a)

    Whenthe

    capsule

    is

    at

    rest

    the

    cable

    is

    extended

    by

    an

    amount

    e. Find

    eas

    afunction

    of

    M

    andFw.

    (b) FindthetransferfunctionV(s)/W(s).(c) Given M = 10000 [kg] and the bode plot shown on Figure 17.23.2, try to find the values

    of J, r, K, and B. Use the correct units for all values, and indicate what value cannot bedetermined.

    216

  • 8/7/2019 Ghita M

    7/22

    Figure17.23.2: BodePlotofV(s)/W(s)

    217

  • 8/7/2019 Ghita M

    8/22

  • 8/7/2019 Ghita M

    9/22

    17.25 VaccineCoolerYoure a 2.009 student trying to verify the feasibility of a portable vaccine cooler. The vaccinechamberofthecoolerisintheshapeofacubeandisshownbelowinFigure17.25.1. Thevaccineswithinthechamberhavemassm and specific heat c. The combined effectiveresistance of allsixwalls is given by R. Tvac is the temperature of the vaccines within the cooler, and Tamb is thetemperatureoutsidethecooler. Theheatflowintothevaccinechamberduetothecoolingsystemisgivenbyqin. Thewidthofeachsurroundingwall isL.

    QIN

    4AMB

    M C

    24VAC Q

    OUT

    Figure17.25.1: Cross-sectionofacubicalportablevaccinecooler

    (a) Derivetheordinarydifferentialequationthatdescribesthissystem.(b) You are told that the mass of the vaccines is 1 kg, their specific heat is 4.2 kJ/(kgK), and

    thetotal

    effective

    thermal

    resistance

    resistance

    around

    the

    vaccine

    chamber

    is

    given

    by

    the

    followingequation:

    KR= 40 L

    WmIfthewidthofthesurroundingwallsis2.5cm,theambienttemperatureis25C,thevaccinechamber is initially2C,andthecoolingsystem isoff,how longwill ittake forthevaccinechambertoreachatemperatureof10C?

    (c) Youvebeenswampedwithworkfor2.003,andyour2.009teammakesanincredibleamountofprogresswithoutyou. Youcomeback2weekslaterandfindanalmostworkingprototypecooler. The cooler uses a non-linear on/off controller with a dead band. On a workbenchyouseethefollowingplots. Whatwallthicknessdidyourteammateschooseforyourcooler?Whenthecoolingsystemisturnedon,whatisthevalueforqin? Pleaseuseappropriateunits.

    219

  • 8/7/2019 Ghita M

    10/22

    Control System Off with Cooling System On

    0 2 4 6 8 10

    Time (s) x 104

    Control System On

    0 2 4 6 8 10

    Time (s) x 104

    Figure17.25.2: PrototypeCoolerTests. Thetopplotshowsthecoolingsystembeingruncontinuously. Thebottomplotshowsthecoolingsystembeingrunwiththenon-linearcontroller.

    -20

    -10

    0

    10

    20

    30

    T vac

    ( C)

    0

    5

    10

    15

    20

    25

    T vac

    ( C)

    220

  • 8/7/2019 Ghita M

    11/22

    17.26 VoltageDrivenRRCCircuitConsiderthecircuitshownbelow.

    R

    R C1

    +

    _V

    in

    +

    Vo

    Figure17.26.1: Voltagedividerwithcapacitor inparallel

    (a) DerivethedifferentialequationdescribingVo(t) in termsofVi(t).(b) TheoutputVo(t) is givenby

    Vo(t) = 1;t 0

    Thiswaveform issketchedbelow

    Vo(t)

    t (sec)

    t =-ln(1/2)/10=0.0693 sec

    1

    -1

    Figure17.26.2: SketchofVo

    What isthe inputvi(t)forallt? Explainyourreasoning,andmakeasketchofvi(t).

    221

  • 8/7/2019 Ghita M

    12/22

    17.27 LinearMechanicalSystemwithPositionInputConsider the mechanical systemshown in Figure17.27.1, where w(t) is an input position source,andx(t) isthemassposition.

    w(t)

    m

    k1 k2

    b1 b2

    x(t)

    Figure 17.27.1: Linear mechanical system with two springs, two dampers, and a position sourceinput,w(t).

    (a) Drawa freebodydiagram forthemassm,showing forcesactingonthemass,asa functionofthedisplacementsw(t) andx(t)and intermsofthesystemparameters.

    (b) Writeadifferentialequationforthesystem, intermsof inputw(t) andoutputx(t).(c) Letm = 10kg,k1 = 30 N/m,k2 = 10 N/m,b1 = 2 Ns/m,b2 = 6 Ns/m,withw(t) = 1us(t) [m]

    (a unit step). Plot the system poles in the s-plane. Solve for x(t), t > 0, from rest initialconditions.

    (d) Plotx(t), using accurate dimensions, and units. Also indicate the overshoot value, with itsassociatedpeaktime,aswellasthe1090%risetime.

    222

  • 8/7/2019 Ghita M

    13/22

    17.28 TankwithPumpInletLowerthanOutletThisproblemconsidersthesystemshown inFigure17.28.1.

    Figure17.28.1: Diagramoftankconfiguration.

    Asshowninthefigure,apumpactsasasourceofflowqp(t)intothecylinder;thatisthepumpflowisaspecifiedconstantindependentofloadpressure. Thecylinderisofcross-sectionalareaA[m2].Ataheightho [m] fromthebottomofthecylinder,weconnectafluidresistanceR [Pasec/m3].TheentiresystemisexposedtoatmosphericpressurePatm.At t = 0, the cylinder is empty (h = 0), and the pump is turned on at constant flow rate qo =106 m3/sec,andsothecylinderbeginstofillup. Thefluidheightabovethebottomofthecylinderisdefinedash(t) [m]. NotethatnoflowenterstheresistanceRuntilh(t)ho. The liquid inthesystemiswaterwith= 103 kg/m3. Theheightofthefluidisrecordedasafunctionoftime,andthe data is plotted as shown below.

    223

  • 8/7/2019 Ghita M

    14/22

    @VUHWHP>WK

    hf

    ho

    t1

    W>VHFRQGV@

    Figure17.28.2: Fluidheightasafunctionoftime.Note that the fluid height reaches theheight of the resistance att =t1 = 30sec;thatish(t1) =ho = 0.1 m. Fort > t1,theheightexponentiallyapproachesafinalvalueofhf = 0.2 m.

    (a) Usingthedatafor0t t1, what is thevalue ofA in[m2].(b) Using the data for t > t1,what is the value ofR in [Pasec/m3]? (This can be answered

    relativelyeasilyifyouthinkaboutitcorrectly.) Whatisthetimeconstant [sec]associatedwiththeresponse fort > t1? (It isacceptabletodeterminethiseithergraphicallyorviaanappropriatecalculation.)

    (c) A longtime lateratt =t2 >> t1,thepumpflow issettozero,qp =0. Makeadimensionedsketchofh(t),t > t2.

    224

  • 8/7/2019 Ghita M

    15/22

    17.29 ThermalPowerChipAnalysisApowerelectronicchipisattachedtoasubstrateandalsoexposedtoairasshowninFigure17.29.1.HeatislosttotheairthroughathermalresistanceR1 [K/W]andtotheboardthroughathermalresistanceR2 [K/W]. Theair and circuitboardareat ambienttemperatureTA [K]. The chiphas a thermal capacitance of C [J/K] and is at temperature Tc [K]. Power dissipation in thechipismodeledasheatflow in,qin [W].

    Figure17.29.1:

    (a) Writethegoverningdifferentialequationforthissystem intermsofTc andqin.(b) For R1 = 90 K/W, R2 = 10 K/W, and C = 1 J/K, solve for Tc(t) and plot Tc as a

    function of time for qin = 10W from rest initial conditions where Tc(0) = TA. Be sure to labelanddimensionyourtimeandtemperaturescales.

    (c) If the maximum allowable steady-state temperature of the chip is 100 K above ambient,what isthemaximumallowablepowerthechipcandissipate?

    225

  • 8/7/2019 Ghita M

    16/22

    18 MathTechniques18.1 ComplexExpressionReduction

    (a) Reducethefollowingexpressionstoasinglecomplexnumber inrectangularform:1.

    (2 + 3i)

    (45i)2. (2 + 3i)/(45i)3. (6 + 7i)(3+7i)4. (6 + 7i)/(3+7i)

    (b) Expressallabovecomplexnumbersinpolarform,thencalculatethefinalresultinthepolarformats.

    226

  • 8/7/2019 Ghita M

    17/22

    18.2 ComplexExpressions(a) Reducethefollowingexpressionstoasinglecomplexnumber inrectangularform:

    (i) (1 + 2i)(34i)(ii) (1 + 2i)/(34i)

    (iii) (6 + 4i)(5+7i)(iv) (6 + 4i)/(5+7i)

    (b) Expressallabovecomplexnumbersinpolarform,thencalculatethefinalresultinthepolarformats.

    227

  • 8/7/2019 Ghita M

    18/22

    18.3 MatrixOperationPracticeAssumeX= [123],Y = [980] andZ= [s2 s1], where denotestransposeoperation. Calculatethefollowingexpressions:

    (a) 5X;(b) XY;(c) XY;(d) FindtherootsoftheequationXZ= 0

    228

  • 8/7/2019 Ghita M

    19/22

    19 RecitationProblems19.1 Recitation1ProblemJusthoweffectivearesnowbanksatstoppingaslidingcar? Wecanmodelthesystemandstudyitsdynamicandstaticbehavior.

    xb

    m F

    x0

    Figure19.1.1: SlidingCarModel

    Consider the model shown in Figure 19.1.1. A mass m, initially at rest, is subject to a constantapplied force F. After the mass has travelled a distance xo it impacts a damper with dampingcoefficientb. Assumethesurfaceisfrictionless.

    (a)

    Formulatethe

    first

    order

    differential

    equation

    describing

    the

    velocity

    of

    the

    car

    as

    afunction

    oftime,beforethecollision.

    (b) What isthevelocityatthecollision?(c) Formulatethefirstorderdifferentialequationdescribingthesystemafterthecollision.(d) What isthetimeconstantforthesystem? How longwill ittaketostopthecar?(e) What isthepeakforce? Asafunctionofxo? What ifxo is0? Whatifb is?(f) Solvetheproblemagainusingenergymethods.

    229

  • 8/7/2019 Ghita M

    20/22

    19.2 Recitation2Problem

    bm

    k

    x

    Figure19.2.1: AutomobileSuspensionModel

    Thesuspensionforanautomobilecanbemodeledbythespring-mass-dampersystemshowninthefigurewithmassm=500[kg],springconstantk= 4103 [N/m],anddamperb= 2103 [Ns/m].

    (a) Determinethecharacteristicequationforthesystem. What istheformofthehomogeneousresponse to an initial condition x0 = 0 and x0 = 1? To an initial condition x0 = 1 andx0 = 0?

    (b) Find the damping ratio , undamped natural frequency n, damped natural frequency d,attenuation,andthetimeconstantoftheexponentialenvelope.Hint:

    b k= and n =2 km m

    (c) Isthesystemundamped,underdamped,critically-damped,overdamped(orjustright)?(d) From the homogeneous response determine if the system is stable, marginally stable, or

    unstable. Doesthismatchyourphysical intuition?(e) What iftheshockabsorber is leaky? Discusswhathappenstothesystemasbchanges.(f) WhathappenswhenyoudrivedownMassachusettsAvenueandhitapothole? Thinkabout

    the forced response.(g) Ifyouweredesigningthesuspension foracar,whichdampingbehavior(undamped,under-

    damped,critically-damped,overdamped)wouldyouchooseandwhy? Forasportscar? ForgrandmasCadillac? Forapickuptruck?

    230

  • 8/7/2019 Ghita M

    21/22

    19.3 Recitation3ProblemConsideraswingingdoor,suchasyoumightfindattheentrancetothekitcheninarestaurantoratthefrontdoortoasaloonintheWildWest. Thesetypesofdoorsdontslam;theycanovershootandoscillate. Theschematicrepresentationofthedoor isshown intheFigure19.3.1.

    bJ

    k

    T T(t)Figure19.3.1: Swingingdoormodel

    Thesystemrotatesaboutacentralshaftwithangulardisplacement, moment of inertiaJ, springconstantk,anddampingconstantb. Whensomeonepushesonthedoor,theyapplyatorqueT.(a) Determinethecharacteristicequationforthesystem.(b) Find the damping ratio , undamped natural frequency n, and damped natural frequency

    d. Rememberthestandardform:f(t) =

    1n2+

    2n +

    (c) SketchtheresponseofthesystemtoasteptorqueoftheformT(t) =T0us(t)

    withinitialconditions0 = 0,0 = 0. Usen =1[rad/sec].(d) Definethemaximumvalueoftheangulardisplacement. Addittothesketch.(e) Definerisetime. Showrisetimeonthesketch.(f) Definesettlingtime. Showsettlingtimeonthesketch.(g) How does the above forced response ofa second-order system comparetothehomogeneous

    response?

    231

  • 8/7/2019 Ghita M

    22/22

    19.4 Recitation4ProblemTwo identical tanks with cross sectional area A are partially filled with a volume V of incompressible fluid of density . The fluid flows between the two tanks through a short tube with asmalldiameterwhichcanbemodeledasalumpedresistance,R. Thetopoftank2 isopentotheatmosphere(withpressurePa).Initially,thetopoftank1 isclosedandthepressureatthetopoftank1issetsothatthelevelofthefluid inthefirsttank,h1 issubstantiallyhigherthanthe levelofthe fluid in thesecondtank,h2. At time t =0, the top of tank 1 is opened to the atmosphere. 19.4.1 shows the system justafterthetop isopened.

    P

    h1

    h2RA,U

    A,U

    Pa

    a

    Tank 1 Tank 2

    Figure19.4.1: TankSetup

    (a) How many independent variables as a function of time do you need to completely describethestateofthesystem?

    (b) Whatdoyouexpectthesystemtodophysically? Beforemakinganycalculations,sketchtheheightofthefluid intank1andtheheightofthefluidintank2asfunctionsoftime.

    (c) Findarelationshipbetweentheheightofthefluidintank1totheheightofthefluidintank2.

    (d) What isthepressureP1 atthebottomoftank1? What isthepressureP2 atthebottomoftank2?

    (e) Findaconstitutiverelationshipforthe lumpedresistance inthetube.(f)

    Find

    the

    differential

    equation

    in

    h1

    forthe

    system.

    (g) Sketch the height of the fluid in the tank 1 and tank 2 as a function of time, given initial

    conditionsh1(0)andh2(0). Willthissystemoscillate?(h) Doesthetimeconstantofthesystem dependontheamountoffluid? Whatcouldyoudo

    tomakethesystemrespondtwiceasquickly?(i) This system is first-order, but the demonstration we saw in class on Wednesday of water

    flowingthroughatubewasasecond-ordersystem. Whyarethesesystemsdifferent?