iba applications to cultural heritage and environmental...

109
�� ����������

Upload: duongque

Post on 12-May-2018

215 views

Category:

Documents


2 download

TRANSCRIPT

�������� � �

������ �� ��� ������������

��� ����������� ������������

�� � �� ����� ����

��� ������������ �� �������� �������� ��� ������������� ��������

���� ������

����������� �� �������� �����

IBA applications to Cultural Heritage and environmental problems

Pier Andrea MandòDpt. of Physics, University of Florence, Italy

and

Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, Italy

[email protected]

Laboratorio di tecniche nucleari per i Beni Culturali

http://labec.fi.infn.it

IBA features that make them ideally suitable for C.H. and environmental studies• Very large cross sections (PIXE in particular) very low

beam currents (therefore no damage), short time needed for analysis, and great absolute sensitivity (therefore

analysis of very low target mass)• Non destructivity measurements can be repeated, also

with other techniques• External beams no need of picking up samples, large

objects, ease of handling the “targets”• Possibility of easily varying beam energy, intensity and

size, in order to find the best experimental conditions for the specific problem

• Complementary information obtained by the different IBA techniques, easily implemented in the same set-up

σ X(b

arn)

σ X(b

arn)

increasing Z

sezioni d'urto di produzione X (serie K)

0,1

1

10

100

1000

10000

1 2 3 4 5energia protoni (MeV)

Na

Ag

Zr

As

Fe

Ca

sezioni d'urto di produzione X (serie L)

0,1

1

10

100

1000

10000

1 2 3 4 5energia protoni (MeV)

Pb

Ba

Ag

Zr

Ta

X ray production cross sections (KX ray production cross sections (K--series)series)

X ray production cross sections (LX ray production cross sections (L--series)series)

Proton energy (MeV)Proton energy (MeV) Proton energy (MeV)Proton energy (MeV)

barns barns

IBA + AMS accelerator facilityin Florence

Tandetron Accelerator3 MV terminal voltage

IBA dual

source injector High-energy AMS

spectrometer

Multi-sample AMS injector

IBAbeamlines

multipurpose IBA vacuum chamber

electrostatic chopper

external beam for archaeometry

external beam for aerosol analysis

external µ-beam

multi-angle scattering chamber

PIXE-induced XRF

operationalunder installationplanned

Overall view of the Florence Tandetron accelerator hall

The beamlines so far installed for IBA

Gamma-ray detector(PIGE)

X-ray detectors(PIXE)

External-beam set-up for the analysis of paintings and other art objects

An essential facility to perform IBA An essential facility to perform IBA especially in the field of Cultural Heritage especially in the field of Cultural Heritage

1 cm

the external beam setthe external beam set--upup

With an external beam you can investigate in a non-destructive way the

complete quantitative composition of any material you may be interested in

...glazed terracottas,

External PIXE analysis of the “Ritratto di fanciullo”by Luca Della Robbia –before restoration at the Opificio delle Pietre Dure

in Florence

Analysis of ancient glass,

Glass mosaic tesserae found in excavations at

Villa Adriana, Tivoli

1 cm

External PIXE-PIGE analysis of the glass tesserae from Villa

Adriana

External-beam PIXE analysis of the frontispiece of Pl.16,22 (XV century, Biblioteca Laurenziana in Florence)

...ancient illuminated manuscripts,

...historical documents,

Inks in Galileo’s manuscripts (Florence National Library) analysed by external PIXE

...drawings,

PIXE-PIGE analysis of a drawing on prepared paper, by Leonardo or his school

...paintings on wood or canvas,

Differential PIXE and PIGE analysis of the “Ritratto Trivulzio” by Antonello da Messina

…or analysis of aerosols collected on filters

Particulate Matter (PM) from streaker samplers (1-hour

resolution)

PM from daily samplers

Typical experimental conditions in applications to C.H.

• proton beams, 1 ÷ 5 MeV• 5÷50 pA currents, 100÷200 s runs• 0.1÷1 mm beam size• two X ray detectors

one for lower-Z elements, covering a small solid angle; He flow for minimising absorption the other for higher-Z elements, covering the largest possible solid angle and with proper absorbers to cut the high rate of low-energy X rays

• a gamma ray detector

Two-detector PIXE setup,collimated

external beam

10

100

1000

10000

100000

0 5 10 15 20 25 30 35X ray energy (keV)

coun

ts/(

g/cm

2 )(C

)

K X-rays BIG

L X-rays BIG

K X-rays SMALL

L X-rays SMALL

X ray detection efficiencies in a two-detector setup

Analysis of documents of historical interest

A letter of Galileo during PIXE A letter of Galileo during PIXE analysis with the external beam at analysis with the external beam at the Florence acceleratorthe Florence accelerator

(INFN FI, Bibl.Naz. FI, MPI Berlin)

PIXE measurements to quantitatively determine ancient inks composition

Important contribution to the chronological reconstruction of

Galileo’s hand-written notes about motion

Comparison of ink composition in the notes (which are not

dated) with that in dated documents (letters, etc.)

Some folios from Ms.Gal.72

(Bibl. Naz. Firenze)

A precious “database” of dated inks: records of money transactions in Ms.Gal.26

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

Cont

eggi

F e

F eC u Z n

P bP b

P bM n

M s.G a l.7 2 f .1 2 8

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

Con

tegg

i

F e

F e Z nC uM n Z n P b P b

M s.G al.2 6 f .2 9 v

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0 9 0 0 0 1 0 0 0 0 1 1 0 0 0 1 2 0 0 0 1 3 0 0 0 1 4 0 0 0

E n e rg ia (e V )

Con

tegg

i

M n

F e

F eC u Z n Z n P b

M s.G a l.1 4 f .2 7 r

P b

Discriminating between different Discriminating between different inks withinks with PIXEPIXE

v(s), v(t), s(t)

Folio 128the “starting point”

...che il grave cadente naturalmente vada continuamenteaccrescendo la propria velocità....

...secondo che accresce la distanza dal termine onde si partì....

““DatingDating”” f.128f.128

v(s), v(t), s(t)Folio 164v - the “final result”

...sunt inter se ut radices distantiarum...

Folio 164vFolio 164v

First part

two final lines

Folio 164 v Folio 164 v –– comparison between the comparison between the two propositionstwo propositions

0.00

5

0.01

5

0.02

5

0.03

5

0.04

5

0.05

5

0.06

5

4^ p

rop.

3^ p

rop.

02468

101214161820

num

ero

di c

asi

rapporto in peso

164v Cu/Fe

0.2

0.4

0.6

0.8

1

1.2

4 ̂p

rop.

3̂ p

rop.

02468

1012141618

num

ero

di c

asi

rapporto in peso

164v Cu/Zn

0.01

0.03

0.05

0.07

0.09

0.11

4^ p

rop.

3^ p

rop.

0123456789

10

num

ero

di c

asi

rapporto in peso

164v Pb/Fe

Connection between different folios (91v, 152r)

Connection between f.91v and f.152r

0,00

5

0,01

0,01

5

0,02

0,02

5

0,03

0,03

5

0,04

0,04

5

0,05

0,05

5

0,06

0,06

5

0,07

0,07

5

0,08

152r

91v

corr

91v

text

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

nr of cases

weight ratio

91v-152r Cu/Fe

0,00

25

0,00

5

0,00

75

0,01

0,01

25

0,01

5

0,01

75

0,02

0,02

25

0,02

5

0,02

75

0,03

0,03

25

0,03

5

0,03

75

0,04

152r

91v

corr

91v

text

0

1

2

3

4

5

6

7

nr. of cases

weight ratio

91v - 152r Pb/Fe

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4

152r

91v

corr

91v

text

0

1

2

3

4

nr. of cases

weight ratio

91v - 152r Zn/Cu

f. 179r

f. 179r

0,00

5

0,01

5

0,02

5

0,03

5

0,04

5

0,05

5

0,06

5

0,07

5

text

+dra

w.

und.

+glo

ssae

0

2

4

6

8

10

cases

weight ratio

Cu/Fe

0

1

2

3

4

5

6

7

8

cases

weight ratio

P b/Fe

0

2

4

6

8

10

12

cas es

weig ht ra t io

(Cu/Zn)/10

f. 179v

f. 179v

0,00

5

0,01

5

0,02

5

0,03

5

text

vto

p a1 a1 a2

0

1

2

3

4

5

cases

weight ratio

Cu/Fe

0

1

2

3

4

5

cases

weight ratio

Pb/Fe

0,1

0,3

0,5

0,7

0,9

1,1

text

v

a1

01234567

cases

weight ratio

Cu/Zn

Simultaneous PIXE and PIGE analysis• In most cases, great advantage in combining

PIXE and PIGE:– by γ rays, light elements are easily detected,

while their detection through X rays is impossible at all or problematic

External beam set-up equipped with:

two Si(Li) dets for X rays

Ge(Hp) det for γ rays

Glass mosaic tesserae from wall decorations in Villa Adriana (Tivoli)

Surface inhomogeneities due to

glass alterations

1 cm

Sodium detection and quantification is of the greatest importance to characterise ancient glass

In Europe, two typologies are found, depending on the component used to lower the melting temperature of silica:• natron (sodium carbonate) glass with high Na2O and low K2O

content (as in Roman and Early Middle Age glass)• Ashes from plants glass with high K2O content (later periods)

PIXE and PIGE analysis of ancient glass• Surface alterations and crusts prevent from detecting

sodium with PIXEColoured but more opaque zone(apparently with no alteration however)

“Freshly” cut zone

0

100

200

300

400

0.8 1 1.2 1.4 1.6 1.8 2Energy (keV)

Nor

m. C

ount

s (a

.u.)

Na

Al

Si

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5Energy (keV)

Nor

m. C

ount

s (a

.u.)

CaAl

Si

Na

0

100

200

300

400

0.8 1 1.2 1.4 1.6 1.8 2Energy (keV)

Nor

m. C

ount

s (a

.u.)

Na?1.04 keV

AlSi

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5Energy (keV)

Nor

m. C

ount

s (a

.u.)

CaAl

Si

Na?

Na doesn’t seem to be present...

Instead, using PIGE (Na characteristic γ-rays at 441 keV)

Na can be quantified by PIGE even in the presence of surface alterations, with no need of picking up samples!

More opaque zone

0

20

40

60

80

100

120

200 300 400 500 600Energy (keV)

Nor

m. C

ount

s (a

.u.) Na 440 keV

Freshly cut zone

0

20

40

60

80

100

120

200 300 400 500 600Energy (keV)

Nor

m. C

ount

s (a

.u.) Na 440 keV

High - Na2O were found (from 10% to 20%, depending on colour), with a composition compatible with that in typical Na-Ca Roman glass

PIXE and PIGE analysis of ancient glass

Analysis of paintings on wood on canvas

Understanding the “secrets”of painting

techniques of famous artists and/or reconstructing the

history of a specific painting (possibility to be a fake,

previous restorations, etc.)

PIXE – PIGE analysis of“Ritratto Trivulzio” byAntonello da Messina,

at LABEC, Florence

The protective varnish layer on

paintingstwo problems

1) discriminating components in the varnish

from those in paint and substrate layers

2) PIXE detection of light elements in the underlying layers (X ray absorption)

Stratigraphic analysisIf the target is not homogeneous in depth

traditional PIXE does not provide information about the stratigraphic layout of elements.

Indeed, when the beam penetrates through different layers, their contributions are added up in the spectrum

with no possibility to discriminate where X rays originate from

substratepreparation

paint layer(s)varnish

incident beam

Differential PIXE

substrate

preparationpaint layer

varnishConsists in performing measurements on

the same areawith beams of different energies

By comparing X ray spectra taken at different energies, stratigraphic information can be obtained

E1

E1

E2

E2 <

E3

E3 <

At different energies, beam ranges are different

probed depth also changes

Differential PIXE

The number of layers and their thickness are not known a priori, therefore the most suitable choice of beam energies

to discriminate layers is not obvious

the same element may be present in different layers

X ray production cross sections change significantly, and in different ways for the different elements, at varying beam energies

E1E2E3 E3 < E2 < E1

Quantitative analysis more difficult

Analysis is made complex by several factors:

However, diff. PIXE is often a “unique” tool to learn about elemental depth distribution in paintings without picking up samples

PIXE spectra at different energies

Prepared sample:wood substrate, chalk (CaSO4) preparation,

lapislazuli paint 0

300

600

900

1200

0 1 2 3 4 5E (keV)

Cou

nts

No degrader

Al

CaK

Si

S

Na

0

300

600

900

1200

0 1 2 3 4 5E (keV)

Cou

nts

75 µm Upilex

3 MeV

1.7 MeV

Na

AlSi

S

KCa, S

Na, Al, Si, S, K

Leonardo Madonna dei fusi

ex-Reford version

(private collection)

Oil painting on wood, 50 x 36

Presumably painted in 1501

Varnish compositionUsing differential PIXE, the varnish composition was evaluated from the spectra collected at the lowest beam

energy, when protons do not reach the underlying paint and preparation layers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

2000 4000 6000 8000 10000 12000 14000 16000Energy (eV)

Cou

nts/

nC

Ca

Fe

Cu

Zn

b)

Varnish spectra for a) lower-Z elements and b) higher-Z elements

From the comparison of differential PIXE spectra, it was also possible to estimate the thickness of the varnish

layer: from ~30 to ~ 50 micron

0.00.20.40.60.81.01.21.41.61.8

0 1000 2000 3000 4000 5000 6000 7000 8000Energy (eV)

Cou

nts/

nC

ClSiAl

Ca

S

Fe

Na

Mg

P

K

a)Ar (from air)

Element ConcentrationNa, Cl, Ca ~ 1‰ Fe ~ 0.5‰ Al, Si, S 0.5-1‰ Mg, P, K 0.2-0.5‰ Ti, Cu, Ba ~ 0.1‰ Zn 0.1-1‰

0

5

10

15

20

25

30

2000 4000 6000 8000 10000 12000 14000 16000Energy (eV)

Cou

nts/

nC

2.8 MeV

Fe hematite?

Hg use of cinnabar as red pigment

Pb lead-white (in the paint layer? in the preparation substrate? in both?)

Ca

Fe Hg

Pb

a a

b

c

d

0.0

0.5

1.0

1.5

2.0

2.5

2000 4000 6000 8000 10000 12000 14000 16000Energy (eV)

Cou

nts/

nC

2.3 MeV

0.0

0.2

0.4

0.6

0.8

1.0

2000 4000 6000 8000 10000 12000 14000 16000Energy (eV)

Cou

nts/

nC

2 MeV

0.0

0.1

0.2

0.3

0.4

0.5

0.6

2000 4000 6000 8000 10000 12000 14000 16000

Energy (eV)

Cou

nts/

nC

1.8 MeV

b

d

c

HgPb

Hg

Pb

Ca

Fe

Incarnato

Ca and Fe peaks are entirely accounted for by their abundance in the varnish.

An estimate of the paint layer thickness is obtained: only 15 – 20 µm!!

The protective The protective varnish layer on varnish layer on

paintingspaintingstwo problemstwo problems

1) discriminating 1) discriminating components in the varnish components in the varnish

from those in paint and from those in paint and substrate layerssubstrate layers

2) detecting light elements 2) detecting light elements in the underlying layers in the underlying layers

(X ray absorption)(X ray absorption)

simultaneous use of simultaneous use of PIGE to detect light PIGE to detect light

elementselements

0

20

40

60

80

100

2000 4000 6000 8000 10000 12000 14000 16000Energy (eV)

Cou

nts/

nC

Mountains, pale blue, original

Pb in the PIXE spectrum mainly derives from lead white mixed in the blue paint

PIXE spectrum PIGE spectrum

CaFe

Pb

0

1

2

3

4

340 360 380 400 420 440 460 480 500 520Energy (keV)

Cou

nts/

nC

Gown of the Virgin, dark blue, restoredCo (cobalt blue) and Zn (zinc white) identify this as a restored detail. The small Pb peaks are due to the beam halo hitting original blue areas around (as seen by a lateral scan)

0

2

4

6

8

340 360 380 400 420 440 460 480 500 520Energy (keV)

Cou

nts/

nC

0

5

10

15

20

25

30

2000 4000 6000 8000 10000 12000 14000 16000Energy (eV)

Cou

nts/

nC

2.8 MeVZn

FePb

Co

Ca

440 keV(Na)

Identification of lapislazuli by PIGE

One can also produce an externalmicrobeam

Through collimation, well defined beams of no less than 100-200 µm can be produced

Smaller-size beams are obtained with strong focusing using lenses (quadrupole multiplets)

External microbeam set-up

Si3N4 exit window, 100 nm thicknessTarget at ~2 mm from exit windowX and γ detection systems as in standard external set-upBeam magnetic scan over the sampleMechanical scan, i.e. sample micrometric displacement in front of the beamLIST-MODE (E,x,y) acquisition element mapsMinimum beam size on target: 10 µm

scanning-IBA for Cultural Heritage: why?Details of small size or inhomogeneous structure (even

~100iµm) not always easily recognised by visual inspection

Risk of misleading information from single-spot measurements

Dramatic improvement in significance, reliability and completeness of information, using methodologies providing

“compositional maps”Scan of relatively large areas (~ some mm2) with beams around

100-200 µm, acquiring “pixel by pixel” info

risk of mixing info referring to

different materials

too broad beam

risk of analysing anomalous, non-representative

“points”

too small beam

Sub milli-beam

scanning IBA applications

to Cultural Heritage

glass surface alterations

Glass tesserae from Villa Adriana (I)

• Using the proton “sub milli”probe external set-up– ~ 80-100 micron beam size– Magnetic beam scan on samples

Coloured but more opaque zone

“freshly cut” zone

“crust”

Na γ-ray mapNa X-ray map

2 mm

Problem of detecting Na by PIXE, because of surface alterations

X ray maps from other elements…

Cu Only absorbed in the crust (you may get an idea of its thickness...)

Fe

Larger contribution from the crust

Coloured but more opaque zone

“freshly cut” zone

“crust”

Si

Absorbed,though less than Na

2 mm

Glass tesserae from Villa Adriana (II)

investigation of metal point drawings on coloured papers

Sub milli-beam

scanning IBA applications

to Cultural Heritage

VARIOUS KINDS OF METAL STYLUS TO DRAW ON PAPER( Köln, diocesan museum)

Silver stylus used by Hans Cranach(Hannover, Landesmuseum)

Rogier Van der WeydenSt. Lucas portraying the Virgin (detail)Boston, Museum of Fine Arts

PAOLO UCCELLO – STUDY OF A KNIGHT

Uffizi, Gabinetto Disegni e Stampe Metal point, lead white + earth-green

prepared paper

PISANELLOPROFILE OF A WOMAN

PARIS, LOUVREmetal point on prepared white

paper

LEONARDO DA VINCISTUDY OF A DRAPERY

ROMA, ISTITUTO NAZIONALEPER LA GRAFICA

metal point + lead whitered prepared paper

Metal-point drawings on prepared paper

Knowledge of materials is needed for conservation purposes: one is dealing with very fragile and precious works, so far little studied, and mainly from the art-historical point of view

Need of a non-destructive imagingtechnique, with a space resolution of

100-200 µm at least2 mm

Problem:

non uniform track left by the metal stylus make material identification difficult, especially when the paper is prepared using compounds of the same metal

Paper prepared with cinnabar + Pb whiteCu stylus

Cu map

2 mm

Pb map

Pb stylus

2 mm

investigation of iron gall inksto discriminate their different compositions

Sub milli-beam

scanning IBA applications

to Cultural Heritage

Iron gall inks1 cm

XVII century document from

State Archive in Florence

1 mm1)

Cu X map

S X map

Fe X map

Min.

Max.

Possibility to select “good”areas, from which extracting quantitative reliable information

b

a

Fe

a

b

Si

a

b

Ca

0

200

400

600

800

1000

1200

1400

2 3 4 5 6 7 8 9 10 11 12Energy (keV)

Cou

nts

Ca

Fe

MnZn

Cu

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8Energy (keV)

Cou

nts

S

K

Ca

Fe

AlSi

Na

Mg

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9 10 11 12Energy (keV)

Cou

nts

Ca

Fe

Mn

ZnCu

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8Energy (keV)

Cou

nts

S

Ca

Fe

AlSi

Mg

a)

a)PIXE

b)

b)

0

10

20

30

40

50

60

70

200 300 400 500 600 700 800Energy (keV)

Cou

nts

0

10

20

30

40

50

60

70

200 300 400 500 600 700 800Energy (keV)

Cou

nts

Na441 keV

PIGEa) b)

off-line spectra reconstruction

2 mm

IBA application to air pollution monitoring

• This field has historically been among the first where PIXE found useful application

• Still now, largely used by PIXE labs in the world

• The analytical problem is the scarce quantity of target material (aerosol deposited on filters), and the large PIXE cross sections help to achieve very

good detection limits

I

• Beam currents used are much higher than for C.H. (up to 20÷30 nA depending on the problem)

• Beam size is normally larger (up to some mm2)

• PIGE is also standard for light elements detection

• Using non external set-ups, PESA (Particle Elastic Scattering Analysis) also provides very useful

information

IBA application to air pollution monitoring

II

Why studying aerosols

• effects on environment and health• origin (sources)

size andcomposition

• to better understand the great physical processes in the atmosphere (study of climate changes etc.)

• to evaluate pollution levels and identify pollution sources in urban and industrial areas

It is important to measure concentration and composition of the different size fractions, and their time

behaviour

Aerosol (also referred to as PM ≡ Particulate Matter) is continuously monitored by local authorities in the main urban areas, but in most cases only average daily concentration of PM10 (PM with size below 10 µm) is measured: compositional analyses and size-fractionated samplings are not

routinely performed

Composition must be obtained through techniques providingfast runs (many samples!)

high sensitivity (conc. << mg/cm2)multi-elemental analysisnon destructive analysis

Data analysisEvaluation of air quality, correlation to other pollutants and

meteorological parameters, comparison among sites, Identification of pollution sources and of their relative weight

Sampling• time resolution matching specific demands

• size fractionation

thinthin depositsdeposits ((∼∼1010--300 300 µµg/cmg/cm22)) ofof aerosol aerosol onon filtersfilters or impactorsor impactors

LargeLarge quantity of data are collectedquantity of data are collected (concentration of many (concentration of many elements/compoundselements/compounds in in air, for a large number of samples)air, for a large number of samples)

SamplingPumping volumes of air:

Low Volume (< 0.05 m3 /min)High Volume (∼ 1 m3/min)

Continuous o cumulative samplers

Size fractionation:single mode (all aerosol below a certain size is collected)

multi-mode (often just bimodal to separate fine and corase fraction)

PM is collected:by impaction (inertial samplers)by filtration through membranes

A multi-stage inertial sampler providing size-fractionation

Samplers

Ingressoaria

Tubo di raccordo

Filtro

Pompa

Testa di prelievo

• Sampling heads for PM1, PM2.5 or PM10• One-day resolution• Mass of deposit obtained either by weighting or

by β attenuation

47 mm

A continuous sampler (streaker)

providing bimodal size-fractionation

100 mm

PM2.5

PM2.5÷10

MOTOR

NUCLEPORE FILTER

AIR OUTLET

KAPTON FILM

PRE-IMPACTOR

AIR INLET

MOTOR

NUCLEPORE FILTER

AIR OUTLET

KAPTON FILM

PRE-IMPACTOR

AIR INLET

Motore

Impattore(kapton)

Filtro (nuclepore)

Pre-impattore

Ingresso aria

Pompa

The streaker samplerpumping orifice

Fine-fraction (PM2.5) filter from a streaker

PM10, ∼280 µg/cm2 PM10, ∼30 µg/cm2

2 2 µµmm 2 2 µµmm

10 10 µµmm 10 10 µµmm

particulate substrate

Particle beam

• Particle Induced X-ray Emission (PIXE)• Particle Induced Gamma-ray Emission (PIGE)• Particle Elastic Scattering Analysis (PESA):

FS and BS (Forward and Back Scattering)

detector

characteristic radiation

IBA on aerosols

Back-scattered protons (BSP) from target

131 eV148 eVRESOLUTION(2.3 keV)

6%14%PILE-UP

0.1738BSP (cts/nC)

WITHDEFLECTOR

WITHOUTDEFLECTOR clearance

permanent magnets

Nd-Fe-B (0.5 T)

proton deflector

• non destructive

only elements withZ>10 are detected

X ray absorption (< 1keV)

PIXE for aerosol composition

• multi-elemental

• high absolute sensitivity (MDL 1-10 ng/m3 in 5-10 min runs)

• quantitative

• no sample pre-treatments needed

• scanning on samples from streakers

• single-particle analysis is possible

aerosol sample analysis is the main activity in about ¼ of PIXE laboratories in the world

Typical X ray spectra from aerosols

0

1000

2000

3000

4000

5000

6000

7000

2 4 6 8 10 12 14

cont

eggi

/can

ale

Ca

Ca

Fe

FeCu

ZnCu

Zn

Pb+As

As

Pb

Ni

MnTiCrV

Br

Br Pb+Sr

ZrK

x 30

0

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4

Na

MgAl

Si S

Cl

K

Ca

Ca

lower-Z elements higher-Z elements

PIXE-PIGE set-up for ‘one-day’ samples

FilterFilter--holder wheelholder wheelVacuum beamlineVacuum beamline

Si Si ““SMALLSMALL””(X < 6 keV)(X < 6 keV)

Si Si ““BIGBIG”” (X > 5 keV)(X > 5 keV)

Ge (Ge (γγ))

BackscatteredBackscatteredproton proton

deflectordeflector

He flow He flow pipepipe

Faraday Faraday cupcup

X

FC

Beam spot covers a filter sector corresponding to 1 hour sampling

p

• The deposited aerosol composition is determined “point by point” by PIXE and PIGE

• One can thus deduce aerosol composition in atmosphere “hour by hour” during sampling period

• Typically, sensitivity for the detectable elements comes out to be of the order of ng/ m3

Set-up for ‘one-hour’ samples

PIGEHPGeHPGe detectordetector

Energia (keV)

Num

ero

di c

onte

ggi

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350 400 450 500

110( F)

197( F)

441( Na)23

19

19

Thin target approximation

• Negligible self-absorption(γ rays)

• Generally, non-negligible croos section changes

REAZIONE E γ (keV) 19F (p, p’γ) 19F 585, 1369

23Na (p, p’γ) 23Na 441 25Mg (p, p’γ) 25Mg 24Mg (p, p’γ) 24Mg

585

1369 27Al (p, p’γ) 27Al 844, 1014 28Si (p, p’γ) 28Si 1779 31P (p, p’γ) 31P 1266

110, 197

0

25

50

75

100

2650 2750 2850 2950 3050 3150 3250

Na - 441 keV

0

5

10

15

20

2650 2750 2850 2950 3050 3150 3250

Al - 1014 keVAl - 844 keV

0

3

6

9

12 Si - 1779 keV

2650 2750 2850 2950 3050 3150 3250

0

4

8

12

16

2650 2750 2850 2950 3050 3150 3250

P - 1266 keV

0.0

1.5

3.0

4.5

6.0

2650 2750 2850 2950 3050 3150 3250

Mg - 585 keVMg - 1369 keV

2650 2750 2850 2950 3050 3150 3250

Proton energy (keV)

Proton energy (keV)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 30 60 90 120 150 180

angolo di scattering

Fatto

re c

inem

atic

o K

12C

16O14N

56Fe

48Ti

m = 1

PESA (Particle Elastic Scattering Analysis)

larger ∆E for smaller M (light nuclei)

Larger ∆E for larger ϑ(backscattering [BS])

222

1)/(cossin)/(

)/,(⎥⎥⎦

⎢⎢⎣

++−

=≡mM

mMEE

mMKi

f ϑϑϑ

Ef

M

Mm

m

Ei

ϑ

detectordetector

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 30 60 90 120 150 180

angolo di scattering

Fatto

re c

inem

atic

o K

12C

16O14N

56Fe

48Ti

m = 1

PESA (Particle Elastic Scattering Analysis)

larger ∆E for smaller M (light nuclei)

Larger ∆E for larger ϑ(backscattering [BS])

222

1)/(cossin)/(

)/,(⎥⎥⎦

⎢⎢⎣

++−

=≡mM

mMEE

mMKi

f ϑϑϑ

Ef

M

Mm

m

Ei

ϑ

M ≤ m ⇒ only forwardscattering [FS]

0.00

0.20

0.40

0.60

0.80

1.00

0 30 60 90 120 150 180

angolo di scattering

Fatto

re c

inem

atic

o K

H

NC

O

m = 1detectordetector

0

100

200

300

1700 1900 2100 2300 2500 2700energia (keV)

cont

eggi

/ µC

0

200

400

600

800

1000

1800 2200 2600 3000energia (keV)

cont

eggi

/C

bianco

forward (ϑ = 30°)

C F

C + Fcon particolato

Η

CO

N

Α > 1

Teflon membranes

F (anelastic)

backward (ϑ = 150°)

Set-up for PESA

samplesampleSBD

(ϑ = 150º)SBD

(ϑ = 30º)

GeGe detectordetector

PESA on aerosol samples• Complement to PIXE

can detect light elements down to Hydrogen

• multielemental

• non-destructive

• no sample pre-treatments needed

• much less sensitive (sufficiently however!)

• requires set-ups in-vacuo

• difficult to find suitable filtering substrates

• more difficult quantitative analysis

Errors and MDL of elements detected by PESA

0.4~ 15 Oxygen

0.5~ 20 Nitrogen

1~ 10 Carbon

0.1~ 10 Hydrogen

MDL(µg/m3)

Error%

Element

Some examples of results

Composition of aerosol collected in the urban area of Florence, Italy

(in collaboration with ARPAT)

V.le GramsciJan 97 – Jan 98 (249 f.)July 01 – Jun 02 (276 f.)

Sesto FiorentinoDec 97 – May 98 (144 f.)

Boboli gardenGen 97 – Feb 98 (264 f.)

Hourly samplingGen – Feb 02

Hourly samplingGen – Feb 02

PM 10

0

25

50

75

100

125

01-J

ul-0

1

01-A

ug-0

1

01-S

ep-0

1

01-O

ct-0

1

01-N

ov-0

1

01-D

ec-0

1

01-J

an-0

2

01-F

eb-0

2

01-M

ar-0

2

01-A

pr-0

2

01-M

ay-0

2

01-J

un-0

2

01-J

ul-0

2

Con

cent

razi

one

(µg/

m3 )

Viale Gramsci - total PM10 concentration (2001-02)

average:average: 43 43 µµg/mg/m33

number of days exceedingnumber of days exceeding 50 50 µµg/mg/m33 : 76: 76

Al and Si concentrationAl

0.0

0.4

0.8

1.2

01-J

ul-0

1

01-A

ug-0

1

01-S

ep-0

1

01-O

ct-0

1

01-N

ov-0

1

01-D

ec-0

1

01-J

an-0

2

01-F

eb-0

2

01-M

ar-0

2

01-A

pr-0

2

01-M

ay-0

2

01-J

un-0

2

01-J

ul-0

2

Con

cent

razi

one (

µg/

m3 )

Si

0

1

2

3

01-J

ul-0

1

01-A

ug-0

1

01-S

ep-0

1

01-O

ct-0

1

01-N

ov-0

1

01-D

ec-0

1

01-J

an-0

2

01-F

eb-0

2

01-M

ar-0

2

01-A

pr-0

2

01-M

ay-0

2

01-J

un-0

2

01-J

ul-0

2

Con

cent

razi

one (

µg/

m3 )

13 Feb 97 12:00

06 Jan 98 06:00

12 Oct 97 06:00

23 Jun 97 18:00

Na and Cl concentration

Pb and Br, before leaded gasoline ban

Lunedì 26/1/98

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00

2.00

4.00

6.00

8.00

10.0

0

12.0

0

14.0

0

16.0

0

18.0

0

20.0

0

22.0

0

Con

cent

razi

one

( µg/

m3 )

0

500

1000

1500

2000

2500

3000

3500

numero m

acchine all'ora

Hour by hour concentration of Pb during one day

Bromine and Lead from leaded gasoline

0,00

0,01

0,02

0,03

0,04

0,05

0,00

0,05

0,10

0,15

0,20

01-lu

g-01

01-a

go-0

1

01-s

et-0

1

01-o

tt-0

1

01-n

ov-0

1

01-d

ic-0

1

01-g

en-0

2

01-f

eb-0

2

01-m

ar-0

2

01-a

pr-0

2

01-m

ag-0

2

01-g

iu-0

2

01-lu

g-02

µg/m

3Br

Pb

0,0250,23Pb

0,0060,06Br

AprilJune ‘02

AprilJune ‘97

µg/m3

Pb limit by lawPb limit by law 0.5 0.5 µµg/mg/m33 yearly averageyearly average

01/01/2002:

In Italy, sale of leaded gasoline is forbidden

values detected in Florence

Comparison 1997-98 with 2001-02

0.001

0.010

0.100

1.000

10.000

Na

Mg

Al

Si P S C

lK

C

aTi V

C

rM

nFe C

uZn B

rSr Zr Pb PM

10/10

1997-19982001-2002

µgC

once

ntra

tion(µ

g/m

3 )

Comparison with 1988-89

0.310.09 2.0Jan-98

2.20.4612.6Jan-89

0.270.06 3.5Sept-97

1.130.304.2Sept-88

PbBrSPeriod

values in mg/m3

Fireworks on Dec 31

Firenze 1997-1998

K

0

2

4

6

8

10

12

boboli

gramsci

sesto

Sr

0

0.05

0.1

0.15

0.2

22-Dec-96

6-Jan-9721-Jan-975-Feb-9720-Feb-977-M

ar-9722-M

ar-976-Apr-9721-Apr-976-M

ay-9721-M

ay-975-Jun-9720-Jun-975-Jul-9720-Jul-974-Aug-9719-Aug-973-Sep-9718-Sep-973-O

ct-9718-O

ct-972-N

ov-9717-N

ov-972-D

ec-9717-D

ec-971-Jan-9816-Jan-9831-Jan-98

µ

boboli

gramsci

sesto

Con

centr

atio

n(µ

g/m

3)

Campaigns in an industrial district 20 Km west of Florence:

Montelupo Fiorentino

(ceramics, glass)

012345

3.00

15.0

03.

0015

.00

3.00

15.0

03.

0015

.00

3.00

15.0

03.

0015

.00

3.00

15.0

0

AsNaK

Montelupo Fiorentino: identification of industrial releases in connection with artistic glass production

Episodes of correlated Na, K, As peaks during the night (March ‘96)

Fine fraction

Con

centr

atio

n(µ

g/m

3)

Absolute Principal Component Analysis

Groups detected elements according to similarities of their timebehaviour

n inter-correlated variables

(concentrations)

p < n independent

variables(‘components’or ‘factors’)

explain a large part of the data variance

represent thesources of partculate

Aerosol particles maintainthe fingerprint of their source even after long-range transportation

Aerosol composition and time behaviour provide information on pollution sources

Factor loadings

suolo sale ind. 2 comb. ind. 1Na 0,16 0,92 0,09Mg 0,86 0,43 0,12 0,06 0,12Al 0,94 0,26 0,07 0,12 0,04Si 0,95 0,21 0,14 0,10 0,08S 0,14 0,94Cl 0,29 0,90K 0,73 0,23 0,31 0,13 0,39Ca 0,90 0,09 0,23 0,06 0,18Ti 0,92 0,10 0,03 0,03 0,23V 0,38 0,64 0,48Cr 0,51 0,40 0,04 0,59Mn 0,87 0,24 0,05 0,34Fe 0,89 0,06 0,17 0,03 0,36Ni 0,40 0,23 0,23 0,77Cu 0,38 0,45 0,67Zn 0,23 0,75 0,09 0,33Br 0,55 0,22 0,68Pb 0,19 0,22 0,85 0,04 0,14

The case of Montelupo Fiorentino (industrial area)

altro7% suolo

21%

sale4%

ind. 216%

comb.11%

ind. 141%

Relative contribution of the various sources to total PM10 mass (annual average, 1998)

The case of Montelupo Fiorentino (industrial area)

Relative contribution of the various sources to total PM10 mass (1997-1998)

heavy traffic area

(50 ± 2)%

(21 ± 1)%

(21 ± 1)%

(8 ± 3)%

urban park

(20 ± 2)%

(19 ± 3)% (43 ± 2)%

(18 ± 2)%

residential area

(38 ± 4)%

(32 ± 3)%

(26 ± 3)%(5 ± 4)%

TRAFFICO

COMBUSTIONE

SUOLO

ALTRO

The case of Florence (urban area)