gpr (ground penetrating radar)

26
GPR (Ground Penetrating Radar) Radar de penetração no solo, geo-radar, 1. Introdução O GPR é um método eletromagnético que utiliza ondas de rádio em freqüências muito altas para localizar estruturas e feições geológicas rasas da subsuperfície (ou localizar objetos enterrados pelo homem). Faixa de Freqüências: 10 MHz – 2,5 GHz. Profundidade de Penetração: < 5 m em solos argilosos < 50 m em areias de dunas, cascalhos e granitos Segundo DAVIS & ANNAN (1989) na faixa de altas freqüências, a propagação da onda eletromagnética em profundidade é similar a uma onda elástica (sísmica), sofrendo, portanto, refração e reflexão de acordo com os contrastes de propriedades elétricas, principalmente, de permissividades dielétricas (ε) dos materiais geológicos. O método GPR consiste em obter uma imagem de alta resolução da subsuperfície, através da transmissão de ondas eletromagnéticas (EM) para dentro da Terra por uma antena transmissora colocada na superfície (Figura 1). Figura 1. Diagrama de uma antena transmissora. A propagação do sinal EM depende da freqüência do sinal transmitido e das propriedades elétricas dos materiais (condutividade elétrica, permissividade dielétrica e permeabilidade magnética). As mudanças nas propriedades elétricas em subsuperfície fazem com que parte do sinal seja refletido. As ondas de radar refletidas

Upload: others

Post on 30-Jun-2022

23 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: GPR (Ground Penetrating Radar)

GPR (Ground Penetrating Radar) Radar de penetração no solo, geo-radar,

1. Introdução O GPR é um método eletromagnético que utiliza ondas de rádio em

freqüências muito altas para localizar estruturas e feições geológicas rasas da

subsuperfície (ou localizar objetos enterrados pelo homem).

Faixa de Freqüências: 10 MHz – 2,5 GHz.

Profundidade de Penetração:

< 5 m em solos argilosos

< 50 m em areias de dunas, cascalhos e granitos

Segundo DAVIS & ANNAN (1989) na faixa de altas freqüências, a propagação

da onda eletromagnética em profundidade é similar a uma onda elástica (sísmica),

sofrendo, portanto, refração e reflexão de acordo com os contrastes de propriedades

elétricas, principalmente, de permissividades dielétricas (ε) dos materiais geológicos.

O método GPR consiste em obter uma imagem de alta resolução da

subsuperfície, através da transmissão de ondas eletromagnéticas (EM) para dentro da

Terra por uma antena transmissora colocada na superfície (Figura 1).

Figura 1. Diagrama de uma antena transmissora.

A propagação do sinal EM depende da freqüência do sinal transmitido e das

propriedades elétricas dos materiais (condutividade elétrica, permissividade dielétrica

e permeabilidade magnética). As mudanças nas propriedades elétricas em

subsuperfície fazem com que parte do sinal seja refletido. As ondas de radar refletidas

Page 2: GPR (Ground Penetrating Radar)

GPR

2

e difratadas em subsuperfície são recebidas através de uma antena receptora (modo bi-

estático) também colocada na superfície do terreno (Figura 2). A energia refletida é

registrada em função do tempo de percurso (tempo duplo), que é amplificada,

digitalizada e gravada no disco rígido de um computador “notebook”, deixando os

dados prontos para o processamento posterior que se fizerem necessários.

Figura 2 – Princípio de funcionamento do GPR.

Histórico

1929 → Origem do GPR na Alemanha (Olhoeft, 1996).

Década de 60 → GPR empregado para determinar a espessura de placas de gelo no Ártico e na Antártica.

Década de 70 → GPR empregado em ambiente sem gelo.

Década de 80 → Emprego do GPR em diversos ambientes (reconhecimento como método de exploração geofísica).

Década de 90 → Consagração como método geofísico de muito alta resolução com aplicações na geologia, geotecnia, meio ambiente, planejamento urbano, arqueologia etc. A UFPA fez os primeiros estudos de GPR em sítios arqueológicos na Ilha do Marajó.

1994 → O Centro de Pesquisas da Petrobras iniciou os estudos sistemáticos com as aplicações do GPR em solos brasileiros, seguidos pela UFBA.

2009 → Várias instituições de pesquisas e universidades brasileiras estão estudando o GPR: IAG/USP, IPT, UNESP, CETESB, UFBA, UFPA, UFRGS, UFRJ, UFMT, UFRN, UnB, UFC, ON, etc. Além de empresas de prestação de serviços.

Page 3: GPR (Ground Penetrating Radar)

GPR

3

2. Fundamentos teóricos

A teoria eletromagnética está fundamentada nas equações de Maxwell, que

descrevem o comportamento do campo eletromagnético em qualquer meio. As

relações constitutivas do meio relacionam o campo elétrico externo aplicado ao campo

interno pelas propriedades elétricas (condutividade elétrica e permissividade dielétrica)

e magnética (permeabilidade magnética) dos materiais (Stratton, 1941).

O campo EM tem dois componentes diretamente mensuráveis: o campo

elétrico e o campo magnético.

Esses campos são descritos em termos de vetores de intensidade de campo

elétrico E e do campo magnético H e em termos dos vetores densidade do fluxo

elétrico (ou deslocamento elétrico) D e densidade de fluxo magnético B (ou indução

magnética).

O acoplamento dos campos E e H são descritos pelas leis de Ampére e

Faraday.

A Lei de Ampére (1) mostra que o campo magnético é produzido pela corrente

de deslocamento e pela densidade de corrente elétrica.

J

tDH

+

∂∂

−=×∇ JtDH

+

∂∂

−=×∇ (1)

Para prospecção EM em altas frequências, o campo magnético gerado pelo

termo da corrente de deslocamento é mais importante.

Materiais geológicos podem ser caracterizados por três propriedades elétricas:

a) condutividade elétrica (σ);

b) permissividade dielétrica (ε);

c) permeabilidade magnética (μ).

Em geral, a condutividade é dominante para ondas eletromagnéticas de baixa

freqüência e a permissividade é dominante para altas freqüências.

No método GPR utiliza-se um dipolo elétrico horizontal como fonte do campo

de ondas eletromagnéticas (Annan & Cosway, 1992). As frentes de ondas básicas

para uma fonte dipolar sobre a superfície da Terra são ondas esféricas (Annan, 1973).

Qualquer onda esférica pode ser descrita por uma superposição de ondas planas

(Stratton, 1941).

Page 4: GPR (Ground Penetrating Radar)

GPR

4

A equação da onda plana para o campo elétrico, supondo o fluxo de corrente

na direção-x, é dada por:

x2

2x

2Ek

zE

=∂∂

(2)

E x é o campo elétrico na direção-x e “k” é o número de onda complexo:

σµω−εµω= ik 22 (3)

β+α= ik (4)

onde: α corresponde à constante de atenuação e β corresponde à constante de

propagação. Para as freqüências do radar (10MHz – 2,5GHz), α e β são expressos

por:

εµσ

=α2

(5)

εµω=β (6)

Os fatores mais importantes que governam a propagação da onda EM num

determinado meio são a velocidade e a atenuação.

Para materiais geológicos com baixa perda, o campo EM propaga-se com uma

velocidade de fase dada por:

v c

r

=ε '

(7)

Corrente de Deslocamento

Corrente de Condução

Método GPR Métodos EMs

Page 5: GPR (Ground Penetrating Radar)

GPR

5

onde “c” é a velocidade da luz no vácuo ( 3,0c ≅ m/ns) e ε r ' é a constante dielétrica

dos materiais.

A constante de atenuação é normalmente expressa por:

ασε

= 1 636 0,'r

(8)

em dB/m e σ 0 é a condutividade elétrica em corrente contínua em mS/m.

Como citado anteriormente, na faixa de frequência de operação do GPR a

onda EM comporta-se de maneira semelhante a onda elástica. Assim, A reflexão e a

refração de ondas planas são governadas pela lei de Snell e pelas equações de

Fresnel. A lei de Snell especifica uma relação angular entre a onda EM incidente, a

onda refletida e a onda refratada. As equações de Fresnel relacionam as amplitudes

dos campos elétrico e magnético (Ward & Hohmann, 1987).

No método GPR, a freqüência de operação é tão elevada, que se supormos (

∞→ω ) ⇒ Não há dependência de 2k (2) em σ . Portanto, na prática a amplitude do

coeficiente de reflexão GPR ( rgpr ) para uma incidência normal, pode ser escrito como:

''''

gprr21

21

ε+ε

ε−ε= (9)

onde ε ε1 2' 'e são as constantes dielétricas dos meios 1 e 2.

A condutividade elétrica dos materiais geológicos varia entre largos limites,

como pode ser visto na Tabela 1.

Page 6: GPR (Ground Penetrating Radar)

GPR

6

Tabela 1 – Faixa de variação da condutividade elétrica dos materiais geológicos.

A constante dielétrica também varia de acordo com o material geológico, tendo,

portanto, interferência na velocidade de propagação e na atenuação da onda EM nos

materiais geológicos. Na Tabela 2 são apresentados os valores de constante

dielétrica, condutividade elétrica, velocidade de onda e constante de atenuação para

vários materiais geológicos.

Page 7: GPR (Ground Penetrating Radar)

GPR

7

Tabela 2 – Tipos de materiais Geológicos e valores de εr’ , σ0 , v e α .

3. O sistema GPR Os sistemas GPR são projetados em módulos para dar maior flexibilidade nas

operações de campo. Eles consistem de 6 módulos: 2 antenas (uma transmissora e

uma receptora), uma unidade eletrônica do transmissor, uma unidade eletrônica do

receptor, uma unidade de controle central e um computador “notebook”. Todos os

módulos são acessados via computador (Figura 3).

Figura 3. Os módulos do sistema GPR.

Page 8: GPR (Ground Penetrating Radar)

GPR

8

Na Figura 4 é mostrado um sistema GPR da Ramac (Suécia) fabricado na

década de 1990, onde podem ser observados esses módulos.

Figura 4 – GPR Mala Ramac.

Na Figura 5 é apresentado um sistema GPR fabricado pelas GSSI (USA). Com

a evolução tecnológica os sistemas se tornaram mais versáteis e de manuseio no

campo mais fácil, e com maior gama de antenas de diferentes frequências. Com esse

tipo de sistema caminha-se com o equipamento sobre a linha de ensaio, e a aquisição

é realizada de forma automatizada.

Figura 5 – Sistema GPR da GSSI.

Page 9: GPR (Ground Penetrating Radar)

GPR

9

Freqüência central x profundidade máxima de penetração

A tabela 3 serve como um guia prático para os trabalhos de campo onde pouca

ou nenhuma informação geológica, a priori, é conhecida. Os valores obtidos foram

estimados com base em nossa experiência em solos brasileiros e nos experimentos

práticos das empresas (Ramac, Sensors & Software e GSSI).

Freqüência Central

(MHz)

Profundidade

Máxima de

Penetração (m)

1000 1

400 2

200 8

100 15

50 25

25 40

10 50

Tabela 3 - Frequência central das antenas versus profundidade máxima de

penetração.

A resolução vertical é a habilidade de distinguir as reflexões provenientes do

topo e da base de camadas de pequena espessura (Davis & Annan, 1989). A

resolução teórica é 4λ (Sheriff, 1991). O limite de resolução teórica é de 2a4 λλ .

A Tabela 4 mostra a faixa de resolução teórica versus freqüência central das antenas.

O comprimento de onda é dado pela equação:

λ = vfc

(9)

onde v é a velocidade (foi assumido v = 0,1m/ns), e cf é a freqüência central das

antenas.

Page 10: GPR (Ground Penetrating Radar)

GPR

10

Frequência Central

(MHz)

Resolução Teórica

(m)

200 0,125 - 0,25

100 0,25 - 0,5

50 0,5 - 1

25 1 – 2

Tabela 4 - Frequência central das antenas versus resolução teórica.

De acordo com as Tabelas 3 e 4, pode-se tirar uma importante conclusão: “as

antenas com frequências mais altas proporcionam melhor resolução vertical”,

enquanto que “as frequências mais baixas permitem maiores profundidades de

penetração”.

4. Aquisição dos dados A aquisição de dados é feita normalmente em perfis de reflexão com

afastamento constante. A geometria das antenas transmissora e receptora é mantida

com uma distância fixa constante, sendo transportada ao longo do perfil (Figura 5). O

resultado obtido é um perfil onde no eixo horizontal estão as posições das antenas

(distâncias) em função do tempo duplo dos refletores no eixo vertical (tempo de ida e

volta do sinal GPR).

Figura 5 - Perfil de reflexão com afastamento constante, no procedimento passo a

passo.

Page 11: GPR (Ground Penetrating Radar)

GPR

11

Figura 6 – Perfil GPR obtido. Tempo de percurso da onda (travel time = tempo duplo,

tempo de ida e de volta do sinal GPR). Os traços esquemáticos mostram a chegada

da onda aérea, da onda direta na Terra e da onda refletida na subsuperfície.

A figura 7 mostra um perfil GPR com as ondas refletidas em várias interfaces.

Essa imagem mostra a reflexão das ondas em interfaces com diferentes propriedades

elétricas, sendo a imagem utilizada para interpretação, onde os diferentes refletores

serão associados a alvos geológicos.

Page 12: GPR (Ground Penetrating Radar)

GPR

12

Figura 7 – Perfil GPR e reflexões nas interfaces com diferentes propriedades.

É necessário converter o tempo em profundidade. Para converter o tempo

duplo dos perfis de reflexão em profundidade, é necessário primeiramente conhecer a

velocidade da onda de radar no meio.

Existem 3 maneiras para se calcular a velocidade (m/ns):

1) Medindo-se a constante dielétrica do solo e substituindo-a na expressão da

velocidade (5):

v c

r

=ε ' (10)

2) Através de poços ou escavações. Para isto, basta medir a profundidade do

refletor no poço (h) e o tempo da reflexão no radargrama (t):

th2v =

(11)

3) Através de Sondagens CMP - “Common Mid Point” ou WARR - “Wide Angle

Reflection and Refraction”. Essas técnicas são usadas para estimar a

velocidade do sinal de radar, através da variação do espaçamento das antenas

para uma localização fixa e medindo-se a mudança do tempo duplo das

reflexões de subsuperfície. Na técnica CMP a abertura entre as antenas é

crescente em sentidos opostos partindo de um ponto central fixo (Figura 8a).

Na técnica WARR (Figura 8b) uma das antenas é mantida fixa, enquanto a

outra é sucessivamente afastada da primeira.

Page 13: GPR (Ground Penetrating Radar)

GPR

13

Figura 8 – Técnica de aquisição CMP (a). Técnica WARR (b).

O resultado da sondagem CMP/WARR é um gráfico da distância (eixo-x)

versus tempo (eixo-y) (Figura 9). A estimativa da velocidade para as ondas diretas na

Terra é feita através da inclinação da reta que é inversamente proporcional à

velocidade. Para as ondas refletidas, o procedimento é similar, a estimativa da

velocidade para as ondas refletidas é feita através da análise da hipérbole de “move-

out” no espaço X2 - T2. A plotagem dos dados na forma T2 versus X2 resultará numa

função linear cuja coeficiente angular e a constante linear serão 1/Vs2 e T2 (0). Assim,

pode-se usar essa equação para calcular a velocidade Vs a partir da inclinação da

curva de melhor ajuste.

Figura 9. Eventos idealizados do tempo de chegada em função da separação das

antenas numa sondagem do tipo CMP/WARR (adaptado de Annan, 1992).

A conversão do tempo duplo (t) dos perfis de reflexão em profundidade (d) é

realizada partindo-se da velocidade (v) da onda adquirida na CMP, como mostra a

equação:

d = vt2

(12)

onde:

v = velocidade da onda de radar

d = “depth” - profundidade (m)

t = tempo (ns).

Page 14: GPR (Ground Penetrating Radar)

GPR

14

Dessa forma, obtem-se uma seção de GPR ou radargrama como o da Figura

10, onde podem ser observados os refletores em suas profundidades estimadas.

Figura 10 – Radargrama com os tempos convertidos em profundidade.

5. Processamento dos dados O fluxograma básico das etapas envolvidas no processamento dos dados GPR

está mostrado na Figura 11.

Page 15: GPR (Ground Penetrating Radar)

GPR

15

Dados de Campo

Edição dos Dados

Filtragem DC

( Dewowing)

Filtragens

(Temporal/Espacial)

Migração

Conversão Tempo/Profundidade

Seção Final

Ganhos (AGC/SEC)

Figura 11. Fluxograma do Processamento básico de dados GPR.

1) Edição dos dados

- Inclusão da topografia

- Edição dos traços

- Reverter a direção do perfil, etc. 2) “Dewonwing” (filtragem DC)

- remove as componentes de baixa frequência dos dados que estão associados

com a saturação eletrônica do receptor.

3) Ganho em Tempo (AGC/SEC)

- Ganho AGC - amplifica ou atenua todos os pontos ao longo de um traço para

um nível especificado. Destrói as informações de amplitudes. - Ganho SEC - Compensação Esférica e Exponencial - procura compensar a

atenuação sofrida pelo sinal, à medida que se propaga em subsuperfície preservando

a hierarquia de amplitude do sinal.

- Ganho Constante multiplica o traço por um fator constante. 4) Filtragem Temporal

Page 16: GPR (Ground Penetrating Radar)

GPR

16

- As filtragens mais comuns são:

i) Passa Banda

ii) Passa Baixa

iii) Passa Alta

5) Filtragem Espacial

- Permite remover ou realçar os diferentes tipos de variação espacial.

- As filtragens mais comuns são:

i) Passa Baixa – Média Móvel – realça a continuidade lateral dos refletores

horizontais (estratigrafia), enquanto elimina os refletores inclinados, os pontos de

difração e os ruídos aleatórios.

ii) Passa Alta – Remoção do Background - realça os refletores localizados, tais

como, os refletores pontuais e os refletores inclinados, enquanto elimina os refletores

horizontais dominantes.

6) Análise de Velocidade (CMP/WARR)

- São importantes para a conversão tempo/profundidade e na etapa de

migração.

7) Migração

- Permite reconstruir uma imagem que melhor representa a subsuperfície.

- As reflexões aparentes identificadas nos perfis GPR são reposicionadas em

sua verdadeira posição espacial de subsuperfície e as hipérboles de difração são

colapsadas em um ponto.

6. Vantagens e limitações do GPR

Principais Limitações:

1) A presença de camadas argilosas condutivas, blinda a penetração da onda de

radar.

2) Baixa profundidade de penetração nos materiais geológicos terrestres.

Principais Vantagens :

1) As técnicas de aquisição, processamento e interpretação dos dados GPR são

semelhantes às do método sísmico; mas muito mais rápidas, práticas e versáteis;

2) O equipamento GPR é portátil, pesa aproximadamente 20kg, e é fácil de operar.

Uma equipe de campo composta por 3 pessoas é suficiente para a aquisição de

dados;

3) O método GPR apresenta ampla aplicabilidade;

Page 17: GPR (Ground Penetrating Radar)

GPR

17

4) Antenas com freqüência central mais alta proporcionam melhor resolução vertical,

enquanto que as freqüências mais baixas permitem maiores profundidades de

penetração;

5) O GPR é a metodologia geofísica não destrutiva de mais alta resolução

desenvolvida até o presente momento.

As principais fontes de ruídos:

1) Objetos na superfície - casas, edifícios, cercas metálicas, árvores de grande porte

etc.

2) Objetos sobre a cabeça - torres de alta tenção, postes de iluminação etc.

3) Transmissores de sinais EM - estações de rádio FM, antenas de microondas,

“walkie-talkie”, celulares etc.

4) Ressonância da antena (“ringing”)

7. Aplicações O GPR tem inúmeras aplicações em geofísica rasa, com destaque para

estudos ambientais, mapeamento de interferências e arqueologia.

Em geologia ambiental, tem mostrado sucessso no mapeamento de plumas de

contaminação de depósitos de resíduos urbanos, resíduos industriais e derrames e

vazamentos de hidrocarbonetos.

Meios muito condutivos atenuam de forma marcante o sinal, o que possibilita a

aplicação dessa metodologia na identificação de plumas de contaminação. Davis &

Annan (1989) descreveram o uso de um sistema de radar de penetração no solo na

delimitação da pluma de contaminação gerada por um aterro sanitário, no Canadá. A

técnica mostrou um alto grau de resolução na definição da pluma, como pode ser

observado na Figura 12. Pode ser observado que devido a alta condutividade da zona

contaminada o sinal de radar é totalmente atenuado. Uma linha de poços de

monitoramento foi utilizada para medir a condutividade, e houve uma perfeita

correlação entre a pluma definida pelo radar e os valores de condutividade elétrica

superiores a 10 mS/m.

Page 18: GPR (Ground Penetrating Radar)

GPR

18

Figura 12 - Mapa esquemático de ensaio realizado próximo a um aterro sanitário e

registro de radar obtido por Davis & Annan (1989). A área abaixo da linha de 10 mS/m

é interpretada como a pluma de contaminação.

Na Figura 13 é apresentado o resultado de uma linha adquirida a jusante do

Aterro Controlado de Rio Claro, por Porsani et al (2002). Podem ser observadas a

base de uma das bordas do aterro, a pluma de contaminação (atenuação do sinal) e

uma interferência na superfície (poste de linha elétrica).

Page 19: GPR (Ground Penetrating Radar)

GPR

19

Figura 13 – Linha de GPR realizada no Aterro Controlado de Rio Claro (Porsani et al. 2002).

Também são conhecidos casos de mapeamento de pluma de resíduos

industriais (Aquino et al. 1998). A seção de GPR da Figura 14 mostra as plumas de

contaminação causadas por diferentes tipos de resíduos industriais (borra ácida,

organoclorados, sais, inclusive em estado líquido) depositados em valas sem

impermeabilização de fundo.

Figura 14 – Mapeamento de plumas geradas por resíduos industriais.

Vazamentos de derivados de petróleo, como diesel e gasolina, formam, entre

outras fases, uma fase livre, que normalmente é caracterizada por uma fina camada

de contaminante sobre a zona saturada. Esse filme de hidrocarboneto reflete

Page 20: GPR (Ground Penetrating Radar)

GPR

20

totalmente a onda EM gerando as zonas de sombra. Um exemplo de caso é

apresentado na Figura 15, onde vazamento de combustível é detectado na seção de

GPR realizado com antenas de 100 MHz por Sauck et al., 1998).

Figura 16 – Zonas de sombra causadas por vazamento de óleo combustível na seção

de GPR (Sauck,et al., 1998).

Outra aplicação do GPR em problemas ambientais é no mapeamento de

tanques enterrados com substâncias perigosas. Na Figura 17 é apresentando uma

imagem esquemática de como os topos dos tanques são identificados por hipérboles

na seção de GPR.

Porsani et al. (2012) mostram os resultados obtidos com GPR no mapeamento

de tanques metálicos enterrados em um sítio controlado. Na Figura 18 pode ser

observada as posições de dois tanques enterrados (a). A modelagem númerica

realizada para prever os resultados é mostrada em (b) e (c) mostra a seção obtida em

campo com a antena de 200 MHz. A seção é perpendicular aos alvos que foram

claramente mapeados.

Page 21: GPR (Ground Penetrating Radar)

GPR

21

Figura 17 - GPR na detecção de Tanques Enterrados com substâncias perigosas.

Figura 18 – Tanques enterrados (a); seção modelada numericamente (b); resultado de perfil realizado com antenas de 200 MHz no local (c).

Page 22: GPR (Ground Penetrating Radar)

GPR

22

O GPR tem sido utilizado com sucesso no mapeamento de interferências

enterradas em ambiente urbano. Porsani (2018) realizou testes para mapeamento de

objetos enterrados em controlado e mostrou o potencial de uso de GPR. Na Figura 19

são mostradas a seção com os objetos enterrados (tambores plásticos, tambores

metálicos, canos de ferro fundido e manilhas de concreto) e a seção de GPR obtido

com antenas de 200 MHz. Podem ser observados os diversos alvos com precisão em

seu posicionamento horizontal e vertical.

Figura 19 – Resultados de GPR (antenas 200 MHz) no mapeamento de objetos

enterrados em sitio controlado.

Estudos em sítios controlados permitem avaliar a eficiência do GPR no

mapeamento de diferentes alvos e a partir disso as companhias que utilizam

instalações no subsolo urbano encorporam o método para o planejamento de suas

Page 23: GPR (Ground Penetrating Radar)

GPR

23

obras. Na Figura 20 é mostrado uma seção de GPR em ambiente urbano,

identificando várias interferências enterradas.

Figura 20 – Mapeamento de interferências enterradas em ambiente urbano (RS Specialist Services, 2018).

O GPR também tem sido utilizado com sucesso no mapeamento de feições

causadas por fenômenos de erosão subterrânea - processos de piping e tunnel

erosion originam dutos. Na Figura 21 é apresentado um duto com colapso parcial do

teto e o resultado de uma linha de GPR (antena 200 MHz) realizada a 10 metros,

mostrando sua contunuidade em subsuperfície (Augustim e Aranh, 2006).

Page 24: GPR (Ground Penetrating Radar)

GPR

24

Figura 21 – mapeamento de estruturas de erosão subterrânea. (Augustim e Aranha, 2006).

Além dessas aplicações, o GPR também é utilizado em exploração mineral

(localização de depósitos de “placers”,localização de zonas mineralizadas em

“greisens”, desenvolvimento de minas subterrâneas e a céu aberto); em geologia

básica (estudos de reservatórios análogos ou equivalentes, localização de estruturas

tectônicas como diques, zonas de falhas e fraturas); em hidrogeologia (determinação

da profundidade do nível freático, localização de paleocanais, estudos de

assoreamentos de rios e lagos,estudos de intrusão salina em áreas litorâneas);

pesquisa arqueológica (localização de sítios arqueológicos como sambaquis, túneis e

utensílios, fundações de igrejas históricas, urnas funerárias); em aplicações militares

(localização de minas explosivas); aplicações forenses (localização de cadáveres).

Page 25: GPR (Ground Penetrating Radar)

GPR

25

8. Referências.

Aquino , W.F., Gandolfo, O.C.B., Botelho, M.A.B., Mendes, J.M.B.l, 1998, II Workshop

de Geofísica Aplicada, Rio Claro

Augustim, C.H.R.R.; Aranha, P.R.A. 2006. Piping em área de voçorocamento,

noroeste de Minas Gerais. Revista Brasileira de Geomorfologia 7(1). Pp. 9 - 18.

Daniels, D.J. 1996. Surface Penetrating Radar. The Institution of Electrical Engineers,

London, United Kingdon, 300p.

Davis, J.L & Anann, A.P. - 1989 - Ground Penetrating Radar for high resolution

mapping of soil and rock stratigraphy. Geophysical Prospecting 37 (5), pp. 531-

552

Porsani, J.L., 1999. Ground Penetrating Radar (GPR): Proposta metodológica de

emprego em estudos geológico-geotécnicos nas regiões de Rio Claro e

Descalvado – SP. Tese de Doutorado, Instituto de Geociências e Ciências Exatas,

UNESP, Campus de Rio Claro - SP, 145pp.

Porsani, J.L.; Almeida, E.R; Poluha, B.; Santos, V.R.N. 2017. GPR Tomographic

maging of Concrete Tubes and Steel/Plastic Tanks Buried in IAG/USP

Geophysical Test Site, Brazil. International Journal of Geosciences 8, pp.647-658

Reynolds, J.M., 1997. An introduction to applied and environmental geophysics.

JohnWiley & Sons Ltd., Baffins Lane, Chichester. West Sussex P019 1UD,

Englad, p. 681-749.

RS Specialist Services. 2018. Ground Penetrating Radar Survey and Services.

Available on http://www.rsspecialistservices.co.uk/ground-penetrating-radar.html.

Access in 01.24.2019.

Sauck, W.; Atekwana E.A.; Nash M.S. 1998. High conductivities associated with an

LNAPL plume imaged by integrated geophysical techniques Journal of

Environmental and Engineering Geophysics 2(3): 203-212.

Ward, S.H. & Hohmann, G.W., 1987. Electromagnetic theory for geophysical

applications. Investigations in Geophysics, no 3. Electromagnetic Methods in

Applied Geophysics. Society of Exploration Geophysicists, Ed. Misac N.

Nabighian, v.1, p.131-311.

Page 26: GPR (Ground Penetrating Radar)

GPR

26