grand gauge-higgs unification

17
based on : based on : arXiv:1103.1234 arXiv:1103.1234 (appeared today) (appeared today) in collaboration with : in collaboration with : K. Kojima (Kyushu) & K. Takenaga (Kumamoto K. Kojima (Kyushu) & K. Takenaga (Kumamoto Health Science) Health Science) grand gauge-Higgs unification 山山 山山 ( 山山山 山山山 ) 2011/3/8 2011/3/8 @ @ 山山山山山山山山山2011

Upload: gwyn

Post on 06-Jan-2016

28 views

Category:

Documents


0 download

DESCRIPTION

grand gauge-Higgs unification. 山下 敏史 ( 名古屋  益川塾 ). 2011/3/8 @ 素粒子物理学の進展2011. based on : arXiv:1103.1234 (appeared today) in collaboration with : K. Kojima (Kyushu) & K. Takenaga (Kumamoto Health Science). Introduction. D.B. Fairlie (1979) N.S. Manton (1979). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: grand gauge-Higgs unification

based on : based on : arXiv:1103.1234arXiv:1103.1234 (appeared today) (appeared today)in collaboration with :in collaboration with : K. Kojima (Kyushu) & K. Takenaga (Kumamoto Health Science) K. Kojima (Kyushu) & K. Takenaga (Kumamoto Health Science)

grand gauge-Higgs unification

山下 敏史( 名古屋 益川塾 )

2011/3/8 2011/3/8 @@ 素粒子物理学の進展2011

Page 2: grand gauge-Higgs unification

Introduction

Gauge-Higgs Unification

5D theory

with KK modes gauge field

Higgs

compactification

4D theory

gauge field

scalar field

D.B. Fairlie   (1979)N.S. Manton (1979)

Y.Hosotani (1989-)

Hosotani mechanism

Page 3: grand gauge-Higgs unification

Introduction

Hosotani mechanism Y. Hosotani   (1989-)

• symmetry breaking by VEVs of Wilson line phase zero-mode of A5• before orbifold breaking : applied to GUT breaking (A5 : adjoint)

in models w/ no chiral fermions

Y. Kawamura (2000-)

• after : mainly applied to EW breaking

• chiral fermion• fundamental repr.

Hosotani’s talk

GUT breaking in models w/ chiral fermion?K.Kojima & K.Takenaga & T.Y.

Page 4: grand gauge-Higgs unification

Introduction

difficulty• orbifold action projects out adjoint scalars

K.Kojima & K.Takenaga & T.Y.

• this difficulty is shared w/ heterotic string

- well studied, classified w/ Kac-Moody level- ``diagonal embedding” method

Kuwakino’s talk

Why can’t we use this in our pheno. models?

Page 5: grand gauge-Higgs unification

Plan• IntroductionIntroduction• massless adjoint scalarmassless adjoint scalar• FermionsFermions• ApplicationsApplications• SummarySummary

Page 6: grand gauge-Higgs unification

ex)

massless adjoint scalar

Orbifold

Fields may not be invariant!

ex)

symm. transformation

Page 7: grand gauge-Higgs unification

ex) SU(3) SU(2)*U(1)

massless adjoint scalar

Orbifold breaking Y.Kawamura (2000)

projected out

Page 8: grand gauge-Higgs unification

massless adjoint scalar

diagonal embedding K.R.Dienes & J.March-Russel (1996)

diagonal part permutation as orbifold action

eigenvalues:

zero-modes:

adjoint scalar

ex)

Page 9: grand gauge-Higgs unification

Plan• IntroductionIntroduction• massless adjoint scalarmassless adjoint scalar• FermionsFermions• ApplicationsApplications• SummarySummary

Page 10: grand gauge-Higgs unification

Fermions

exchange symmetry

: vector-like

K.Kojima & K.Takenaga & T.Y.

2 partner

when R1=R2

: chiral

• when R1=R2 (=R) : ex) SU(5) w/ R=5

Page 11: grand gauge-Higgs unification

Fermions

KK spectrum

K.Kojima & K.Takenaga & T.Y.

BG:

(basically) same as S1

• when R2 is trivial : completely same

Page 12: grand gauge-Higgs unification

Fermions

KK spectrum

K.Kojima & K.Takenaga & T.Y.

BG:

(basically) same as S1

• when R2 is non-trivial : slightly different

as if non-local interaction

Page 13: grand gauge-Higgs unification

Fermions

KK spectrum

K.Kojima & K.Takenaga & T.Y.

BG:

(basically) same as S1

• when R2 is non-trivial : slightly different

the same as R1*R2 fermion in S1, while it behaves as R1*R2 under Gdiag.

Page 14: grand gauge-Higgs unification

Plan• IntroductionIntroduction• massless adjoint scalarmassless adjoint scalar• FermionsFermions• ApplicationsApplications• SummarySummary

Page 15: grand gauge-Higgs unification

Applications K.Kojima & K.Takenaga & T.Y.

• it is not easy to realize vacua where SU(5) is broken down to SM, as global minima.

The results in literatures can be easily reproduced, besides chiral fermions (on the branes).

SU(5)

A.T.Davies & A.McLachlan (1989)

• it is claimed the desired minimum can be realized w/

fermions : 5, 10 scalars : 5, 3*15, as a local minimum

V.B.Svetovoi & N.G.Khariton,(1986)anti-periodic fermion

Page 16: grand gauge-Higgs unification

Summary

• We propose a novel way to break GUT-symm. via the Hosotani mechanism.

• chiral fermions on branes• adjoint scalars by diagonal embedding

• It turns out KK spectra are basically the same as in S1 models

results in literatures are easily reproduced.

• model w/ desired vacuum as local minimum.• SU(5) GSM is not easy as global minima

Page 17: grand gauge-Higgs unification

Summary

• SUSY and/or RS• doublet-triplet splitting• gauge coupling unification• concrete model building …

future works