hiroki nakamura (waseda u). makoto sakuda (okayama u.) ryoichi seki (csun,caltech)

24
Comparison of quasi-el astic cross sections u sing spectral function s with (e,e') data from 0.5 GeV to 1.5 Ge V Hiroki Nakamura (Waseda U). Makoto Sakuda(Okayama U.) Ryoichi Seki(CSUN,Caltech)

Upload: kedem

Post on 12-Jan-2016

41 views

Category:

Documents


2 download

DESCRIPTION

Comparison of quasi-elastic cross sections using spectral functions with (e,e') data from 0.5 GeV to 1.5 GeV. Hiroki Nakamura (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech). Introduction. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

Comparison of quasi-elastic cross sections using spectral functions

with (e,e') data from 0.5 GeV to 1.5 GeV

Hiroki Nakamura (Waseda U).

Makoto Sakuda(Okayama U.)

Ryoichi Seki(CSUN,Caltech)

Page 2: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

Introduction

• Goal is to calculate -A (mainly quasi-elastic) cross sections with appropriate Nuclear Effects and Form Factors.

• Nuclear Effects and Form Factors are verified with comparing C,O(e,e’) data.

• Spectral function vs. Fermi Gas model (NuInt04 hep-ph/0409300 )• The latest form factors are compared with dipole form f

actor.• Pauli blocking and Final State Interaction.

Page 3: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

Vertex Correction Final State InteractionInitial State

Nuclear Effect on QE -A

-A reaction ~ -N with Nuclear Effect

• 3 Stages of Nuclear Effect

`Quasi-elastic

Fermi gas, spectral function Pauli blocking, optical potential

Page 4: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

Quasielastic -A and e-A

• Comparison Nuclear Effect between -A and e-A– Initial State of Nucleons: Same

• Fermi gas, Spectral function

– Final State Interaction: Same • Pauli Blocking, Optical potential,…

• Information obtained from e-A – Vector Form Factors

– Initial State of Nucleons

– FSI

Page 5: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

Differential Cross Section

• A(e,e’) cross section

p: initial nucleon momentum, q: momentum transfer, : energy transfer

d¾dE 0d­

=k0

8(2¼)4MAE

Zd3pF(p;q;! )

X

spin

jM eN j2

1

d¾dE`d­ `

=k`

8(2¼)4MAEº

Zd3pF(p;q; ! )

X

spin

jM ºN j2

p: initial nucleonmomentum, q: momentum transferImaginary part of 1h1pGreen'sfunction ( involvingall nuclear e®ects)

F (p;q;! ) =hAjaypap+q±(H ¡ MA ¡ ! )ayp+qapjAi

Approximation : 1p1h! convolution of 1pand 1h

F (p;q;! ) =1

2MA

Zd! 0Ph(p; ! 0)Pp(p+q;! ¡ ! 0)

Ph =hAjayp±(H ¡ MA ¡ ! )apjAi à Initial Stateof Nucleon (1h)Pp =hAjap+q±(H ¡ MA ¡ ! )ayp+qjAi à Final State Interaction (1p)

2

Page 6: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

Form Factors

• The latest form factors are used.Brash et al., PRC65,051001(2002). Bosted PRC51,409(199

5)

• Axial form factor: dipole

GpM (Q2) = [1+0:116Q+2:874Q2 +0:241Q3+1:006Q4 +0:345Q5)]¡ 1

GpE (Q

2) = (1¡ 0:130(Q2 ¡ 0:04D0))GpM (Q2)

(Q in GeV)

4

FA(Q2) = ¡ 1:26£ (1+Q2=(1:07GeV)2)¡ 2

4

Page 7: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

Fermi Gas Model

• Non-interacting and uniform Fermi Gas Model (Moniz)

• Initial State : Fermi Gas

• Final State Interaction: Pauli BlockingPh(p;! ) = 1

Epµ(PF ¡ jpj)±(Ep +! )

Pp(p0; ! ) = 1E 0

pµ(jp0j ¡ PF )±(E 0

p ¡ ! )

Ep =pp2 +M 2 ¡ EB ; E 0

p =qp02+M 2

PF : Fermi momentum (225MeV for oxygen),EB : B̀inding' Energy (27MeV for oxygen)

5

Fermi Gas Pauli Blocking

Page 8: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

Spectral Function

• More realistic model than FG

• Initial State: realistic spectral function (Benhar et al.)

(single particle + correlation with local density approx.)

0.     300. P (MeV/c)

20.

40.

­­­E(MeV)

Ph (p; ! ) = 1Ep

P (p; ! )

Ph(p;! ) = 1Ep

P (p;! )Pp(p0;! ) = 1

E 0p±(E 0

p ¡ ! )

4

Probability of removing a nucleon of momentum p with excitation energy E.

Page 9: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

Momentum Distribution

• Momentum distribution of a nucleon in nucleus.

• Spectral function has long tail due to correlation.

dEEpPpnh ),()(

Page 10: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

Pauli Blocking for Spectral function model

• PWIA (no Pauli blocking)

• Simple Pauli Blocking ( same as FG)

• Modified Pauli BlockingPp(! ;p) =

1E0

p

np(p)±(E 0p ¡ ! )

np(p) =1¡ (2¼)3½nh(p)

1

Pp(! ;p) =1E0

p

np(p)±(E 0p ¡ ! )

np(p) =1¡ (2¼)3¹½nh(p)

1

Pp(! ;p) =1E0

p

np(p)±(E 0p ¡ ! )

np(p) =1¡ (2¼)3¹½nh(p)Z(Ph(! ;p) +Pp(! ;p))d! =

1(2¼)3½

1

Sum rule for uniform Nuclear Matter

~ 0.4 0

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

n p(p

)

p [MeV]

Page 11: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

Experimental Data

• 16O(e,e’) : E=700-1500 MeV =32 deg Anghinolfi et al., NPA602(’96),405.

• 12C(e,e’) : E=780 MeV =50.4 deg Garino et al., PRC45(’92),780.

E=500 MeV =60 deg Whittney et al., PRC9(’74),2230.

Page 12: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

QE Resonance

(e,e’): Fermi Gas vs. Spectral function

• Data: 16O(e,e’)E=1080 MeV=32 deg• FG > SF at peak.

SF agrees better with data.

• SF can explain ‘dip region’, because of ‘correlation’.

0 2 4 6 8

10 12 14 16 18

0 100 200 300 400 500 600d/d

d [

10-7

fm2 /M

eV]

[MeV]

E = 1080 MeV = 32 deg

Spectral func.Fermi Gas

O(e,e')

Page 13: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

16O(e,e’) =32 degE=700,880,1080,1200 MeV

0 10 20 30 40 50 60 70 80 90

0 100 200 300 400 500 600d/d

d [

10-7

fm2 /M

eV]

[MeV]

E = 700 MeV = 32 deg

Spectral func.Fermi Gas

O(e,e')

0

10

20

30

40

50

0 100 200 300 400 500 600d/d

d [

10-7

fm2 /M

eV]

[MeV]

E = 880 MeV = 32 deg

Spectral func.Fermi Gas

O(e,e')

0 2 4 6 8

10 12 14 16 18

0 100 200 300 400 500 600d/d

d [

10-7

fm2 /M

eV]

[MeV]

E = 1080 MeV = 32 deg

Spectral func.Fermi Gas

O(e,e')

0 2

4 6

8 10

12

0 100 200 300 400 500 600d/d

d [

10-7

fm2 /M

eV]

[MeV]

E = 1200 MeV = 32 deg

Spectral func.Fermi Gas

O(e,e')

Page 14: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

12C(e,e’) quasielastic

E=500MeV =60 deg

E=780 MeV =50.4 deg

Red: spectral func

Blue: Fermi Gas

0

5

10

0 100 200 300d/d

d [

10-7

fm2 /M

eV]

[MeV]

E = 500 MeV = 60 deg

SFFG

C(e,e')

0

5

0 100 200 300d/d

d [

10-7

fm2 /M

eV]

[MeV]

E = 780 MeV = 50.4 deg

Spectral func.Fermi GasC(e,e')

Page 15: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

16O(-) QE E=800 MeV

• d/dQ2

E=800MeV

– Blue:Fermi Gas

– Red: Spectral

Function+PWIA

– Green: Spectral

Function + Pauli

Blocking

• Pauli Blocking has large

effect at small Q.

0

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1 1.2 1.4

d/d

Q2 [1

0-18 fm

2 /MeV

2 ]

Q2 [GeV2]

E = 800 MeV

SFSF+PB

FG

Page 16: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

16O(-) QE E=800 MeV

• d/dE

E=800MeV

– Blue:Fermi Gas

– Red: Spectral Function +PWIA

– Green: Spectral Function + Pauli

Blocking

• Clear difference at peak

(FG > SP).

– FG has low-energy-transfer

nucleons more than SF.

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700 800

d/d

Ele

p [10

-14 fm

2 /MeV

]

Elep [MeV]

E = 800 MeV

SFSF+PB

FG

Page 17: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

16O(-) QE E=2000 MeV

• d/dEd/dQ2

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000

d/d

Ele

p [1

0-14 fm

2 /MeV

]

Elep [MeV]

E = 2000 MeV

SFSF+PB

FG

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.5 3 3.5 4

d/d

Q2 [1

0-18 fm

2 /MeV

2 ]

Q2 [GeV2]

E = 2000 MeV

SFSF+PB

FG

Page 18: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

Form Factor: Dipole vs. Latest

• The latest form factor make smaller cross sections at QE peak than dipole.

• Difference: < 10%

0 2 4 6 8

10 12 14 16 18

0 100 200 300 400 500 600d/d

d [

10-7

fm2 /M

eV]

[MeV]

E = 1080 MeV = 32 deg SF

Latest FFDipole FF

O(e,e')

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1 1.2 1.4

d/d

Q2 [

10-1

8 fm2 /M

eV2 ]

Q2 [GeV2]

E = 800 MeV

FGFG(Dipole)

(e,e’) ()

Page 19: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

Pauli Blocking for Spectral function model

• PWIA (no Pauli blocking)

• Simple Pauli Blocking ( same as FG)

• Modified Pauli BlockingPp(! ;p) =

1E0

p

np(p)±(E 0p ¡ ! )

np(p) =1¡ (2¼)3½nh(p)

1

Pp(! ;p) =1E0

p

np(p)±(E 0p ¡ ! )

np(p) =1¡ (2¼)3¹½nh(p)

1

Pp(! ;p) =1E0

p

np(p)±(E 0p ¡ ! )

np(p) =1¡ (2¼)3¹½nh(p)Z(Ph(! ;p) +Pp(! ;p))d! =

1(2¼)3½

1

Sum rule for uniform NM

~ 0.4 0

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

n p(p

)

p [MeV]

Page 20: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

Comparison of Pauli Blocking• Simple PB suppresses cross section at small Q2, more strongly than

Modified PB.

2

4

6

8

10

12

14

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

d/d

Q2 [1

0-18 fm

2 /MeV2 ]

Q2 [GeV2]

E = 800 MeV

SF+PWIASF+PBFG+PB

SF+MPB

O()

Page 21: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

Final State Interaction

• Simple approach is tried here.• Optical Potential Model Imaginary part of potential

On-shell condition of recoiled nucleon is changed:

=0.16 fm-3 Nuclear Matter density

NN= 40 mb Typical value of NN cross section

±(! ¡ E0p) !

W=¼(! ¡ E 0

p)2 +W2=4

13

±(! ¡ E 0p) !

W=¼(! ¡ E 0

p)2 +W2=4

W =12v½¾N N

13

Page 22: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

16O(e,e’) =32 deg: QE with FSI

• E=700,1080 MeV

Red: Spectral Function

Green: Fermi Gas

Blue: SF+FSI• SP +FSI < SP only• SP+FSI: broader width. • Difference 10%

at peak

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600

d/d

d [1

0-7fm

2 /MeV

]

[MeV]

E = 700 MeV = 32 deg

Spectral func.Fermi Gas

Spectral func. +FSIO(e,e')

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600

d/d

d [1

0-7fm

2 /MeV

]

[MeV]

E = 1080 MeV = 32 deg

Spectral func.Fermi Gas

Spectral func.+FSIO(e,e')

Page 23: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

Summary• Systematic comparison of the model calculation wi

th A(e,e’) data in the wide energy range with the latest form factors.

• (e,e’): SF agrees better with the experimental data than FG, in particular, at dip region.

• (,): More than 20 % difference between FG and SF shows at d/dE peak.

• Pauli blocking should be verified by forward e-A scattering data.

• Appropriate FSI is necessary.

Page 24: Hiroki Nakamura  (Waseda U). Makoto Sakuda (Okayama U.) Ryoichi Seki (CSUN,Caltech)

N- Form Factors

CV3 =

h(1+Q2=M 2

V)2(1+Q2=(4M 2

V ))i ¡ 1

(MV =840MeV)

CV4 =¡ M=WCV

3 ;CVi =0 (i 6=3;4)

7

CV3 =

h(1+Q2=M 2

V)2(1+Q2=(4M 2

V ))i ¡ 1

(MV =840MeV)

CV4 =¡ M=WCV

3 ;CVi =0 (i 6=3;4)

CA5 (Q

2) =1:2£h(1+Q2=M 2

V )2(1+Q2=(3M 2

V ))i ¡ 1

7

Paschos et al. PRD69,014013(2004),