gravitational collapse in five-dimensional space-time...e-mail : [email protected] abstract...

1
e-mail : [email protected] abstract Grav itational Co llapse in Fiv e-dimensional Sp Yuta Yamada (Osaka Insti f Technology, ( ) Hisa-aki Shinkai (Osaka Ins lo gy, Japa ( ) We numerically inv estigate black-hole (and black-ring) fo rmatio n in fiv e-dimensional spacetime. We mo del the ini tial matter distribution in no n-ro tati ng homo geneo us sphero idal an to ro idal co nfi guratio ns under the mo mentarily static assumptio n, and express the matter with co llisionless particles. We evo lv e the spacetime using the m ng condi tio n fo r the lapse functi on and the minimal strain conditio n fo r shift vecto r. We search apparent horizo ns bo th o f S 3 and S 1 S 2 to polo gy during time ev olutio ns. Fo r to ro idal matter cases, we o bserv e the to polo gy of apparent ho rizo ns depends on the ring radius, and also we find the to polo gy change of ho rizo n fro m ri ng to spherical shape evolutio n. For sphero idal co nfigurations, we can no t find apparent ho rizon for highly pro late matter, which indicates also the fo rmatio n o f naked singularity. We ho le o r black-ring is fo rmed and also repo rt the po ssibility of a naked singularity fo rmatio n. 1. Motiv atio n Formatio n o f naked singularities fo rmatio n o f naked singulatities in 4D Grav itational co llapse o f collisio nless particles with sphero idal configuration. (Shapi ro , Teuko lsky, PRL66, 994, 1991) possibility of naked singularities in 5D Suggest the fo rmatio n o f naked singularities by spindle co llapse. (Yo o, Ida, Nakao , PRD71, 104014, 2005) Dynamics of Black-Objects Stable? Unstable? 3. Initial data (Yamada, Shinkai, CQG27, 045012) Formatio n process ? Dynamical features ? 2. Our Numerical Appro ach 5. Time evo lutio n o f sphero idal co nfiguration Evolutio n o f two kinds o f no n-ro tati ng matter co nfigurations. Using the (4 + 1) ADM fo rmalism. Express the matter with co llisio nless particles. Search apparent ho rizo ns. 4. Ev olutio n Evolutio n equatio ns Maximal time slicing co ndi tio n fo r lapse functio n Minimal strain co ndi tio n fo r shift v ecto r We assume axi-symmetric space-time using th on metho d. We find three different cases for rizon formati n depending the ring radius R c at t = 0. Case1 commo n horizo n (small radius) Case2 ring horizo n co mmo n hori zo n Case3 ring horizo n (large radius) Lapse functio fo r large radi us case We co nstruct sequences of ini tial data with co nfo rmally flat, mo ment of time symmetry, asympto tically flat Confo rmal transfo rmatio n The Hamilto ni an co nstraint equation *boundary co ndi tio n Initial data sequence o f sphero idal co nfiguration Initial data sequence o f ring co nfiguration The ho rizon is no t formed when the matter is highly pro late shape. The asterisk indicates the lo catio n o f the maximum Kretschmann inv ari ant. Rc > 0.78rs o nly the ring horizo n Rc < 0.78rs o nly the co mmo n horizo n Both ho rizon's area are smo othly co nnected. scenario of gravitational co llapse collapse black ring ? collapse black ring black ho le ? Case1 ho rizo n fo rms 6. Time evo lutio n o f ring co nfi guratio n Case2 No ho rizon (Naked singularity?) Kretschmann Invariant Kretschmann Invariant COSMO / Cos

Upload: others

Post on 25-Dec-2019

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gravitational Collapse in Five-dimensional Space-time...e-mail : yamada@is.oit.ac.jp abstract Gravitational Collapse in Five-dimensional Space-time Yuta Yamada (Osaka Institute of

e-mail : [email protected]

abstract

Gravitational Collapse in Five-dimensional Space-timeYuta Yamada (Osaka Institute of Technology, Japan)山田 祐太    (大阪工業大学)Hisa-aki Shinkai (Osaka Institute of Technology, Japan)真貝 寿明 (大阪工業大学)

We numerically investigate black-hole (and black-ring) formation in five-dimensional spacetime. We model the initial matter distribution in non-rotating homogeneous spheroidal and toroidal configurations under the momentarily static assumption, and express the matter with collisionless particles. We evolve the spacetime using the maximal time slicing condition for the lapse function and the minimal strain condition for shift vector. We search apparent horizons both of S3 and S1 × S2 topology during time evolutions. For toroidal matter cases, we observe the topology of apparent horizons depends on the ring radius, and also we find the topology change of horizon from ring to spherical shape in time evolution. For spheroidal configurations, we can not find apparent horizon for highly prolate matter, which indicates also the formation of naked singularity. We discuss when black-

hole or black-ring is formed and also report the possibility of a naked singularity formation.

1. Motivation

Formation of naked singularities

formation of naked singulatities in 4D

・ Gravitational collapse of collisionless particles with spheroidal configuration. (Shapiro, Teukolsky, PRL66, 994, 1991)

possibility of naked singularities in 5D

・Suggest the formation of naked singularities by spindle collapse.(Yoo, Ida, Nakao, PRD71, 104014, 2005)

Dynamics of Black-Objects Stable?

Unstable?

3. Initial data (Yamada, Shinkai, CQG27, 045012)

・Formation process ?

・Dynamical features ?

2. Our Numerical Approach

5. Time evolution of spheroidal configuration

・Evolution of two kinds of non-rotating matter configurations.

・Using the (4 + 1) ADM formalism.

・Express the matter with collisionless particles.

・Search apparent horizons.

4. Evolution

・Evolution equations

・Maximal time slicing condition for lapse function

・Minimal strain condition for shift vector

・We assume axi-symmetric space-time using the Cartoon method.

・We find three different cases for apparent horizon formation depending the ring radius Rc at t = 0.

Case1 common horizon (small radius)

Case2 ring horizon → common horizon

Case3 ring horizon (large radius)

Lapse function on x-axis for large radius case

We construct sequences of initial data with ・conformally flat, moment of time symmetry, asymptotically flat

・Conformal transformation

・The Hamiltonian constraint equation

*boundary condition

Initial data sequence of spheroidal configuration

Initial data sequence of ring configuration

・The horizon is not formed when the matter is highly prolate shape.

・The asterisk indicates the location of the maximum Kretschmann invariant.

・Rc > 0.78rs → only the ring horizon・Rc < 0.78rs → only the common horizon

・Both horizon's area are smoothly connected.・scenario of gravitational collapse collapse → black ring ? collapse → black ring → black hole ?

Case1 horizon forms

6. Time evolution of ring configuration

Case2 No horizon (Naked singularity?)Kretschmann Invariant

Kretschmann Invariant

COSMO / CosPA 2010