how are hadrons formed from quarks?

75
1 How are hadrons formed from quarks? Hiroyuki Noumi RCNP, Osaka University Institute of Particle and Nuclear Studies, KEK Seminar at RCNP, Osaka University 7- 9March, 2019 Part I: Introduction Part II: Experimental Study of Hadrons II-1: ฮ›๏ผˆ1405๏ผ‰ and K bar N Interaction II-2: Charmed Baryons

Upload: others

Post on 27-Feb-2022

10 views

Category:

Documents


0 download

TRANSCRIPT

1

How are hadrons formed from quarks?

Hiroyuki NoumiRCNP, Osaka University

Institute of Particle and Nuclear Studies, KEK

Seminar at RCNP, Osaka University7- 9March, 2019

Part I: Introduction

Part II: Experimental Study of Hadrons

II-1: ฮ›๏ผˆ1405๏ผ‰ and KbarN Interaction

II-2: Charmed Baryons

Contents

Part I: Introduction

I-1: Standing Point of this Lecture

I-2: Basic Introduction of Hadrons

Part II: Experimental Study of Hadrons

II-1: ฮ›๏ผˆ1405๏ผ‰ and KbarN Interaction

II-2: Charmed Baryon and diquark correlation

2

Contents

Part I: Introduction

I-1: Standing Point of this Lecture

I-2: Basic Introduction of Hadrons

Part II: Experimental Study of Hadrons

II-1: ฮ›๏ผˆ1405๏ผ‰ and KbarN Interaction

II-2: Charmed Baryon and diquark correlation

3

4

Dense Nucl. Matter

How does Matter Evolve in the Universe?- Roles of the Strong Int. -

Quark

Nucleus

QCD

BB Int. ๏ผˆ2BF, 3BF, โ€ฆ๏ผ‰BB scattering, Nuclear Structure

Nuclear Matter: EoSNuclear Response, Single Particle Energy

Nuclear SynthesisMagic No., Drip-line, S.H.E.,โ€ฆ

QQ

Q Hadron

Atomโ†’Moleculeโ†’Starโ†’Galaxyโ†’Universe

Mystery of Heavy NS: NS Merger as a Factory of H.E.

QCD dynamicsQGP at High-T, High-rho, Phase Border

Form of HadronHadron Spectroscopy, TomographyHadron at High-T, High-rho

5

Prof. T. Nakamuraโ€™s Slide at the KICKOFF Symposium

6

Prof. T. Nakamuraโ€™s Slide at the KICKOFF Symposium

7

Prof. T. Nakamuraโ€™s Slide at the KICKOFF Symposium

8

Prof. T. Nakamuraโ€™s Slide at the KICKOFF Symposium

Form of Hadron?

A02

How Hadrons are formed?

9

๐›ผ๐‘  = โˆžat LQCD

High E Low E

Quarks drastically change themselves below LQCD.

Meson

Baryon

How Hadrons are formed?

10

๐›ผ๐‘  = โˆžat LQCD

High E Low E

Quarks drastically change themselves below LQCD.

Meson

Baryon

How Hadrons are formed?

11

High E Low E

Meson

Baryon

โ€œEffective DoFโ€

โ€œConstituent Quarksโ€ seem to work rather wellas good building blocks of hadronsโ€ฆ

How Hadrons are formed?

12

High E Low E

Meson

Baryon

โ€œEffective DoFโ€

โ€œConstituent Quarksโ€ seem to work rather wellas good building blocks of hadronsโ€ฆ Saturation of โ€œEffective Chargeโ€ at low k.

(PRD96,054026(2017)

How Hadrons are formed?

13

High E Low E

Pentaquark?

Tetraquark?

โ€œEffective DoFโ€

โ€œExotic hadronsโ€ require a new aspectin describing hadrons beyond the โ€œstandard pictureโ€.

How Hadrons are formed?

14

High E Low E

โ€œComposite (or Colored) Quasi-Particle?โ€

15

Hadron Physics at J-PARC

๐›ผ๐‘  = โˆžat LQCD

High E Low E

How are they excited?

How do they change properties in medium?

Quasi-Particles (= Effective DoF) emerging at Low E describe hadron properties effectively.

16

What are good building blocks of Hadrons?

Constituent Quarkq

qq

q

q

Diquark?[qq]

q(Colored cluster)

hadron (colorless cluster)

q

qq

q

q

Contents

Part I: Introduction

I-1: Standing Point of this Lecture

I-2: Basic Introduction of Hadrons

Part II: Experimental Study of Hadrons

II-1: ฮ›๏ผˆ1405๏ผ‰ and KbarN Interaction

II-2: Charmed Baryon and diquark correlation

17

Classification of Hadrons

18

Observable Relevant Physics Quantity What we learn

Mass Spectrum Mass, Width(pole:๐‘€๐‘… โˆ’ ๐‘–ฮ“/2)

Particle stateResonant state

Classification

Angular Correl.(decay)

Spin, Parity

19

Baryon Family qqq

http://ccwww.kek.jp/pdg/

้™ฝๅญ

ไธญๆ€งๅญ

20

Baryon Family qqq

http://ccwww.kek.jp/pdg/

ฮ› hyperon

ฮž hyperonฮฃ hyperon

21

Meson Family qq

http://ccwww.kek.jp/pdg/

Mediator of Nuclear Force

suus ,sdds ,

In 1964 Quark ModelM. Gell-mann๏ผˆNobel Prize in 1969๏ผ‰G. Zweig

Baryon Family Meson Family

IntroducedFractional electric chargeColor charge

๐‘ž + ๐‘ž + ๐‘ž ๐‘ž + เดค๐‘ž

Hadron

QuantumChromoDynamics

ntnm

t

b

t

c

s

m

u

d

ne

e

g

g

Z, Wยฑ

๏ผˆG๏ผ‰

Quark

Lepton

Gauge Boson

Strong

Electro-magnetic

Weak

gravity

+2/3

-1/3

-1

0

charge

Elementary particle Mediating โ€œForceโ€

+Anti-particle๏ผˆopposite charge, same mass๏ผ‰

Higgs

Quark Mass

๏ฝQuarks forming proton and neutron

http://www-pdg.lbl.gov/

PDGใฎใ‚ฏใ‚ฉใƒผใ‚ฏใฎใƒšใƒผใ‚ธใฎๆœ€ๅพŒ

โ€ข Quarks are confined in hadron

Why are quarks confined๏ผŸ

โ€ข Force independent in a distance (Linear Potential)

โ€ข Coulomb-like in a close distance (1/r Potential)

โ€ข Cornel Potential: V=ar-b/r

๐‘ž เดค๐‘ž

How are quarks confined๏ผŸ

โ€ข Force independent in a distance (Linear Potential)

โ€ข Coulomb-like in a close distance (1/r Potential)

โ€ข Cornell Potential: V=ar-b/r

๐‘ž เดค๐‘ž

qq

qq

Slides from Prof. Hosaka

Rich Forms of Hadrons In their Excited States

qq qqqqqq

qqqq

29

X(3872)

X(3872)

30

X(3872): Consensus?

Steve Olsenโ€™s Talk SlideICNFP2017@Crete

31

Coupled to DD*, Produced like Yโ€™

Steve Olsenโ€™s Talk Slide, ICNFP2017@Crete

Form of Hadrons

Observable Relevant Physics Quantity What we learn

Mass Spectrum Mass, Width(pole:๐‘€๐‘… โˆ’ ๐‘–ฮ“/2)

Particle stateResonant state

Classification

Angular Correl.(decay)

Spin, Parity

Level structure Internal (effective) DoF Form(Dynamics of effective DoFin Hadron)

Production Rate(Diff. Cross Sect.)

Response Function(Transition) Form Factor

Reaction MechanismInternal Motion/Corr.

Partial Width Internal Correlation(Wave function)

Decay MechanismInternal Motion/Corr.

32

How Hadrons are formed?

33

๐›ผ๐‘  = โˆžat LQCD

High E Low E

Quarks drastically change themselves below LQCD.

Meson

Baryon

Quark Mass

34

1 MeV 1 GeV 1 TeVLQCD

u d s c b tโ€œBearโ€Quark

(E>>LQCD)

โ€œDressedโ€Quark

(E<LQCD) u d sc b t

Proton(uud)

Wยฑ

Z

Heavy QuarkLight Quark

๐‘“๐œ‹2๐‘š๐œ‹

2 = ๐‘š๐‘ž ๐‘ž เดค๐‘ž

็‰ฉ่ณชใฎ่ณช้‡ใฎ่ตทๆบใฎใชใž

1965ๅนด ใ€Œใ‚ซใ‚คใƒฉใƒซๅฏพ็งฐๆ€งใฎ่‡ช็™บ็š„็ ดใ‚Œใ€ๆๅ”ฑๅ—้ƒจ้™ฝไธ€้ƒŽใซใ‚ˆใ‚‹ใ€‚ใ‚ใ‚‹ๅฏพ็งฐๆ€งใŒ็ ดใ‚Œใ‚‹ใ“ใจใซใ‚ˆใฃใฆใ‚‚ใจใ‚‚ใจ่ณช้‡ใŒใชใ‹ใฃใŸ็ฒ’ๅญใซ่ณช้‡ใŒ็”Ÿใ˜ใ‚‹ๆฉŸๆง‹ใ‚’่งฃๆ˜Žใ€‚็ฒ’ๅญใซๅƒใ็›ธไบ’ไฝœ็”จใซใ‚ˆใฃใฆๅฏพ็งฐๆ€งใŒ็ ดใ‚Œใ€ๅŒๆ™‚ใซ่ณช้‡ใŒ็”Ÿใ˜ใ‚‹ใ€‚

ใƒใƒ‰ใƒญใƒณ๏ผˆ้™ฝๅญใ‚„ไธญๆ€งๅญใชใฉ๏ผ‰ๅฝขๆˆใฎใชใž๏ผšใ‚ฏใ‚ฉใƒผใ‚ฏ้–“ใฎๅผทใ„็›ธไบ’ไฝœ็”จใซใ‚ˆใฃใฆใ€็œŸ็ฉบไธญใซ๏ฝ‘ใจๅ๏ฝ‘ใŒๅ‡็ธฎใ—ใฆ่ณช้‡ใ‚’็ฒๅพ—ใ€‚ๅŒๆ™‚ใซใ€่‡ช่บซใฎ็›ธไบ’ไฝœ็”จใงใ‚ฏใ‚ฉใƒผใ‚ฏใฏใƒใƒ‰ใƒญใƒณๅ†…้ƒจใซ้–‰ใ˜่พผใ‚ใ‚‰ใ‚Œใ‚‹ใ€‚

ใƒใƒ‰ใƒญใƒณใ‚ฏใ‚ฉใƒผใ‚ฏใŒๅ˜็‹ฌใงๅ–ใ‚Šๅ‡บใ›ใชใ„็†็”ฑใ€‚

ใƒกใ‚ซใƒ‹ใ‚บใƒ ใฎๆคœ่จผใฏใพใ ไธๅๅˆ†

Constituent Quark Model

โ€ข Successful to describe nature of hadrons in the ground stateโ€“ Mass

โ€“ Spin-Isospin(flavor) classification

โ€“ Magnetic moment of baryons

โ€ข Sometimes fails in excited stateโ€“ Missing resonance problem

โ€“ Exotic states

โ€ข Provides a Good Guide Line to insight Hadrons

36

Classification of Light MesonSUF(3)

โ€ข เดค๐‘ž๐‘ž~(เดค๐‘ข, าง๐‘‘, าง๐‘ )โจ‚(๐‘ข, ๐‘‘, ๐‘ )

๐œ‹โˆ’

(เดค๐‘ข๐‘‘)

๐พโˆ’(เดค๐‘ข๐‘ ) ๐พ0( าง๐‘ ๐‘‘)

๐พ0( าง๐‘‘๐‘ ) ๐พ+( าง๐‘ ๐‘ข)

๐œ‹+

( าง๐‘‘๐‘ข)

๐œ‹0๐œ‚โ€ฒ

๐œ‚

Classification of Light MesonSUF(3)

โ€ข เดค3 โจ‚ 3 = 1โจ8

๐œ‹โˆ’

(เดค๐‘ข๐‘‘)

๐พโˆ’(เดค๐‘ข๐‘ ) ๐พ0( าง๐‘ ๐‘‘)

๐พ0( าง๐‘‘๐‘ ) ๐พ+( าง๐‘ ๐‘ข)

๐œ‹+

( าง๐‘‘๐‘ข)

๐œ‹0๐œ‚โ€ฒ

๐œ‚

Classification of Light BaryonSUF(3)

โ€ข ๐‘ž๐‘ž๐‘ž~(๐‘ข, ๐‘‘, ๐‘ )โจ‚(๐‘ข, ๐‘‘, ๐‘ )โจ‚(๐‘ข, ๐‘‘, ๐‘ )

๐‘›(๐‘ข๐‘‘๐‘‘)

ฮžโˆ’(๐‘‘๐‘ ๐‘ )

ฮ›, ฮฃ0

(๐‘ข๐‘‘๐‘ )

๐‘(๐‘ข๐‘ข๐‘‘)

ฮฃโˆ’

(๐‘‘๐‘‘๐‘ )ฮฃ+

(๐‘ข๐‘ข๐‘ )

ฮ”โˆ’

(๐‘‘๐‘‘๐‘‘)ฮ”++

(๐‘ข๐‘ข๐‘ข)

ฮฉโˆ’(๐‘ ๐‘ ๐‘ )

ฮฃโˆ—โˆ’

(๐‘‘๐‘‘๐‘ )

ฮž0(๐‘‘๐‘ ๐‘ )

ฮžโˆ—โˆ’

(๐‘‘๐‘ ๐‘ )

ฮžโˆ—0

(๐‘‘๐‘ ๐‘ )

ฮฃโˆ—+

(๐‘ข๐‘ข๐‘ )ฮฃโˆ—0

(๐‘ข๐‘‘๐‘ )

ฮ”0

(๐‘‘๐‘‘๐‘ข)

ฮ”+

(๐‘‘๐‘ข๐‘ข)

Classification of Light BaryonSUF(3)

โ€ข 3 โจ‚ 3 โจ‚ 3 = 10โจ8โจ8โจ1

๐‘›(๐‘ข๐‘‘๐‘‘)

ฮžโˆ’(๐‘‘๐‘ ๐‘ )

ฮ›, ฮฃ0

(๐‘ข๐‘‘๐‘ )

๐‘(๐‘ข๐‘ข๐‘‘)

ฮฃโˆ’

(๐‘‘๐‘‘๐‘ )ฮฃ+

(๐‘ข๐‘ข๐‘ )

ฮ”โˆ’

(๐‘‘๐‘‘๐‘‘)ฮ”++

(๐‘ข๐‘ข๐‘ข)

ฮฉโˆ’(๐‘ ๐‘ ๐‘ )

ฮฃโˆ—โˆ’

(๐‘‘๐‘‘๐‘ )

ฮž0(๐‘‘๐‘ ๐‘ )

ฮžโˆ—โˆ’

(๐‘‘๐‘ ๐‘ )

ฮžโˆ—0

(๐‘‘๐‘ ๐‘ )

ฮฃโˆ—+

(๐‘ข๐‘ข๐‘ )ฮฃโˆ—0

(๐‘ข๐‘‘๐‘ )

ฮ”0

(๐‘‘๐‘‘๐‘ข)

ฮ”+

(๐‘‘๐‘ข๐‘ข)

Classification of Light BaryonSUF(4): (heavily broken due to ๐‘š๐‘ โ‰ซ ๐‘š๐‘ข,๐‘‘,๐‘ )

โ€ข ๐‘ž๐‘ž๐‘ž~(๐‘ข, ๐‘‘, ๐‘ , ๐‘)โจ‚(๐‘ข, ๐‘‘, ๐‘ , ๐‘)โจ‚(๐‘ข, ๐‘‘, ๐‘ , ๐‘)

๐Ÿ๐ŸŽ๐‘ด๐Ÿ๐ŸŽ๐‘บ

Relativistic Quark Model

โ€ข unobserved states

โ€ข unexpected states42

T. Melde, W. Plessas, and B. SenglPhys. Rev. D77, 114002(2008)

Red: RQMGreen: Exp.

Exotic Baryon: ฮ˜๏ผ‹

sudud

usdsd

*N0*N

*

dsusu

**

* 0*

* 0*

sss

0**

** 0*

ddd uuu

0

10 10

qqqqqqqq

44

Magnetic Moment of Octet Baryons

Constituent Quark Model Picture works well!

q

q

q

zqz msq /ห† m

In the framework of spin-flavor SU(6)

BB zB mm ห†

Only 3 parameters: mu, md, ms

Spontaneous c Symmetry Breaking

Current quark:mq~0 -> Constituent quark:mq~MN/3

Partial restoration of c Sym. in finite density?

Magnetic Moment

โ€ข m of Dirac particle โˆ spinร—charge/mass

ฮผN

neutronproton

0

๐œ‡๐‘๏ผ๐‘’โ„

2๐‘€๐‘๐‘

ฮผN

๐œ‡๐‘๏ผ๐‘’โ„

2๐‘€๐‘๐‘

Magnetic Moment

โ€ข m of Dirac particle โˆ spinร—charge/mass

โ€ข CQM explains the measured values of nucleons

2.79ฮผN -1.91ฮผN

neutronproton

47

Magnetic Moment of Octet BaryonsAnalytically deduced, based on Lattice QCD data

In cooperation with ChPT

EXP., Full QCD, QQCD

D. B. Leinweber et al., PRL94, 212001(2005).

QM [SU(6)]

Essence of

Non-relativistic Formulation in CQM

๐ป = ๐ป0 + ๐‘‰๐‘ + ๐‘‰๐‘ ๐‘  + ๐‘‰๐‘†๐‘‚ + ๐‘‰๐‘‡ โ€ฆ

โ€“ ๐ป0: kinematic term

โ€“ ๐‘‰๐‘: confinement potential

โ€“ ๐‘‰๐‘ ๐‘ : spin-spin interaction

โ€“ ๐‘‰๐‘†๐‘‚: spin-orbit interaction (LS force)

โ€“ ๐‘‰๐‘‡: Tensor interaction

48

Q3

rq1 q2

l

Coordinate: r1, r2, r3

๐œŒ = (๐‘Ÿ1 โˆ’ ๐‘Ÿ2)/ 2

๐œ† = (๐‘Ÿ1 + ๐‘Ÿ2 โˆ’ 2๐‘Ÿ3)/ 6๐œ‡๐œŒ = ๐‘š๐‘ž

๐œ‡๐œ† = 3๐‘š๐‘ž๐‘š๐‘„/(2๐‘š๐‘ž + ๐‘š๐‘„)

โ€ข ฮป and ฯ motions split (Isotope Shift)

โ€ข HQ spin multiplet ๏ผˆ เดฑ๐‘ ๐ป๐‘„ ยฑ เดฑ๐‘—๐ต๐‘Ÿ๐‘œ๐‘ค๐‘› ๐‘€๐‘ข๐‘๐‘˜๏ผ‰

Schematic Level Structure of Heavy Baryons

49

ฮป mode

ฯ mode

G.S.

P-wave

Q

l

[qq]

Q

r(qq)

mQ = mq mQ > mq

q

q

qเดฑ๐‘ ๐ป๐‘„ ยฑ เดฑ๐‘—๐ต๐‘€

......

Spin-dep. Int.

โ„๐œ”๐œŒ

โ„๐œ”๐œ†=

3๐‘š๐‘„

2๐‘š๐‘ž + ๐‘š๐‘„โ†’ 3 (๐‘š๐‘„ โ†’ โˆž)

Confinement

โ€ข ๐ป = ๐ป0 + ๐‘‰๐‘ + ๐‘‰๐‘ ๐‘  + โ‹ฏฮจ~๐œ“โ„“๐œ’๐‘†๐œ™๐ผ ๐‘๐‘œ๐‘™๐‘œ๐‘Ÿ โ†’ symmetrize (anti-symm.)

โ€ข ๐‘‰๐‘ = ๐‘˜/2 ฯƒ ๐‘Ÿ๐‘–๐‘—2 โ†’ analytic (<-> cornell potential ฯƒ(

๐‘Ž

๐‘Ÿ๐‘–๐‘—+ ๐‘๐‘Ÿ๐‘–๐‘— ) )

๐œ”๐œ†,๐œŒ = 3๐‘˜/๐‘š๐œ†,๐œŒ, ๐‘š๐œ† =3๐‘š๐‘ž๐‘š๐‘„

2๐‘š๐‘ž + ๐‘š๐‘„, ๐‘š๐œŒ=๐‘š๐‘ž

๐‘˜ = 0.332๐‘š๐œ†/3, at ๐‘š๐‘„ = 1.5 GeV/c2

c.f. 1โ„๐œ”๐œ†~ฮ›๐‘

1

2

โˆ’+2ฮ›๐‘

3

2

โˆ’

3โˆ’ ฮ›๐‘

1

2

+~ 0.33 GeV/c2

50

[

P-wave (r, l-mode excitations)

51

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

w (

GeV

)

MQ (GeV/c2)

l-mode

r-mode

isotope shift

3)2/(3/ Qm

QqQ mmmlr ww

Spin-spin Interaction

โ€ข ๐ป = ๐ป0 + ๐‘‰๐‘ + ๐‘‰๐‘ ๐‘  + โ‹ฏฮจ~๐œ“โ„“๐œ’๐‘†๐œ™๐ผ ๐‘๐‘œ๐‘™๐‘œ๐‘Ÿ โ†’ symmetrize (anti-symm.)

โ€ข ๐‘‰๐‘ = ๐‘˜/2 ฯƒ ๐‘Ÿ๐‘–๐‘—2

๐œ”๐œ†,๐œŒ = 3๐‘˜/๐‘š๐œ†,๐œŒ, ๐‘š๐œ† =3๐‘š๐‘ž๐‘š๐‘„

2๐‘š๐‘ž + ๐‘š๐‘„, ๐‘š๐œŒ=๐‘š๐‘ž

โ€ข ๐‘‰๐‘ ๐‘  = ๐‘๐‘  ฯƒ๐œŽ๐‘–โˆ™๐œŽ๐‘—

๐‘š๐‘–๐‘š๐‘—๐›ฟ ๐‘Ÿ๐‘–๐‘— ๐œ’๐‘† ๐‘‰๐‘ ๐‘  ๐œ’๐‘† :

ฮ›1

2

+= ๐œ”0 โˆ’ 3๐‘๐‘ /๐‘š๐‘ž

2

ฮฃ1

2

+= ๐œ”0 + ๐‘๐‘ 

1

๐‘š๐‘ž2 โˆ’

4

๐‘š๐‘ž๐‘š๐‘„

ฮฃโˆ— 3

2

+= ๐œ”0 + ๐‘๐‘ 

1

๐‘š๐‘ž2 +

2

๐‘š๐‘ž๐‘š๐‘„

52

[

(๐‘†, ๐œ’๐œŒ) : โ€œqqโ€-spin anti-symm.

(๐‘†, ๐œ’๐œ†) : โ€œqqโ€-spin symm., [qqQ]1/2

(๐‘†, ๐œ’๐‘ ) : โ€œqqQโ€ spin symm.

Spin-spin Interaction

โ€ข ๐ป = ๐ป0 + ๐‘‰๐‘ + ๐‘‰๐‘ ๐‘  + โ‹ฏฮจ~๐œ“โ„“๐œ’๐‘†๐œ™๐ผ ๐‘๐‘œ๐‘™๐‘œ๐‘Ÿ โ†’ symmetrize (anti-symm.)

โ€ข ๐‘‰๐‘ = ๐‘˜/2 ฯƒ ๐‘Ÿ๐‘–๐‘—2

๐œ”๐œ†,๐œŒ = 3๐‘˜/๐‘š๐œ†,๐œŒ, ๐‘š๐œ† =3๐‘š๐‘ž๐‘š๐‘„

2๐‘š๐‘ž + ๐‘š๐‘„, ๐‘š๐œŒ=๐‘š๐‘ž

โ€ข ๐‘‰๐‘ ๐‘  = ๐‘๐‘  ฯƒ๐œŽ๐‘–โˆ™๐œŽ๐‘—

๐‘š๐‘–๐‘š๐‘—๐›ฟ ๐‘Ÿ๐‘–๐‘— ๐œ’๐‘† ๐‘‰๐‘ ๐‘  ๐œ’๐‘† :

ฮ›1

2

+= ๐œ”0 โˆ’ 3๐‘๐‘ /๐‘š๐‘ž

2

ฮฃ1

2

+= ๐œ”0 + ๐‘๐‘ 

1

๐‘š๐‘ž2 โˆ’

4

๐‘š๐‘ž๐‘š๐‘„

ฮฃโˆ— 3

2

+= ๐œ”0 + ๐‘๐‘ 

1

๐‘š๐‘ž2 +

2

๐‘š๐‘ž๐‘š๐‘„

53

[

โ†’ฮฃ + 2ฮฃโˆ—

3โˆ’ ฮ› = ๐‘๐‘ 

4

๐‘š๐‘ž2

~0.2 GeV/c2}

Spin-spin Interaction

โ€ข ๐ป = ๐ป0 + ๐‘‰๐‘ + ๐‘‰๐‘ ๐‘  + โ‹ฏฮจ~๐œ“โ„“๐œ’๐‘†๐œ™๐ผ ๐‘๐‘œ๐‘™๐‘œ๐‘Ÿ โ†’ symmetrize (anti-symm.)

โ€ข ๐‘‰๐‘ = ๐‘˜/2 ฯƒ ๐‘Ÿ๐‘–๐‘—2

๐œ”๐œ†,๐œŒ = 3๐‘˜/๐‘š๐œ†,๐œŒ, ๐‘š๐œ† =3๐‘š๐‘ž๐‘š๐‘„

2๐‘š๐‘ž + ๐‘š๐‘„, ๐‘š๐œŒ=๐‘š๐‘ž

โ€ข ๐‘‰๐‘ ๐‘  = ๐‘๐‘  ฯƒ๐œŽ๐‘–โˆ™๐œŽ๐‘—

๐‘š๐‘–๐‘š๐‘—๐›ฟ ๐‘Ÿ๐‘–๐‘— ๐œ’๐‘† ๐‘‰๐‘ ๐‘  ๐œ’๐‘† :

ฮ›1

2

โˆ’,

3

2

โˆ’= เตž

๐œ”๐œŒ + ๐‘๐‘ 1

๐‘š๐‘ž2 โˆ’

4

๐‘š๐‘ž๐‘š๐‘„

๐œ”๐œ† โˆ’ 3๐‘๐‘ /๐‘š๐‘ž2

(โ„“๐œŒ = 1, ๐œ’๐œ†)

(โ„“๐œ† = 1, ๐œ’๐œŒ)

ฮ›1

2

โˆ’,

3

2

โˆ’,

5

2

โˆ’= ๐œ”๐œŒ + ๐‘๐‘ 

1

๐‘š๐‘ž2 +

2

๐‘š๐‘ž๐‘š๐‘„(โ„“๐œŒ = 1, ๐œ’๐‘ )

54

[

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

w (

GeV

)

MQ (GeV/c2)

Isotope shift

L(P,c) (r, l-mode excitations w/ Vss)

55

L(Pr,cs)

L(Pr,cl)

L(Pl,cr)

22 /1/2/1 q

m

Qqq mmmm Q

6/๐‘š๐‘ž2

4/๐‘š๐‘ž2

Lambda Baryons (P-wave)

56

c(1/2+)

c*(3/2+)

Lc(2595, 1/2)Lc(2625, 3/2)

Lc o๏ฝ’ c (2765, ??)

Lc(2880, 5/2)

Lc(2940, ??)

Lc(GS)

L(1520, 3/2)

(1/2+)

L(1/2+)

*(3/2+) L(1405, 1/2)

L(1830, 5/2)

L(1690, ??)L(1670, 1/2)

L(GS)

b(1/2+) b

*(3/2+)

Lb(5920, 3/2)Lb(5912, 1/2)

Lb(GS)

strange charm bottom

0

100

200

300

400

500

600

700

800

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Y* -

YG.S

.[M

eV]

MQ [GeV/c2]

Lambda Baryons (P-wave)

57

s c

non-rel. QM:H=H0 +Vconf +VSS+VLS+VT

rl mixing (cal. By T. Yoshida)

c(1/2+)

c*(3/2+)

Lc(2595, 1/2)Lc(2625, 3/2)

Lc o๏ฝ’ c (2765, ??)

Lc(2880, 5/2)

Lc(2940, ??)

Lc(GS)

L(1520, 3/2)

(1/2+)

L(1/2+)

*(3/2+) L(1405, 1/2)

L(1830, 5/2)

L(1690, ??)L(1670, 1/2)

L(GS)

l

r

b

r

b(1/2+) b

*(3/2+)

Lb(5920, 3/2)Lb(5912, 1/2)

Lb(GS)

Q

qq

l

r

T. Yoshida et al.,Phys. Rev. D92, 114029(2015)

L,(P,c) (r, l-mode mixing w/ Vss)

58

๐šฒ๐†

๐šฒ๐€

๐šบ๐€

๐šบ๐†

T. Yoshida et al., Phys. Rev. D92, 114029(2015)

L,(P,c) (r, l-mode mixing w/ Vss)

59

๐šบ๐€

๐šบ๐†

T. Yoshida et al., Phys. Rev. D92, 114029(2015)

L,(P,c) (r, l-mode mixing w/ Vss)

60

๐šฒ๐†

๐šฒ๐€

T. Yoshida et al., Phys. Rev. D92, 114029(2015)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

w (

GeV

)

MQ (GeV/c2)

(P,c) (r, l-mode excitations w/ Vss)

61

(Pl,cs)

(Pl,cl)

(Pr,cr)

0/6 Qm

Qqmm

22 /4)/1/1(4 q

m

Qqq mmmm Q

L,(1/2-) (r, l-mode excitations w/ Vss)

62

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

w (

YL

GS)

[G

eV]

MQ (GeV/c2)

(Pl,cs)

(Pl,cl)

(Pr,cr)

(S,cs)

(S,cl)

L(Pr,cs)

L(Pr,cl)

L(Pl,cr)

0

100

200

300

400

500

600

700

800

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Y* -

YG.S

.[M

eV]

MQ [GeV/c2]

CQM calculation (P-wave Sigma)

63

s c

non-rel. QM:H=H0 +Vconf +VSS+VLS+VT

rl mixing (cal. By T. Yoshida)

c(1/2+)

Lc(1/2+)

c(3/2+)

c(1/2,3/2)

c(1/2,3/2,5/2)

c(1/2,3/2)(1/2,3/2,5/2)

(1/2,3/2)

(1/2+)

L(1/2+)

(3/2+)

(1/2,3/2)

l

r

Strange baryons Charmed baryons

l

T. Yoshida et al.,Phys. Rev. D92, 114029(2015)

0

100

200

300

400

500

600

700

800

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Y* -

YG.S

.[M

eV]

MQ [GeV/c2]

Lambda Baryons (P-wave)

64

s c

non-rel. QM:H=H0 +Vconf +VSS+VLS+VT

rl mixing (cal. By T. Yoshida)

c(1/2+)

c*(3/2+)

Lc(2595, 1/2)Lc(2625, 3/2)

Lc o๏ฝ’ c (2765, ??)

Lc(2880, 5/2)

Lc(2940, ??)

Lc(GS)

L(1520, 3/2)

(1/2+)

L(1/2+)

*(3/2+) L(1405, 1/2)

L(1830, 5/2)

L(1690, ??)L(1670, 1/2)

L(GS)

l

r

b

r

b(1/2+) b

*(3/2+)

Lb(5920, 3/2)Lb(5912, 1/2)

Lb(GS)

Q

qq

l

r

?

T. Yoshida et al.,Phys. Rev. D92, 114029(2015)

QQq

65

โ€ข ฮป and ฯ mode excitations interchange

sqsQQ, SO

(1/2-,3/2-)

(1/2-, 3/2-, 5/2-)

(1/2-, 3/2-)

*(3/2+)

(1/2+)

Level Structure of double-strange baryons

QQ

Q

ฮป mode

ฯ mode

G.S.

P-wave

66

q

lQQ

r Q-Q

q

Confinement

โ€ข ๐ป = ๐ป0 + ๐‘‰๐‘ + ๐‘‰๐‘ ๐‘  + โ‹ฏฮจ~๐œ“โ„“๐œ’๐‘† ๐ผ๐‘ ๐‘œ๐‘ ๐‘๐‘–๐‘› โˆ— ๐‘๐‘œ๐‘™๐‘œ๐‘Ÿ โ†’ symmetrize (anti-symm.)

โ€ข ๐‘‰๐‘ = ๐‘˜/2 ฯƒ ๐‘Ÿ๐‘–๐‘—2

๐œ”๐œ†,๐œŒ = 3๐‘˜/๐‘š๐œ†,๐œŒ, ๐‘š๐œ† =3๐‘š๐‘„๐‘š๐‘ž

2๐‘š๐‘„ + ๐‘š๐‘ž, ๐‘š๐œŒ=๐‘š๐‘„

67

[

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

w (

GeV

)

MQ (GeV/c2)

P-wave (r, l-mode excitations)

68

l-mode

r-mode

isotope shift

0)2/(3/ Qm

qQq mmmlr ww

Spin-spin Interaction

โ€ข ๐ป = ๐ป0 + ๐‘‰๐‘ + ๐‘‰๐‘ ๐‘  + โ‹ฏฮจ~๐œ“โ„“๐œ’๐‘† ๐ผ๐‘ ๐‘œ๐‘ ๐‘๐‘–๐‘› โˆ— ๐‘๐‘œ๐‘™๐‘œ๐‘Ÿ โ†’ symmetrize (anti-symm.)

โ€ข ๐‘‰๐‘ = ๐‘˜/2 ฯƒ ๐‘Ÿ๐‘–๐‘—2

๐œ”๐œ†,๐œŒ = 3๐‘˜/๐‘š๐œ†,๐œŒ, ๐‘š๐œ† =3๐‘š๐‘„๐‘š๐‘ž

2๐‘š๐‘„ + ๐‘š๐‘ž, ๐‘š๐œŒ=๐‘š๐‘„

โ€ข ๐‘‰๐‘ ๐‘  = ๐‘๐‘  ฯƒ๐œŽ๐‘–โˆ™๐œŽ๐‘—

๐‘š๐‘–๐‘š๐‘—๐›ฟ ๐‘Ÿ๐‘–๐‘— ๐œ’๐‘† ๐‘‰๐‘ ๐‘  ๐œ’๐‘† :

ฮž1

2

+= ๐œ”0 + ๐‘๐‘ 

1

๐‘š๐‘„2 โˆ’

4

๐‘š๐‘ž๐‘š๐‘„

ฮžโˆ— 3

2

+= ๐œ”0 + ๐‘๐‘ 

1

๐‘š๐‘„2 +

2

๐‘š๐‘ž๐‘š๐‘„

69

[

(๐‘†, ๐œ’๐œ†) : โ€œQQโ€-spin symm., [QQq]1/2

(๐‘†, ๐œ’๐‘ ) : โ€œQQqโ€ spin symm.

Spin-spin Interaction

โ€ข ๐ป = ๐ป0 + ๐‘‰๐‘ + ๐‘‰๐‘ ๐‘  + โ‹ฏฮจ~๐œ“โ„“๐œ’๐‘† ๐ผ๐‘ ๐‘œ๐‘ ๐‘๐‘–๐‘› โˆ— ๐‘๐‘œ๐‘™๐‘œ๐‘Ÿ โ†’ symmetrize (anti-symm.)

โ€ข ๐‘‰๐‘ = ๐‘˜/2 ฯƒ ๐‘Ÿ๐‘–๐‘—2

๐œ”๐œ†,๐œŒ = 3๐‘˜/๐‘š๐œ†,๐œŒ, ๐‘š๐œ† =3๐‘š๐‘„๐‘š๐‘ž

2๐‘š๐‘„ + ๐‘š๐‘ž, ๐‘š๐œŒ=๐‘š๐‘„

โ€ข ๐‘‰๐‘ ๐‘ ~๐‘๐‘  ฯƒ๐œŽ๐‘–โˆ™๐œŽ๐‘—

๐‘š๐‘–๐‘š๐‘—๐›ฟ ๐‘Ÿ๐‘–๐‘— ๐œ’๐‘† ๐‘‰๐‘ ๐‘  ๐œ’๐‘† :

ฮž1

2

โˆ’,

3

2

โˆ’= เตž

๐œ”๐œŒ โˆ’ 3๐‘๐‘ /๐‘š๐‘„2

๐œ”๐œ† + ๐‘๐‘ 1

๐‘š๐‘„2 โˆ’

4

๐‘š๐‘ž๐‘š๐‘„

(โ„“๐œŒ = 1, ๐œ’๐œŒ)

(โ„“๐œ† = 1, ๐œ’๐œ†)

ฮž1

2

โˆ’,

3

2

โˆ’,

5

2

โˆ’= ๐œ”๐œ† + ๐‘๐‘ 

1

๐‘š๐‘„2 +

2

๐‘š๐‘ž๐‘š๐‘„(โ„“๐œ† = 1, ๐œ’๐‘ )

70

[

(r, l-mode excitations w/ Vss)

71

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

w(

GS)

[G

eV]

MQ (GeV/c2)

(Pl,cs)

(Pl,cl)

(Pr,cr)

(S,cs)

โ€ข ฮป and ฯ mode excitations interchange

sqsQQ, SO

(1/2-,3/2-)

(1/2-, 3/2-, 5/2-)

(1/2-, 3/2-)

*(3/2+)

(1/2+)

Level Structure of double-strange baryons

QQ

Q

ฮป mode

ฯ mode

G.S.

P-wave

72

q

lQQ

r Q-Q

q

Structure and Decay Partial Width

73

qQ

qqQ

qQQ

qq

r mode (QQ) l mode [QQ]

Form of Hadrons

Observable Relevant Physics Quantity What we learn

Mass Spectrum Mass, Width(pole:๐‘€๐‘… โˆ’ ๐‘–ฮ“/2)

Particle stateResonant state

Classification

Angular Correl.(decay)

Spin, Parity

Level structure Internal (effective) DoF Form(Dynamics of effective DoFin Hadron)

Production Rate(Diff. Cross Sect.)

Response Function(Transition) Form Factor

Reaction MechanismInternal Motion/Corr.

Partial Width Internal Correlation(Wave function)

Decay MechanismInternal Motion/Corr.

74

75