guia nº 5 curvas circulares

6
GUIA Nº 5 CURVAS CIRCULARES SIMPLES Las curvas circulares simples se definen como arcos de circunferencia de un solo radio que son utilizados para unir dos alineamientos rectos de una vía. Una curva circular simple (CCS) está compuesta de los siguientes elementos: Ángulo de deflexión [Δ]: El que se forma con la prolongación de uno de los alineamientos rectos y el siguiente. Puede ser a la izquierda o a la derecha según si está medido en sentido anti-horario o a favor de las manecillas del reloj, respectivamente. Es igual al ángulo central subtendido por el arco (Δ). Tangente [T]: Distancia desde el punto de intersección de las tangentes (PI) -los alineamientos rectos también se conocen con el nombre de tangentes, si se trata del tramo recto que queda entre dos curvas se le llama entretangencia- hasta cualquiera de los puntos de tangencia de la curva (PC o PT). Radio [R]: El de la circunferencia que describe el arco de la curva. Cuerda larga [CL]: Línea recta que une al punto de tangencia donde comienza la curva (PC) y al punto de tangencia donde termina (PT). Externa [E]: Distancia desde el PI al punto medio de la curva sobre el arco.

Upload: chachitolove

Post on 04-Dec-2015

218 views

Category:

Documents


2 download

DESCRIPTION

curvas

TRANSCRIPT

Page 1: Guia Nº 5 Curvas Circulares

GUIA Nº 5 CURVAS CIRCULARES SIMPLES

Las curvas circulares simples se definen como arcos de circunferencia de un solo radio

que son utilizados para unir dos alineamientos rectos de una vía.

Una curva circular simple (CCS) está compuesta de los siguientes elementos:

Ángulo de deflexión [Δ]: El que se forma con la prolongación de

uno de los alineamientos rectos y el siguiente. Puede ser a la

izquierda o a la derecha según si está medido en sentido anti-horario

o a favor de las manecillas del reloj, respectivamente. Es igual al

ángulo central subtendido por el arco (Δ).

Tangente [T]: Distancia desde el punto de intersección de las tangentes (PI) -los

alineamientos rectos también se conocen con el nombre de tangentes, si se trata del

tramo recto que queda entre dos curvas se le llama entretangencia- hasta cualquiera de

los puntos de tangencia de la curva (PC o PT).

Radio [R]: El de la circunferencia que describe el arco de la curva.

Cuerda larga [CL]: Línea recta que une al punto de tangencia donde comienza la curva

(PC) y al punto de tangencia donde termina (PT).

Externa [E]: Distancia desde el PI al punto medio de la curva sobre el arco.

Ordenada Media [M] (o flecha [F]): Distancia desde el punto medio de la curva hasta

el punto medio de la cuerda larga.

Grado de curvatura [G]: Corresponde al ángulo central subtendido por un arco o una

cuerda unidad de determinada longitud, establecida como cuerda unidad (c) o arco

unidad (s). Ver más adelante para mayor información.

Page 2: Guia Nº 5 Curvas Circulares

Longitud de la curva [L]: Distancia desde el PC hasta el PT recorriendo el arco de la

curva, o bien, una poligonal abierta formada por una sucesión de cuerdas rectas de una

longitud relativamente corta. Ver más adelante para mayor información.

Ahora vamos a detenernos en dos aspectos con un poco más de detalle:

Grado de curvatura

Usando arcos unidad:

En este caso la curva se asimila como una sucesión de arcos pequeños (de longitud

predeterminada), llamados arcos unidad (s). Comparando el arco de una circunferencia

completa (2πR), que subtiende un ángulo de 360º, con un arco unidad (s), que subtiende

un ángulo Gs (Grado de curvatura) se tiene:

Usando cuerdas unidad:

Este caso es el más común para calcular y materializar (plasmar en el

terreno) una curva circular, pues se asume que la curva es una

sucesión de tramos rectos de corta longitud (también predeterminada

antes de empezar el diseño), llamados cuerda unidad (c). La

continuidad de esos tramos rectos se asemeja a la forma del arco de

la curva (sin producir un error considerable). Este sistema es mucho más usado porque

es más fácil medir en el terreno distancias rectas que distancias curvas (pregunta: ¿Se

pueden medir distancias curvas en el terreno utilizando técnicas de topografía?¿cómo?).

Tomando una cuerda unidad (c), inscrita dentro del arco de la curva se forman dos

triángulos rectángulos como se muestra en la figura, de donde:

Longitud de la curva

Page 3: Guia Nº 5 Curvas Circulares

A partir de la información anterior podemos relacionar longitudes con ángulos centrales,

de manera que se tiene:

Usando arcos unidad:

Usando cuerdas unidad:

La longitud de una cuerda unidad, o de un arco unidad, se toma comúnmente como 5

m , 10 m , ó 20 m .

Localización de una curva circular

Para calcular y localizar (materializar) una curva circular a menudo se utilizan ángulos

de deflexión.

Un ángulo de deflexión (δ) es el que se forma entre cualquier línea tangente a la curva

y la cuerda que va desde el punto de tangencia y cualquier otro punto sobre la curva.

Como se observa en la figura, el ángulo de deflexión (δ) es igual a la mitad del ángulo

central subtendido por la cuerda en cuestión (Φ).

Entonces se tiene una deflexión para cada cuerda unidad, dada por:

Es decir, se puede construir una curva con deflexiones sucesivas desde el PC, midiendo

cuerdas unidad desde allí. Sin embargo, rara vez las abscisas del PC o del PT son

cerradas (múltiplos exactos de la cuerda unidad), por lo que resulta más sencillo calcular

una subcuerda desde el PC hasta la siguiente abscisa cerrada y, de igual manera, desde

la última abscisa cerrada antes del PT hasta él.

Page 4: Guia Nº 5 Curvas Circulares

Para tales subcuerdas se puede calcular una deflexión conociendo primero la deflexión

correspondiente a una cuerda de un metro (1 m ) de longitud δm:

Entonces la deflexión de las subcuerdas se calcula como:

δsc = δm · Longitud de la subcuerda

La deflexión para el PT, desde el PC, según lo anotado, debe ser igual al la mitad del

ángulo de deflexión de la curva:

δPT = Δ/2

Lo cual sirve para comprobar la precisión en los cálculos o de la localización en el

terreno.

Ejemplo

Para una curva circular simple se tienen los siguientes elementos:

Rumbo de la tangente de entrada: N 76º20′ E

Rumbo de la tangente de salida: N 19º40′ E

Abscisa del punto de intersección de las tangentes, PI: k2+226

Coordenadas del PI: 800 N , 700 E

Cuerda unidad: 20 m

Radio de curvatura: 150 m

Calcular los elementos geométricos de la curva.

Solución

Elementos geométricos de la curva

El ángulo de deflexión de la curva está dado por la diferencia de los rumbos de los

alineamientos (no siempre es así, en este caso sí porque los dos están en el mismo

cuadrante NE):

Δ = 76º20′ – 19º40′ = 56º40′ Izquierda

(A la izquierda porque el rumbo de la tangente de salida es menor que el de la de

entrada)

Conociendo el radio y el ángulo de deflexión se pueden calcular los demás elementos

geométricos:

Page 5: Guia Nº 5 Curvas Circulares

Tangente: T = R · Tan (Δ/2)

Grado de curvatura: Gc = 2 · Sen-1[ c / (2R) ]

Longitud de la curva: Lc = c·Δ/Gc

Cuerda Larga: CL = 2·RSen(Δ/2)

Externa: E = R(1/Cos(Δ/2) – 1)

Ordenada Media (Flecha): M = R[1 - Cos(Δ/2)]

Deflexión por cuerda: 

Deflexión por metro: