handout4 bernouli

20
APLIKASI BERNOULLI PADA Saluran Kovergen/Divergen Diffuser, Sudden expansion Fluida gas Flowmeter : Pitot tube, Orificemeter, Venturimeter, Rotameter

Upload: miasarisetiawan

Post on 24-Nov-2015

11 views

Category:

Documents


2 download

DESCRIPTION

mekanika fluida

TRANSCRIPT

  • APLIKASI BERNOULLI PADA Saluran Kovergen/Divergen Diffuser,

    Sudden expansion

    Fluida gas

    Flowmeter : Pitot tube, Orificemeter, Venturimeter,

    Rotameter

  • PERS.BERNOULLI

    dm

    dQu

    dm

    dWVgz

    P other)(2

    2

    Steady

    Fdm

    dWVgz

    P other

    )(2

    2

    inin

    sys

    dmV

    gzP

    uV

    gzumd )()(22

    22

    otheroutoutdWdQdm

    Vgz

    Pu )(

    2

    2

  • PERS.BERNOULLI

    Fdm

    dWVgz

    P other

    )(2

    2

    g

    F

    gdm

    dW

    g

    Vz

    g

    P other

    )(2

    2

    HEAD FORM OF BERNOULLI EQUATION

  • DIFFUSER Cara untuk untuk memperlambat kecepatan aliran

    FA

    AVPP

    2

    2

    1

    1

    2

    112 1

    2

    Fdm

    dWVgz

    P other

    )(2

    2

    V1,P1,A1 V2,P2,A2

    z1-z2

    1

    2

  • SUDDEN EXPANSIONS Cara untuk untuk memperlambat kecepatan aliran

    FV

    PP 2

    2

    112

    1 2

    P1,V1 P2,V2=0 z1-z2

    Fdm

    dWVgz

    P other

    )(2

    2

  • BERNOULLI UNTUK GAS

    Fdm

    dWVgz

    P other

    )(2

    2

    M

    RTvP 111

    1

    VR,PR P1,V1 21

    1

    )(2

    atmR PPV

    21

    1

    11 )(

    2

    atmR PP

    MP

    RTV

    -------------------- P1-Patm V (ft/s)

    Psia (Eq.5.17)

    --------------------------

    0.001 35

    0.1 111

    0.3 191

    0.6 267

    1.0 340

    2.0 467

    5.0 679

    )1()1(

    2

    2 11

    2

    1

    T

    T

    kRkT

    MV R

    (Eq.5.17)

    1

    11

    kk

    RR

    T

    T

    P

    P

    Patmosfir

    MP

    RTv

    1

    1

    1

    1

    1

    Eq.in Chap.8

    ------------- V(ft/s)

    (Eq.in Chap.8)

    ---------

    35

    111

    191

    269

    344

    477

    714

  • BERNOULLI FOR FLUID FLOW MEASUREMENT

    PITOT TUBE

    FVPP

    2

    2

    112

    )(

    212 hhgPP atm

    21 ghPP atm 2111 22 FghV

    2111 2ghV

    1 2

    h1

    h2

    Fdm

    dWVgz

    P other

    )(2

    2

  • VENTURIMETER

    Fdm

    dWVgz

    P other

    )(2

    2

    bP

    V1,P1

    V2,P2

    1 2

    Manometer

    1

    2

    1 2

    ( )

    ( )

    a b

    a f

    b f

    f

    P P

    P P gx

    P P g x h gh

    P P gh

    21

    2

    1

    2

    2

    122

    1

    2

    AA

    PPV

    )(

    21

    2

    1

    2

    2

    212

    1

    2

    AA

    PPCV v

    h

    1 2

    2 2 2

    2 1

    2

    1

    f

    v

    ghV C

    A A

  • Venturi Flowmeter

    The classical Venturi tube (also known as the Herschel Venturi

    tube) is used to determine flowrate through a pipe. Differential

    pressure is the pressure difference between the pressure

    measured at D and at d

    D d Flow

  • ORIFICEMETER

    2 1

    Orifice plate

    Circular drilled hole

    where, Co - Orifice coefficient

    - Ratio of CS areas of upstream to that of down stream Pa-Pb - Pressure gradient across the orifice meter

    - Density of fluid

  • ORIFICEMETER

    where, Co - Orifice coefficient

    - Ratio of CS areas of upstream to that of down stream Pa-Pb - Pressure gradient across the orifice meter

    - Density of fluid

  • incompressible flow through an orifice

  • compressible flow through an orifice

    Y is 1.0 for incompressible fluids and it can be calculated for compressible gases.[2]

    For values of less than 0.25, 4 approaches 0 and the last bracketed term in the above equation approaches 1. Thus, for the large majority of orifice plate installations:

    Y = Expansion factor, dimensionless

    r = P2 / P1

    k = specific heat ratio (cp / cv), dimensionless

  • compressible flow through an orifice

  • compressible flow through an orifice

    k = specific heat ratio (cp / cv), dimensionless

    = mass flow rate at any section, kg/s

    C = orifice flow coefficient, dimensionless

    A

    2 = cross-sectional area of the orifice hole, m

    1 = upstream real gas density, kg/m

    P1 = upstream gas pressure, Pa with dimensions of kg/(ms)

    P2 = downstream pressure in the orifice hole, Pa with dimensions of kg/(ms)

    M = the gas molecular mass, kg/kmol (also known as the molecular weight)

    R = the Universal Gas Law Constant = 8.3145 J/(molK)

    T1 = absolute upstream gas temperature, K

    Z = the gas compressibility factor at P1 and T1, dimensionless

  • Sudden Contraction

    (Orifice Flowmeter)

    Orifice flowmeters are used to determine a

    liquid or gas flowrate by measuring the

    differential pressure P1-P2 across the orifice

    plate

    Q Cd A22( p1 p2)

    (1 2 )

    1/ 2

    0.6 0.65 0.7

    0.75 0.8

    0.85 0.9

    0.95 1

    102 105 106 107

    Re

    Cd

    Reynolds number based on orifice diameter Red

    P1 P2

    d D

    Flow

    103 104

  • 1

    2

    3

    2

    Solid ball with

    diameter D0 Density B

    Fluid with density F

    z=0

    Tansparent tapered tube

    with diameter D0+Bz

    ROTAMETER

    bawahtekananboyancyatastekanangravity FFFF 0

    2

    01

    3

    0

    2

    03

    3

    066

    0 DPgDDPgD fb

  • 1

    2

    3

    2

    Solid ball D0 Density B

    F z=0

    D0+Bz

    ROTAMETER

    Fdm

    dWVgz

    P other

    )(2

    2

    2 2 2 2

    2 1 2 21 2 2

    1

    ( ) (1 )2 2 2

    f f

    V V V AP P

    A

    2

    1

    02

    3

    f

    fbgDV

    zBDD .0

    202

    02 .4

    DzBDA

    2

    01

    3

    0

    2

    03

    3

    066

    0 DPgDDPgD fb

    3 2

    0 0 1 3( ) ( )6

    b fD g D P P

    01 2( ) ( )

    6b f

    Dg P P

    3 2 jika P P

    2

    2

    2

    1

    0A

    jikaA

    2

    21 2

    2f

    VP P

    Only one possible value that keep the

    ball steaduly suspended

  • 1

    2

    3

    2

    Solid ball D0 Density B

    F z=0

    D0+Bz

    ROTAMETER

    2 2 2Q V A

    2

    1

    02

    3

    f

    fbgDV

    zBDD .0

    202

    02 .4

    DzBDA

    For any rate the ball must move to that

    elevation in the tapered tube where

    2

    2 [ 2 ( . ]4

    A Bz B z

    22

    A Bz

    2 2

    2Q V Bz

    2. 0B z

    The height z at which the ball stands, is linearly proportional to

    the volumetric flowrate Q

  • TEKANAN ABSOLUT NEGATIF ?

    40ft

    10ft 1

    2

    3

    1 2

    3 1 32 ( ) 2(32.2)(10) 25.3 /V g h h ft s

    )( 22

    2

    212

    2zzg

    VPP

    214.7 21.6 6.9 / 47.6lbf in kPa

    ? negatif

    Fdm

    dWVgz

    P other

    )(2

    2

    Applying the equation between point 1 and 3

    Applying the equation between point 1 and 2

    This flow is physically impossible. It is unreal

    Because the siphone can never lift water more than 34 ft (10.4 m)

    above the water surface

    It will not flow at all