halo interactions in the horizon run 4...

34
Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park & J. Kim (2015), MNRAS 451, 527 B. L’Huillier, C. Park & J. Kim (2016) MNRAS subm. Benjamin L’Huillier (KIASKASI) (, ) with Changbom Park & Juhan Kim (KIAS) Future Sky Surveys and Big Data 2016-04-25, KASI

Upload: others

Post on 13-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Halo interactions

in the Horizon Run 4 simulationB. L’Huillier, C. Park & J. Kim (2015), MNRAS 451, 527

B. L’Huillier, C. Park & J. Kim (2016) MNRAS subm.

Benjamin L’Huillier (KIAS→ KASI)

(루이리예, 벤자민)

with Changbom Park & Juhan Kim (KIAS)

Future Sky Surveys and Big Data

2016-04-25, KASI

Page 2: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Outline

1 Introduction

2 Simulation and method

3 Halo interaction rate in the Horizon Run 4

4 Alignment of interacting haloes

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 2 / 26

Page 3: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Outline

1 Introduction

2 Simulation and method

3 Halo interaction rate in the Horizon Run 4

4 Alignment of interacting haloes

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 3 / 26

Page 4: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Motivations

ΛCDM predicts hierarchical structure formation: halo mergers

Galaxy mergers and interactions are observed

Merger can trigger star-formation, morphological transformations, fuel central

black-hole, . . .

Distant interactions also matter (Park et al 2008, Hwang & Park 2015)

Major merger have a dramatic impact (morphology transformation, significant mass

increase; e.g., Toomre & Toomre 1972)

Minor mergers also matter: more frequent (Bournaud et al 2007)

How about flybys? Not much studied (notable exception: Sinha &

Holley-Bockelmann 2012)

Role of the environment: voids, walls, filaments, clusters

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 4 / 26

Page 5: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Motivations

ΛCDM predicts hierarchical structure formation: halo mergers

Galaxy mergers and interactions are observed

Merger can trigger star-formation, morphological transformations, fuel central

black-hole, . . .

Distant interactions also matter (Park et al 2008, Hwang & Park 2015)

Major merger have a dramatic impact (morphology transformation, significant mass

increase; e.g., Toomre & Toomre 1972)

Minor mergers also matter: more frequent (Bournaud et al 2007)

How about flybys? Not much studied (notable exception: Sinha &

Holley-Bockelmann 2012)

Role of the environment: voids, walls, filaments, clusters

Main questions

How do haloes interact within the large-scale structures?

How do interactions shape haloes?

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 4 / 26

Page 6: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Flybys in cosmological simulations

Sinha & Holley-Bockelmann (2012):

importance of flybys?

N-body simulation:

Merger dominant at high z

For massive haloes (> 1011) and

z < 2, flybys important

Small box (50 h−1Mpc: large-scale

effects?)

Down to z = 1

Observationally: close pairs as a

proxy for merger rate. What about

flybys? (cf. Tonnensen & Cen 2012)

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 5 / 26

Page 7: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Outline

1 Introduction

2 Simulation and method

The Horizon Run 4 simulation

Background density

Definitions

3 Halo interaction rate in the Horizon Run 4

4 Alignment of interacting haloes

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 6 / 26

Page 8: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

The Horizon Run 4 simulation

Horizon Run 4 (J. Kim et al 2015, JKAS)

N-body simulation using the GOTPM code in a WMAP5 cosmology

8000 CPU cores, 50 days at KISTI (Korea).

L = 3.15 h−1Gpc, N = 63003 (d̄ = 0.5 h−1Mpc)

2LPT, zini = 100, 2000 timesteps

70 outputs, lightcone up to z = 1.39, merger trees

Catalogues

Haloes detected with OPFOF, and subhaloes with PSB

Minimum subhalo mass (20 particles): 1.8 × 1011 h−1M⊙

Use of a target (MT > 5 × 1011 h−1M⊙) and neighbour (MN > 2 × 1011 h−1M⊙)

catalogue

Hereafter, “haloes” refer to PSB subhaloes (↔ galaxies)

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 7 / 26

Page 9: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Large-scale densityB. L’Huillier, C. Park and J. Kim (2015) MNRAS 451, 527

To quantify the environment: ρ20: density over

20 neighbours

ρ20 =

20∑

i=1

MiW (ri , h),

where ri is the distance to the i th neighbour, Mi

its mass, W the SPH spline kernel, and h the

smoothing length.

Normalisation by ρ̄ =∑

N Mi :

1 + δ = ρ20/ρ̄

0 50 100 150x (h−1Mpc)

0

50

100

150

y(h−1Mpc)

z=0

0 50 100 150x (h−1Mpc)

0

50

100

150

y(h−1Mpc)

z=1

All haloes 10<1+δ<30 1+δ>100

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 8 / 26

Page 10: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Definitions

InteractionsA target T is interacting if

it is located with the virial radius of its neighbour N

if MN> 0.4 MT

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 9 / 26

Page 11: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Outline

1 Introduction

2 Simulation and method

3 Halo interaction rate in the Horizon Run 4

Influence of the large-scale density

Interaction rate as a function of the mass and density

Dependence on the mass ratio and distance

A closer look at the oblique branch

4 Alignment of interacting haloes

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 10 / 26

Page 12: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Interaction rate: background densityB. L’Huillier, C. Park and J. Kim 2015, MNRAS 451, 527

10-1310-1210-1110-1010-910-810-710-610-510-410-310-210-1100

Ptarget(δ)

z=0.0

z=0.5

z=1.0

z=1.5

10-5

10-4

10-3

10-2

10-1

100

Γ(δ)

z=2.0

z=3.1

z=4.0

z=5.0

10-2 10-1 100 101 102 103 104 105

1+δ

100101102103104105106107

Ninter

Targets = all subhalos with

M > 5 × 1011 h−1M⊙

Background density: smoothed over 20

neighbours:

ρ20 =

20∑

i=1

Mi W (ri , h),

Top: PDF of the density of interacting

targets

Middle: fraction of targets that are

interacting

Bottom: Number of interaction per bin

Interactions occurs at 1 + δ ≃ 103

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 11 / 26

Page 13: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Mass and density dependence of the interaction fractionB. L’Huillier, C. Park and J. Kim 2015, MNRAS 451, 527

Fit:Γ(M|δ, z) = A0 erfc

(

b log10

(

M

M∗

))

10-1

100

101

102

103

104

1+δ

Targets Interactions

1012 1013 1014 1015

M (h−1M⊙)

10-1

100

101

102

103

104

1+δ

Interaction rate

1012 1013 1014 1015

M (h−1M⊙)

Fit

100

101

102

103

104

105

106

f(M,δ)

10-4

10-3

10-2

10-1

100

Γ(M

,δ)

z=0.0

A0, M∗, and b dependence on (δ, z):

1012

1013

1014

M∗(h

−1M

⊙) z=0.0

z=0.5

z=1.0

z=1.5

z=2.0

10-3

10-2

10-1

100

A0

10-1 100 101 102 103 104

1+δ

012345

b

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 12 / 26

Page 14: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Mass and density dependence of the interaction fractionB. L’Huillier, C. Park and J. Kim 2015, MNRAS 451, 527

Fit:Γ(M|δ, z) = A0 erfc

(

b log10

(

M

M∗

))

10-1

100

101

102

103

104

1+δ

Targets Interactions

1012 1013 1014 1015

M (h−1M⊙)

10-1

100

101

102

103

104

1+δ

Interaction rate

1012 1013 1014 1015

M (h−1M⊙)

Fit

100

101

102

103

104

105

106

f(M,δ)

10-4

10-3

10-2

10-1

100

Γ(M

,δ)

z=0.5

A0, M∗, and b dependence on (δ, z):

1012

1013

1014

M∗(h

−1M

⊙) z=0.0

z=0.5

z=1.0

z=1.5

z=2.0

10-3

10-2

10-1

100

A0

10-1 100 101 102 103 104

1+δ

012345

b

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 12 / 26

Page 15: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Mass and density dependence of the interaction fractionB. L’Huillier, C. Park and J. Kim 2015, MNRAS 451, 527

Fit:Γ(M|δ, z) = A0 erfc

(

b log10

(

M

M∗

))

10-1

100

101

102

103

104

1+δ

Targets Interactions

1012 1013 1014 1015

M (h−1M⊙)

10-1

100

101

102

103

104

1+δ

Interaction rate

1012 1013 1014 1015

M (h−1M⊙)

Fit

100

101

102

103

104

105

106

f(M,δ)

10-3

10-2

10-1

100

Γ(M

,δ)

z=1.0

A0, M∗, and b dependence on (δ, z):

1012

1013

1014

M∗(h

−1M

⊙) z=0.0

z=0.5

z=1.0

z=1.5

z=2.0

10-3

10-2

10-1

100

A0

10-1 100 101 102 103 104

1+δ

012345

b

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 12 / 26

Page 16: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Mass and density dependence of the interaction fractionB. L’Huillier, C. Park and J. Kim 2015, MNRAS 451, 527

Fit:Γ(M|δ, z) = A0 erfc

(

b log10

(

M

M∗

))

10-1

100

101

102

103

104

1+δ

Targets Interactions

1012 1013 1014 1015

M (h−1M⊙)

10-1

100

101

102

103

104

1+δ

Interaction rate

1012 1013 1014 1015

M (h−1M⊙)

Fit

100

101

102

103

104

105

106

f(M,δ)

10-4

10-3

10-2

10-1

100

Γ(M

,δ)

z=1.5

A0, M∗, and b dependence on (δ, z):

1012

1013

1014

M∗(h

−1M

⊙) z=0.0

z=0.5

z=1.0

z=1.5

z=2.0

10-3

10-2

10-1

100

A0

10-1 100 101 102 103 104

1+δ

012345

b

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 12 / 26

Page 17: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Mass and density dependence of the interaction fractionB. L’Huillier, C. Park and J. Kim 2015, MNRAS 451, 527

Fit:Γ(M|δ, z) = A0 erfc

(

b log10

(

M

M∗

))

10-1

100

101

102

103

104

1+δ

Targets Interactions

1012 1013 1014 1015

M (h−1M⊙)

10-1

100

101

102

103

104

1+δ

Interaction rate

1012 1013 1014 1015

M (h−1M⊙)

Fit

100

101

102

103

104

105

106

f(M,δ)

10-3

10-2

10-1

100

Γ(M

,δ)

z=2.0

A0, M∗, and b dependence on (δ, z):

1012

1013

1014

M∗(h

−1M

⊙) z=0.0

z=0.5

z=1.0

z=1.5

z=2.0

10-3

10-2

10-1

100

A0

10-1 100 101 102 103 104

1+δ

012345

b

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 12 / 26

Page 18: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Time evolution of the interaction rateB. L’Huillier, C. Park and J. Kim 2015, MNRAS 451, 527

0.0

0.2

0.4

0.6

0.8

1.0

Γinter

δ<∆1

∆1 δ<∆2

δ≥∆2

A=0.6892, B=0.006, γ=4.41

A=0.6448, B=0.021, γ=3.85

A=0.5910, B=0.157, γ=3.15

0.0

0.2

0.4

0.6

0.8

1.0

Γinter

δ<∆1

∆1 δ<∆2

δ≥∆2

A=0.6865, B=0.005, γ=4.34

A=0.6421, B=0.018, γ=3.70

A=0.5767, B=0.140, γ=3.08

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

a

0.0

0.2

0.4

0.6

0.8

1.0

Γinter

δ<∆1

∆1 δ<∆2

δ≥∆2

A=0.6433, B=0.006, γ=3.54

A=0.5970, B=0.019, γ=3.14

A=0.5624, B=0.078, γ=2.75

M0<M

TM

1M

1<M

TM

2M

T>M

2

Γ/B

Γ(a) = B exp

(

(

1 − a

A

)γ)

Increasing rate

At “fixed” mass bin

Final interaction rate (B)

higher for higher density

Rates saturates earlier at lower

densities

At “fixed” density

B decreases with MT for the

largest density bin

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 13 / 26

Page 19: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

10-2

10-1

100

p=d/R

vir,nei

δ<∆1 ∆1 δ<∆2 δ≥∆2

10-2

10-1

100

p=d/R

vir,nei

100 101 102 103

q=MN/MT

10-2

10-1

100

p=d/R

vir,nei

100 101 102 103

q=MN/MT

100 101 102 103

q=MN/MT

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

f(p,q|δ,M

T,z)

MT>M

2(z)

M1(z)<M

TM

2(z)

M0(z)<M

M1(z)

z=2.0

d2N = f (p, q|MT, δ, z)dp dq

Sep

arat

ion

Mass ratio

Page 20: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

10-2

10-1

100

p=d/R

vir,nei

δ<∆1 ∆1 δ<∆2 δ≥∆2

10-2

10-1

100

p=d/R

vir,nei

100 101 102 103

q=MN/MT

10-2

10-1

100

p=d/R

vir,nei

100 101 102 103

q=MN/MT

100 101 102 103

q=MN/MT

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

f(p,q|δ,M

T,z)

MT>M

2(z)

M1(z)<M

TM

2(z)

M0(z)<M

M1(z)

z=1.0

d2N = f (p, q|MT, δ, z)dp dq

Sep

arat

ion

Mass ratio

Page 21: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

10-2

10-1

100

p=d/R

vir,nei

δ<∆1 ∆1 δ<∆2 δ≥∆2

10-2

10-1

100

p=d/R

vir,nei

100 101 102 103

q=MN/MT

10-2

10-1

100

p=d/R

vir,nei

100 101 102 103

q=MN/MT

100 101 102 103

q=MN/MT

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

f(p,q|δ,M

T,z)

MT>M

2(z)

M1(z)<M

TM

2(z)

M0(z)<M

M1(z)

z=0.0

d2N = f (p, q|MT, δ, z)dp dq

Sep

arat

ion

Mass ratio

Page 22: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

A closer look at the oblique branch

1.0 0.5 0.0 0.5 1.0

cosθ

10-1

100

101

PDF

0.4<p<0.6

q<1.0

q>3.0

1.0 0.5 0.0 0.5 1.0

cosθ

10-1

100

1011<q<3

p<0.4

p>0.6

θ = (r, v)

Low q: flatter distribution: more

random; fewer infalling orbits

Low p: flatter distribution, fewer

receding orbits

100 101 102 103

q=MT/MN

10-1

100

p=d/R

vir,nei

cosθ>0.5

100 101 102 103

q=MT/MN

−0.5<cosθ<0.5

100 101 102 103

q=MT/MN

cosθ<−0.5

1012 1013 1014 1015

MN (h−1M⊙)

10-2

10-1

100

d(h

−1Mpc

1012 1013 1014 1015

MN (h−1M⊙)

1012 1013 1014 1015

MN (h−1M⊙)

10-19

10-18

10-17

10-16

10-15

10-14

10-13

f(p,q|δ,M

T,z)

the oblique branch corresponds to

radial orbits: 1st infall

0.5 < cos θ < 0.5: random motions

after 1st infall, oblique branch less

prominent.

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 17 / 26

Page 23: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Outline

1 Introduction

2 Simulation and method

3 Halo interaction rate in the Horizon Run 4

4 Alignment of interacting haloes

Motivations

Alignment of the major axes of interacting pairs

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 18 / 26

Page 24: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

MotivationsL’Huillier, Park & Kim MNRAS subm.

Galaxies form within the cosmic web: properties must be related to their

environment

The study of the alignment of the spins and shapes of haloes can shed light

on galaxy formation within their environments

Alignment as a probe of the large-scale structures

Intrinsic alignment: source of systematics for weak lensing analysis

From simulations: spins aligned with the intermediate axis of the tidal tensor

Wang et al (2011)

mass dependence: low-mass (massive) haloes have their spin parallel

(orthogonal) to filaments Hahn et al (2007),

Haloes in sheets have their spin in the plane

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 19 / 26

Page 25: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

MethodL’Huillier, Park & Kim MNRAS subm.

To detect an alignment signal of an angle θ = (u, v) , following Yang et al 2006,

we used the normalised pair count:

Count the number of pairs N(θ) with angle θ

for Nrand ≃ 200, calculate⟨

NR(θ)⟩

and σθ the mean and std deviation of

random permutations of u.

We look at f (θ) = N(θ)/⟨

NR(θ)⟩

If f ≡ 1: No alignment (random)

If f (cos θ ≃ ±1) ≫ 1 : Alignment (parallel/anti parallel)

If f (cos θ ≃ 0) ≫ 1: Anti-alignment (orthogonal)

the strength of the signal (error bars) is given by σθ/⟨

NR(θ)⟩

.

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 20 / 26

Page 26: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Shapes

T

N

γ

ε

aT

aN

r

γ = (aT, r): angle between major axis (target) and direction neighbour

ε = (aN, r): angle major between the major axis of the neighbour and the direction

of the target

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 21 / 26

Page 27: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

10-1

100

101

f(cosγ)

δ<∆1(z) ∆1(z)<δ<∆2(z) δ>∆2(z)

10-1

100

101

f(cosγ)

0.2 0.4 0.6 0.8

cosγ

10-1

100

101

f(cosγ)

z=4.0

z=3.1

z=2.0

0.2 0.4 0.6 0.8

cosγ

z=1.5

z=1.0

0.2 0.4 0.6 0.8

cosγ

z=0.5

z=0.0

M0(z)<M<M

1(z)

M1(z)<M<M

2(z)

M>M

2(z)

Higher densities

Hig

her

masses

γ = (aT, r); qT < 0.8

Alignment stronger at low-δ and low-z; little mass dependence

Major axis aligned with the direction of the neighbour

Page 28: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Spins

T

N

φ

JT

α

JN

r

α = (JT, r): angle between spin target and direction neighbour

φ = (JT, JN): angle between target and neighbour neighbour spins

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 23 / 26

Page 29: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

0.5

1.0

1.5

2.0

2.5

f(cosφ)

δ<∆1(z) ∆1(z)<δ<∆2(z) δ>∆2(z)

0.5

1.0

1.5

2.0

2.5f(cosφ)

0.5 0.0 0.5

cosφ

0.5

1.0

1.5

2.0

2.5

f(cosφ)

z=4.0

z=3.1

z=2.0

0.5 0.0 0.5

cosφ

z=1.5

z=1.0

0.5 0.0 0.5

cosφ

z=0.5

z=0.0

M0(z)<M<M

1(z)

M1(z)<M<M

2(z)

M>M

2(z)

Higher densities

Hig

her

masses

φ = (JT, JN)

Strong time evolution, inversion of tendence: towards an alignment of spins.

High-δ: weak alignment → strong

Low-δ: spins para and anti-para → para

Page 30: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Alignment of prolate pairs

45°

90°

135°

180°

225°

270°

315°

γ

z=0.0

45°

90°

135°

180°

225°

270°

315°

γ

z=1.0

γ = (aT, r); ε = (aN, r);

Neighbours are drawn at their angular

position γ proportionaly to P(γ).

Neighbours located in the direction of

the major axis

Neighbours point toward the Target

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 25 / 26

Page 31: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Alignment of prolate pairs

45°

90°

135°

180°

225°

270°

315°

γ

z=0.0

45°

90°

135°

180°

225°

270°

315°

γ

z=1.0

10-1

100

101

PDF

z=0

0.00<p<0.66

γ=8.1 ◦

γ=59.3 ◦

γ=89.4 ◦

z=0

0.85<p<1.00

γ=8.1 ◦

γ=59.3 ◦

γ=89.4 ◦

0.0 0.2 0.4 0.6 0.8cosǫ

10-1

100

101

PDF

z=1

0.0 0.2 0.4 0.6 0.8cosǫ

z=1

γ = (aT, r); ε = (aN, r);

Neighbours are drawn at their angular

position γ proportionaly to P(γ).

Neighbours located in the direction of

the major axis

Neighbours point toward the Target

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 25 / 26

Page 32: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Summary and perspectives

The unprecedented statistics of HR4 enable us to study the the interaction rate and

the halo alignment as a function of the environment

The angular position neighbour is aligned with the major axis of the target

Alignment signal stronger at low redshift, increases with density, independent of

mass

Comparison with observations: SDSS (in progress)

Inclusion of hydrodynamics: morphological transformation, star formation,

misalignment galaxy/halo:

How does modified gravity affects interactions? (In progress)

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 26 / 26

Page 33: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Summary and perspectives

The unprecedented statistics of HR4 enable us to study the the interaction rate and

the halo alignment as a function of the environment

The angular position neighbour is aligned with the major axis of the target

Alignment signal stronger at low redshift, increases with density, independent of

mass

Comparison with observations: SDSS (in progress)

Inclusion of hydrodynamics: morphological transformation, star formation,

misalignment galaxy/halo:

How does modified gravity affects interactions? (In progress)

감사합니다!

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 26 / 26

Page 34: Halo interactions in the Horizon Run 4 simulationcosmology.kasi.re.kr/fssbd2016/talks/lhuillier.pdf · Halo interactions in the Horizon Run 4 simulation B. L’Huillier, C. Park &

Target selection

At z = 4, find M2(z = 4) the median mass

of the targets. This defines two subsamples

of equal numbers.

Divide them into three equal subsamples

according to the density with ∆2,1, ∆2,2.

At lower z , find Mi(z) and

∆j,i(z) (i ∈ {0, 1, 2}, j ∈ {1, 2}) that yield

the same number of targets per bin.

About 4M targets per bin of (M, δ)

1 2 3 5 61011

1012

1013

M(z)h−1

M⊙

M0 (z)

M1 (z)

M2 (z)

1 2 3 4 5

1+z

100

101

102

103

∆i,j(z)

∆1,0(z)

∆1,1(z)

∆1,2(z)

∆2,0(z)

∆2,1(z)

∆2,2(z)

Redshift-evolution of Mi (z) and ∆j,i (z)

Benjamin L’Huillier (KIAS) Halo interactions 2016-04-25 1 / 1