hydrocarbon processingkkft.bme.hu/attachments/article/109/2020 hp_6 desulphuriation and... ·...

51
HYDROCARBON PROCESSING DESULPHURISATION AND DIESEL QUALITY IMPROVEMENT English version based on the presentation of Prof. Dr. Jenő Hancsók, D.Sc. held on 08.10.2014 [email protected] Pannon University MOL Crude Oil and Coal Technology Department MOL Ásványolaj- és Széntechnológiai Intézeti Tanszék Vegyészmérnöki- és Folyamatmérnöki Intézet 8200 Veszprém, Egyetem u. 10. Pf. 158. Tel.: +36 88/624217 Fax.:+36 88/624520

Upload: others

Post on 17-Feb-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

  • HYDROCARBON PROCESSINGDESULPHURISATION

    AND

    DIESEL QUALITY IMPROVEMENT

    English version based on the presentation of

    Prof. Dr. Jenő Hancsók, D.Sc.

    held on 08.10.2014

    [email protected]

    Pannon UniversityMOL Crude Oil and Coal Technology Department

    MOL Ásványolaj- és

    Széntechnológiai Intézeti

    Tanszék

    Vegyészmérnöki- és

    Folyamatmérnöki Intézet

    8200 Veszprém, Egyetem u. 10. Pf. 158.

    Tel.: +36 88/624217 Fax.:+36 88/624520

  • Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright 2

    Crude oil distillation fractions: carbon number

    and atmospheric boiling point range

    2

  • Desulphurisation of

    hydrocarbon fractions

  • 44

    Desulphurisation of hydrocarbon fractions

    Necessity, importance

    ◼ To meet product quality specifications (10 ppm)

    ◼ To prevent catalyst poisoning during later

    processing (CCR, LNI)

    ◼ To prevent corrosion

    ◼ To protect car exhaust gas catalyst

    ◼ General and specific environment protection

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 55

    LPG Desulphurisation

    Sulphur compounds in LPG

    ◼ carbonyl-sulphide (COS; bp.: -50°C)

    ◼ methyl-mercaptan (CH3SH; bp.: +6°C)

    Processes

    ◼ Removal with caustic

    Mercaptan-reformulation:

    RSH + NaOH → RSNa + H2O

    H2S + 2 NaOH → Na2S + 2 H2O

    Caustic regeneration:

    2 RSNa + ½ O2 + 2 H2O → RSSR + 2 NaOH + H2O

    2 Na2S + 4 H2O + 2 O2 catalyst Na2S2O3 + 2 NaOH + 3 H2O

    ◼ Removal with molecular sieve

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 6

    Molecular structure of cobalt-ftalocyanin

    6Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 77

    LPG Desulphurisation (MEROX)

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 88

    Gasoline desulphurisation

    Sulphur compounds in gasoline

    Compound Formula Boiling Point, °C

    Mercaptans

    ethyl-mercaptan C2H5SH 35,0

    n-nonyl-mercaptan C9H19SH 220

    Sulphides

    dimethyl-sulphide CH3-S-CH3 38

    n-butyl-sulphide C4H9-S- C4H9 188

    Disulphides

    dimethyl-disulphide CH3-S-S-CH3 109

    ethyl-disulphide C2H5-S-S- C2H5 153

    Thiophenes

    thiophene

    S

    80

    dimethyl-thiophene S

    135

    benzothiophene

    S

    221

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 99

    Light gasoline desulphurisation

    Sulphur compounds removal by caustic (see LPG)

    Reformulation to non-corrosive sulphur compounds („sweetening”)

    During „sweetening” the mercaptan is reshaped to the less corrosive

    disulphide form, which will remain in the product → the sulphur

    concentration will be not changed!!!

    2 RSH + 2 OH- → 2 RS- + 2 H2O

    2 RS- + cat.0 → RSSR + cat.2-

    cat.2- + 1/2O2 + H2O → cat.0 + 2 OH-

    (cat.: catalyst, e.g. cobalt-ftalocyanin)

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 1010

    Fixed bed MEROX sweetening process

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 1111

    Desulphurisation of middle and heavy gasoline

    fractions

    Examples of hydrodesulphurisation reactions

    ◼ Mercaptans:

    R - S - H + H2 → R - H + H2S

    ◼ Disulphides:

    R1 - S -S - R2 + 3 H2 → R1 - H+ R2 - H + 2 H2S

    ◼ Thiophenes:

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 1212

    Sulphur reduction possibilities of FCC and

    pyrolisis gasoline

    ◼ Selective hydrogenation (industrial application)

    ◼ Catalytic distillation

    ◼ Hydrogenation + isomerisation

    ◼ Alkylation of sulphur compounds

    ◼ Adsorption

    ◼ Reactive adsorption

    ◼ Membrane separation

    ◼ Extractive distillation

    ◼ Oxidation of sulphur compounds

    ◼ Bio-catalytic desulphurisation

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • Typical sulphur and olefin compound

    distribution in the FCC gasoline

    13

    0,7

    0,6

    0,5

    0,4

    0,3

    0,2

    0,1

    050 100 150 200

    70

    60

    50

    40

    30

    20

    10

    0

    Olefintartalom

    Kéntartalom

    Tiofének

    Szulfidok, diszulfidok

    Merkaptánok

    S

    CH3CH3

    S

    CH3

    S

    C2H5

    S

    C3H7

    C2-S-C1 C2-S-C2 C3-S-C3

    C2-S-S-C2

    C4-S-C4

    C2SH C3SH C4SH C5SH C6SH C7SH C8SH

    Kén

    tar t

    alo

    m,%

    Forráspont, °C

    Ole

    fi nta

    rtalo

    m,%

    S

    Benzotiofének

    S

    SS

    SS

    CH3

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

    Boiling point, ˙C

    Ole

    fin c

    on

    ten

    t, %

    Su

    lph

    ur

    co

    nte

    nt,

    %

    Olefin content

    Sulphur content

  • Typical composition of the FCC gasoline

    14Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • Desulhurisation possibilities (processes)

    of total and reduced FCC gasoline fractions

    15Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 1616

    Hydrodesulphurisation (heteroatom removal)

    of petroleum fractions

    Sulphur compounds example

    220-230°C bp.

    sulphur comp.

    Nitrogen compounds example

    Aniline

    Oxygen compounds example

    Carboxylic acids

    R-COOH C5 ≤ R ≤ C7

    R: alkyl-group

    NH2

    saturated hydrocarbon + H2S

    cat., T, P, + H2saturated hydrocarbon + NH3

    cat., T, P, + H2

    cat., T, P, + H2 saturated hydrocarbon + H2O

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 1717

    Desulphurisation of gasoil

    Theoretical possibilities:

    ◼ Hydrodesulphurisation

    ◼ Adsorption/chemisorption processes

    ◼ Extraction/partly reactive extraction

    ◼ Oxidative desulphurisation

    ◼ Biocatalytic desulphurisation

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 1818

    Desulphurisation of gasoil

    (heteroatom removal)

    Basic reactions

    ◼ Mercaptans:

    R - S - H + H2 → R - H + H2S R ≥ C10

    ◼ Sulphides:

    Open chained:

    ◼ sulphides: R1 - S - R2 + 2H2 → R1 - H+ R2 - H + H2S

    ◼ disulphides: R1 - S -S - R2 + 3 H2 → R1 - H+ R2 - H + 2 H2S

    Cyclic:

    ◼ thiophenes:

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 1919

    Desulphurisation of gasoil

    (heteroatom removal)

    ◼ benzo-thiophenes:

    ◼ dibenzo-thiophenes:

    + 3 H2 + H2S

    R

    S

    CH2-CH3

    R

    S

    R R

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 2020

    Desulphurisation of gasoil

    (heteroatom removal)

    Reaction net of dibenzo-thiophene

    (Numbers: reaction speed constants, dm3/gcat.s)

    S

    S S

    4,2x10-8 2,8x10-5

    1,1x10-44,7x10-5

    lassú

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • Alternative desulphurisation reaction pathways

    for sterically hindered diaklyl-dibenzo-thiophenes

    21Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 2222

    Relative reactivity of typical sulphur

    compounds

    Sulphur compound Formula Relative

    reactivity

    Thiophenes S

    R

    1

    Benzothiophenes

    S

    R

    0,6

    Dibenzothiophenes

    S

    R R

    0,04

    4- and/or 6-methyl-

    dibenzothiphene S

    CH3

    CH3

    0,004

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 2323

    Example reactions of heteroatom removal and

    partial dearomatisation of gasoil

    Nitrogen removal reactions:

    ◼ Amines: C18H37 - NH2 + H2 → C18H38 + NH3

    ◼ Nitriles: C18H37 - CN + 3H2 → C18H37 - CH3 + NH3

    ◼ Pyrrole-derivatives (pyrrole, indole, carbazole)

    ◼ Pyridine-derivatives (pyridine, kinoline, acridine)

    NH

    NH N

    H

    cat., T, P, + H2Saturated hydrocarbon + NH3

    NN N

    cat., T, P, + H2Saturated hydrocarbon + NH3

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 2424

    Example reactions of heteroatom removal and

    partial dearomatisation of gasoil

    Oxygen removal reactions:

    ◼ phenol-deriavatives (alkyl- and allyl-phenols, naphtaleneols)

    ◼ ketones (tetralones)

    ◼ furan-derivatives (alkyl-furans, benzofuran, dibenzofuran)

    ◼ carbonyles (carboxylic acids: R-COOH, aldehydes: R-COH, amides: R-CONH2)

    OH

    OHR R

    O

    R

    O O O

    R

    R R

    cat., T, P, + H2Hydrocarbon + H2O

    cat., T, P, + H2Hydrocarbon + H2O

    cat., T, P, + H2Hydrocarbon + H2O

    cat., T, P, + H2 Hydrocarbon + H2O ( + NH3)

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • Example reactions of heteroatom removal and

    partial (20-40%) dearomatisation of gasoil

    25

    Mainly the multi ring aromatic partial saturation to mono ring compounds

    From naphtalene to decaline:

    2H izomerizáció 2H

    H2H

    R

    6H

    Three ring aromatic saturation :

    R2

    R1

    + H2

    Katalizátor

    R1

    R2

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

    catalyst

  • 2626

    Catalysts for desulphurisation

    Catalysts with transition metals (Ni, Co, Mo)

    On metal-oxide support (Al2O3, SiO2, TiO2), sometimes zeolite

    (feed sulphur content ~250 mg/kg → 1-2%)

    e.g.: CoMo/Al2O3; NiMo/Al2O3; CoNiMo/Al2O3

    Catalysts with noble metals (Pd, Pt, Re, Ir)

    ◼ On metal-oxide support (Al2O3, SiO2, TiO2)

    ◼ On zeolite support (USY, MCM-41, MFI)

    (feed sulphur content ≤ 250 mg/kg )

    e.g.:Pt-Pd/Al2O3; Pt-Pd/USY

    USY: ultra stable Y-type zeolite

    MCM: Mesoporous Catalyst Materials

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 2727

    Theoretical scheme of hydrodesulphurisation

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 2828

    Typical parameters of desulphurisation of

    different fractions

    LAGO: light atmospheric gasoil; HAGO: heavy atmospheric gasoil; LVGO: light vacuum gasoil

    Feed Gasoline Petroleum LAGO HAGO LVGO

    Parameters: TBP cut points, °C Sulphur, % (mg/kg) Process parameters: Temperature, °C Pressure, bar LHSV, h

    -1

    H2/feed ratio, vol/vol Product sulphur, mg/kg Catalyst cycle life, month Relative catalyst cost, 1/t

    70-200

    (100-1000)

    310-330 20-30

    4,0-6,0 100-150

  • Sulphur removal and production

    from hydrogen-sulphide

    containing gases

  • Hydrogen-sulphide removal from high

    hydrogen concentration gases

    30

    (H2, others)

    Sweet gas

    Sour gas

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

    Absorber

    Solvent

    Stripper

    (desorber)

    End gas

  • The reaction (MDEA)

    (HO-CH2-CH2)2-N-CH3+H2S

    ((HO-CH2-CH2)2-N-CH3)+(SH)−

    31Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • Most frequently used absorbents

    Absorbent MEA DEA MDEA

    Molecular weight 61 105 119

    Concentration (vol%) 15 30 50

    Minimum H2S load (nH2S/namine) 0,05 0,02 0,01

    Maximum H2S load (nH2S/namine) 0,6 0,6 0,5

    Capacity (H2S/dm3) 1,77 2,18 2,77

    32

    MEA: mono-ethanol-amine

    DEA: di-ethanol-amine

    MDEA: methyl-di-ethanol-amine

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • Sulphur production from hydrogen-sulphide

    (1) Partial oxidation in the burning chamber H2S + 1,5O2 → SO2 + H2O

    or (including the unburnt H2S) 3H2S + 1,5O2 → 2H2S + SO2 + H2O ]

    (2) Claus reaction in the burning chamber and in

    the catalytic converter2H2S + SO2 → 3S + 2H2O

    (1+2) Gross reaction 2H2S + O2 → S2 + 2H2O

    COS production H2S + CO2 → COS + H2O

    CS2 production CH4 + 2S2 → CS2 + 2H2S

    COS hydrolisis COS + H2O → CO2 + H2S

    CS2 hydrolisis CS2 + 2H2O → CO2 + 2H2S

    33Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • Sulphur production from hydrogen-sulphide

    by Claus process

    Thermic step: H2S + 1,5 O2 → SO2 + H2O

    Catalytic step: 2 H2S + SO2 ↔ 3S + 2 H2O

    Véggáz-

    tisztító

    egységKémény

    Termikus

    utóégető

    Katalitikus

    konverter

    Katalitikus

    konverter

    Kén leválasztó

    kondenzátorKén leválasztó

    kondenzátor

    Kén leválasztó

    kondenzátor

    KénKénKén

    Gőz

    Hulladékhő

    hasznosító

    Égető kamra

    H2S-ben

    dús gázLevegő

    H2S/SO2 = 2:1

    Előmelegítő Előmelegítő

    Víz

    Vízgőz

    Víz Víz

    Vízgőz Vízgőz

    34Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 35

    Reduction the aromatic

    compounds concentration in

    gasoil

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 36

    Saturation of aromatics in gasoil by

    hydrogenation

    Importance:

    The lower the aromatic content, the better the working

    behaviour: higher cetane number, lower exhaust emission

    – specifically the particulate matters – middle distillate

    production, raw material and energy efficient,

    environmentally friendly and economic way.

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 37

    Theoretical considerations

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 38

    Reduction the aromatic compounds

    concentration in gasoil

    Non-catalytic processes

    ◼ Acidic refining

    ◼ Physical separation

    adsorption

    extractive distillation

    Solvent extraction

    Liquid membrane permeation

    Catalytic processes

    ◼ Partial or total hydrogenation

    (the goal is to convert the aromatics to naphtenes)

    ◼ hydrocracking (different severity)

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 39

    Aromatic compounds in gasoil

    Single ring aromatics Two ring aromatics Three ring aromatics

    - alkyl-benzenes - Naphtalene and alkyl-

    naphtalenes

    - antracenes

    - benzo-cycloparaffins - bifenyls - fenantrenes

    -benzo-dicycloparaffins - naphteno-aromatics (indenes) - fluorenes

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 40

    Saturation of aromatics

    Highly exotherm reaction

    alkyl-benzene to alkyl-cyclohexane

    (reaction time increases with the alkyl chain size; exothermicity decreases)

    Naphthalene to decaline: ∆H = -335 kJ/mol

    2H izomerizáció 2H

    H2H

    R

    6H

    2H 2H 2H 2H

    gyűrűfel-szakadás

    szénhidrogén

    R R R R

    toluene → methyl-cyclohexane: ∆H = -205 kJ/mol

    ethyl-benzene → ethyl-cyclohexane: ∆H = -202 kJ/mol

    cumene → 2-cyclohexyl-propane: ∆H = -184 kJ/mol

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

    hydrocarbonRing

    rapture

  • 41

    Kinetic and thermodynamic factors determining

    the hydrogenation of aromatic compounds

    Tkinetika Tterm.

    Aro

    sta

    rta

    lom

    , ft

    f %

    Hőmérséklet, °C

    P = 50 bar

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

    Transition metal/support

    Noble metal/support

    Temperature,

    Aro

    ma

    tic c

    on

    ten

    t, v

    ol%

  • 42

    Catalysts for aromatic hydrogenation

    Highly sulphur tolerant catalysts

    (feed sulphur content ≥ 250 mg/kg)

    ◼ Mo, W (VI. group) and Co, Ni (VIII. group) in suphided form, on γ-Al2O3 support

    Activity sequence: Mo > W >> Ni > Co

    ◼ NiMo/Al2O3, CoMo/Al2O3, NiW/Al2O3 in sulphided form

    Activity sequence: NiW > NiMo > CoMo > CoW

    ◼ Partial aromatic saturation (up to ~50-80 %; at least 60 bar H2 partial pressure)

    Low sulphur tolerant catalysts

    (feed sulphur content 250 mg/kg, more typically 10-20 mg/kg)

    ◼ Pt or Pt, Pd amorphous Al2O3 – SiO2, or on acidic (USY) support

    ◼ High level aromatic saturation (up to ~95 %; Tmax: 300-310 °C, pH2: 25-40 bar)

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 43

    Industrial applications

    Differences in applications:

    In the sequence of heteroatom removal and aromatic saturation (in teh same time or in sequence);

    In the number of reactors applied;

    In the catalyst(s) applied;

    In the mode of catalyst distribution (e.g. divided bed);

    In the mode of feed introduction to the catalyst bed;

    In the mode of quench cooling;

    In the used process parameters, etc.

    The industrial applications may be classified into two main groups:

    Single stage processes

    Two stage processes

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 44

    Sketch of the single stage aromatic reduction

    of gasoil

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 45

    Sketch of the two stage aromatic reduction of

    gasoil

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 46

    Catalytic reshaping of normal-

    paraffins in gasoil

    („paraffin removal”)

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 4747

    Catalytic reshaping of normal-paraffins in

    gasoil

    Importance

    The goal is to convert the high freezing point normal paraffins to lower

    freezing point ones (decrease of cold filtration point – CFPP)

    Freezing point reduction possibilities

    ❑ Selective hydrocracking

    ❑ Selective isomerisation

    ❑ Combination of the two above

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 48

    Theoretical considerations of freezing point vs

    carbon number

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

    -100

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    Fre

    ezin

    g p

    oin

    t, °

    C

    Carbon number

    nincs

    2-metil

    5-metil

    1312 16 18 20 22

    Side chain

    DT=60°C DT=64°C

    DT=59°C

    DT=48°C

    DT=44°C

    none

    2-methyl

    5-methyl

  • 4949

    Catalytic reshaping of normal-paraffins in

    gasoil

    Catalyst examples:

    ◼ Ni/ZSM-5 (mainly hydrocracking)

    ◼ Pt/SAPO-11, Pt/HZSM-22 (mainly isomerisation)

    Process parameters

    ◼ Temperature: 330 – 370°C

    ◼ Pressure: 30 – 50 bar

    ◼ LHSV: 1,0 – 2,0 m3/m3h

    ◼ H2/hydrocarbon ratio: 250 – 300 Nm3/m3

    Product yield: 80 – 95 %

    Freezing point drop (ΔT): 15 – 25°C

    Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • Recommended literature

    Hancsók, J., Baladincz, J., Magyar, J. (szerkesztők): „Mobilitás és környezet”, gyűjteményes kiadvány, 2008,

    Pannon Egyetemi Kiadó, Veszprém (ISBN: 978-963-9696-50-1), 240 oldal

    Srivastava, S. P., Hancsók, J.: „Fuels and Fuel-Additives”, 2014, John Wiley & Sons, Inc., Hoboken, New Jersey,

    (ISBN: 978-0-470-90186-1), 376 oldal

    Hancsók.Jenő.:Korszerű motor- és sugárhajtómű üzemanyagok II. Dízelgázolajok, tankönyv, Veszprémi Egyetemi

    Kiadó 1999.

    Hancsók Jenő, Kasza Tamás: „Katalitikus hidrogénező eljárások a kőolajiparban”, Oktatási segédlet, Veszprém,

    2010.

    Magyar Kémikusok Lapja következő számai: 2005/6-12, 2006/1-12, 2007/1-7

    Gary, J.H.: Petroleum Refining Technology and Economics 3rd , Marcel Dekker, N.Y. 2004.

    Speight,J.G.: The chemistry and technology of petroleum 3rd . Marcell Dekker, 1999.

    Speight,J.G.: Petroleum Chemistry and Refining, Taylor and Francis 2006.

    Weissermel, K., Arpe, H-J.: Ipari szerves kémia, Nemzeti Tankönyvkiadó, Budapest, 1993.

    Mc Ketta, J.: Petroleum Processing Handbook, Marcell Dekker, 1992.

    Hobson, G.D.: Modern Petroleum Technology, J. Wiley, 1986.

    Meyers, R.A.: Handbook of petroleum Refining Processes, McGraw-Hill Inc., N.Y., Toronto, 2007.

    Olah, G.A., Molnár, Á.: Hydrocarbon chemistry, John Wiley and Sons, Inc., 2003.

    50Jenő Hancsók: Hydrocarbon processing, BME, 08.10.2014., Copyright

  • 51

    Thank you for your attention!