hspa pres 0610 nokia

Upload: rupesh-kumar

Post on 07-Aug-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 HSPA Pres 0610 Nokia

    1/52

    3. Packet Data Transferacross EGPRS and

    WCDMA networks

    Dr. David Soldani([email protected], tel. +358.50.3633527)

    S-38.3215 Special Course on Networking Technology for Ph.D. students at TKK

    mailto:[email protected]:[email protected]

  • 8/20/2019 HSPA Pres 0610 Nokia

    2/52

    2 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    Outline

    Packet data through EGPRS networks

    User plane protocols

    Control plan protocols

    Radio channels and frame structure

    Packet data through (enhanced) WCDMA networks User plane protocols

    Control plan protocols

    Radio channels and timing HSPA fundamentals

  • 8/20/2019 HSPA Pres 0610 Nokia

    3/52

    3 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    EGPRS: UP protocol stacks

    Relay

     Network 

    Service

    GTP-U

    Application

    IP

    SNDCP

    LLC

    RLC

    MAC

    GSM RF L1bisGSM RF

    BSSGP

    L1bis

    Relay

    L2

    L1

    IP

    L2

    L1

    IP

    GTP-U

    IP

    Um Gb Gn Gi

    MS BSS SGSN GGSN

     Network 

    Service

    UDPUDP

    BSC

    BTS

    10

    11

    12 13

    0 1

    2 3

    6

    4 5

    7 8 9

    Packet Control Unit (PCU)

    • MAC/RLC functions

    Channel Coding Unit (CCU)• L1 functions

    Sub-Network Dependent Convergence Protocol (SNDCP)• Header compression/decompression (e.g. TCP/IP)

    • Mux N-PDUs (same QoS) of NSAPI(s) onto LLC-SAPI

    • Segmentation/reassembly of LLC frames of max length

    SNDCP

    Logical Link Control Protocol (LLC)

    • AM, UM and ciphering

    • Mux of LLC frames onto BSSGP virtual connections

    LLC

    Radio Link CP (RLC)

    • Segmentation/reassembly RLC PDUs• AM, UM

    RLC

    MAC

    Medium Access CP (MAC)

    • Share of PDCHs between MSs• Allows MS to used more PDCHs

    BSS GPRS Protocol (BSSGP)

    • SGSN-BSS flow control• PTP, PTM and signaling peers

    BSSGP

  • 8/20/2019 HSPA Pres 0610 Nokia

    4/524 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    Abis

    BSC SGSNBTS

    CCU

    CCU

    UmGb

    PCU

    Packet-switchingCircuit-switchingGn

    GGSN

    Packet-switching

    MS

    MS

    One tunnel per PDP Context(NSAPI, TLLI, TEID)

    LLC connection: BSS Packet Flow Context (PFC)= Mux of N-PDUs from one or more NSAPIs

    (DLCI(s) = TLLI + SAPI(s))(LLC–SAPI = NSAP(s))

    BSS Virtual Connection= Mux of LLC frames

    (BVCI = Cell ID)

    One RR connection (TBF)over one or more PDCH(s)

    ( TS(s) )

    RR (RLC/MAC) Connection:Temporary Block Flow (TBF)

    ( TFI)

    PCU Frames

    Radio Block(s) (4 bursts each = 20ms) on PDTCHCS 1 – CS 4 (GPRS)

    MCS 1 – MCS 9 (EGPRS)(M-CS)

    One BSS context per MS

    • BSS PFCs (PFIs)

    • Aggregate BSS QoS Profile(s)

    One MM context per MS

    • PDP context(s)

    • QoS Profile(s)

    • Radio priority (UL)

    • PFI(s)

    • Aggregate BSS QoS Profile(s)

    • PDP context(s)

    • QoS Profile(s)

    • TFT(s)One MM context

    • PDP context(s)

    • QoS Profile(s)

    • TFT(s)

    • Radio priority (UL)

    • PFI(s)

    Ex t ern al 

    PDN

    EGPRS: End-to-end data transmission

  • 8/20/2019 HSPA Pres 0610 Nokia

    5/525 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    R98: GPRS channel coding

    For a Radio Block (RB) carrying a RLC data block,

    where 1 Radio Block = 4 bursts (20 ms)

    Note: 1 GMSK symbol = 1 bit

    Scheme Code rate Radio block size

    (Bytes)

    Modulation Data rate

    (kb/s)

    Data rate excluding

    RLC/MAC headers (kb/s)

    CS-1 ½ 23 GMSK 9.05 8

    CS-2 ≈ 2/3 34 GMSK 13.4 12

    CS-3 ≈ 3/4 39 GMSK 15.6 14.4

    CS-4 1 54 GMSK 21.4 20

  • 8/20/2019 HSPA Pres 0610 Nokia

    6/52

    6 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    R99: EGPRS channel coding

    For RB carrying one or more RLC data blocks

    Note: 1 8PSK symbol = 3 bits

    Scheme Code rate Header Code rate Modulation RLC blocks per

    Radio Block (20ms)

    Raw Data within

    one Radio Block

    Data rate

    (kb/s)

    MCS-9 1.0 0.36 2 2x592 59.2

    MCS-8 0.92 0.36 2 2x544 54.4

    MCS-7 0.76 0.36 2 2x448 44.8

    MCS-6 0.49 1/3 1 592

    48 +544 

    29.6

    27.2

    MCS-5 0.37 1/3

    8PSK

    1 448 22.4

    MCS-4 1.0 0.53 1 352 17.6

    MCS-3 0.85 0.53 1 296

    48 +248 and 296 

    14.8

    13.6

    MCS-2 0.66 0.53 1 224 11.2

    MCS-1 0.53 0.53

    GMSK

    1 176 8.8

     NOTE: The italic captions indicate the 6 octets (48 bits) of padding when retransmitting an MCS-8 block with MCS-3 or

    MCS-6. For MCS-3, the 6 octets of padding are sent every second block.

  • 8/20/2019 HSPA Pres 0610 Nokia

    7/52

    7 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    EGPRS: CP protocol stacks

    For controlling and supporting UP functions

    Um GbMS BSS 2G-SGSN

    GMM/SM

    LLC

    RLC

    MAC

    GSM RF

    BTS

    BSSGP

    Relay

    RLC

    MAC

    GSM RF L1bis

     Network 

    Service

    BSCGMM/SM

    LLC

    BSSGP

    L1bis

     Network 

    Service

    GTP-C

    UDP

    IP

    L1

    L2

    GTP-C

    UDP

    IP

    L1

    L2

    Gn

    GGSN

    0 1

    2 3

    4 5

    6 7

    GPRS Mobili ty and Session Management (GMM/SM)

    • GMM: GPRS attach/detach, security, RA update

    • SM: PDP context activation, modification and deactivation

  • 8/20/2019 HSPA Pres 0610 Nokia

    8/52

    8 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    Radio channels and frame structure

     A physical channel is defined as a sequence of

    TDMA frames, a time slot (TS or TSL) number

    (modulo 8) and a frequency hopping sequence (FHS)

    Logical channels are defined based on the type of

    information carried over the air interface

    Dedicated channels (allocated to an MS)

    Common channels

  • 8/20/2019 HSPA Pres 0610 Nokia

    9/52

    9 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    Multi-frame structure for PDCH

    B1 B2 T B3 B4 B5 X B6 B7 B8 T B9 B10 B11 X

    = 1 TDMA Frame (8 Time Slots, 4.615 ms)

    X = Idle frame, used by the MS for signal measurements and BSIC identification

    T = Frame used for PTCCH (Packet Timing advance Control Channel)B0 - B11 = Radio blocks

    1 Multi-frame = 52 TDMA Frames

    B0

  • 8/20/2019 HSPA Pres 0610 Nokia

    10/52

    10 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    Mapping of packet data channels (1/2)

    Downlink

    B0: PBCCH when allocated, and if required up to 3 more

    blocks on the same PDCH can be used as additional PBCCHs On any PDCH with a PCCCH (with or without PBCCH), up to

    the next 12 blocks in the ordered list of blocks are used for the

    PPCH, PAGCH, PNCH, PDTCH or PACCH On a PDCH that does not contain a PCCCH, all blocks can be

    used as the PDTCH or PACCH

    Uplink On an uplink PDCH that contains a PCCCH, all blocks in the

    multi-frame can be used as the PRACH, PDTCH or PACCH

  • 8/20/2019 HSPA Pres 0610 Nokia

    11/52

    11 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    Mapping of packet data channels (2/2)

    Possible channel combinations are

    PBCCH + PCCCH + PDTCH + PACCH + PTCCH

    BCCH + PCCCH + PDTCH + PACCH + PTCCH BCCH + CCCH + PDTCH + PACCH + PTCCH

    Where PCCCH = PNCH, PAGCH, PPCH and PRACH

    CCCH = NCH, AGCH, PCH and RACH

    Multi-slot configuration

    Multiple CS or PS traffic channels together with associated control

    channels, allocated to the same MS

    Up to 8 basic physical channels, with different TS numbers, but withsame frequency parameters (ARFCN or MA, MAIO and HSN) and TSC

  • 8/20/2019 HSPA Pres 0610 Nokia

    12/52

    12 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    3G: Functional grouping of protocols

     Access (AS) and Non-Access Stratum (NAS)

    UTRAN CNUu Iu

    Non-Access Stratum

    CC,MM,GMM,SM (c-plane)"RAB (u-plane)"

    CM,MM,GMM,SM (c-plane)"RAB (u-plane)"

    Access Stratum

    Radio

     protocolsRadio

     protocols

    Iu

     protocols

    Iu

     protocols

    UE

    UE domain Access Network Domain Core Network Domain

  • 8/20/2019 HSPA Pres 0610 Nokia

    13/52

    13 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    WCDMA

    L1 Physical

    Data Link 

    Layer 

    FP

    R6: PS-domain UP protocol stacks

    Physical

    Data Link 

    Layer 

    UDP

    GTP

    IP

    Physical

    Data Link 

    Layer 

    UDP

    GTP

    IP

    Physical

    Data Link 

    Layer 

    UDPGTP

    IP

    IP

    IP

    Data

    Link Layer 

    Physical

    3G SGSN GGSN

    Uu Iu Gn

    IP

    Data

    Link Layer 

    Physical

    TCP/UDP

    Appl. prot.

    Peer Appl.

    Gi

    Data

    Link Layer 

    Physical

    TCP/UDP

    Appl. prot.

    TE

    SRNCNode B

    IP

    WCDMA

    L1

    IP

    Data

    Link Layer 

    Physical

    MT

    RLC

    PDCP

    UDP

    GTP

    IP

    Physical

    Data Link 

    Layer 

    Physical

    Data Link 

    Layer 

    MAC-d/c/es

    FP

    RLCPDCP

    MAC-d/c/es

    IP

    Iub

    01

    23

    4 56 7

    10 11

    12 13 14 15

    9

    MAC-e/hsMAC-e/hs

    8

    Bearer service (BS) Service Access Point (SAP)

    Service applications 0 1

     Network services 2 3UMTS bearer service 4 5

    Radio Access Bearer service 4 7

    Core network bearer service 7 5

    Radio Bearer service 4 6

    RAN Access bearer service 6 7

    Backbone network service 10 11Physical bearer service 12 (14) 13 (15)

    UTRA FDD 8 9

    Radio Link Control Protoc ol (RLC)

    • AM (Automatic Repeat reQuest ARQ), UM or TM

    • Ciphering for Non-TM

    • Each RLC link ID = Bearer ID

    Medium Access Control Protocol (MAC)• Ciphering for TM-RLC

    • Logical channels multiplexing

    • TFC selection over TFCS

    • Scheduling of FACH, E-DCH and HS-DSCH

    • HARQ for E-DCH and HS-DSCH

    • TFCI/TFRI selection for E-DCH/HSDPA

    • Traffic volume and buffer occupancy measurements

    There is a one-to-one

    correspondence between the PDP

    context, UMTS bearer and RAB, as

    well as between the RAB and the

    radio bearer service, which,

    however, can be carried by more

    transport channels of the sametype at the radio interface

    Packet Data Convergence Protoco l (PDCP)• Header compression/decompression (e.g. TCP/IP)

  • 8/20/2019 HSPA Pres 0610 Nokia

    14/52

    14 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    R6: PS-domain CP protocol stacks

    Signalling Bearer 

    PHY

    FP

    RRC

    PHY

    WCDMA

    L1

    FP

    WCDMA

    L1

    RRC

    IubUu RNCNode BUE

    RLC-C

    MAC

    RLC-C

    MAC

    GMM /

    SM / SMS

    RANAP

    SCCP

    PHY

    3G SGSN

    GMM /

    SM / SMS

    Signalling Bearer 

    RANAP

    SCCP

    PHY

    Iu

    Data Link Layer 

    Data Link Layer 

    Data Link Layer 

    Data Link Layer 

    RelayUDP

    IP

    GGSN

    GTP-C

    PHY

    Data Link Layer 

    Gn

    UDP

    IP

    GTP-C

    PHY

    Data Link Layer 

    The RRC connection is defined as a PTP bidirectional

    connection between RRC peer entities in the UE and UTRAN

     A UE has either zero or one RRC connection

  • 8/20/2019 HSPA Pres 0610 Nokia

    15/52

    15 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    UTRA FDD radio interface protocols 

    L3

      c  o  n   t  r

      o   l

      c  o  n   t  r

      o   l

      c  o  n   t  r

      o   l

      c  o  n   t  r

      o   l

    Logical

    Channels

    Transport

    Channels

    C-plane signalling U-plane information

    PHY

    L2/MAC 

    L1

    RLC L2/RLC

    MAC

    RLCRLC

    RLCRLC

    RLCRLC

    RLC

    BMCL2/BMC

    control

    PDCPPDCP  L2/PDCP

    Radio

    Bearers

    RRC

  • 8/20/2019 HSPA Pres 0610 Nokia

    16/52

    16 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    Logical channels (LoCHs)

    Define the transfer of a specific type of information

    over the radio interface

    The logical channels are divided into Control channels (CCH) used for transfer of control plane

    information

    Traffic channels (TCH) used for the transfer of user plane

    information only

  • 8/20/2019 HSPA Pres 0610 Nokia

    17/52

    17 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    Transport channels (TCHs)

    Specified for data transport between physical

    layer and Layer 2 peer entities

    Two types of transport channels exist Common transport channel (CTCH) is a resource

    divided between all or a group of users in a cell (in-band ID

    for users needed)

    Dedicated transport channel (DTCH) is by definition

    reserved for a single user 

  • 8/20/2019 HSPA Pres 0610 Nokia

    18/52

    18 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    Physical channels (PhCHs)

    Physical channels are defined by a carrier frequency,

    scrambling code, channelisation code (optional),

    time duration (start and stop instants) and, in theuplink, relative phase (0 or /2)

     A radio frame (38 400 chips = 10 ms) is a processing

    duration which consists of 15 slots (15 x 2560 chips)

     A sub-frame (3 slots = 2 ms) is the basic time interval

    for E-DCH and HS-DSCH transmission and relatedsignaling at the physical layer 

  • 8/20/2019 HSPA Pres 0610 Nokia

    19/52

    19 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    Mapping of LoCHs onto TCHs

    BCH PCH FACH DCH

    BCCH CCCHPCCH

    RACH

    Logical

    ChannelsCTCH

    DCH

    CCCH DTCH/DCCH DTCH/DCCH

    TransportChannels

    Uplink Downlink

    BCCH Broadcast Control Channel

    BCH Broadcast Channel

    CCCH Common Control Channel

    CCH Control Channel

    CTCH Common Traffic Channel

    DCCH Dedicated Control Channel

    DCH Dedicated Channel

    DTCH Dedicated Traffic Channel

    E-DCH Enhanced-DCH

    FACH Forward Access Channel

    HS-DSCH High Speed-Downlink Shared Channel

    MCCH MBMS point-to-multipoint Control Channel

    MSCH MBMS point-to-multipoint Scheduling

    MTCH MBMS point-to-multipoint Traffic Channel

    PCCH Paging Control Channel

    PCH Paging Channel

    RACH Random Access Channel

    HS-DSCHE-DCH

    MCCH/MSCH MTCH

    MAC SA

  • 8/20/2019 HSPA Pres 0610 Nokia

    20/52

    20 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    RRC states in connected mode

    Establish RRCconnection

    Release RRCconnection

    UTRA RRC Connected Mode

    URA_PCH CELL_PCHGSM

    ConnectedMode

    Establish RRConnectionRelease RRConnection

    Idle Mode

    Camping on a UTRAN cell Camping on a GSM / GPRS cell

    GPRS Packet Idle Mode

    GPRSPacket

    TransferMode

    Initiation oftemporary

     block flow

    Release oftemporary

     block flowCell

    reselection

    out of service inservice

    CELL_FACH

    out of service

    inservice

    out of service

    inservice

    CS Inter-RAT

    Handover

    PS Handover(3GPP R6)

    CELL_DCH

    Release RRCconnection

    Establish RRCconnection

    • BCCH, PCCH

    • BCH, PCH

    • URA updates

    • DCCH, DTCH

    • DPCH, HS-DSCH, E-DCH

    • BCCH, PCCH• BCH, PCH

    • Cell updates

    • BCCH, PCCH, CTCH/CCCH, DTCH/DCCH

    • BCH, PCH, FACH, RACH

    • Cell updates

  • 8/20/2019 HSPA Pres 0610 Nokia

    21/52

    21 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    TRANSPORT CHANNELSDCH

    RACH

    BCH

    FACH

    PCH

    HS-DSCH

    E-DCH

    Mapping of TCHs onto PhCHsPHYSICAL CHANNELSDedicated Physical Data Channel (DPDCH)

    Dedicated Physical Control Channel (DPCCH)

    Fractional Dedicated Physical Channel (F-DPCH)

    E-DCH Dedicated Physical Data Channel (E-DPDCH)

    E-DCH Dedicated Physical Control Channel (E-DPCCH)

    E-DCH Absolute Grant Channel (E-AGCH)

    E-DCH Relative Grant Channel (E-RGCH)

    E-DCH Hybrid ARQ Indicator Channel (E-HICH)

    Physical Random Access Channel (PRACH)Common Pilot Channel (CPICH)

    Primary Common Control Physical Channel (P-CCPCH)

    Secondary Common Control Physical Channel (S-CCPCH)

    Synchronization Channel (SCH)

    Acquisition Indicator Channel (AICH)Paging Indicator Channel (PICH)

    MBMS Notification Indicator Channel (MICH)

    High Speed Physical Downlink Shared Channel (HS-PDSCH)

    HS-DSCH-related Shared Control Channel (HS-SCCH)

    Dedicated Physical Control Channel (uplink) for HS-DSCH (HS-DPCCH)

  • 8/20/2019 HSPA Pres 0610 Nokia

    22/52

    22 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    Example of L2 (MAC)-L1data exchange

    Transport

    Block Set

    (TBS) DCH2

    T T I

    DCH1

    T T I

    T B

    Transport Block

    Transport Block

    Transport Block

    T B

    T B

    Transmission Time Interval

    T T I

    T T I

    T T I

    Transport Format(TF)

    Transport Format Set(TFS)

    Transport Format Combination(TFC)

    Transport Format Combination Set(TFCS)

    t

    t

    HS-DSCH

    TB TB TB

    T T I T T IT T I

    t

    T B T B T B

    TransportBlock(TB)

    T T I = multiple of minimum interleaving

     period (10 ms) =10, 20, …,80 ms

    T T I = 2 ms

  • 8/20/2019 HSPA Pres 0610 Nokia

    23/52

    23 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    k:th S-CCPCH

    AICH access

    slots

    Secondary

    SCH

    Primary

    SCH

    τS-CCPCH,k

    10 ms

    τPICH

    #0 #1 #2 #3 #14#13#12#11#10#9#8#7#6#5#4

    Radio frame with (SFN modulo 2) = 0 Radio frame with (SFN modulo 2) = 1

    τDPCH,n

    P-CCPCH

    Any CPICH

    PICH for k:th

    S-CCPCH

    Any PDSCH

    n:th DPCH

    Subframe#0

    HS-SCCH

    Subframes

    Subframe#1

    Subframe#2

    Subframe#3

    Subframe#4

    τF-DPCH,pp:th F-DPCH

    Radio frame and slot timing

    Slot synchronization

    Radio frame synchronization and P-SC

    Phase reference for SCH, P/S-CCPCH, AICH and PICH

    SFN – Timing ref. for all PhCHs

  • 8/20/2019 HSPA Pres 0610 Nokia

    24/52

    24 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    R6: Physical layers models – UL

    1 CCTrCH (RACH) or 2 CCTrCH (RACH + E-DCH) 1 RACH CCTrCH = 1 RACH (no multiplexing)

    1 E-DCH CCTrCH = 1 E-DCH TrCH, which is carried onthe E-DPDCH(s) physical channel(s)

    1 HS-DPCCH employed for reporting

    HS-DSCH transport block acknowledgement (ACK/NACK) Channel Quality Indicator (CQI)

    1 E-DPCCH physical channel carries

    E-DCH TFCI E-DCH HARQ information

  • 8/20/2019 HSPA Pres 0610 Nokia

    25/52

    25 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    R6: Physical layers models – DL (1/2)

    Multiple CCTrCHs can be transmitted simultaneously to one UE

    Pilot, TPC bits and TFCI are time-multiplexed with complex

    scrambling onto the same dedicated physical channel TPC bits are on F-DPCH(s) for HS-DSCH(s) without a DCH

     A PCH and one or several FACHs can be encoded and

    multiplexed together, forming a CCTrCH  A PCH is associated with a separate PICH

    BCH always mapped onto P-CCPCH without any other TCH

    Each HS-SCCH carries HS-DSCH-related L1 signaling for oneUE (i.e., TFRI, HARQ info and UE Id via UE-specific CRC) for

    each HS-DSCH TTI

  • 8/20/2019 HSPA Pres 0610 Nokia

    26/52

    26 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    R6: Physical layers models – DL (2/2)

    E-DCH active set can be ≤ DCH active set

    E-DCH ACK/NACK are transmitted on E-HICH

    E-DCH absolute grant is transmitted by the serving E-DCHcell on the E-AGCH

    E-DCH relative grants can be transmitted on E-RGCH by

    each cell of the E-DCH active set There is one serving E-DCH RLS (containing the serving E-

    DCH cell) and, optionally, one or several non-serving E-DCH

    radio link(s) For all UE categories, the uplink DCH capability is limited to

    64 kb/s when the E-DCH is configured for the radio link

  • 8/20/2019 HSPA Pres 0610 Nokia

    27/52

    27 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    NGB trafficGB traffic

    ConversationalConversational StreamingStreaming InteractiveInteractive BackgroundBackground

    AMRLC

    AMRLC

    AMRLC

    AMRLC

    TMRLC

    TMRLC

    DCHDCH

    UMRLC

    UMRLC

    DCHDCH

    TMRLC

    TMRLC

    DCHDCH

    UMRLC

    UMRLC

    DCHDCH

    AMRLC

    AMRLC

    DCHDCH RACH/FACHRACH/FACH (E-)DCH/DCH(E-)DCH/DCH(E-)DCH/HS-DSCH(E-)DCH/HS-DSCH

    PS domainCS domain

    Mapping of bearers onto TCHs

  • 8/20/2019 HSPA Pres 0610 Nokia

    28/52

    28 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    HSDPA: Fundamental features

    Included in HSDPA Excluded from HSDPAEnhanced inHSDPA

    SoftHandover 

    Fast powerControl

    Variable SF

    AdaptiveModulationand Codes

    EnhancedPacket

    Scheduler 

    TTI = 2 ms

    H-ARQ

    Multi-codeoperation

    BasicWCDMA

    technology

    TF semi-

    staticattributes

  • 8/20/2019 HSPA Pres 0610 Nokia

    29/52

    29 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    HSDPA: Radio channels – DL (1/2)

    HS-DSCH Defined in R5 and later releases and time/code shared by several

    terminals

    No fast PC, but link adaptation by varying effective coding rate (HARQ),number OVSF codes and modulation (QPSK/16QAM)

    Data channel always associated with a DPCH (or F-DPCH) and one orseveral HS-SCCHs for related L1 signaling transmission

    TF: dynamic part (TB size; redundancy version/constellation; andmodulation scheme), static part (TTI = 2ms; turbo-coding 1/3; and CRC= 24 bits)

    Mapped onto HS-PDSCH

    HS-PDSCH Data channel with SF = 16, multi-code transmission (up to 15 Walsh or

    OVSF codes), QPSK or 16QAM modulation

    Transmitted over the entire cell or over only part of the cell using, e.g.using beam-forming antennas

  • 8/20/2019 HSPA Pres 0610 Nokia

    30/52

    30 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    HSDPA: Radio channels – DL (2/2)

    HS-SCCH

    Fixed-rate physical channel (SF =128) used to carry

    downlink L1 signaling related to downlink HS-DSCHtransmission

    UE ID mask, which identifies the user to be served in the next TTI

    TFRI (TB size, modulation scheme and n. of OVSF codes per TTI) HARQ-related information (new data unit or a retransmission that

    should be combined, associated ARQ process and information

    about the redundancy version)

    HS-SCCH power slow power control (offset relative to thepilot bits of the associated DPCH)

  • 8/20/2019 HSPA Pres 0610 Nokia

    31/52

    31 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    HSDPA: Radio channels – UL (1/1)

    HS-DPCCH

    Fixed-rate (SF 256) used to carry HARQ acknowledgement

    (ACK/NACK) and channel quality indication (CQI)One HS-DPCCH on each radio link

    Can only exist together with an uplink DPCCH for its power

    control operation, the DPDCH is used as a return channeland user data transmission in UL

  • 8/20/2019 HSPA Pres 0610 Nokia

    32/52

    32 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    HSDPA: physical layer structureSlot

    CQI ACK  

       U  p   l   i  n   k

       D  o  w  n   l   i  n   k

    DL associated DPCH or F-DPCH(for each HSDPA user)

    HS-SCCH

    HS-PDSCH #1

    HS-PDSCH #15

    UL associated DPCH (for

    each HSDPA user)

    HS-DPCCH

    2ms TTI  ∼ 7.5 slots

    CQI CQI

  • 8/20/2019 HSPA Pres 0610 Nokia

    33/52

    33 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    HSDPA: UTRAN end MAC architecture

        M    A    C  -    h   s

    MACControl

    HS-DSCH

       P  r   i  o  r   i   t  y   Q  u  e  u  e

       d   i  s   t  r   i   b  u   t   i  o  n

    Associated Uplink Signalling(HS-DPCCH)

       M   A   C  -   d   f   l  o  w  s

       P  r   i  o  r   i   t  y

       Q

      u  e  u  e

       P  r   i  o  r   i   t  y

       Q  u  e  u  e

       P  r   i  o  r   i   t  y

       Q  u  e  u  e

       P  r   i  o  r   i   t  y

       Q  u  e  u  e

       F   l  o  w   C  o  n   t  r  :   M   A   C  -  s   h  a  n   d   M   A   C  -   d

    To MAC-d flow 1

       S  c   h  e   d  u   l   i  n  g   /   P

      r   i  o  r   i   t  y

       h  a  n   d   l   i  n  g

       P  r   i  o  r   i   t  y   Q  u  e  u  e

       d   i  s   t  r   i   b  u   t   i  o  n

    Associated Downlink Signalling(HS-SCCH)

    Max 15 Logical channels per MAC-d

    flow (UE) using different

    Channel/Type field (C/T) in MAC-d

    header, Scheduling Priority Indicator

    (SPI = 0-15) in NBAP and CmCH-PI

    in FP using different AAL2 CID

    Max 8 priority queues per MAC-d flow

    and per UE (RRC connection)

       H   A   R   Q  e  n   t   i   t  y

       T   F   R   C  s  e   l  e  c   t   i  o  n

    One per UE (RRC connection)

    To MAC-d flow 2

  • 8/20/2019 HSPA Pres 0610 Nokia

    34/52

    34 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    HSDPA: peer-to-peer communication (1/2)

    MAC-d PDU (HS-DSCH) Format equals the format for non HS-DSCH case

    MAC PDU (HS-DSCH)One MAC-hs header

    One or more MAC-hs SDUs where each MAC-hs SDU

    equals a MAC-d PDU A maximum of one MAC-hs PDU can be transmitted in a

    TTI per UE

    The MAC-hs header is of variable size The MAC-hs SDUs in one TTI belongs to the same

    reordering queue

  • 8/20/2019 HSPA Pres 0610 Nokia

    35/52

    35 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    HSDPA: peer-to-peer communication (2/2)

    Queue ID TSN SID1  N1  F1  SID2  N2  F2  SIDk   Nk   Fk  

    MAC-hs header MAC-hs SDU Padding (opt)MAC-hs SDU

    Mac-hs payload

    VF

    MAC SDUC/T  

    MAC-hs PDU

    MAC-d PDU

    MAC SDUC/T 

  • 8/20/2019 HSPA Pres 0610 Nokia

    36/52

    36 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    HSDPA: adaptive modulation and coding

    Highest 1st Tx throughput

    MCS1 is the most spectral

    efficient allocation

    Channelisation Code Capacity (kb/s)

       R  e  c  e   i  v  e   d   D  a

       t  a   B   i   t   E   b

       /   N   0

       (   l   i  n  e

      a  r  s  c  a   l  e   )

    0 100 200 300 400 500 600 700 800

    0.5

    1.5

    1

    0

    2.5

    2

    3

    3.5

    4

    Theoretical Link Capacity

    Link Level Simulation

    Code Efficiency

       P  o  w  e  r   E   f   f   i  c   i  e  n  c  y

    MCS 1

    (QPSK, ¼)

    MCS 2

    (QPSK, ½)

    MCS 3

    (QPSK, ¾)

    MCS4

    (16 QAM, ½)

    MCS 5

    (16 QAM, ¾)

    MCS ModulationEffective

    Coding RateBits per TTI

    Peak Rate with 1 code

    (kb/s)

    1 1/4 240 120

    2 1/2 480 240

    3

    QPSK

    3/4 720 360

    4 1/2 960 480

    5 16 QAM 3/4 1440 720

    700 kb/s x 15 OVSF codes = 10.5 Mb/s

  • 8/20/2019 HSPA Pres 0610 Nokia

    37/52

    37 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    HSDPA: AMC and multi-code Tx

    Higher order MCS when all available codes are used

    is the most spectral efficient allocation

       O  p   t   i  m  a   l  n  u  m   b  e  r  o   f  c  o   d  e  s

    -5 0 5 10 15 20 25

     Num. available codes ≤ 15

     Num. available codes ≤ 5

    Instantaneous Es/N0 per TTI (dB)

       O  p   t   i  m  a   l   M

       C   S

    -5 0 5 10 15 20 25

    2

    1

    3

    4

    5

    15

    5

    0

    10

  • 8/20/2019 HSPA Pres 0610 Nokia

    38/52

    38 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    HSDPA: Link Adaptation (LA)

    Channel Quality Indicator (CQI)

    Reported based on RRC commands

    Period: 2, 4, 8, 10, 20, 40, 80, 160 ms

    Power measurements on associated DL DPCH

    HARQ Acknowledgement (DL “BLER”)

    MAC/hs buffer size

    (Optimal link adaptation functionality makes use of

    all the above information)

    HSDPA f t H b id ARQ

  • 8/20/2019 HSPA Pres 0610 Nokia

    39/52

    39 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    HSDPA: fast Hybrid ARQ

    Stop And Wait (SAW) protocol One HARQ entity handles the hybrid ARQ functionality for one user 

    Tx of current TB until it has been successfully received before initiating

    Tx of the next one Up to 8 SAW-ARQ processes may transmit in parallel over different TTIs

    for a UE (RRC-connection)

    Chase combining (CC) Every retransmission is simply a replica of the coded word employed for

    the first transmission

    The decoder at the receiver combines these multiple copies of thetransmitted packet weighted by the received SNR prior to decoding

    Incremental redundancy (IR) Retransmissions include additional redundant information that is

    incrementally transmitted if the decoding fails on the first attempt

    This causes the effective coding rate to increase with the number ofretransmissions

    HSDPA MAC/h fl t l

  • 8/20/2019 HSPA Pres 0610 Nokia

    40/52

    40 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    RNC BS

    HSDPA: MAC/hs flow control

    TS 25.321: Flow control is provided independently by

    MAC-d flow for a given MAC-hs entity

    MAC-hs userdata buffer 

    Flow Control

    MAC-d buffer 

     NBAP: QoS information from RNC

    DT (Discard Timer)

    RNC Control

    Point

    HS-DSCH Data FramePacket

    Scheduler 

    HS-DSCH Capacity Allocation

    HSDPA fl t l h i

  • 8/20/2019 HSPA Pres 0610 Nokia

    41/52

    41 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    HSDPA: flow control mechanism

    Highthreshold 

    Lowthreshold 

    MAC-hs buffer size(per MAC-hs entity)

    “High” timerexpires

    “Low” timerexpires

    Time

    Decrease numberof CRedits

    Increase number ofCRedits

    HSDPA MAC/h k t h d li

  • 8/20/2019 HSPA Pres 0610 Nokia

    42/52

    42 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    HSDPA: MAC/hs packet scheduling

    For each TTI, PS determines which UE (RRC

    connection and thus which priority queue), or UEs

    (code-multiplexing), the HS-DSCH should beallocated to and, in collaboration with the link

    adaptation mechanism, at what data rate

    Scheduling principles

    Radio resources allocated sequentially (round-robin

    scheduling among RRC connection)

    Channel and priority dependent scheduling

    HSUPA F d t l f t

  • 8/20/2019 HSPA Pres 0610 Nokia

    43/52

    43 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    HSUPA: Fundamental features

    Faster uplinks with lower latency and improves RL

    efficiency without changing uplink modulation

    The main characteristics of HSUPA are Node B controlled uplink scheduling

    HARQ protocol between the UE and Node B

    Possibility of shorter TTI (2 ms) and smaller SF

    Effective

    Coding Rate

    User data rate with

    1 code (kb/s)

    User data rate with

    2 codes (Mb/s)

    User data rate with

    4 codes (Mb/s)

    User data rate with

    6 codes (Mb/s)2/3 640 1.28 2.56 3.84

    3/4 720 1.44 2.88 4.32

    4/4 960 1.92 3.84 5.76

    HSUPA: Radio channels UL

  • 8/20/2019 HSPA Pres 0610 Nokia

    44/52

    44 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    HSUPA: Radio channels – UL

    E-DCH

     Available in 3GPP R6 and later releases

    Possibility of changing rate each TTI

    Supports inner-loop power control and link adaptation by varying the effectivecoding (HARQ), spreading factor and transmission power 

    TF: dynamic part (TB size and redundancy version), semi-static part (TTI 2 or10 ms), static part (turbo-coding 1/3, size of CRC = 24 bits)

    Mapped onto E-DPDCH

    E-DPCH

    E-DPDCH and E-DPCCH I/Q code-multiplexed with complex scrambling

    E-DPDCH supports multi-code transmission and SF from 256 down to 2

    One E-DPCCH with SF 256 transmits L1 control information associated with E-DCH (E-TFCI = TB size, RSN, happy bit)

    E-DPCCH is transmitted with a power offset relative to the DPCCH

    HSUPA: Radio channels DL

  • 8/20/2019 HSPA Pres 0610 Nokia

    45/52

    45 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    HSUPA: Radio channels – DL

    E-RGCH

    Fixed-rate physical channel with SF 128 carrying uplink E-

    DCH relative grants E-AGCH

    Fixed-rate physical channel with SF 256 carrying uplink E-

    DCH absolute grants

    E-HICH

    Fixed-rate physical channel with SF 128 carrying the uplink

    E-DCH HARQ acknowledgement indicator 

    HSPA: physical layer models

  • 8/20/2019 HSPA Pres 0610 Nokia

    46/52

    46 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    Node B1

    UE

    Node B2

    Node B3

    Cell d3

    E-DPDCH(E-DCH) / E-DPCCH (E-TFCI, RSN, Happy bit)

    DPDCH (CCTrCH) / DPCCH (TFCI, TPC)

    HS-DPCCH (HARQ ACK/NACK, CQI)

    D  P   D  C   H     /    D  P   C   C   H   

    Cell 1, d1, hs, es

    Cell e2, d4

    Cell e1, d2

    DPCH Active Set : Cell d1, d2, d3, d4E-DCH Active Set: Cell es (Serving E-DCH), e1, e2

    Radio Link Set (RLS): Cell es, e1, d1, d2

      D  P  D C

      H  /   D  P

     C C  H

      E -  R G C  H  (   P o

     w e r :   H

     o  l d,    D o

     w n  )

      E -  H  I C  H

      (  A C  K /  N

     A C  K  )

      D  P  D C

      H  /   D  P

     C C  H

      E -  R G C

      H  (   P o w

     e r :   H o  l d,  

      D o w n  )

      E -  H  I C  H  (  A

     C  K /  N A

     C  K  )

      H S - S C

     C  H  (   T  F  R

      I,    H A  R Q ,  

      U  E   I d  )

      E -  R G C

      H  (   P o w

     e r :   U  P

    ,    H o  l d

    ,    D o w n  )

      D

      P  D C  H

      (   D C C

      H  )  /   D  P

     C C  H

      H S -  P  D S C  H

      (   H S -  D

     S C  H  )

      E -  H  I C  H

      (  A C  K /  N A

     C  K  )

      E - A G C

      H  (   M a

     x   P o w e

     r   R a t  i o

    ,    E -  R  N

      T  I  )

    HSPA: physical layer models

    HSUPA: UE end MAC architecture

  • 8/20/2019 HSPA Pres 0610 Nokia

    47/52

    47 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    DCCH

    DTCH

    DTCH

    MAC-d

       M   A   C  -   h  s

    MACControl

       M   A   C  -  c

    MAC-es/e

    Associated L1 Uplink Signalling E-

    TFC (E-DPCCH)

       H   A   R   Q   P  r  o  c  e  s  s  e  s   (   E

      -   T   F   C ,

       R   S   N ,   P  o  w  e  r   O   f   f

      s  e   t   )

       E  -   T   F   C

       S  e   l  e  c   t   i  o  n

    Associated Scheduling DL Signalling

    (E-AGCH / E-RGCH(s))

    Associated ACK/NACK

    signalling (E-HICH)

       C   /   T   M   U   X

       D

       C   H

    Uplink User Data / L3

    Signalling (E-DCH)

       D  e  c   i  p   h  e  r   i  n  g

       C

       /   T

       M

       U   X

       U   L  :   T   F   C  s  e   l  e  c   t   i  o  n

       C

       i  p   h  e  r   i  n  g    D

       C   HDTCH

       M  u   l   t   i  p   l  e  x   i  n  g  o   f  u  p   t  o   1   5   l  o  g   i  c  a   l

      c   h  a  n  n  e   l  s   (   8   M   A   C  -   d   f   l  o  w  s   ) ,   D   D   I

      a  n   d   T   S   N  s  e   t   t   i  n  g

       T  r  a  n  s  p  o  r   t   C

       h  a  n  n  e   l   T  y  p  e   S  w   i   t  c   h   i  n  g

       M   A   C  -   d

       F   l  o  w  s

    DTCH

       N  u  m   b  e  r   i  n  g

       N  u

      m   b  e  r   i  n  g

       N  u  m   b  e  r   i  n  g

       L  a  y  e  r   1

       L  a  y  e  r   1

       R   L   C

    UE

    HSUPA: UE-end MAC architecture

    HSUPA: UTRAN end MAC architecture

  • 8/20/2019 HSPA Pres 0610 Nokia

    48/52

    48 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    DC

    DT

    DT

    MAC-d

    MACContr

    DT

    DT

    MA C - d 

    F l   o w s 

    RL  C 

    D C H

    D e  c i   ph  e r i  n

     g

     C  /  T M UX

    DL  S  c h  e  d  ul  i  n

     g /  

    P r i   or i   t   yH a n d l  i  n g

     C i   ph  e r i  n g

    D C H

    L  a  y e r 1 

    M

    A C -h  s 

    MA C - c 

     C  /  T M UX

     /  DL 

    P r i   or i   t   y S 

     e  t   t  i  n g

    F l   o w

     C  on t  r  ol  

    MAC-es/UE

    F r  om

    MA C - e i  n

     N o d  e B # 1 

    Di   s  a  s  s  e m b l   y

    R e  or  d  e r i  n g /  

     C  om b i  ni  n g

    F r  om

    MA C - e i  n

     N o d  e B # k 

    MA C - d f  l   o w # 1 

    MA C - d f  l   o w # n

    MAC-e/UE

    E-DCH

    Associated DLL1 Signaling(E-HICH)

    Associated ULL1 Signaling(E-DPCCH)

    HAR

     QP r  o c  e  s  s  e  s 

     (  A C 

    K /   NA C K )  

    E -D C H

     C  on t  r  ol  

    T r  a n s  p or  t   C h  a nn e l  T  y p e  S  wi   t   c h i  n g

    Di   s  a  s  s  e m b l   y

    R e  or  d  e r i  n g Q

     u e  u e 

    Di   s  t  r i   b  u t  i   o

    n Di   s  a  s  s  e m b l   y

    R e  or  d  e r i  n g /  

     C  om b i  ni  n g

    R e  or  d  e r i  n g /  

     C  om b i  ni  n g

    R e  or  d  e r i  n g Q u e  u e 

    Di   s  t  r i   b  u t  i   on

    D e -M UX

    SRNC

    Node B

     N o d  e B

    E -D C H

     S  c h  e  d  ul   e r 

    HSUPA: UTRAN-end MAC architecture

    HSUPA: Node B scheduling (1/2)

  • 8/20/2019 HSPA Pres 0610 Nokia

    49/52

    49 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    HSUPA: Node B scheduling (1/2)

    Node B issues scheduling grants to indicate to UE the maximum amountof uplink resources it may use

    Control of max E-DPDCH/DPCCH power ratio of active HARQ processes

    Used only for E-DCH TFC selection algorithm in the UE

    Sent once per TTI or at a slower rate

     Absolute grants

    E-RNTI of the UE or group of mobiles for which the grant is intended

    Max E-DPDCH/DPCCH power ratio (offset) the UE is allowed to use HARQ process activation flag (in case of a 2-ms TTI)

    Relative grants

    Increase or decrease the resource limitation (power ratio) compared with the

    previously used value From serving E-DCH RLS: ‘up’, ‘hold’ or ‘down’

    From non-serving E-DCH RL: ‘hold’ or ‘down’

    HSUPA: Node B scheduling (2/2)

  • 8/20/2019 HSPA Pres 0610 Nokia

    50/52

    50 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    HSUPA: Node B scheduling (2/2)

    The UE requests resources from BSs in the form of schedulinginformation and happy bit

    The UE is not ‘happy’ when it has power available to send data at higherrates and the total buffer content would require more than X ms to betransmitted with the current SG times the ratio of active processes to thetotal number of processes (1 for TTI 10 ms)

    Scheduling information

    Sent to the serving E-DCH RLS in a MAC-e PDU

    Logical channel ID of the highest priority channel with data in its buffer 

    UE buffer occupancy: status of the highest priority logical channel with datain its buffer 

    UE power headroom (UPH): ratio of the maximum UE transmission power

    and the corresponding DPCCH code power 

    HSUPA: Non-scheduled transmissions

  • 8/20/2019 HSPA Pres 0610 Nokia

    51/52

    51 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    HSUPA: Non-scheduled transmissions

    SRNC may configure the UE for non-scheduled transmission

    UE may send data at any time using the E-DCH, without

    receiving any scheduling command from the Node B

    Non-scheduled transmissions are defined per MAC-d flow

    The resource for non scheduled transmission (non-scheduled

    grant) is provided by the SRNC in terms of the maximumnumber of bits that can be included in a MAC-e PDU

    The logical channels are served in the order of their

    priorities until the non-scheduled grant and scheduledgrants are exhausted, or the maximum transmit power is

    reached

    References

  • 8/20/2019 HSPA Pres 0610 Nokia

    52/52

    52 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

    References

    D. Soldani, M. Li and R. Cuny (eds.), QoSand QoE Management in UMTS Cellular

    Systems, John Wiley and Sons, June, 2006,460 pp. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-

    0470016396.html http://www.connecting.nokia.com/NOKIA/nns.nsf/a/78786C

    61AB5A7C5AC225718F0026BAA3

    (contact Mr. Geoff Farrell @ Wiley [email protected] )See also:

    http://lib.tkk.fi/Diss/2005/isbn9512278340/

    http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470016396.htmlhttp://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470016396.htmlhttp://www.connecting.nokia.com/NOKIA/nns.nsf/a/78786C61AB5A7C5AC225718F0026BAA3http://www.connecting.nokia.com/NOKIA/nns.nsf/a/78786C61AB5A7C5AC225718F0026BAA3mailto:[email protected]://lib.tkk.fi/Diss/2005/isbn9512278340/http://lib.tkk.fi/Diss/2005/isbn9512278340/mailto:[email protected]://www.connecting.nokia.com/NOKIA/nns.nsf/a/78786C61AB5A7C5AC225718F0026BAA3http://www.connecting.nokia.com/NOKIA/nns.nsf/a/78786C61AB5A7C5AC225718F0026BAA3http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470016396.htmlhttp://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470016396.html