repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii)...

178
Title SOME STUDIES ON THE STATICAL ANALYSIS OF CIRCULARLY CURVED BOX GIRDER BRIDGES( Dissertation_全文 ) Author(s) Kambe, Shun-ichi Citation Kyoto University (京都大学) Issue Date 1975-01-23 URL https://doi.org/10.14989/doctor.r2695 Right Type Thesis or Dissertation Textversion author Kyoto University

Upload: others

Post on 30-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

TitleSOME STUDIES ON THE STATICAL ANALYSIS OFCIRCULARLY CURVED BOX GIRDER BRIDGES(Dissertation_全文 )

Author(s) Kambe, Shun-ichi

Citation Kyoto University (京都大学)

Issue Date 1975-01-23

URL https://doi.org/10.14989/doctor.r2695

Right

Type Thesis or Dissertation

Textversion author

Kyoto University

Page 2: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

I

㌔燐

◆亭

t

SOME STUDIES ON THE STATICAL ANALY81S OF

CIRCUI,ARTLY CURVEI)BOX GIRDER BR工DGE8             φ

en・n審1匙KA加3E

 魯    4ト

       o

・・N““d

,躰

輪令 ◎

   子  奪

   肇撞  書

ひe

』直竃メ輯

])el)artment of Civil Engineering

   Tottori University

    August, 1974

t.一

Page 3: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

SOME STUD工ES ON IPHE STAT工CAL ANALYSIS OF

  C工RCULAR1、Y CURVED BOX G工RDER BR工DGES

       by

Shun-ichi KAMBE

Department of Clvエ1 Engineerlng

      TOttOri UniVerSity

         August, 1974

Page 4: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

(ii)

ACKNOWLEDGEMENTS

      The author should like to express his special thanks to

 Professor 工chiro Konishi of Kyoto University for his encour-                                                              、

 agement and advice on various points throughout this

investigati・n・The auth・r als・wishes t・express his sincere

gratitude f・・the helpful c。nsel in this inve・tigati・n re-

ceived fr・m Ass1・tant Pr・fess・r Naruhit・Shirai。hi。f Ky。t。

University.

     The author also wishes to thank Mr. T. Kondδ, one of his

classmates at the Graduate Sch・・1・f Ky・t・Univer・ity, f・r

P「°viding・・me specificati・n・・f the bridges c。n・tructed by

Hanshin Express Highway Corporation.

     The numerical w・・ks in this investigati・n were greatly

assisted by the c・ntinued eff。rts・f Mr. H. Tanaka, f。rmer

   ,asslstant of Tottori University.  The computers used for the

nume「ical w・rk・were FACOM-230-60 at the Data Pr・cessinq Center

°fKy・t・Univer・ity and TOSBAC-3400 M・de121 at T。tt。ri Uni.

     ve「sエty・Aspecial ackn・wledgement i・due t・Mr. A. Haya。hi,

technica1。fficia1・f T・tt・ri Univer・ity, wh。 assisted in

prparing the figures in the manuscript.

     The auth・r wi・he・t・express his sincere gratitude t。 hi。

wife’「4iyuki’and Mr・R・Terhune wh。 helped with the pr。。f-

reading of the manuscript.

Page 5: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

(iii)

CL{sh}9ES91:t

工.

1工.

工1工.

TABLE OF CONTENTS

TitZe

工NTRODUCTION・・.・..・.・・.・.・.・.・.

1・l  Contents 6f Thesis........

1.2  Broad View of the Problem.

Page

1.2.1

1.2.2

  A.

  B.

  C.

1.2.3

・・.●.●●.・....●●.・..・.... 1

Dユrect Stiffness Method of Analysis.......

Concluding Remarks........................

       ・  ●  ・  ●  ・  ●  ●  ●  ・  ●  ●  ●  ■  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ・  ・ ●  ・  ・  .  ・  ●

                  ・  ・  ・  …       ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ■

                  ●・・ ● ●・ ●● ● ● ■ ●● ● ● ● ● ● ●● ■● ・ ・

General Remarks............................

Methods of Analysis........................

Thin-Walled Beam Method of Analysis........

Generalized Coordinate Method of Analysis..

 ■

SOME PRELIM工NARIES.

2.1  General.............・......・.....・.・.・.・..・.・..・.

2.2  Coordinate Systems and Displacements.............

2・30utline of Pure Torsion........................

2.4  Saint Venant’s Torsion Punction and

    Warping Function.................................

2.5  Torsion Constant and Central Moment of 工nertia.

2.6  Principal Generalized Coordinates..............

244557

258881111112

326う一33

MOD工F工ED TORS工ONAL BEND工NG THEOR工ES TAK工NG THE 工NF工」UENCE

OF SECONDARY SHEAR DEFORMAT工ON 工NTO CONSIDERAT工ON....・. 43

3.1  工ntroduction....................................◆ 43

3.2  Assumptions...................................... 46

Part 1.   Modified Torsional Bending Theory of

         First Type.................................. 47

Page 6: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

(iv)

3.3

Part

3.4

3.5

Part

Developement of the Theory.........................

3.3.1  Normal Strain and Stress....................

3.3.2 ・Shear Flows.............◆...................

3.3.3  0rthogonality Relations.....................

3.3.4  Relation between Warping Moment and

       Secondary Torsional Moment..................

3.3.5

  A.

  B.

  C.

  D.

3.3.6

2.   Modified Torsional

     Second Type............................

Formulation Performed by R.

3.4.1

3.4.2

3.4.3

Generalization of

3.5.1

3.5.2

3.5.3

3.5.4

3.  Some

    Torsional Bending Theories

7⇔13(∠

                                             65

Constitutive Equation for Warping Torque.... 68

Total 工nternal Complementary Virtual Work... 68

Total External Complementary Virtual Work... 71

Auxiliary Conditions........................ 75

Final Results............................... 79

Formulation of Practical Governing

Equations................................... 84

                 Bending Theory of

                                     ●・・●・・● 90

                     Dabrowski.............. 90

Secondary Normal Stress..................... 90

Shear Flows Determined by Two Distinct

Ways........................................ 92

Fundamental Equation in Torsional Bending... 94

           the Theory....................... 97

Derivation of First Fundamental Equation.... 97

Derivation of Second Fundamental Equation... 98

Governing Equations and Solution Method...。 101

Some Remarks on Formula for Shear Flow..... 103

   Remarks on the Two Types of Modified

  ●                       ●●●・○●・●○●●●●●●●●●● 105

Page 7: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

工V.

V.

(V)

          ■

 3.6  1nequality between Two Types of Warping-Shear

     Correction Parameters.............................

      3.6.1  An Alternative Expression for Warping

            Constant…  ............................◆...

     3.6.2  Derivation of the 工nequality...............

3.7  Concluding Remarks................................

NUMER工CAL EXAMPLES.                   ● ● . . . ● ● …     ● ● ● ● ■ ● ● ● ● ● ● ● ● ● ● ● ● ● ・ ・ ● ・ ● . ・ ●

4.1  Geometrical Characteristics of Curved Box Girder

     Bridges・…  ..............................◆........

4.2  工nfluence-Lines for Stress Couples Related to

     Restrained Torsion, 工ntensity of Warping, and

     Angle of Rotation.................................

4.3  Shear Flows- and Normal Stresses- Distributions

     ln a Cross Section................................

SUMMARY AND CONCLUS工ONS................................

APPEND工X  I.

     Demonstration of Orthogonality Relation with an

     Example・・・・・…  ....................................

APPENDIX  工工.

     List of Solutions for Statical and Iくinematical

     Quantitties・__....______.........

APPEND工X  工工工.

     Flexヰbility Coefficients in Equations of

     Consistent DeformatiOn............................

REFERENCES.          ● ・ ● ・ ● . ● ・ ● ● ● ● ● ■ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ■ ● ● ● ● ・ ・ ● ・ ・ ● . ● ・ . ・

io5

105

107

111

115

115

118

122

147

152

156

164

167

Page 8: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一1一

工. 工NTRODUCTION

     In recent years, many highway systems have been established

even in our country to cope with the situation of tremendously

increasinq urban traffic flows.  工n view of the lack of space

when constructing an urban express highway in the congested

area of a large city, the use of the girder bridges on curved

alignment has become increasingly popular.

     Curved qirder bridges under transverse loadings develope

much higher torsional moments throughout their lengths owing to

the curvature effecYs・f their 1・ngitudinal axes・Theref・re’

torsional moments play a still more important role in the design

of the bridges.  For practical design purposes, it is hi●hly

desirable to develope the simplified analytical method with

reasonable accuracy, thereby makinq it possible to evaluate more

precisely the stresses produced by torsional moments.  From the

aforernentioned view point, the author ha8 developed two types

of the Modified Torsional Bending rrheories for analysinq the                     -

curved box girder bridges, in which the influence of 七he sec-

ondary shear deformation due to restrained torsion is taken into

consideration.

     The major objectives of this thesis is to represent the

developement of these theories and to provide some results ob-

tained from the numerical examples calculated by u8ing the8e

theories.        .                                          「

Page 9: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一2 _

 1.1Contents of Thesis

      The the・is c・ntain・five chapter・.エt begin。 with a

b「ief intr・duct。ry ch・pter in. which the・bjective。f the

P「esent study is stated after a・h・rt review・n the c。ntemp。一

「a「yt「ends・f・tatical analy・i・。f b・x girder bridge。.エn

the review’the auth。r classified the vari。u。 available

pape「s「ep°「ted in the last few decades under three maj。r

analytical meth。d・’i・e・tThin-Walled Bearn Meth・d・f Analy。i。,

Generali・ed C・・rdinates Meth。d。f Analy・is, and Direct Stiff-

ness Method of Analysis, and gave the outline of these

analytical methods.

      In the sec・nd chapter, the physical arguments。n the

state°f pure t・r・i・n t・which a circularly curved girder

b「idg・is subjected are presented, and at the same time。。me

basic f・rmulae regarding this subject are explained. Thi。

i・becau・e they are needed f。r the deve1。pement。f the tw。

types of Modified Torsional Bending Theories treated in the

f°11°wing chapter’in which acc・unt i・taken。f the sec。ndary

shear deformation due to restrained torsion.                       -

     The third chapter c・n・ists。f three parts. The first

tw・parts are mai叫y d・dicated t・the derivati。n。f the

fundamental equati。n・in tw。 type・・f the M。dified T。r。i。nal

Bending The。rie・deve1・ped by the auth・r.エn the la・t part,

some physical arguments on the developement of the theories

      are glven.  工n addition, i七 is shown that there exists an.                      

1nequallty between tw・type・。f the・warping-shear c。rrecti。n

pa「amete「・”{dimen・i。nless cr。ss-8ecti・nal characteri。tic8)

Page 10: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一3一

newly intr・duced in the the・ries. This will pr・vide us with

the inf・rmatエ・n as t・which・ne・f the the。ries・gives a m。derr...

 ate or higher estimate of the statical and kinematica1

             コ

 quantities related to restrained torsion.

      ChapterエV deal§with the numerical examples・btained by

U・ing theSe the・rie・・エt i・intereSting t・inVeStigate t。 What

 extent the aforementioned cross-sectional characteristics affect

the statical and kinematical quantities, such as the stress

c°uples「elated t・restrained t。r・i・n, the intensity・f warping

di・づ1acement’and the angle・f r。tati・n。f cr・ss secti。nv。f

the curved b・x girder bridges. F・r numerical illustrati。n

purposes, the curved box girder bridges continuous over two

spanst which have the same developed span lengths and the same

radii of curvatures along their longitudinal axes, were chosen.

The「eup・n’with the・bjective・f pr・viding an in・ight int。 the

cha「acteri・tics。f the influence-1ines f。r th・se quantities at

some@sections of the bridges referred to, parametric studies

using the vari・us values・f the selected structural character.

.        ロ

istics’were perf・rmed・Referring t・the re・ult・thu・。btained,   .                                                                   -

the effect・f the warping--shear c。rrecti。n parameter(explained

later) on the distributions of the shear flows and normal

st「esses was also investigated for the specified cros8 sections

°ftw。 types。f the curved c・mp・・ite b。x girder bridges.

, ●∀

、’

Page 11: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

_4一

1.2 Broad View of the Problem 【40]

     1.2.1 General Remarks

     Box girder bridges are frequently used in the highway

structures, since they have the following favorable structural

advantages and features:

     (1) They provide desirable load distribution character-

     istics across the width of the bridgest produced by the

     large torsional rigidities inherent in their cross-

     sectional shapes.

     (2) They are probably lighter than other type of bridges,

     therefore, they may possess the advantage of weight

     reduction.

     (3) They have the pleasing appearances from an aesthetic

     standpoint because of their streamlined shape and

     slenderness.

Accordingly, the increased use of box girder bridges has stirn・-

ulated considerable interest for research in this area. As

can be seen from an extensive list of the references given by

P. F.McManus et al 【41]t a large amount of literature has been

published all over the world in the last few decades, even

though it is restricted to the statical analysis of curved box

girder bridges.

     Since this is the case, a comprehensive review of all the

existing theoreticai studies on this subject is obviously

beyond the scope of this thesis.  工n the following, therefore t

a simple survey will be made to classify the various avai1-

able analytical methods f◎r curved box girder bridges under

Page 12: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一5一

three major analytica1・methods, i.e.,Thin-Walled Beam Method

of Analysis,’Generalized Coordinates Method of Analysi8’ and

Direct Stiffness Method of Analysis.

   ’                                                                      L’

     1・2・2些旦一

     A・型主仁堕些一些     This method of analysis is based on the two kinds of hypo-

theses named after Euler-Bernoulli and Wagner, respectivelyt

by which the cross-sectional deformation of a qirder bridge

can be described in terms of the three linear and one angular

displacement components of the reference axis of the girder

。h。sen in an apPr。priate manner. The f。rmer hyp。thesi・1)i・

one of the most common hypotheses in structural analysis and is

                                                        ,sometimes called the  tt law of plane section°° : plane sections

                                                                               normal to the bar’s geometric axis before deforrnation remaエn

plane and normal to this axis after deformation. The latter

                                                       ,one deals with the longitudinal distorsion of cross sectiont

called  °twarping“t by assuming that its basic transverse dis-

                                      ■                                      

tribution would be the same as occurs エn pure tor8エon                     -

(Saint-Venant’s torsion). According to these hypotheses, it

can be assumed that the cross section is deformed in such a

manner that it translates and rotates according to the law of

plane section and distorts longitudinally according to

Saint-Venant’s torsion theory.  工n other wordse the theory thu8

     1) 工n analysing the bars of small curvature, this hypo-thesis was first introduced 1858 by E. Winkler 【39]・

Page 13: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一6一

constructed assumes that the cross sections distort in the lon●

gitudinal directi・n・nly in。ne m・de irre・pectiVe・f their

。hape・, that i・, they may be 8ingle-celled。r multiple-celled

or separate twin-celled cross sectionst and that the in-plane

distorsional deformation of the cross 8ection8 can be

disregarded.

     Finally, if the equilibriurn equations are expressed in

                                                                     terms of the displacement components of the reference axユs, ln

general they reduce to a 8et of 8imultaneous linear ordinary

differential equations of fourth order for the four unknown

displacements.

     The analytical method outlined above is often called the

・・ sorsional Bending Theory”.  The theories developed for analy8-

ing the thin-walled straight box girder bridges are closely

associated with the names of Th. von K6rmξn and

N. B. Christensen l1】 and F. W. Bornscheuer 【2].  The signif-

icant contributions to develope the theory to the case of a box                       、

girder bridge wit…h a circular axis have been made by such

Japanese investigat・rs a・1. K・nishi and S・K・matsu【3’4’5L                    bS. Kuranishi l6], and Y. Fukazawa 【7】.

     The so-called conventional torsional bending theories men-

tioned above can be modified in such a way as to deal with the

secondary 8hear deformation due to restrained torsion and the

transverse distorsion of a cross section.  This can be done by

introducing, respectively, an unknown quantity as the intensity

of warping instead of the rate of twist of the reference axis

《Modified Torsional Bending Theory》 【8, 9, 10, 11, 13’ 14’ 15]

Page 14: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

_7一

and a di。t。rsi。n ang・e in a g・・ba・・ense【16’17’18】・H°weve「t

the m。dificaYi・n・f the・atter-ca・e was perf・rmed°nly f°「the

case。f bridge with m・n・-sy㎜etrica1・inqle’celled c「°ss

。ecti。n. R. Dabr。w。ki2)ロ9】’ ?秩Em P・・and has deve1・ped hi8 the-

。。y。n・y f。r the case・f a curved b・x girder b「idge with

m。n。一。y㎜etrica・・inq・e-ce且ed・r・eparate twin-celled c「°ss

secti。n, and ha。 。umari・ed much・f hi・w・rk in hi・b°°k【2°]・

The auth。r。f thi。 the・i・ha・deve・・ped the m・dified七゜「si°nal

bending the。rie。【2・,22]in a different way fr・m R・Dab「°w8ki

。。as t。 c。ver the curved b。x girder bridge・ with a「bit「a「y

8hape。f cr。ss secti・ns・

B.Generali。ea C・・rdinate Meth・d・f Anal・is

     Thi。 meth。d。f ana・y・i・。riqinated with V・Z・Vlas°v【23]・

Severa、 decade。↓ater, G. Lacher[24】f・rmu・ated it in a mat「ix

f。rm f。r the c。nvenience・f c・mputer’・use and pr・p・・ed a meth°d

。f ana、y。ing the effect・。f f・exib・e・r rigid inte「i°「diaロ

phragms。n the 8tructura・behavi・ur・Then’ by apPlying

V.Z. V、a。。v’。 the・ry t。 a・pecia・case・f the・t「aight b°x

girder b。idges with ion。一・ymmetrica・’・ing・e-ce’1ed’「ectangula「

。r trape。。ida・cr。ss secti・nt the effect・。f the intemediate

diaphrag,n。 were・tudied by S・R・Abde・-Samad et al[25]・

T.。kumura and F. Sakai【26], S.・chiai[27L and S・°chiai and

                                                          ■

Page 15: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

■d-. W一

S. Kitahara 【28】.  It is a comparatively simple matter to extend

V.Z. Vlasov’.s theory to the case of a curved bqx girder bridge,

and this i8 to be referred to in a work by Z・ P・ Ba2ant 【29]・

’   IPhe thin-walled bridg色 structure is idealized for the ana1●

y・is as an a8semblage。f the plate element・interc・nnected with

hinges t・。ne an・ther al・ng their 1・ngitudinal edges(Fig・1・1)・

The points at which the plate elements meet together will be

                                                  called hereafter the nodes or node point.  Then, maコor assump-

tions for analysis are as follows 3

     (1) The lonqi七udinal displacement of cross section varie8

...: d:.linearZy betWeen nρde pqints・

     (2) The plate elements are inextensible in the transverse

     direction.

                                                 コ                 ひUnder these assumptions, V. Z. Vlasov developed an lngenlous way

which allows the cross-sectional deformation to be represented

by finite sum8 0f pair of functions.  Each pair consists of the

preselected func七ion of the circumferential arc length coordi-

nate  g  and the unknown function of the axial coordinate  x                     -

(Fig. 1.2). Thu8, the axial and tangential displacement compo-

nents,  u(x, 8》  and  v(x, 8)’  are expre88ed in the form of

finite series a8 follows 3

u(x,s)=

v(x,s);

 S ( ・-」

φ

 》

 X ( .「J

 U  lmマ乙=

 8

 k ψ ハ

 X (

 k V  lnぐ乙=  k

Page 16: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一9一

Fig. 1.l  Multi-Celled Structure

Page 17: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

_10_

(。。三÷   O

/\\>z・

山4 、  N  十  ゜「「

(切)◆

   N+〔

霊5薯出ひロo口

(ε

叶+市

1

Page 18: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一11一

in whichφゴ(s》andψk(・)are the j-th 1。ngitudinal and

k-th transverse ●eneralized coordinates, re8pectively.  Here t

the number m is equal to the total number of nodes owing to

the assumption ほ). Sirnilarlyt the number  n  i白 equal to

2m-et in which e  is the total number of the plate 8egments

forming the cross sectiont because the assumption (2) reduces

the number of transverse degrees of freedom by one for every

plate segment. 工n effect, the number of degrees of freedom

of the cross-sectional deformation is regarded as  m+ n.

     工t should be noted that the out-of-・plane and in-plane

distorsional deforrnation of cross section, i.e., the deviation

from the deformation obeying the law of plane section, can be

determined by  m - 3  independent functions of the longitu-

dinal displacemen七s and  n - 3  independent functions of the

transverse displacementg, respectively. This makes it possi●

ble to describe satisfactorily the variety of distorsional

deformation involved in the multiply connected cross sections.

     Then, equilibrium equations are derived by using the                      -

principle of virtual displacement t23】 or the principle of

stationary potential energy 【29]. They reduce to a system of

m+n simultaneous linear ordinary differential equations of

the second order with respect to the generalized longitudinal

displacements Uゴ(x)(j;1・ .2’…’m)and tran・verse di・r

Placement8 Vk(x)(k=1’2’』… ’n)・

                 ρ’a’ .

Page 19: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一12 一

     This method of analysis can be regarded as’an extension

of the folded plate theories .[30, 31, 32], which were oriqi-

nally developed with the hope of analysing the roof structures r

to the case of a box girder bridge.  Significant contributions

to develope the theories to the analysis of multi-cell box

girder bridges (multiple folded plate structures) with straight

axes may be closely associated with the names of K. H. Chu and

S. G. Pinjarkar I33】, K. S. Loo and A. C. Scordelis 【34】.

Amatrix analysis technique of the folded plate theory, called

the  °°Direct Stiffness Method“,  was developed for the first

time by A. DeFrie-Skene and A. C. Scordelis 【35] in order to

take full advantage of the capabilities of digital couputer8.

More recently に971), the method has been developed by

C. Meyer and A. C. Scordelis 【36], and K. H. Chu and

S. G. Pinjarkar 【37] to analyse the curved box girder bridges.

     The unknown quantitie8 used in the direct 8tiffne88 method

are the three linear dエsplacement components in the longitudi-

na1, horizontal, and vertical directions v respectively, and

one angular displacement (rotation about a longitudinal axis)

at each node (joint》 of the plate elements composing the cross

section. The number of nodal degrees of freedom is equal to

four.  Therefore, the total degrees of freedom is equal to four

time8 the total number8 0f node8 included in the cros8 8ection.

                 ゾ ●4i

Page 20: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一13一

     The necessary fundamentals will be explained first: The

element stiffness matrix which relates the unknown ゴoint         タ

displacements and the ゴoint internal forces is a fundamental

idea in this analy七ical method. In forminq the element s七iff-

ness matrix, there ex-ist two maゴor ways called the  ”ordinary

method”  and  ”elastici七y method”. The former is based on

the displacements assumed in a certain fashion so as to vary                                      、

in the transverse direct二ion of a plate element as functions

of some unknown nodal displacements. On the other harld, the

latter is based on the displacements obtained from the direct

applica七ion of 七he elasticity theory (theory of plate and

shell) to a plate or shell element. These ways of forming a

element stiffness matrix make it possible to analyse fairly

exactly the phenomenon of s七resses diffusion due to shear

deformation, called the  ”shear lag”, as well as the states

of the warping stresses and flexural ones due to, respectively,

the out-of-plane and in-plane distorsional deformations of

cross sections.

     Secondly, only t二he main steps in the procedure of analy-

sis can be briefly summarized as follows[38】:

     (1) Determine the element stiffness matrix for each plate

     element in the local coordinate system [Fig. 1.3(b)].

     (2) Transform the element stiffness to a global-coordi-

     rlate system [Fig. 1.3(c)] and assemble these into the

     structure stiffness matrix  K.

     (3)  Solve the equilibrium equations  R = K r, where  R

     represents the applied equivalent joint loads, for the

Page 21: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一14一●

θ

゜「「

ω/\

s\、

♂/

H㊦∩【O叶O 自パ

(ε

ぞ     .

’°

   ’・●

Jb ’b

Page 22: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一15一

     unknown ゴoin七 displacements  r 〔Fig. 1.3(a)].

     (4) Determine the plate elemerlt internal forces and

     displacements by using expressions relatinq these quan一

     七ities to the joint displacement  r・

     The equations of equilibrium are solved by expanding all

of the quantities in 七he equations into Fourier series in the

longi七udinal direction.  The final results are then obtained                                       、

by summing up the various harmonic contributions.

     1・2・3 -     The la七ter two analytical methods explained in the pre-

ceding paragraph may be more accurate than the former one in

the sense that 七hey can analyse the s七resses in more detail

due to the distorsional deformations of cross sections in the

transverse one as well as in the longitudinal direction. This

is because the degrees of freedom sufficient to describe these

distorsional deformations are introduced in these analytical

methods. The last one, in particular, makes it possible to

analyse the shear lag phenomenon. However, it should be noted

that rヒhis accuracy is achie▽ed at the cost of substantial

computing time on a large computer and of complexity in 七he

procedures of analysis, which probably conceals the main design

parameters. Moreover, in these methods of analysiG.the problem

is ofrヒen solved by expanding the unknown or required quantities

into Fourier series in the longitudinal direction.  工t is,

therefore, unavoidable that the solution is limited to the case

・fabridge with・imply・upP°「ted endsr

Page 23: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

_16一

     On the other hand, the thin-walled beam method of analy-

sis may describe the structural behaviour of curved box girder

bridges in a fairly rational manner by using a few parameters,

as long as the cros8 sections are sufficiently stiff・  It seern8

that in most cases of steel or composite box girder bridges

encountered in practice this is so because their cross 8ections

are stiffened with sufficient numbers of intermediate dia-    、

phgrams or cross frames in order to make their portions secure

during transportation and construction.  In the author’s opin-

ionσ these diaphgrams or cross frames are probably in excess

for the strength of the bridges after completion.

     As is well known, it is necessary for the design of a

bridge to repeat the trial proportioning of its structural

elements until the design criteria are satisfied.  Therefore,

the simplified analytical methods are highly desirable as a

tool during a design process in which the designer is required

to assess the effect of varying certain parameters a8 quickly

as possible・   一        ’

     Moreover, it should be noted that torsional moments

developed in a curved girder bridge loaded by both its own

weight and the live loads may reach a comparatively large

amount because of curvature effects of its longitudinal axis,

as compared with those developed in a straight girder bridge

of the same span length under the same loading condition.

工n the curved girder bridges, therefore, the shearing stresses

produced by’tor8ional moments together with those produced by

Page 24: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

_17_

shearing forces will play a still rnore important role in the

determination of the strength of web plate8 required to

prevent buckling and in the deSign of shear cgnnectors.

     From the aforementioned view point, the author has studied

the Thin-Walled Beam Theory for the curved box girder bridges

and extended two types of the Modified Torsional Bending

Theories in which account is taken of the 8econdary 8hear

deformation due to restrained tor8ion.

芦・、

Page 25: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一18一

II.                 1)

SOME PREL工MINAR工ES

2.1  General

     There exists a close analogy between Euler-Bernoulli’s

hyp・thesis and Wagnet’s hyp・thesis in the sense that the f。rrne「

assumes the mode of cross-sectional deformation in flexure

acc・mpanied with shear t・be similar t。 that in pure bending

and the latter assumest in like manner t the mode of cross-

sectional deformation in restrained torsion to be similar to

that in pure torsion.  On the basis of these hypotheses, the

Torsional Bending Theory is constructed.  工t is, therefore,

desirable for the developement of the theories followed in

Chapter 工II to elucidate the physical interpretation of the

state of pure torsion to which a circularly curved box girder

bridge is subjected, and to derive some ba8ic formulae concern-

ing this theme・

     Accordingly, this is the prime ob]ective of the following

sections in thi8 chapter.

                     -

2.2 Coordinate S stems and Dis lacements

     Let us now begin our study by establishing the following

coordinate systems shown in Fig. 2.1:

     (1) The origin  O  of the left-handed cylindrical coor-

dinate sy8tem (O一ρθζ) i8 10cated at the center of curvature

     1》 The material in

Reference8 【3】 and l7】.

thi8 chapter is drawn mainly from the

Page 26: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一19一

○一x.1)

O

  ①鳴ム

 α。,

ソ\

⊂】一一一◆N

°\

≠〉

  

@ @\い\、

\\

  

@ @ ツ\

\.

 〉宰

Page 27: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一20一

of the qeneratrix passing through the cross-sectional center

              (defined later) of a circularly curved girderof figure  O            n

bridge.  Here, ρ is a radial coordinate, e is an angular

coordinate measured from the riqht end of the girder bridge,

and ζ is directed vertically downwards.

     (2) For any cross section of the qirder bridqe defined

by the angle θ, we take three kinds of the riqht-handed rec-                                                              ,,

tangular c・・rdinate sy・tem・’(C-2S}E)’(On-xy・)’and(S一牢)

with the origins at an arbitrarily chosen point  C, the center

。f figu・e On’and the shear center S(defined later)in the

cross section, respectively.  The axes are chosen so that

      N                                             N

y (y,y) and  z (z, z) may be directed in the radial outward

                                                      ロand vertical downward directions, respectively, while  x (xt 5…)

may be directed normal to the cross section, in the direction

corresponding to qn increase of the an91e  θ・

     (3) A circumferential coordinate system (s, n) is also

taken in the cross section along the middle line of 七he wall

of each plate element, in which  s  is measured positive along

this line in the counterclockwise direction and  n  is directed                      -

normal to this line.  工n the interior webs of multi-celled

cross section, however, the coordinate  s  is measured posi-

tive in the downward direction.

     The displacement of an arbitrary point  M  on the profil

line(the center。f figure On’the・hear center S)。f the

cross section is resolved into three component8, 宣 (ut ut),

▽ (v, v★), and  奇 (w, wt》 in the directions of the  xt yt and

Page 28: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一21一

z  axes, respectively.、 The warping displacement of the afore●

mentioned point  M  is denoted by the symbol U. The angle

of rotation of the cross section about a longitudinal axis of

the girder bridge is denoted by the symbo1 φ and is taken a8

positive when the rotation i8 in the direction indicated in

Fig. 2.1.

2.3  0utline of Pure Torsion

     Pure torsion of a circularly curved girder bridge is de-

fined by the state of the girder bridge caused by the combined

acti・n・f the t・rqueS TO and vertical f・rces VO with equal

magnitudes and opposite signs, applied at both free endst a8

shown in Fig. 2.2.  The vertical forces in this case, as

opposed to the case of a straight girder bridge, are needed

to stabilize the curved qirder bridge.

     工n what follows, the statica1, the kinematical, and the

qeometrical quantities with respect to a girder axis passing

through the cross-sectional shear center (called hereafter

the shear center axis》 will be indicated with an asterisk.                     ⇔

For 七he 8ake of conveniencet the 8hear center axi8 will be

taken hereafter as a reference axis.  The radius of curvature

・fthi・axi・is den。ted by R。・

     Then, the magnitudes.of the aforementioned vertical forces

a「ef・und t・beロ0/R8 by taking m。ments separately ab。u七the

radial axe8  0A  and  OB  in Fig. 2.2, that i8

                ’j’‘’” VO=To/R8      (a)

            ■

Page 29: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一22 一

To

   B

/V。

9

O

AV・\T。

Upward Vector

Downward Vector

Fig. 2.2  Curved Girder Bridge in Pure Torsion

Mヂ

申下

‘ v二

 Fig.

O

A

      To

2.3 Curved Girder Element

Page 30: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一23一

Under these conditions》 the stress resultant and couples act-

ing at any point on the girder’s axi8 defined bY the angle θ

can now be found from a simple static8 for the girder 8egmen七

Ac  in Fig. 2.3 as

T ★ X

follows:

= Tocose + VoRs (1-c。sθ)

My★=Tosine’VoR8sinθ

Qt z

in which  T ★  and           x

                  ぺmomen七 about the  x

the shearing force

shown in the figure.

two of Eq. (b), it

shearing force acting

along the girder axis and no bending moments

namely

              Tx“=To’Q。k=-VO’My’=°

                     一

(b)

= -V     O

Myt a「e the t°「si°nal m°「nent and bending

and y axe・’respectively’and Qz★i8

acting ip the  2  direction, positive as

   By substituting Eq. (a) into the first

is found that uniform torsional moment and

   in the vertical direction are developed

                         are produced,

(c》

2.4  Saint Venant’s Torsion Function and War in  Function

     The results obtained in the preceding section suggest

that any longitudinal fiber of the girder bridge is in the

state of uniform twisting and of no stretching. It seems,

therefore, reasonable to proceed in the further analysis by

assuming that the following relationships hold all over the            ■

range of the angle θ

Page 31: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

                           一24_

                  ・~=ψy★=ψ。★=0

                                                     (2.1》

                  ψx★=c。nst・

where

         ε ★ = rate of stretch of the shear center axi8,          x

         ψx★=rate・f twi・t・f the・hear center axi・’

         ψy★=change in cu「vatu「e in the xz-Plane°f

               the shear center axis,

         ψ。★=change in curvature in七he xy-Plane°f

               the shear center axis.

     Furthermore, the warping displacement  Us  may be assumed

after the analogy to the case of a straight girder bridge to

七ake the forrn

                  U。=一ω★(・)・ψx★(e)     (2・2)

where  ω★  is called the  ”warping function°° with respect 七〇

the shear center.

     In the developement to follow, however, the shearinq

                     strain corresponding to the shearing force mentioned in the

preceding section will be disregarded a8 an approximation

employed in the engineering beam theory. Following this ap-

proximation and the assumptions on the deformational mode of

a cross section mentioned in the precedinq chapter, the com-

ponents gf the displacement field in a cro88 8ection can be

expres8ed in the forrn :               声w

          ’ ti ” u“一’yφ。★+2φy“一ω★ψx★

Page 32: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

_25_

予=vt @- 2φx★ (2.3)

                  w=w★+yφx★,

whe「eφx”tφy”’andφ。ft a「e the anqula「displacement

components in the  3ξt 夕, and  2  directions, reSpectively,,

of the shear center axis after deformation.  Then t the afore-

mentioned kinematical quanti七ies with respect to the shear

center axis can be expressed in terms of the displacement、

components, through geometrical considerations or by using

analytical geometry, a8 follows:

             φx★=φ’φy“ =-ij 9/★

                                                     (2.4)

             φ。・=吉(…:Lu・)

                    s

and

             ・x・=}(器★+v・)  ”

                    S

             ψx・=k(i篭一←i寄)

                    S       S

                     -                    (2.5)

             ψy・=一≒(φ+量譜:)

             ψ。・「告(i謬一…号★)

                    s

     Substituting the displacement.components in Eqs・ (2・3) into

strain-displacement・relations and taking the relationships

given by Eqs, (2.1), (2.2》, (2.4), and (2.5》 into con8idera七ion

Page 33: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一26一

yields the following strain component8 【3, 7】:

             ・θ=ερ=εζ=Ypζ=o

             Yρθ=一{ト+P-P(x”)}ψx・ (2・6)

             Yeζ={R S~  aω★ρ y-aζ}ψx・

Referring to Fig・ 2・4 and apPlying the proper strain transfor-

mation formulae to the strain components in Eqs. (2.6),we find

the strain components referred to the circumferential coordi-

nate system(s, n)as follows:

             Y。・{警r~一ρ鍋}ψX・

                              ■

     ・                               (2.7)

             Yn・{祭rn・-P貴(9t》}ψx・

where rt・and rn・a「e the perpendicu・ar・fr。m the・hear                                                 タ                      center  S  to the tangent line and normal line at the point

M  considered herein, respectively.  工n the case of a

                                                    can be,thin-walled cross section, the strain component  Y                                                 n

in general, regarded as a negligibly small quantity.

     Now, the equilibrium equation in a longitudinal direction

for a differential plate element i8 expressed in terms of the

stre8s components a8 follows 【44】:

Page 34: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一27_

s=O

一yy⇔y

u’@    7  y。 C

ぬOn Zo

‘.S

,         培

S_

@院

一Z Z 一Z

Fig・ 2・4  Geometry of a Multicell Cross Section

Page 35: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

_28_

            ☆(・θt)+詰(ρ2q。)=・   (2・8)

in which the quantity q。 i・.called the”・hea「fl°w“and

i8 defined by

             q。÷G。Y。t      (2・9)                   9

where

        G。’Gc=・hear m・duli・f elasticity°f steel and

                 concrete t respectively,

      .㌔={ls/Gc;i}i:iili;:iill:ln:9.::∴

                             action with steel web plates,

             t = thickness of plate elements・

Rernembering that・e=Ofr。m Eq・・(2・6)’that i・’σθ=0’

andψx・=c。n・t・fr。m Eq・・(2・・)’ we can・・1ve Eq・(2・8)f°「

q。t。・btain

             ρ2q。=c・品・t・三Rs2G。ψx“qs   (2・1°)

where the quantity qs is ca・・ed the”Saint--Venant’s t°「si°n

function°° and 七akes a constant value on the wall of each

plate element. Furtherm。re,・n acc・unt・f the c・nditi。n。f

balancing at any junction of the palte elements for the flow

type・f quantity q。’the quantiヒy can be exp「essed in tems

。f the new quantitie・q9,k which are c。n・tant in the k”th

re11’a8 f。11。w8(Fig・2・5)・

Page 36: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一29一

S(一一一一

qgk+1

j+1

k+1

qg,, qgk.1

Fig. 2.5  Saint-Venant’s Torsion Function

Page 37: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一30 一

q8=

q:,k-q二,x-・

qg,k

qg,k-49,k+1

on the wall of the plate element

common to cells k-1and k,

on the wall of the plate elemen七’

belonging to k-th cell only’

on the wall of the plate element

commontocells k and k+1.        ................ (2.11)

     C。mbining Eq。.(2.7),《2.9),and(2.10)and canCellinq

・ut the c・㎜。n fact。r G。ψx★gives the f。11。wing diffe「en-

tial equation for determining the warping function  ω★:

             詳q。=≒{警r~一ρ副 (2・・2)

from which  ω★  is solved in the form

r-子

8工

 R

=ハ

S(

ω

+是ω・

   8

Sdn』t

ーア8

~~98㌔R8一Sd

(2.13)

The integration constant  ωo  is to be deterlnined from the

condition of balancing the warping di8placemen七 〇ver the entire

cro8s 8ectiOn, the condi七ion i8

.R。£;ω・ 0=8dt元 (2.14)

Page 38: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一31一●

where the subscript  F ’on the integral indicates that

integration is carried over the entire cross-sectional

and

        Es, Ec = Young’s moduli of elasticity of steel

                 concrete, respectively,

n  = e

1

E8/Ec

the

area

and

for steel plate elements and

shear connectors,

for concrete slabs in composite

action with steel web plates.

     Let us now return to the evaluation of the quantities

q9,k defined in Eq・(2…)・The quanti七ie・are t・be deter一

                                                               ご

mined from the compatibility condition-the condition that the

continuity on the warping displacement should be restored at

the hypothetical 81it introduced temporarily in each cell.

The condition is

                  玲(子》d・=・   (2・・5)

                       ⇔・

where the subscrip七  k  on the circuital integral indicates

that the integration is to be carried around  k-th  cell.

Then, substituting into Eq. ’(2.15) the expression for the

integrand obtained from Eq. (2.12) and noting the relationships

given by Eq. (2.11)1yields the following equation for deter-

mining the quantitie・. q9,,・    ’                  ’,炉’ 、

Page 39: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一32一

一q二,k-iSk-、,k詩d・+qg,k£詩d・

(2.16)

一q&,k+・工,k+、爵d・=≒∫k断rt★d8

where the subscript, say  k-1,k  on the integral indicate8

七hat the integration lg to be carried over the path along the

wall of the plate element common to cells k-1and ko and

so on.  One such equation is to be written for each ce11.

                                                                          It is known that the right side of the above equatエon エs

a constant which depends on the cross-sectional geometry only,

irrr・pective。f any ch。ice.。f the center°f twist【7】・’Fu「-

thermore, it is evident that the coefficien七s in the left side

of the above equation are al80 七he constant8 depending upon

the cross-sectional geometry and elasticity properrヒy only, so

that the 8ame may be 8aid。f the quanti七ie・q9.k a8 can be

seen from Eq. (2.16).

2.5  Torsion Constant-and Central Moment of 工nertia

     The torsional moment ab◎ut

cr。ss secti。n’den。ted by TsS

qs fr。mEq・・(2・10)a・f°11°ws:

the  又一axi8  developed on any

i8 related t。 the shear fl。w2)

     2) The formula for  q   given by Eq. (2.10) is available。nly f・r the cl。・ed parts s・f the cr・ss secti・n. F。r hybrid

cross sections composed of closed cells plus open  ・・fin°°elements, such as that shown in Fig. 2.5, the contributionsof the shear flows developed in the latter parts to the totalvalue of thb torsiona1, moment are extremely 8ma11,80七hatthey may be disregarded pracrヒically・

Page 40: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一33一

T il “,= Hq8r~d∴G。ψx・R。・鋳ξ8rt・dr

(2.17)

≡G。JT“ψx★

whe「e the quantity JTt i・called the

of the cro8s 8ection and defined a8

・tor8ion con8tant“

ラ3 S

d t r S

●qーア R = ★  T J

(2.18》

工t is necessary, however e in the developement of the

the°「ies f°11°wed in Chapter m t・rewrite the c。n・tant JT“

in another form and to derive a relationship between this

constant and the “central moment of inertia“  of the cross

section (defined later).

way: To begin with,

which indicate that the

This.can be done in the following

1et  Σ  and  Σ’  be     ,                         t

     コ      コ

   summations are

the summation signs

taken all over the

     3) For the aforementioned hybrid cross section, thereexists an additional term ari白ing from the 8hear flows de-¥:1:躍。芸m:::、y“;IC二n;;ements・The te「m’ den°ted by△JT“’

             △JT“ ・ゴi、〉叫トξd・

¥臨鑑。:u宝:;:;P;esjca鵠ea圭et:9::1孟:d{:藍ξ謡a[h:he

j-th  °°fin°l element and  m  stands for the total number ofthe  °l fin°l elements.

1璽1ξi;li議~ilill;i灘liii二曇;ill鷲iil警

cage of a hybrid clo8ed cro88 8ection with  ,°fin●●elemen七8。

Page 41: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一一 R4一

walls j,」+1 and theづ、uncti。ns j・f the plate elements’

re・pective・y・M。re・vert・et△ nbe an。pe「at・「which indi-

cates that the algebraic sumrnqti。n of the inf1。ws and outf1。ws

                                                             ●。f any・,f1。wee type・f quantity i・t。 be carried。ut a七the

j-th  junction of the plate elements.

     Thent by・ub・tituting the expressi・n f。r rt“。btained

from Eq. 《2.12》 into Eq. (2.18), we can rewrite the constant

JTt a・f°11°ws:

     JT・ = R。悟q8r~d・

                                                     (d)

         =R。・鼠’這。・eS d・+R・Jl, q・ 9e(x.t)d・

Reca・・ing tha七the quantities q。 a士e c・n・tant。n the re-

・pective wa11・。f the plate element・’the sec・nd integra1°n

the right 8ide。f七he ab。ve equati。n can be evaluated a8

follows 3

     R。f,q。静d8-=R・1工,j+、q・静d・

                                                    (e)

                    ・=R。1【q.(芋)】:+1

The right・ide。f the ab。ve equati・n ir f。und t。 vani・h’afte「

rearrangernent of the order of summation。f the bracketed terms e

                                                             、becau・e the・・f1。w”type。f quantitie・qs sh。uld・atisfy

the afordmer{tioned condition of equilibrium at everY junction

Page 42: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一一 R5一

of the plate elements. This can be verified as follows:

     R。1【竃。(gr)]:+1=R。1・{害(△j弓。)}=・(f)

Finally, combining Eqs. (d), (e), and (f》 yield8 another ex-

pression for  JT★  in the form:

JT・ = R。3 2 8~q1ひSd

n」t

(2.19)

the

Now, the  .. central rnoment

shear center is defined by

of inertia“  with エespect to

白t㌃

♂ r

l一P工Rs = C

J (2.20)

工n the following, it will be shown that there exists an ine-

quality between七he tw・c。n・tant・’」♂and JT★・Then’by

・ub・tituting the expre・si。n f。r r七★。btained fr。m Eq・(2・12)

int。 Eq・(2・20)’we can rewrite the c。nstant」~a・f。11。wsl

」~=Rs・2 8~q

ーデ n_旦ds +t

2R。工q。紳d・

(9)

+R・∫F(髪)3{音(子》}2≒d・

工t i8 eviden七 that the first integral in 七he above equation

i・n。thing e18e but the t。rsi。n c。nstant JTt acc。rding t。

Page 43: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一36一

Eq. (2.19) and that 七he second integral vanishes on account

of Eqs. (e) and (f). Thu8, equation (g) become8

     」♂= JT・+Rs2工(k)3{㌶)}2≒d・ (2・2・)

Since the integral in the above equation is not les8 than

zero, the following inequality holds

                  」c★≧」T★        (2・22)

     1.et  R   and  R   be the radii of curvature of the girder           O         C

axes passing through the cross-sectional center of figure  On

and arbitrary pbint  C, respectively.  Then, the basic func-

tions 1, y(8), z(s), and ω★(s) chosen 80 as七〇8atisfy

the following orthogonali七y conditions wi七h a weight function

(1/ρ).(t/ne)

                    b             Gy・R.工告・≒d・=・

             G。≡R.工;y≒d・=・  (2・23》

            ■

             」y。・R.工…y・≒d・=・ .

               ・paらand          ”

                                                            .⊃

Page 44: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一37一

G♂≡R。工;ω・≒d・=・

Cy R。工告ω・芝≒d・=・(2.24》

0=白Lne

号ω

1一ρ工Rs 一二

 Z

C

are called the  ”principal generalized coordinates・・ of the

cross section of a curved girder bridge.  These coordinates

are important in the sense that the governing differential

equations followed in Chapter 工工;will fall into simpZer forms

when they are u。ed4).

                                                               ■     The first two of Eq. (2.23》 determine the location of the

rectangular coordinate origin called the  °・center of figure”

of 七he cross section, and the last one determines the direction

・fthe c・。rdina七e axes・Let y。 and・。 be the c・・rdinate・

of this point referred to an arbitrarily chosen coordinate

           コココsystem  (C-xyz》, a8 shown in Fig. 2.4. Then, the equations to                      -

determine them are obtained by substituting the relationships    ロ                                                         -

y=y-yo and z=z-zo into the first two of Eq.(2.23)

     4) The cross sections of a curved girder bridge is notsy㎜etrical, in qeneral, with respect to its vertical axis7therefore, the last one of Eq. (2.23) is not necessarily

2濃:d呈吉r鑑゜21i9’器蒜:惣::0芸1蒜。:s;蒜:ぽd

complexity arising from thi8 circumstance i8 inconsiderably8ma11, a8 can be 8een later.

Page 45: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一38一

as follow88

CF

O2二二yG(

CP

Oy一一2G(

R。窒W R。r8=

yG=

=G=02

(2.25)

where

Gy = RcSF lELd8ρ.  n     e

白Lne一y

1一ρ

工Rc = ●Z

G、

(2.26)

     Fc=Rc工;≒d・

                                         ・ .

Then’・。1ving Eq・(2・25》f。r y。 and・。9・ves・

     GE

yo=-     Fc

    G-

Zo=ユ    PC

(2.27)

     Next, the  °°shear center・l of the cross section is de-

fined as the origin of the radius vector for the sectoria1         ’                     coordinate  ω★  which satisfies the last two of Eq. (2.24).

The remainihg・ne determine8 the terminu・。f the. initial radiu8

vect。r’i・e・’the sect。rial c。。rdinate。rigin・Let y日and

2   be the coordinates of the shear center referred to the S

coordinate sy包tem  (On●xy2).  Then, referring to Fig. 2.4, it

followg tha七

            r七ガ』rt一器y。+9・9   《2・28)

Page 46: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一39_

By using Eqs. (2.23),、(2.24), and (2.28), equation (2。13) can

be rewritten to obtain the relationship between the warping

function With respect to the shear center,  to t, and that with

respect to the center of figure, ω, in the forrn :

            ω・=縫ω一yg2+・8y}  (2・29)

Then, substituting Eq. (2.29) into the last two of Eq. (2.24)

and noting the orthogonality conditions given by the first two

of Eq. 《2.23》 and first one of Eq. (2.24) and the relation-

ship8’Y=y-y。’E=z-zs’and R。=R。+y。’yie・ds

a8et°f eq竺ati。n・9。r deterrnining y8 and 28 as f。11。w・・

            一{」ジξ}y。+JyzZs+Cy =・

                                                   (2.30)

            一{」y。一ξ}y8+」22s+C。=・

whe「e Jy and Jz are them。ment・・f inertia。f the cr。s8-

sectional areawith re§pect to the y and z axes,

「espectively’and」y。 i・the pr。duct。f inertia’which are

defined by

Jy SR.工 ±z2Ld8p  n     e

白Lne72

ー二ρ

工R。

 ■ Z

J

(2.31)

」y・=R.工訣≒d・

Page 47: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一40一

and C      y

respect

and C       2

tO the y

are the 8ectorial products of inertia with

 and  z  axe8, re8pectively, defined by

Cy=R.工 1ωzLd8p   ne

(2.32)

c。=R.工;ωy≒d・

Finallyt・。lving Eq・(2・30)f。r y。        r

and  Zs  give8:

J C   -  J  C zy     yz z

ys ={」ジ篭}」z一

 2 y

J}

cヱR。

 Z y

J{

(2.33)

J  C  -  JCyzy           y z

Z8  m

{」ジR.}」2一{     CJ _3yz  R      o}」y2

一..

     杣at i6 menti。ned ab。ve ean be briefly summarized as fol-

lows: For every.cross-sectional shape of a curved girder bridge’

there exist two special points on the cross section, called

the  ”center of figure”  and the  °°shear center”, re8pectively.

These are characterized by the conditions that  G  = G  = O                                                y   z

and Cy’ = C。“ 一・’re・pective・y・The・。cati。n・。f the・e p。int・

are dependent・upon only the cross-8ectional dimension8 and

Page 48: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一41_

elasticity pr。perties(Pe and ng)°f the mate「ial c°「np°sing

the cross section and are independent of the boundary and load-

ing conditions.

     These points have the following physical meanings: 工f the

center of figure is chosen for the coordinates’s origin, there

occurs no coupling between the normal force acting in the

direction of the longitudina1’coordinate axis and the bending

moments about the in-Plane coordinate axes.  工n other wordst

the normal stresses due to these bending moments give rise to ’

no changes in length of the longitudinal coordinate axis [see

Eqs. (3.8)】. Similarly, if the shear center is chosen for the

coordinates’s origin, there occurs no coupling between the

bending moments about the in-Plane coordinate axes and tor-

sional moment about the longitudinal coordinate axis.  工n other

wordst the shear flows due to these bending moments produce no

torsional moment about the longitudinal coordinate axis, as can

be seen from Eq. (3.29), along with Eqs. (3.18)t (3.20)e and

(3.56). Hence, the resultant of the shear flows due to the8e

bending moments passes through the shear center.

                      ロ     However, it should be noted that the results mentioned

above hold only 80 far as the assumptions employed in engineer-

ing beam theory are satisfied.  The assumptions are stated a8

follows 3                   ’

     (1) The displacement field in a cross section is repre-

sen七ed by the superposition of two types of deformations

obeying Euler-Bernoulli’s hypothesis and Wagner’8 0ne.

     (2)The Shear f1。w・due t。 n鋼al f。rce and bepding

Page 49: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一42一

moments are determined by integrating the equilibrium equa七ion

in the longitudinal direction for a differential plate element.

     (3) The integration constants in the resulting expression8

for the 8hear flow8 are determihed from the ficticiou8 condi-

tions of compatibility a8 indicated in Eq. (3.15》.

’夕午A.

Page 50: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一43一

エ工工. MOD工F工ED TORS IONAL BEND工NG THEOR工ES TAK工NG THE 工NFLUENCE

      OF SECONDARY SHEAR DEFORMAT工ON 工NTO CON S工DERAT工ON

3.1  1ntroduction

     As is well known, the conventional torsional bending

theories 【1, 2, 3, 4, 5, 6] are based on the assumption that

the warping in the case of nonuniform torsion of a thin-walled

girder bridge can be evaluated from the Saint-Venant theory

c・rresp。nding t。 the l。cal value・f七he rate。f chanqe・f twist

at the cross section considered (Wagner’s hypothesis).  This

assumpti。n may be a11。wable if the variati。n。f twist a1・ng

the axis of the girder i8 sma11, in other words, the twist is

almost uniform along the axi8; conversely, it is doubtful to

apply this assumption to the cro8s 8ections highly restrained

                                ロ

agaエnst warplng・

     The axial rate of change of the warping induces a second-

ary n・rmal stress called the”warping n。mal stress“・Thent

the shear stress in equilibrium with this induced normal stress

may provide the approximate so-called secondary shear stress

a8 a correc七ion to the first order approxirnation of the shear

stress in regtrained torgion, calculated frorn the Saint-Venant

solution in the sense mentioned above.

                                                              へ     工t seems that, in the conventional theories, the influenc膓

of the defomation corresponding t6 the secondary shear stress

is regarded as neqligibly sma11. 工n the case of a girder with

clo8ed cross sections, however, the question that disregard bf

the sec。ndaty 8hear def・rmati。n will lead t。 an unsati8fact。ry

Page 51: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一44 _

result, especially at the cross sections highly restrained

against torsion, was brought out by Th. von K6rm6n and

W. Z. Chien [42】 and R. Heiliq 【10】. This is because the

secondary shear deformations appear, in general, to be about

the same amount as, or t according to circumstances, to be

considerably greater than the primary ones evaluated from the

Saint-Venant solution in the sense mentioned above. Further-

more r it should be noted that more rigid cross sections of

the bridqes, stiffened with sufficient numbers of diaphgrams

or cross-frames, cause more accurate analysis of the shearing

stresses to become more important.

     Due to these reasons, some attempts to improve the weakness

of the conventional theories mentioned above were made by such

investigators as E. Reissner 【8], S. U. Benscoter 【9】,

R. Heilig 【10], W. Graβe 【11]ワ E. Schlechte 【12], and K. Roik

and G. Sedlacek 【13]. These works, with the exception of 【8]e

were done only in the case of a box girder bridge with a

straight axis. E. Reissner’s work, however, was carried out

                ton a straight cylindrical rod with one end built in.

     All of the fundamental differen七ial equations governing

torsional bending phenomenon, derived by these investigators,

are of the same form and very similar to the conventional one・

The coefficients in the equations serve as a measure for eval-

uatinq the effects of the secondary shear deformations on the

distributions of stresses and will be called hereafter the’・

翌≠窒垂奄獅〟@shear correction parameters”. The parameters can be

classified into two groupes, with the exceptions of those in

Page 52: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一45一

【8]andロ2]・。ne i・the parameter derived by S. U. Bensc。ter

and the other i8 that derived by R. Heiliσ and others.  Fina1-

ly’by assuming that tran・verばe shearing・train and warping

°ne a「e c1。sely c。nneCted with transverse shearing f。rces and

     ロwarplng torque or secondary torsional moment through  ・l shear

c°「「ecti。n fact・r・’㌧the the・ry。f R. Heilig’・type was gener-

ali・ed by D・Schade【14]・エn the the。ry, five kind。。f fact。r8

in additi・n t。 that derived by R. Heilig are newly intr。duced.

エnthe paper’h。wevert n・meth・d・are pre・ented f・r finding the

s°iuti°n・f。r the stress resultant・and di・placement・deve1。ped

in the girder under vari・us 1。ading and b。undary c。nditi。n。.

     エnthe m。dified ’t。r・i・nal bending the。ries rnenti・ned ab。ve,

h°wever’attenti・n i・f・cused。nly・n the axial di。placement c。m.

P°nent°f the sec・ndary・hear def。rmati。n. Recently, f。r the

case°f a・ingle-celled・traight girder bridge, N. Saeki【43]

has deve1。ped an・ther type・f t。r・i。nal bending the・ry by

taking。nly the circumferential di・placement c。mp。nent。f the

sec°nda「y・hear def。rmati・n int。 c・n・iderati。n and n。ting the

directi。n・。f the・ec。ndary 8hear f1。w・in the cr。。。8ecti。n。.

     エtsh・uld be n。ted that, as stated bef。re, t。rsi。nal

m°ments devel・ped in the curved girder bridges play an imp。r-

tant「°le in the analysi・・f・tresses as c・mpared with th。se

in the rtrai~力t girρer bridge・・エn fact, they wi・・bec。me

increasingly imp。rtant with higher curvature・。f the girder axes.

The「ef。re’it w。ulq seern desirable t。 extend the m。dified t。r-

・i。na1 bending the。ries t。 the ca・e。f a curved b。x gitder

Page 53: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一46一

bridge. The extension gf the modified theory presented by

S. U. Benscoter has been carried out by R. Dabrowski 【19], in

which he required that the shear flows obtained from the condi-

tion of equilibrium should satisfy the condition of compatibility

as we11. However, the method of forrnulation performed by

R. Dabrowski may be available only in the case of a curved box

girder bridge with a mono-8ymmetrical single-celled or separate

twin一己elled cross section.  The author I22], together with his

co-researcher, found that the theory of S. U. Benscoter’s type

could be extended to the case of a curved girder bridge with

closed cross sections of arbitrary shape if Galerkin’s method

was applied to the condition of equilibrium expressed in terms

of the kinematical quantitiesv such as the rate of stretch,

changes in curvature, and rate of twist, of the reference axis

of the girder・  Similarly t the author 【21], together with hi8

co-researchers t succeeded to extend the theory presented by

R. Heilig 80 a8 to be applicable to the curved box girder

bridges.

                       一3・2 AL!EE9!!}}2Stiil,9!IE

     Throughout the theories treated in this chapter, the fol-

lowing assumptions will be made:

     (1) Cross-sectional dimensions and shape of curved box

girder bridge a士e constant throughout its length.

     (2) Any characteristic dimension of the cross section (it8

height or width》 is small compared with the developed span

length 80 that ela8tic properties can be assumed to be

Page 54: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一47_

c°ncent「ated al・ng the reference axis・f the girder.

     (3) Deformation of an arbitrary cro8s section consist8 0f

that。beying Euler-Bern。ulli元・hyp。th・is and Wagner’。。ne.

     (4)Cr。ss・ecti。n・d。 n。t di・t。rt tran・ver・ely.

     (5)Shear lag phen・men。n can be di・regarded.

T.he・ther assumpti。n・required f。r the deve・1.。pement。f the the-

                   

°「エes wエ11 be made in the f。11。wing・ecti。n8, if nece88ary.

Part 1.

              互主一[21]

     3.3.1  Normal Strain and Stress

     There apPear・t・be n・・ati・fact・ry the。ry apPr。priate f。r

P「actical use t・take the influence。f the sec。ndary。hear de-

f°「mati・n due t。 re・trained t。rsi。n int。 acc。unt precisely、

the「ef。re’in the the。ry c。n・idered herein, the def。rmati。n will

be c・n・idered。nly inセhe directi。n n・rmal t。 the cr。。。.sec-

ti・na1 Plane as f。11。w・・エt is assumed that the tran。ver。e

dist「ibuti・n・f the warping i・the same a・that in pure t。r。i。n,

but°n the・ther hand’it・inten・ity can be represented by a

ce「tain unkn。wp functi。n X(θ)instead。f the rate。f twi。t

ψx(θ)。f the reference axi・。f the girder, unlike the c。nven-

tional theories」

     Den°ting by ’U”Ule warping at any p。int。n the middle line

Page 55: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

_48_

of the cross seetion t it then follows that

U=-co t(s)xt(θ) (3.1)

M°「e・ver’。ne m・re assumpti。n will be made that the displacement

field in the cr。ss secti・n can be represented by superimp。・ing

the two types of deformations-the deformation which obeys the

law°f plane secti。n’i・e・’Euler-Bern・ulli’・hyp。the・i・, and

the out-of-plane deformation which obeys the law of sectorial

area@as indicated in Eq. (3.1》.  Following these assumptions,

we fエnd the c。mp。nents。f the displacemen七field in the cr。88

8ection in the fo】m3

            if=u★-yφ。★+2φy“一ω★x★     、

Nv=vt-iφx★

w=w★+夕φx★

(3.2)

whe「e the quantities星’φy“’andφzt are the r。tati。n

  components of the shear center axis, which are the same a8

’/those defined in Eqs. (2.4).

’     Then, introducing Eq. (3.1) into the proper strain-

displacement relati。n’the t・ta・n。rma・・train・θ。f any

fiber・f the girder can be expressed in term・。f the kinemati-

 cal quantities of the shear center axis’ such.as the rate of

change°f st「etchεx★’and the change・in curvatureψy・and

ψzt in the競and Sty plane8, re・pectively, a8 f。11。w。,

Page 56: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一49一

         R     εθ=ヂ(εxw・★+芝ψy★一ω★記i搭)

°「’by vi「tue°f the rqlati。n・hip・’y;y-y8 and

    R

・θ=q(・xt+y。tl。’ 一 ZSψy・》

    R一子(yψZ★-Zψyt+ω★髪謀)

(a)

2=Z-Z8

(b)

whe「e the quantities・x★’tPyt ・andψz★are t・be referred

to Eqs. (2.5).  The quantity within the first parenthesis on

the right side of the above equation i8 reZated to the rate of

change°f st「etch。f the centr。ida・axi・’・ignified by ext

the relation 【7】 is

 X

ε=εx

R。

Whe「e the qUantity・X

+y・ψ・“-ZsthY★

 

ユぷ expressed a8

ハV十血苗

くLR。

=X

ε

(3.3)

(3.4)

Thu8, Eq. (b) can be written in the more concise form 3

         R   ・  R

    ・θ=ヂ・x一ヂ(yψ。・一・ψy・+ω・十i搭) 《3.5)

                                     8

                   ‘’♂ぷ

    Since the。ther tw。 n。rma1・tre88 c。mp。nents except f。r

Page 57: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一50_

the axial one may be di§regarded, as is usually done in the’

   ■                 ロ                                                                                                                                              

engエnee「1ng beam the。ry’the t・tal n・rma1・tre88σθacting

on the cro8s-8ectional Plane i8 given by

                  σθ=÷E。・θ     (3.6)

                        e

When this stress distribution i8 integrated over the entire

cross-sectional area, it yield8 four independent 8tres8 re-

sultants:an°「mal f°「ce Nx’tw・bending m・ment・My and Mz

acting about the y and z axes, re8pectively, and a warping

m°ment。r bim。ment Mω★with respect t。 the 8hear center axiS

(Fig. 3.1).  They are defined by

Nx = JIF a’et d・.

M・=-kσθytd・

My =JTF ae・t d・

Mω・=Hσθω・td・

(3.7)

Now, the problem consist6 in finding the expression of the

normal stress represented in terms of these stress resultants.

To this end, we introduce into Eqs. (3.7) the expression for

σθ  obtained from the combination of Eqs・ (3・5) and (3.6) and

perform the indicated integrations by taking the first two of

Eq・・(2・23》and Eq・.(2.24)int・acc・unt. Thi・givd。 the f。1-

10wing 8et of equations after 80me algebraic manupulation8:

                  今

              ’

           「

                     1『       .           ’

Page 58: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

51

Page 59: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一52一

                  N 、            ε  =   x

             X  EF                    . .                   s o

                  R  JM  十 J  M

            ψy★=ξ赫

                                                   (3.8)

            ψ。・=}撚

                               yz                   8 8 y z

. ≒器=-k-9★、                        8 ω

                                                          ■

where Jy’J。’and」y。 a「e the c「°ss-secti°nal c°nstants

defined in Eq・(2・31)’and the quantitie・Cω★’called the

“warping constant“  with respect to the shear cen七er. and  Fo

are defined by                        ’

     ・Cω・=R。J.T告・・★2≒d・   (3・9)

                    一

            ’F.=R.工告・≒d・   {3…)

Finally e combining Eqs. (3.5), (3.6), and (3.8) gives:

’%=

                                      ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ■

1ω≡ω・}

 ω

(3.11)

Page 60: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一53一

The first three terms bn the right side of Eq. (3.11) indica七e

the n°「mal stress c。mp・nentsσb due t。・stretching and bend-

ings, detemined according to. the law of plane sections. The

fourth term, on the other hand, indicates the normal stress

component  σω  due to the restraint against warping, deter-

mined according to the law of sectorial area8.

     3.3.2  Shear Flows

     Let us dep°te by qσthe shea「f1°w dete「mined fr。m the

condition of equilibrium of a differential plate element in

the longitudinal direction.  The desired equilibrium equation

is given by_       .、

☆(σet》+詰(ρ・qσ)+pPx =・(3.12)

where px i・the x c。mp・nent・f the external f。rces per

unit area of the middle surface of the plate elements making

up the cr°ss secti。n・・S。1ving Eq・(3・12)f。r qσ’we find

                      ←

qσ=セqσ一汗ρ☆(σθ七)d・一詳f号うxd・

(3.13)

where the quan・tity q。 is an integraYi・n c。n・tant’which can

be interpreted phy8ically as thd quantity related to the stat-

ically indete「minate pa「t。f the 8hear f1。w qσ・’エn the ca・9

0f the loading condition8 encountered in practice, howevert

Page 61: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一54一

the last term on the right side of Eq. (3.12) scarcely con-

tributes t・the value・f the・hear f1・w qσ・Theref。re’it

will be disregarded hereafter.  工n view of Eq. (3.11), the

shear flow  qσ  obtained in this way t therefore, can be re-

garded as the sum・f’ 狽浴Ec・mp・nentsl qb’the shear f1・w due

t・・treching and bending’and qω’the sec・ndary shear f1。w

due to nonunifOrm torsion.

     Returning n。w t・the evaluati・n。f the quantity qσ’as

in the preceeding case, we will express the quantity in terms

・fthe new quanキitie・q&,, which are c。n・tant in the k-th

cel1, as follows (Fig. 3.2):

 

qσ=

、     As in

  can be determined

  tion in which

            ●

  component

  action of streching,

  restored at the hypothetical

  each cel1.

q;,,-q’X,,一、。n the wa・・。f the p・ate e・ement

                commontocells k-land k,

q8,,   ・n the wall。f the plate element                belonging to  k-th  cell only,

q8,k 一 q8,k+、・n the wa11・f the plate element

                commontoceils k and k+1.

                    ●●..・●・・..●●●・.・..●●● (3●14)

           -

the preceeding case’the unkn・wn quanヒitie・q9,,

       from the compatibility conditions -the condi●

   the continuity on the axial.dssplacemenヒ

uσ・fヒhe shearing strain cau・ed by the c・mbined

          bending, and nonuniform torsion t should be

                 slit inLroduced temporarily in

 The condition is given by

Page 62: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

_55一

S = 0Srトー一一

「、一、

q:,k+1

o↓

q:,k ζ:,k-1

’一

j+1 ’

cell k+1 cell k cell k-1

Fig. 3.2  Shear Flows in Equilibrium with Normal Stresses

Page 63: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

_56_

・=

轤求凵i;uσ)d・’= 9gSk tqσ eg d8 1)(3.15)

Substituting Eq.(3.13》,t・gether with Eq・(3・14)’int・

                                                     ロ      Eq.(3.15),we・btain the f。11。wing equa七i。n f。r detemエnlng

the unknown quantities q↓,kl

一q:,k-・玉一、,k詩d・+ζ&,k£⊇d・

一q&,,+、Sk,k+、-P :9 d・融詞∫ρ☆(σθt)d・}eEL d・

・  ・  ●  ●  ●  ●  ●  ●  ●  ●  ■  ●  ●  ■  ・  ・(3.16)

As before, one such equation is to be written for each cel1. ,

Once the re8ulting set of equations is solved for the un一

k-quantitie・q&,k in tem・。f the definite integ「als°n

the right・ide・f the equati・n・, calculated u・ing Eq・(3・11)e

the・hear f・。w qσi・f・und fr。m Eq・・(3・11)’(3・13)’and

(3.14).  After rearrangement of the resulting expression for

                    一

     1)Acc。rdinq t・the law・f plane secti・ns’there arises’in fact, n。 shearing strain c・rresp。nding t・the shear flgw99fidi2E g.cge ・。鵠霊:;eth:{v…tai:e灘df::霊:::蹴;;エty

                     from tangential displacement componen七that the contributionto the ficticious shearing strain corresponding to 七he shearf’°w GE!σ.。m・g,?・e.gきsg?glg::::u【3】,。n the。ther hand,

empl・yed the principle。f least w・rk t。 find the equati・nsof consistent deformations (the compatibility conditions)from which the statically indeterminate parts of the 8hear霊、yq99r認e鑑:’課’認8;ta’ned’°f c°u「se’ a 「e8u’t

Page 64: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一57 一

qσe it can be written finally in the form:

qσ F qb + qω 《3.17)

where

       R        o

qb=Kn       ρ2

2’@           R 2

(q・-Sn)+Ky p…(qジSy)

(3.18)

 2

S一

 Z

~q(

202

RP Z

K十

ラ★

 ω

S一

 ω

~q(

2S2

 ω

K=

 ω

q (3.19)

Here, the quantities  K                      ne

the fomulae

Ky’ Kz t and  Kω★  are given by

LR。LF。=

 n

KdN  xTd

}姐z-r。

y」十詳LR。

  Z

」y一=y

K

詳LR。 σ2

=2

K}姐zLR。

 口

 十

・  ●  ・  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ● (3.20)

and

LR。・豆=

ωK

dMt  ω

de

(3.21)

Page 65: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

」」58_

The quantities Snt Sy’S。’

the coordinate  s  defined a8

         Sn(・)=∫8量d・

         S・(・’”f, ・t d・

and

         Sω・(r)=f。 U・ ±d・

 and  S t  are the func七ions of       ω

follows:

Sy(・》=轤凵烽пE

(3.22)

(3.23)

Fu「the「m°「e’the quantities q.’qy’q。’and qωcan be

represented in the forms similar to that defined in Eq. (3.14)

by making use。f the quantitie・qA,・t q多,,’q;,k’and

q8,k determined in the f…。wing way’respec七ive・y・The

quantitie・q;,k’q9,・’q2,・’and(R。/R。)2il8,k are de-

termined by solving the sets of equations obtained by

「eplacing the integral within brace・in Eq・(3・16)by Snt

Sy’S。’and Sω★’multiplied by R。2’respectively・Thi・

is clear from the the(rry of linear algebraic equation8.

     As explained in Section 3.1, the shear flow

twisting is assumed to consist of a primary part

sec°ndary・ne . qω・Thent the primary・hear f1。w

represented by e・iminating’ ユx“fr。m Eq・r(2…)

as follows:

                ”T t R2                  S   S  ~            ’qs = 3Tl・r S・q・

qt

qs

qs

and

due to

and a

can be

(2.17)

(3.24)

Page 66: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一59一

Combining Eqs. (3.19)} (3.21), and

pressi。nf。r qω.inthe f°「「n:

T k R 2 ω   8

qω=     Cdit P 2

   一S★)(q ω     ω

(3.39), we find the ex一

(3.25)

Theref。re, it f。11。w・fr。m Eqs・(3・24)and(3・25》七ha七

qt = qs + qω

2》

R一ρ★★

ωω

TC

 8

~q

2S2

Rρ★★

STTJ

2

…(qω一sω★)

●●●●●・・.●.●●●● (3●26)

where T・n is the“’ 唐?メEndary t・rsi。nal m。ment ab。u七the shea「        ω

center axis, which is defined by

Tω・= eqωrt★d8 (3.27)

     エnthe f・ll。winq, we will pr。ve that the shear f1°ws qb

due t。 stretching and bendings, determined fr。m Eq・(3・18》・

create no torsional moment about the shear center axis. To

thi8 end, we will derive fir8t the f。11。wing relati。nship

from Eq. (2.12)

            ’rt・=吉ρ・鍋+R。告q。磐 (3・28)

                    S

     2) After・the analogy of a way of derivinq the exp;es一瀧n{°「mω皇σlde鑑e;f鑑r了f・…’麟9:S9 9:te;:ali:a霊;:9-

garded                            .

Page 67: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一60一

工t is convenient for the derivation of the desired result’七〇

d.en°te the c。mp。nent・。f the・hear fl・w qb given by the

first, the second, and the third terms on the right side ◎f

Eq・(3・18)by qn’9y’and q。’re・pectively・Then’the

c°nt「ibuti・n fr。m the・hear fl・w qn t・the t・rsi・nal m。ment

can be evaluated using Eqs. (3.18) and (3.28》 a8 follow83

£qnr~…Kn ll21£,」+、《q・-Sn酬白

Sdn』t

-ひ

翻ゴぷ ~q  

@且

   .日

£  8 R 2  0 R  n K 十

................ (C)

The second integral on the right side of Eq. (c) vanishes on

account of the orthogonality relation given by the first one

of Eqs. (3.30).  The first integral on the right side of

Eq. (c) can be evaluated as follows. Performing an’integra-

tion by parts on the integral and tran8forming the resultt

                      のwith the definiti。n・f。r qn and Sn inmind’yield・ ’

             Kn l:21工,ゴ+、(い溜亭》ds

           =Kn l:21【gr(q・-Sn)]:+1

           -’Kn i:21』,j+、畿(qゴSn)ds ’

Page 68: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一61一

  1=  _  Rs

1’{芋込j《ρ2qn)}+Kn雑+

................ (d)

エt。h。uld be n。ted that the quantitie・qn are the fl°w type

。f quantitie・determined in・uch a way that the・algeb「aic su「n

。f the・linf1。w・・and…utf1・w・。f these quantitie・mu・t be

equa・t。。er。 at any juncti。n・・f the p・ate e・ement・・Acc°「d’

ing t。 thi・fact and the first。ne。f Eq・・(2・24)tit is

evident that the right・ide。C Eq・(d)vani・he・・The「ef°「e’

equati。n(c)become8 finally

             Lqnrt・d・=・ ………・・…・(e)

Proceeding in a 8imilar manne「’

in mind, we algo find 七hat

SF qyrt・ d・=・

with Eqs. (2.24) and (3.31》

Therefore, combining Eqs. (3.18),

de8ired re8ult a8 follows:

工q。r~d・=・

 ●●●・●・●.●●●・●●●● (f)

(e)tand (f),we ob七ain the

                   ●

SF qbrt・ d・=・● ● ■ ● ● ● ● ◆ ● ● ● ● . ・ ・

(3.29)

ξ◆輪s

Page 69: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

_62_

     3・3・3 一里     The ob]ect of this subsection is 七〇 show that there exist

the°「th°g°nality「elati°ns With a weight functi。n〈1/ρ)(ng/t)

between the Saint-Venant’・t・rsi。n functi。n q。 and a set。f

the shea「f1°w8 qn’qy’q。’and qω・τhe。エth。9。nali七y

relation8 are

and

工q。qn;きd・=0

0=8dn』t

1一ρ

 Z

q 8~q工

0=Sd生t

-一ρ  ω

q  8

~q工

0=8d生t

工一ρ

 yq S~q工

...。...........(3.30)

...............(3.31)

                     These orthogonality relations can be verified in the

following way. To begin with, we will take the orthogonality

relation (3.31)t as an example. As explained before t the com一

                     む

patibility c。nditi・n f。r the shear f1。w qωdeve1。ped in the.

k-th  cell of the cross section can be expre8sed in term8 0f

the quantities q;,, as f。・・。w・・

一q;,・一・Sk-、,k⊇d・+q;,kS, 1,・・ es d.

(3.32)

一q;,k+・Jrk,k二、緯d・=∫kき     n

St」1ds ω  t

Page 70: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一63一

Mu・tip・ying thr。ugh b。th・ides・f Eq・(3・32)by q&,k and・㎜一

ming up a similar expression thus obtained for each cell with

respect to all the cells, and then rearranging skillfully the

terms on the left side of the resulting equation, 1ead8 to

8dn』七

ωS

ーデ£ は

鰭1=Sdn』t

ーア ω~q 8~q工 (3.33》

At the same time, the right side of Eq. (3.33) can be again

transfomed into the following alternative form if attention

is paid to the positive directions of the flow type of quan-

titie・S、、“’namely’

     16:,」蛙Sω・きd・・レ・Sω・断きd・《3・34》

Combining Eq8. (3.33) and (3.34), we ob七ain、

、 Sl. q。(qべSω・)詩d・=・(3.35)

工t is evident frorn Eq. (3.19) that Eq. (3.35) is equivalent

to the orthogonality relation (3.31). Similarlyt the remain-

ing orthogonality relations (3.30) can be easily verifiedt if

the. same grneral pr。cedure a8 in the preceeding ca8e i8

followed.

     工n ApPendiX”工, for’the case of a two-celled 8tructure,

a8 8hown in Fig・ 3・3(a)t we will desqribe Eq8・ 《3・33) and

Page 71: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一64一

●・±’

δ

u◎O べ

(▽)

頃.’O

⌒3

 rl ●⇔3~cr

一.3 0~

N.一.3 0~

N.

N、

 N ■03~e

mNめN

unOの

⌒三

の.m.日』

O パ ●oco~cr

N.

p担@パ.切泣

一6 0~

⌒巴

 N ●o頃~cr

N.Φ O~

N.oo O~

」’

」LひN⑰N

Page 72: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一65一

(3・34)in full detail t。 aff・rd a better under・tanding。f the

proces8 0f deriving these equations.

             Secondar  Torsional Moment

      The Galerkint・averaging technique will be emp1。yed t。

de「ive the equati・n relating warping m。ment t・・ec。ndary t。r-

si°nal m・ment・Multiplying thr。ugh Eq.(3.12)by u、…and

integrating the re・u1七。ver the entire cr。ss-secti。nal area

yield8

       ・=鍵(σθtL+晶(ρ・qσ)+pPx}tU・ d・

         =㈱(σθt》ω・d・+f. }k(p・qσ)ω・d・+R。mω・

                                   ・●●.●●●●・●・・.・●・● (3●36)

whe「e the quantity mω★i・the externa1 warping m・ment per unit

length。f the・hear center axis, which i・defined by the                       -equation

               mω・=隠章xω・d・  (3.37)

Int「°ducing Eq・(3・11)int。 the first integra1。n the right side

°fEq・(3・36)and perf。rming the integrati。‥ith Eq。.(2.24)

and (3.9) in mind gives

             ∫F☆(σθt)ω・d8=三1★  《q》

Page 73: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一66一

An evaluation of the、second integral on the right side of Eq.

(3.36),however, requires performing an integration by part8

0n the integra1, which gives

工諸(ρ・ぼσ)ω・d・

(h)

=i【(ρ・qσ》子]:+1-1£,j+、P2qσ☆〔鈴d・

By rearranging the bracketed term・in Eq・(h)and recalling

that the・hear fl・ws qσare determined in・uch a way that at

any juncti。n・f the plate element・the t・tal。f the”inf1。wee

balances with that of “ヒhe  “outflowll,  we find that the first

summation on the right side of Eq. (h) vanishe8・  This can be

verified aS follows:

0=}ラ σ

q2

P(

 .-」

虹p

「Σ-」

1十 コ

虻ρ げ

 【 Σ可」

(i》

To evaluate the remaining integral on the right side of Eq. (h)t

it i・nece8sary t・derive the expre・・i・n f・r☆〔曽)f…

Eq. (2.12) as follows:

n』t

L♂~98

 R ● t r

ーア 8

⊇めρ

〔∂盲

(3.38)

Then, in七roducing Eq.

of Eq.(h》. give8

(3.38) into the integral on the right 8ide

Page 74: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一67一

       1』,j+、P2qσ酷d・

     =工ρ2qσ静d・

     =R。工qσrt・ d・-R。工ζ。qσ t eE d・

     =R・工qωrt・己+R。工qbr~d8-R。S, q。qσ;謬d8.

                                     … ............(j)

According to Eq. (3.27), the first integral on the right side

of Eq. (」) is nothing else but the secondary torsional moment

Tω★@ about the shear center axis.  The second and third

integrals, on the other hand, vanish on account of Eq. (3.29)

and Eqs. (3.17), (3.30). and (3.31), respectively.  Thu8,

combining Eq8・ (h), (i), and (j) yield8

            工会(;・qσ)d・.=-R。Tω・ (k)

Finally, by substituting Eqs. (g) and (k) into Eq.

°btain the dg・ired equati。n in the f・11・wing f。rm・

             姐ω★-R.T .+Rm.=。

                       8 ω                                s ω              dθ

                 ,鮎-  、

(3.36), we ・

(3.39)

Page 75: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一68一

     3.3.5

     There

                  

constエtut工ve

moment).

use of

           still remains a serious problem in establishing the

             equation for warping torque (secondary torsional

          The problem encountered can be approached by making

       the principle of complementary virtual work.

     Let us denote the total internal and external complemen-

tary virtual w。rk byδUi★andδWe★’respectively・Then’

the mathematical statement of the principle of complementary

virtual work  with the conditions of constraint is given in

the form:

δ」★ ≡ δu.★ +    _   工

 0 = θ d}

 .-J r .-」 λ  17V乙=  .-」

{0~ δ 十 ★  e (◎的

(3.40)

where

   ◎=。pening arigle・f curved girder bridge,

λjt・=Lagrange multipliers’

「j’・=c。nditi・n・。f equilibrium f。r・tress

       resultantS and couples.

b

A. Total 工nternal Com lementar  Virtual Work

     Pr・vided that the effect・。f the shear f1・w・qb due

stretching and bendings are negligible, the total internal

complementary virtual work i8 given by the equation

to

δUi∵1e工(・θδσθ+Ytミδqt)ρt dsdθ

Page 76: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一69 一

     =∫eぽσθδσθlt d・dθ+∫°工ξ‡qtδqtρd・de

                                     ・●●●.●・●●・・●●●. (3●41)

where the quantitゾYt i・the・hearing strain c。rresp。nding

t°the shear f1。w qt・晒en the values。fσθfr。m Eq・(3・11)

and of its varia七ion are introduced into the first integral on

the riσht side of Eq. (3.4工) and the integration is carried

out over the entire cross-sectional area by t』iking the first

two of Eq. (2.23) and Eq. (2.24) into acCount, the integral

can be written a8

     ∫θ工’ξσθδσθρt・dsdθ

=R・BδNxdθ+R・∫撚δMydθ

+R・秩c捲δM・dθ+R・ぽきδM♂dθ

                                      …・…・.……(1)

Substituting the value・・f qt fr。m Eq・(3・26)and。f it・                     s

variation into the second integral on the right side of

Eq. (3.41) and noting the orthogohality condition (3.35》, we

.find

     J6°瑳‡qtδqtρd・dθ

Page 77: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

                                                 ■

                         -70-

=㌶゜Gilきδ㌔蒔∫F断㍉・㍗

+㌶゜Gil:δTぽdp lゴエ(qω一S♂)・“1 egds

                                   ...●........... (m)

Here, we introduce the notation

    ピ=R。・iT≡,£(qω一Sω・)・告きd・ (3・42》

                ω

where the quan七ity v★is a dimen・i・nless cr・ss-srcti。nal

constant.  Then, by virtue of Eqs. (2.19) and (3.42》, we can

rewrite Eq. (m) as follows 3

     ∫聴‡qtδqtp d・dθ

=R・」。°Gi;:δTゴdθ.+R・J。°志Gil:δT♂dθ

                                    .......、.......(n)

Fina・・y,・ub・tituting Eq・.(m)apdωint。 Eq.(三・4・)gives

6U“=

Page 78: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一71一

+R。f

+R。r,

E (JJ s y Z

 Tst

GJ ★  8 s T

十θd 2δ

MJ十」

  一J 2)     yz

δTtde +◎

~R8

R。∫°EMI≒δMω・dθ

       8 ω

  1  Tω★

  ▽古G」tδTω

      s T

●  ●      ●    ●    ●    ●

★de

・● . ● ・ ●●・● (3●43)

B.

     By definition, we obtain the formula for the

ternal complementary virtual work in the form:

     δWe・ =一£(liδσe+Vδ・ρθ+Wδ・θζ)t d・

               e

           一乱(tiδPx+VδPy+櫛。)ρd・dθ

total ex一

《3.44)

Whe「e the sub・cript Fe・n the integral indicates that the

integration is to be caエried out over the entire cross-

secti。nal areas at the b。th end・。f the curved girder bridge,

and

          δpx’δPy’δP。=variati・n・。f the x’y’and

                           z  components of the distributed              ■

                           external loads acting on 七he mid-

                           dle surface of the plate element8.

    Here, we・will write down the forrnulae for thd stress

                                       ●

Page 79: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一72一

resultantsΩy★and Qz★and st「ess c°uple

by the shearing stress components  T                                       and                                   ρθ

They are defined by the equations

     Qy・ =・ρθt d・ Q。・ =JTF ・eζt d・

T ★ X

SF

=L(・eζY一・Pθを)td・

Txk’  produced

Teζ・《助・・ ’3・1)・・

《3.45)

Then, substituting Eq. (3.2) into 七he fir8t integral in

Eq. (3.44) and u8ing the notations defined in Eqs. (3.7) and

(3.45》 yields

                 ノ

      上(ttδσe+予δ・ρθ+wδ・θζ)td・

         e

     =lu・δNx・】1+【v・δQy・]1+【w・δQ。・】?  (・》

     +【φx・δTx・]?亀+【φy・δMy・]1+1φ。・δM。・]i-{X・δMω・]1

                     -

Substituting Eqs. (3.2》 into the second integral in Eq. (3.44)

and performing the integration over the entire cros8-8ec七iona1

       area glves

       ∫°JTF (u’6p.+予δPy + W6P,)pd・de

                 .41

     =1°(U・δPx・+v・δPy・+w・δP2梱。dθ (P》

                                                        ●

Page 80: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一.73一

+JT。θ (φx・δmx・+W→φ。・δm。・)R。dθ

一fx・δmω・R。dθ

where

シδPx★’δPy★’

δmx★’δ「ny★t

δpz“=variati・ns・f the x’y’and z

      components of the external loads per

      unit length of the shear center axis,

      respectively,

δm2★=variati。n・・f the x’y’and・

      components of the external torques

      per unit length of the shear cen七er

      axis, respectively,

δm♂=variati・n・f the external warping

      moment per uni七 1ength of the shear

      center axi8.

They are defined by thδequations:

δPx・ m是δ6xd・

δP。・= 雫吃p再

δPy・= 焜ツey d・

●   ●   ●   ●   ●   ●   ●   ●   ●   ●   ●   ●   ●   ●《3.46)

t心ひ・’

and

Page 81: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

                      一74一

      δmx・=居(嘩一δeyi)d・

      δmy・ =L k 6pxz d・’δm。・=L量δ9x夕d・

                             .・●●・・.●・●●●●●●● (3●47)

and

      δmω・=隠δうxω・d・   (3・48)

We°btain finally the expressi・n f・rδWet by intr。ducing

Eqs. (o) and (p) into Eq. (3.44) as follows:

                                                   、     δWe・ =【u・δNx・】1+【v・δΩy・】1+【w・δQ。]1

         +【φx・δTx・11+[φy・δMy・1?+【φ。・δM。・]:一[X・δMω・]:

         -r。 (u・δPx・+v・δPy・+w・δP。・)R。dθ

                  ⇔

         一£(φx・δmx・+φy・δMy・+φ。・δ・・z・)R。dθ

         +£X・δmω・R。dθ    ’

                      ㎡

 ・                                ●●・◆◆…  .●●●●・竺● (3●49)

Page 82: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一75一

     The structura・analy・i・with the aid・f the principle°f

c。mp・e,。entary vi・tua・w・rk intr・duce・’in gene「a1’the st「ess

resu、thnt。 and c。up・e。 a・the argument functi。n・【・ee Eq・・

(3.43)and(3.49)】. H・wever, n・t a・・the functi・ns a「e inde-

pendent because七he stress resu・tant・and c・uple・a「e「elated

with。ne an・ther thr・ugh thg c。nditi・n・。f equ’1’b「’um・As’s

we、、 kn。wn, the Laqrangian mu・tip・ier meth・d make・it p°ssible

七。treat七he。e。tatica・quantities as the independen七a「gument

functi。n。 if the c・nditi。n・・f equi・ibrium are taken as the

auxiliary conditions・

     Referring n。w t・Fig.3.4, we find the c。nditi・ns°f

equi、ibrium f・r the stress resu・tant・and c・uples f「°m七he

ge・metrical c。n・iderati・n・as f°11°ws3

     (、)Fr。m theエequirement。f equi・ibrium。f f。rces in the

                                                         directi。n。。f the SC, y, and 2 axe・’re・pectively’エt

follows that                                           ‘

                     -            dN ★

       r・・dl+°y★+R・Px★字゜

0=yPS

R十 XN一

一=

2r

0● =

 Z P S R 十★

 ZφQ

d

θd=一

3r

(3.50)

(2)F,bm the requi・ement・f equilibrium・f m・ments ab°ut

Page 83: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一76一

“×

こN

z?辿

・ ×\区

“ト▽◆    “←

   令拓   σ

ざ〆

  ◇ 弔函 Σ /

1>、

令Σ

Page 84: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

                          _77-

・ヒhe  X,  y,  and  Z  axe8,  re8pec七ivelyt it follow8 that

            dT ★

       「4三d;+Myt+R・mxt=°

            dM ft

       r5・“t r Tx★ -R・Q・“+R・my“ ’°  《3°51)

            dM ft

       「6≡d;+R・Qy★+R・「nz“ ’°

     (3) One more auxiliary condition i8 given by Eq・ (3・39)’

namely,

            dM★

       「7≡dl-R・Tω★+R・m♂=°   (3°52》

Then’integrating rj(j=・’2’…’7)multipli”’] byλ」

(j=1,2,_,7)withrespectt。 e fr・m O t・Oand

taking the first variati。ns・f the resulting integrals yields

          ! ’“

       δS,°λ・r・dθ一     ・

     =【λiδNx・i?+Ji°{-ii’δNx・+λ・δQy・+λ・R・δPx・}dθ

       δfλ2r2dθ ’

’=yλ2δgy・】1+£°{-ii2δQy・一λ2δNx・+λ2R・δPy・}dθ

Page 85: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

  、

   δ£     λrde     33

  =【λ3δQ。・]?+∫{

and

   δf     λ4r4 dθ

  =【λ4δix・]i+

   δ『     λ5r5 dθ

  = [λsδMy・11+

   δf     λ6r6 dθ

  =【λ、δM。・】i+

and

   _78-

1-ii3δQ。・+λ3R・δP・・}dθ

        ●●.●・.●..●..●.. (3●53)

C{一?14δTx・+λ4δMy・+λ4R・δmxt}dθ

fl{-ii5δMy・一λ5δTx・一λ5R・δQ・ ft

           +λ5R8δmy・}dθ

 一

£{-li6δM・・+λ6R・δQy・+λ6R・δmz★}dθ

   、            ●●.●..●.●.●.●● (3●54).

Page 86: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

                           一79-

’δwλ7r7d・’

     =【Wl+£°{÷Mω・一λ7R、δT、、・+λ7R。δmω・}dθ

                                      ●.●●●●●●..●●・● (3●55)

     工t is clear from the calculus of variation thaヒ t.he last

term on the right 8ide of Eq.(3.40)is equal to the su㎜ation

of Eqs. (3.53), (3.54), and (3.55).

     D. Final Result

     Substitutin望 Eqs. (3.43), (3.49), (3.53), (3.54), and

(3・55》int・Eq・(3・40)and then rearranging the re・ulting eg・a・・

tion with the followinq relationships in mind, namely,

         Nx”=Nx  Tx★=Tst+Tω★

         Qy★=Qy My“ = Mジ・sNx   (3・56)

         °z★=Q。  Mz★=M。+y。Nx

                      ●

we°bta・i ”t finally’the expressi・n f・rδ」★in the f・…wi・g,

form:

°=δ」★=【(λビ・sλ5+y・λ6-u★+・、φy★-y。φ。・)δN.il

       +【(λ2-v★)δQy”19+【(λ3-w・)δQ。・】:   、

       ・[(入一φ。・)δT,・]?・【(入4一φx・)6Tω・]1

Page 87: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

         一80-

                            ■+【(λ5一φy・)δMyil+【(λ6一φ。・)δM。]1.

+【(λ7+x・)δMω・]1 ’

+∫1瞳一ii1+㌔ii5-Y・?16一λ2-ZsX4}δNx de・

+Jl{-kl2+λ・+R・λ6}δQ/dθ

    、+£{÷R・λ5}δQ・・ de

+ぽ蹴一ii6}δ㌧dθ

・£{己÷λ5}δT・“・ de

+C{』Gllきil4-□7}δTw“ dθ

Page 88: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一81一

+R。r,(λ、-u・」6Px・ de+

+R。閭ノ3一ゾ)δP。・dθ+

+R。r, (λ5 ’一 ¢y・)δmy・ de+

+R.r。(λ7

R。£(λ2-vt》δPy・・ de

R。『(λ4一φx・)δmx・・ de

R。∫(λ6一φ。・)δm。・-de

                 +X★)δmω★dθ

               ’                     ・●.●●...・...●● (3●57)

     Since一δJ★vanエ・he・f・r arbitrary variati°nsδNxtδQy“・

・…’δM。tδMω★’δPx★’δPy★’…・’δm。★’δmω★’each

term within braces and parentheses in Eq. (3.57) must vanish

independently. Therefore e the following system of relations

i8 0btained:

ta

the boundaries  θ = O  and  θ = ◎,

     λ1-・sλ5-+y。λ6-uk+Zsφy★-y。φz★=

     λ2-v★=0 λ3-w★=0

     λ4一φx★=0 λ5一φy★=0

     λボφ。”=0 入7+X★ 0

                              °竺゜’°’     °

0

.. . (3.t] 8)

along the girder axis,

Page 89: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

ユa

一82一

R。ENF二ii1+・8 ii5-y。 ii6三λ2-・8λ4=・

  SO

 dλ一dθ2 kλ・+R8λ6=・

dλ3

  +Rsλ5=Ode

B.撚一ii5+λ4 ”・

   syz        yz

-R-一一一dλ6=。  OE (JJ  - 」  2)  dθ

        yz   syZ

㌔壽:÷λ5=・

土R。GTF。-ii4一λ5-R。λ7 =・

     ET

   M★ dλ R ω 一 7=O  SE。cω★de.

 λ1-u★=0

・λ3e--w“=o

.●●.●●◆・●..... (3●59)

λ2-vt=0

λ4 一 φx★ = 0

Page 90: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一83一

             λ5一φy★=O λ6一φ。“ =0

             λ7+xt=0

                             ’       ●●●.・●・.…  ●●● 《3●60)

     Finally’the c・n・titutive equati・n f・r Tω★i・f・u「id by

intr。ducing the value・。fλ4 andλ5 fr・m Eq・・(3・60)int。

the seventh one of Eqs. (3.59》 and taking the first two of

Eqs. (2.4) into account.  The result is a8 follows:

T、。ぺ = V・G。JT・o≒〔il4+λ5〕+λ7}

=v浴o記〔器一ltg grt”〕-x・}

●.●.・●●・・●・●●. (3・61)

oエ, by virtue of the second one of Eqs. (2・5),

τω★=v★G。JT“ (ψxtロX“) (3.62)

Similarly, the values δf Laqrange multipliers thus determined

are introduced into the remaining ones of Eqs. (3.59), we

find, at a maセter of course, that the seで∩nd and ヒh▲rd one8

・fEq・・(3・59)a・e⊥denヒically・ati・fled and th・・ell・aining

ones are in aqreement with the re8ults obtained eariler.

Page 91: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一84 一

     3.3.6  Formulation of

     エnthis subsection, we will         ■

analysis・f a curved b・x girder bridge

shown in Fig. 3.5, 10aded normal

curvature. From the point of

the analytical model considered hereエn

     The supPorts are skch

ments, and twist, are prevented at b。th ends

Displacement in the l・ngitudinal directi°n

end, as are the rotatエons

vertical  z-axis  at both ends.

int・tv・c。mp・nents p。 and

nent・px’Py’m凵fm・’

     Then, the analysis may be

              and Q  andSUltan七s  N           x      y

along the girder axis under

conditions. Furthermore t

ity・f・btaining an exact descripti。n・f

by assuming that the discrepancy between

 the centroid can be disregarded,

comparison with the radius

 assumption may be admissib

 girder bridges in actual use,

thera七i・・f R。 t・Rs

                      サ we will use the notation

curvature R。 and Rs・

Practical Governin  E uatlons       ・

      restrict our study to the

            supPorted in 七he manne「

      to the plane of its initial

   view of the design of the bridges,

          ’  is important practically・

 七hat radial and transverse displace-

                  of the.bridqe.

             ’  is permitted at one

abou“ヒ the horizontal  y-axis  and

       The loads can be decomposed

    mx’that i・’the°the「c°’np°-

and mωvanish・  ’     simplified since no stress「e-

・tress c・uple M。 are deve1°ped

  these boundary and loading

we will avoid the unnecessary complex-

                                                          

               the governlng equatエons

               the shear center and

       aS i七iS a Small qUantity in

 of curvature of a girder axis.  This

〔ein the case of the curved box

    however. Therefore, we may pu七

as unity. F。r七he・ake。f simplici七y’

Rhereaf七er ii”place。f七he radii。f

Page 92: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一85 _

\  \   \  \\ 、\束\

\°X

VN〈

Fig. 3.5 H°riz・ntally Curved B・x Girder Bridge

with Simply Supported Ends

Page 93: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一86 一

     With these assumptions, we will now derive the differen-

tial equations for determining the statical and kinematical         ■

quantities in the following way・

     By eliminating Qz★and Tx“f・・m th・last。ne・f Eqs・

(3.50) and the first two of Eqs. (3.51) and making use of the

rel・ti・n・hip My★=MジzsNx(Nx=°)’we get the diffe「en-

tial equati・n 9°ve「ning My as f°11°ws:

             d2M

             dθ、y+My=-R(Rp・+mx★)  (3・63)

     The second of Eqs. (3.56) and Eqs. (2.17) and (3.62) are

・・mbined t・・btain the expressi・n f。rψx★in the f。rml

                                                   ’

                                    T ★

             ψx・=K・・X・+(・-K★2)x   (q)                                   GsJT★

where                         「)★

                  K★2 =                            (3●64)

                        1 + v★

工n a special case where the cross-sectional property  K★  is

permitted to approach unity (which is the same as the factor

v吉is permitted t。 apPr・ach infinity)’we find fr・m Eq・(q)

that the intensity of warping, X★, coincides with the rate

・ftwi・t・f the shear center axi・tψx★・C・nsequently’the

conventional torsional bending theories may be regarded as a

special case of the theory developed by the author.

     Then’・pb・tituting Eq・(q)back int・Eq・(3・62)gives・

Page 94: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

                          一87-

               Tω★=K・★ 2(Tx★-G。JT★X★)   (r)

The last one of Eqs. (3.8) and Eq. (3.39) are combined 七〇 〇btain

an alternative expres6ion for  Tω★  in the form3

                Tω・=-E。Cω声i謬   (・)

Elimin№狽奄獅〟@Tω★f「°m Eqs・(「)and(s)yields

          E。Cω・詰i謬一K・・G。JT・X・=一…Tx・ (t)

     We can eliminate X★and Tx★fr・m the first deriva七ive

of Eq. (t) with respect to  θ  by the use of the last one of

Eqs. (3.8), the first of Eqs. (3.51), and the fourth of Eqs.

(3.56) to obtain the governinq differential equation for  Mto *.

The result is as follows;

       d2M★

          ω 一K・2P・2M・=-K・2R(M+Rm                                          ★)        (3・65)                                   y    x        dθ2        ω

where the quantity  μ★  is the dimensionless cross-sectional

property defined by the equation

                        GJ ★

                P・・=R・sT        (3.66)                        EC ★                         S ω

     Eliminating  w★  from the second and third of Eqs. (2.5)

Page 95: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一88一

leads to the relation

dψx★

      一ψ★dθ    y

=1〔2;φ+φ〕(u)

     工n a similar way, we can eliminate

first derivative of Eq. (q) with respect

in the relation:

X★ and T★          X

to  θ・.  This

 from the

results

     dψx★=(..・.、)’(M+Rm *)一。.・RM.

      dθ   G。JT“y X  E。Cω・ω

                                    ◆.............. (V)

     Then, substituting the second of Eqs. (3.8) and Eq. (v)                                                    ’

into Eq. (u) yields the governinq differential equation for

φ  as follows:

+φ

  1

GJ。{(K★2一β一Z)Rtqy

 s T

一K★2 ハ★2Mω★+(K★2-1)R2mx★}

●●.....●●..●●. (3●67)

where

β=呈 J・」T★

    E JJ -J  2     s yz   yz

(3.68)

    Combining the third of Eqs. (2.5) and the second of Eqs・

(3・8) yields the differential equation for determining  w★:

Page 96: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一89 一

 ZJ yJ( SE口=

R2J   z

     2)- J   yz

M -Rφ y

(3.69)

     For the convenience of further studies, we will analyse

the aforementioned curved box girder bridge under the loading

                                                  Ncondi七ions in which external concentrated torque  T  and force

P  act at some angle  θ = Φ, and external bending and warping

moments act at bo七h ends of the bridge.  Then, the Staticai .

and kinematical boundary conditions at both ends are given as

folloWs:

My=My 1’

φ=0,

My=M凾Q’

φニ0,

M、、 *=Mω1★’

w★ = O

M、、 *=Mω2★’

w★ = 0

at θ = 0

at θ =θ

(3.70)

where  θ  is the opening angle of the curved girder bridge.

     W・ can determine My’Mω★’φ’and w★with°ut diffi-

culty by solving Eqs. (3.63), (3.65), (3・67)’ and (3・69)’

since the right hand sides of these differential equatlons

bec。me kn・wn quantities when the equati。ns are s。1ved in七his

sequence・S’垂モ?ユx★’・determ’ned f「°m the sec°ng°f Eqs°

(2.5) once  φ  and w★ are solved’we can find  Ts★  f「om

Eq・(2・17)・Fu・therm・re’Tω★can be determined by substエー

tuting Mω★int。 Eq・(3・39)’and X★i・dete「mined f「°m

Eq・(3・62)by u・ingψx★and Tω★thu・。btained・

Page 97: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一90一

Part 2. Modified・Torsional Bending Theor  of Second T  e

3.4

     In his works, the method of analysis was presented only

in七he case。f a single-celled・r separate twin-celled curved

gi。der bridge with a vertica・。xi。。f。ymmetry3).エn thiS

section, however, the outline of the method of analysis for the

former case will be presented.

     In formulating the governing equations, he expressed none

of the required quanti七ies riqorously in terms of the cylin-  、

drical coordinates and especially substituted the geometrical

quantities of the straight qirder bridge for those of the

curved girder bridge.                           ,

3.4.1

After

Secondary Normal Stress

the analogy of S. U. Benscoter, R. Heilig repre一

seneted “ヒhe warping displacement

form

                 u=-di(s)又(θ)

     For

function

equation

Uof a cross section in the

                   (3.71)

a single-celled cross section, Saint ・・Venant ’ s warping

 ◎  with respect to the shear center is given by the

     3) As for the special case where the aforementioned crosssections are 七ilted, he proposed a way to modify the formulaefor the crosS-sectional constants [20].

Page 98: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一91一

ぱrd・t9/,.s・s

三dst

(3.72)

where  r  is the perpendicular distance from the shear center

to the tangent drawn at any point on the contour of the cross

section and  Ω  is the doubled area enclosed by the middle

line of the cross section.  工t is convenienqヒ for the fur七her

analysis to note that  Ω  can be written as

Ω一轤窒пE

     Now, the secondary norrnal stress

against warping is given by using Eq・

(3.73)

                  σ ’ due to restraエnt ω             ノ(3.71) as follows3

0亟dθ1一R

E 一

旦aθ1一R

E=

 ω

σ (3.74)

U・ing Eq・(3・74)’the warping m。ment MO can be written

as

M吐σω・td・         ld又= - EC      ORdθ

(3.75)

where

%=£・2td・ (3.76)

Finally, combining Eqs. (3.74) and (3.75) gives

Page 99: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一92 一

σ一坐o ω     Cdi

(3.77)

     3.4.2  Shear Flows Determined by Two Distinct Wa s

     The f。rmula f・r the shear fl。w qt due七・restrained t。r-

sion can be obtained in two distinct ways, i.e., (a) by using

an equilibrium condition, and (b) by using a strain-displace-

ment relation.  In the following, the superscrip七s (と) and (b)

will be attached to the shear flows found by ‡二hese means to

distinquish one from another.

     One method is as follows: By substituting Eq. (3.77) into

the following equation of the equilibrium

                                                   ’

            土∂σω+∂qt=。    (3.78)

            Ree     as

and・。lvi・9 the ab。ve equati・n f・r qt’

qEa)=q・-lil°2

we find

(3.79)

where

S・=r,S・ td・

The in七egration constant

q・i・eme・t thr七the t。tal

(3.80)

q。i・t。 b・determined by the re-

torsional moment  T~  abou七 the                  X

Page 100: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

                          一93-

。hear center axis sh・叫d b・pr・duced by the shear f・。w・qEa),

namely,         o

            Tx = jl. qEa)r d・

                                                    (3.81)

               =q・Srds-≒lil°工s・r d・

fr・m which, in view。f Eq.(3.73),the c・n・tant q。’ 堰Ef・und

in the form:

             q・÷ci譜工s・rd・ (3・82)

                                                   ’

     Finally, substituting Eq. (3.82) into Eq. (3.79) gives

       qEa)=芸一≒㍑〔S・一瓠Sバd・〕(3・83)

     Ah。ther meth。d is as f。ll。w。, Acc。rding t・the pr・per

strain-displacement relation, the following equation holds

             玉=kS+rψSC     (3.84)             Gt

whereψ鈍i・the rate・f change・f twi・t・f the shea「cente「

axi・・By・gb・tituting Eq・(3・71)int・Eq・(3・84)and rnaking

u・e・fEq・(3・72)’we find an・ther expressi。n f・r qt in the

Page 101: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一94一

form:

 (b)

qt =Go(th sc

  N-X)rt+ ∫i∋ (3.85)

3.4.3F皿damental E uati・n・in T・rsi・nal Bendin

Solving Eq. (3.84) for  U  gives

 S 品~転x

 ● S d1宅

 与

~16 十  〇 U = U

(3.86)

where U repre・ent・the warping at・-0・By perf・rming七he        O

indicated integrati・n ar。und the entire c1・・ed c。nt・ur。f’the’

cr。ss secti。n, we get the f・11・wing c・ndi七i・n。f c。mpatibility:

0=Ω

 ~X

ψ

 一 S

dl宅

゜t

 q~1百 (3.87)

     τhe・hear f・。w q(b)defined in Eq・(3・85)・ati・fie・七his

。。nditi。n identicany.・n the。ther hand, q(a)defined in

Eq.(3.83)・a七i・fies the f。11。wing c。nditi。n。f equilib「iu「n :

丁又=轤eqtrd・ (3.88)

Theref。re, it seems reas。nab・e t。 require th・t qEa)and qEb)

                                                       。h。uld sati。fy the・ther c。nditi。n in each。the「’七hat ls’

Page 102: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一95一

9∫qEa)i ds一ψNΩ =・ (3.89)

and

 S

d rラb(t q£

=~XT (3.90)

Sub・tituting Eq.(3.83)int・Eq・(3・89)resu.1ts in the f・11。w-

ing equatiρn after s・me a・qebraic maniplati°nst na「nely’

EC畠長i溌一 GJ魯ψ又=-Tsc (3.91)

where

J?=

Ω2

∫}d・

(3.92)

Similarlyt it follows from Eq. (3.90) that

ψヌ=fi 2文+       T~

(1-62)x       GJf

(3.93)

where

6・=、-i巳

        Je

(3.94)

and

Je =SF ’r2t d・(3.95)

Page 103: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一96一

     Thent we

to obtain the         ■

can eliminate  ψ5… from Eqs. (3.9i) and (3.93)

differential equation governing  ※  in the forrn :

E%土i謬一6・GJ6X = 一・ 6・TSC(3.96)

Finally, by the same means as in the case of deriving Eq. (3.64),

we can find the differential equation gove「nin9

(3・74) and (3.96).  The result is as follows:

             i;¥Lt・・fi・fi・Ma = fi・R ii云

where

        GJ魯

ρ2=R2

Ma, fr。m Eqs・

    (3.97)

(3.98)

ECO

Page 104: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一97一

3.5  Generalization of the Theor [22】

                                                      3.5,1Derivati・n。f Fir・t Fundamenta1 E uatエ゜n

     The。hearinら。t。ain y・ccuring in the middle su「faces

。f the p、ate e・emen七・can be expressed in terrn・。f the dis-

placement c・mp。nent』as f・1・・w・【3’7】3

                  Y=袈+㌔rt・ψx・   (3・99)

                           P

A。bef。。e, it i。 assumed that the warping di・placement U may

be。epre。ented by Eq.(3.・). Then’ by・ub・tituting Eq・(3・1》

and making u。e。f Eq.(3.38),we can rewrite Eq・(3・99)as

             Y=1…2q。瓢X・+㌣r~(thx・-X★)’(3・1°°)

                                                                       The shear f1。w q develqped in the cr。ss sec七工゜nエs「e-

1ated t。 the shearing・train Y by the f。rmula                                                            、

                   q÷G。Yt     (3・’°1)

                        9

      丁竺ede。ired equati。n re。u・t・f・・m the・ub・tituti。n・f

Eq.(3.…),t。gether with Eq・(3・…)’int・七he f°「「nu’a f°「

                                                            the t。ta、 t。rsi・na・m・ment Tx・ab。ut the shea「cente「axエs°

U。ing the n。tati・n・defined in Eq・・(2・・8)and(2・2°)’「espec-

tively’there Fe・ults

        Tx・ = SF qrt・ d・=G・JT“X“+G・J♂(ψx★-X★)

          ’           .._...._.(3・102)

Page 105: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一98 一

    He。e,、e七u。 intr・duce the n・tati・n nt def’ned by七he

      equatエon.t

                         JT“       (3.103)                n’2 .= 1-」c・

We find that the quantity n・is a rea・nu心er because°f the

inequa、ity(2.22)and a dimen・i・n・ess cr・ss-sect’°nal c°nstan;’

     Then, with thi。 n・tati・n, Eq・(3…2)can be aga’n w「’t七en

t。get the requi・ed firs七equati・n as f°11°ws;

                       T t

ψx・ = n・2X“+(・-n”2)(3.104)

The equati。n(3.・・4)i・equiva・ent t・Eq・(3・93)afid c°「「e”’

。p.nd。 t。 Eq.(q).エt・h・u・d be n・ted that a・the c°nstant n“

apPr.ache。 unity in the・imit the quantity X★c°’nc’des w’th

                                                  the rate。f twi・七・fψx・・f the ・hea「 cente「 axzs’

     3.5.2Derivati・n・f Sec・nd Fundament三1 E ua七工゜n

    ,r。。btain the。ec・nd fundamenta・ equati・n re’at’ng七he

t。ta、七。r。i。na・m。ment Tx・t・the quantit’esψx★and X F’

Ga、erkin’。 meth。d wi・・be apP・ied t・the d’ffe「ent’al equatエ゜n

.f equi、ib。ium in the・・ngitudina・ directi・n f・r an’nf’n’ 撃?戟f-

ma、 P、ate e、ement, expressed in term・・f k’nemat’cal quantエtles’

     The desi。ed equi・ibrium equati・n i・mu・tip・’ed byω★and

integrated。ver the entire cr・ss-secti・na・ area t°°bta’n the

               ■following equatlon:

Page 106: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

                          一99-

・=ン〔ξ・☆(・θtl+ξ諸(ρ2Yt)+pP・〕t・* ds

      =ξエ☆(・eV)W・ ds+ξ工詰(P2Yt)一+Rsrnt・“

                                     ●.●・●...●●●・・● (3・105)

By。ub・tituting Eq.(3.5)int。 the fir・t integral On the right

。ide。f Eq.(3.105),taking the。rth。9・nality relati・n・given

by Eq・.(2.23)and(2.24),and u・ing the n。tati・n Cω★de-

fined in Eq.(3.9),we can evaluate the inteqral as f。11°ws:

             瓢☆(・θt)c・・ d・:一記E・C♂謀”

              e

                                      ..............(w)

An evaluation of the second integral on the right side of Eq.

(3.105), however, requires performinq an integration by parrヒs

。n the integra1. With Eq.(3.101)in mind’this result・in

the relation

籔誌(ρ2Yt)・’・’・=i・」「,,ゴ+・鰐(P2q)dS,

             =i【(ρ・q》芋】:+1-1篭工,」+、峠(芋)d・

                                      ..........ダ...(x》

Page 107: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

_100 _

For the same reason as stated bef。re, the first summation on

the right 亭ide of the above equation vanishes 【see Eq. (i)].

Therefore, substituting Eqs. (3.38) and (3.100) into the re-

maining integral and making use of the notations defined in

Eqs. (2.18) through (2.20) gives

き工誌{ρ・Yt)ω・d・

   9

=R。G。」T★(ψx★-X★)+R。G。JT’Xt (y)

           一R。G。」♂(ψx★-X★)-R。G。」T★X’

                                                    ぐ

By virtue of Eq. (3.102), the above equation can be written

in the concise fo rrn :

       瓠詰(ρ・Yt)U・ ds = R。G。JT・ψx・-R。Tx・

        9

                                    ・・●・.・・●●●.●…  ● (Z)

Substituting Eqs. (w) and (z) into Eq. (3.105》 and rearranging

the resulting expression yields

 ωm十★ X思一=★ Xψ

TJ SG一幸★ ωC SE (3.106)

     This equation is the required second equation and is very

similar in form to Eq. (3.91)ewith the exception of the term

m ★・ ω            ’

Page 108: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一101一

3.5.3

Let us   ■

Governin .E uations and Solution Method

            consider the curved box girder bridge under the same

loading and boundary conditions as those in the prceeding case.

As bef・re’the assumpti。n R。・R。≡Rwill be made in de-

riving the governing equations.

     We find, as a matter of course, that the governing differ-

ential equati°n f・r My i・identica・with Eq・(3・63)・

     Substituting Eq・(3・104》f。rψx★in Eq・(3・106)and mak一ロ

ェng use of the notation defined in Eq. (3.103), we find

E。Cω・ y謬一η・・G。JT・X・ = 一 n・・Tx・(3.107)

     工f the same procedure as in the case of derivirvg Eq. (3.65)

is followed’ the governing differential equation for  M ★  can                                                      ω

be obtained from Eq. (3.107) as follows:

d2M tde三一n’2P’2M・・★ = 一 n★2R(My+RMx・)

(3.108)

     工f Eq. (3.104) is employed instead of Eq. (q), the same

procedure as in the proceeding case can be followed to find the

governing differential equations for  φ and w★. They are

obtained by replacing  Kt  by  nt  in Eqs. (3.67) and (3.69),

respectively. ・For the same reason as stated before, the quan-

tites My’M、、★ ・φ’and w’can be determined by・・1ving

these equati。n・u’獅р?秩@the b。undary c。nditi。ns given by’

Eqs. (3.70).

Page 109: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一102一

Hence, it is clear that the solutions for these quantities

considered in this section can be obtained by replacing  K★

by  n t  in the corresponding expressions in Appendix 工工.

     °nceφand w「a「e S°1vedtψx★are determined fr。m

the second of Eqs. (2.5).                    ’

     The meth°d f・r determining X★and Tx★i・a・f・11。w・・

Substituting Eq・(3・1°2)f・r Tx★in Eq・(3・・06》(mω・=0),

we@obtain the governing differential equation for  ×★  in the

form:

                謀一λ・・U・・X・ ・

where            ・・

                             n.★ 2

                      λ★2=

                           1-n★2

Sinceψx★i・already kn・wnt Eq・(3.109)

the boundary conditions

一λ★2μ’2ψX★

(3.109)

(3.110)

can be solved under

                …1★=REMI’≡ at e=・

                         S ω

                                                     (3・llz)

                謀一REMI2≡ atθ=・

                         S ω

which c・rresp・nd t・the fact that the warping m・ment M・can                                                      ω

be evaluated from the last one of Eqs. (3.8).

                                                               、     The t°tal t。r8i。nal m・ment Txt are then evaluated fr。m

Eq・(3・104)uSingψx★and X・ft・

Page 110: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一103一

3.5.4  Some Remarks on Formula for Shear Flow

     According to Eq. (3.100), it seems reasonable

         タ

oretical point of view to evaluate the shear flows

formula

       q= GS{li?/:2 qsx“+㌣≒辿一x・)}

from a the-

q by the

(3.112)

                                                             工n factt we can merely calculate the shear flows due to torsion

by using this formula, as can be seen from the last one of

                                                     ■              Eqs. (3.8) and Eqs. (3.102) and (3.106).  工t appears lnevx-一   ’

table tha七the shear fl・w・qb due t・n・rmal f。rce and bending

moments should be determined from the condition of equilibrium

in the 1。ngitudinal directi・n,・ince the・hearing de’f醐ati。n・

corresponding to these shear flows are not considered in the

the・ry・Theref。re’the shear f1・w・qb are t。 be evaluated

from Eq. (3.18》.

     Hence, instead of employing Eq. (3.112), S. U. Benscoter

【9]pr・p・sed thef。rmula f・r the・hear f1・ws qt due t°t°「-

sion, which is in analogous agreement with Eq. (3.26). For the

case of a curved girder bridge, the formula may be given by

SG

S~q

2

SR

2P

=tq

゜・亨

咋弓ω馬

2 S2

R ρ 一

●  ●  ●  ●  ■  ●  ●  ●  ■  ●  ●  ●  ●  ●  ●(3.113》

This formula’can be rewritten in various ways by making use of

ψx★。r X“’fr・m・the f・r・・ulae given in the preceeding

Page 111: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一104一

subsections.

     Equation (3.106)

          の

substituted into Eq.

iss・lvedf・r Gsψx★

(3.113) t◎ obtain

、S~q

2

S2

RP★ ★

XT

TJ = t q

   C ★十   ω

   JTk

2

SR

   R 2

-…(qω一   ρ

and the result is

・庁

・r・

SE)

ωS

●   ●   ●   ●   ●   ●   ●   ■   ●   ■   ●   ●   ●   ■   ●   ● (3.ll4)

Substituting into Eq. (3.114) the first derivative of the last

one of Eqs. (3.8) with respect to  θ  gives

                                                    ’

                  T★R2   1dM★R2                                     ω   S  ~                   X   S  ~

             qt=JT・ρ・qs-ldθρ・q・

                             +:〔li≡〕ge/2(qω一s・・*)

(3.ll5》

     工n view of the last one of Eqs. (3.8), Eq. (3.39》, and

the second of Eqs. (3.56), it may be found that each of these

f・rmulae f。r qt i・equivalent t・Eq・(3・26)・

Page 112: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一105一

3.6

Part 3.

工ne ualit  between Two T  es of

in shear c6rrecti・n Parameter・[45]

War

     工t is interesting from a practical point of view to in-

vestigate which type・f the m。dified七・r・i。nal bending the。ries

P「edict・much larger・r smaller value・f。r the stre9・c。uple・

related to restrained torsion.

     N°w’it can be sh・wn that there exi・ts an inequ・1ity be-

tween the tw・type・・f the warping・hear c・r・ecti。n parameter。,

Kt@and n★・T・’this end, an alternative expressi。n f。r C・                                                          ω

ユst°be derived・We find fr・m the parametric study’ 垂?窒?Brmed

エn@Chapter 工工工 that the inequality serves the aforementioned

purpose.

     3・6・1An Alternative Ex ressi・n f・r War in C。nstant

     After substitution of the expression for

(2・12)int・the。rth・g・nality relati。n(3.31)

of the resulting expression, there results

 べqs

and

 from Eq.

rearrangement

       工i…2(いω・)rt・d・

     =R・工(qω一Sω・)晶〔芋〕d・=R・i』,]+、(qω一Sω・)“S〔讐)d・

                                       ●●●・●●.●・●●・● (3・116)

Pe「f蹴ing an integrati。n by part・。n the integral。n the riqht

Page 113: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一106一■

side of the            ■above equatエon         、

 ■9ives

R s

= R   s

1工,j+、(q・・ 一 S・・“)錺d・

Σ1曽(qω

  ・  ゴ+1

-Sω★)】.-Rs       コ

1』,j+、会(qω ・・S★)ds ω

                                      ●....●.●・●.●●. (3●117)

By。ub・tituting the expressi・n f・r qω一S、。“f:e・m’Eq・(3・19)

int。 the first ilummati・n。n the right side。f Eq・(3・i17)and

rearranging the resulting expression, we find that

0=}

 ω

29㎏左コ

虹ρ’{・でLR。

 =1十

訓 コ

馬竺ρ

 【  S R

●  ・  ●  ●  ●  ●  ●  ●  ●  ●  ●  ・  ●  ●  ●

                                               ■      カエnview of Eq」 (3.23》 and noting that the quantエtエes

constants, we can rewrite the remaining summation as

(3.118)

  qω a「e

follows 3

・Rg戟秩C]+1 竺ρ

=-R・P』,ゴ+1

音(qω一S★)d8 ω

1ω・・Lds=-C・ρ    ne       ω

.  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●(3.119》

Finally, c・mbining EC.(3.116)thr。ugh Eq・(3・119)gives

 一 ω ~q (2S2

R ρ

£ ‥ cω

S、、t)rt“ds (3.120)

Page 114: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一107一

     3.6.2  Derivation of the 工ne ualit

     In this subsection, the inequality  nt > K★  will be                                           =         タ

proved with the help of the formulae derived in the preceding

sections. To this end, the following equation is to be de-

rived from Eqs. (2.21) and (3.103), i.e.,

」 ★       l

 C _1=JT★ @ 1-n’2

=1』,j+、f(・)2d・(3.121》

where

f(s)

RS ρR。)(t・ng)☆〔芋)

(3.122)

Furthermore, Eq. (3.42) is to be rewritten in the fo芦M:

ー二  S d 2

 S

 9  1  十  汀

』 Σ-♂

(3・123)

where

9(・) セ/晒π(qω一sω・)                 ω

                   ■

Then, it follows from Eqs.

1£,j+if(・)9(・)d・ RS

★Cω

       ●●・…  ●●・・●・. (3・124)

(3.122) and (3.124) that

Substituting.the expression f。r☆〔芋)

i』,j+、(qω一sω・)晶〔晋)d・

        ●●.●●.・●●・●●● (3●125)

         from Eq. (2.12) in七〇

Page 115: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一108一

the integral・n the right side。f the ab・ve equa七i・n and

n・ting the expressi・n f・r Cω★given in Eq・(3・120)and°「th°一         タ

9。nality relati・n(3・31)a1・ng with Eq・(3・19)’we find that

1£,コ+、f’(・)9(・)d・=・(3.126)

     工n applying Schwartz’s inequality to both the functions

f(。)and q(。),・ne sh・uld n・te the fact that theY are

single-valued function within the interval of the individual

plate element; however, they are in general multiple-valued   ・

func七ion when being observed throuqhout the 工ange of s・

This is because the properly selected points on the walls of

                                                   ’the adゴ・ining Plate elements are likely t。 have the same values

with regard to the doordinate  s.

     Acc・rding t。 Sehwartz’s inequality, the f・11・wing inequal-

ity holds

工,」+、f(・)2d・Jl,,,+、9(・)2d・

≧{Jl,,,+、f(・)9(・)d・}2≧工,ゴ+、f(・)9(・)d・

                                      .・・..●●.●・.... (3・127)

Hence, it follows from Eqs. (3.126》 and (3.127) that

Page 116: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一109一

工,j+、f(・)2叫,j+、9(・)2ds≧iJ,,j+、f(・)9(・)……

                                       ●●●..・...●◆●. (3.128)

     We can regard the indivia’ua・definite integrai。 in Eq。.

(3・121)and(3・123)as the・quares。f certain number。,。ince

the integrals are greater than,・r equa・t。,。er。. With this

in mindt we use Schwartz’・inequa・ity。nce again, a・。ng with

the inequality(3・128),t。。btain the relati。n

ifJ,j+、f(・》2d・1』,ゴ+、9(・)・d・

2}

Sd2ラ

S《9

   ー

  

@ポ∬

  S

知 旬 自  

@H

   d

晶{

〉一

(3.129)

={1 !,j+、f(・》・d・』,j+、9(・)・d・}2

1=

2}

  S d 旬 引 旬 到   H   司

』{〉=

Therefore, it follows that

iJ,,,+、f(・)2d・1』,」+、9(・)・d・≧・

(3.130)

Page 117: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一110一

工n view of Eqs.

identical with          ■

             ≒〔、1

(3.121》 and (3.123》, the above inequality is      、

,.、一・l≧・ (3.131)

Noting that  vt ≧ O  and  1 - n★2 ≧ O  because of Eq. (3.42)

and Eq. (3.〕.03) and inequality (2.22), respec七ively, we can

transform the inequality(3.131)to obtain

1 v★

n★2>1-   =   =K★2   =  1+v★ 1+v★

(3.132)

Finally, we find frorn ’the above inequality that the following

desired inequa1エty holds                           ’

1>nt>K★>0      =          ■=1  :

(3.133)

Page 118: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一lll一

     工n the modified torsional bending theories [9, 10, 21,

22], one more unknown quanti七y  X★, the intensity of warping,

in addition to those used in the conven七ional ones 【1, 2, 3,

4, 5, 6ワ 7] is introduced to deal with the secondary shear

deformation due to nonuniform torsion, called the warping-

shear deformation. One supplementary condition is, therefore,                                      ロneeded for the determination of the quantity  X★, and it can

be prOvided by means of Galerkin’s averaging technique.

     When applying Galerkin method, the modified torsional

bending theory of first type requires tharヒ the equation of

equilibrium in the longitudinal direction for a differential

plate element should be expressed in terms of stresses, while

the ゼheory of second type requires that the equation should be

expressed in terms of the kinematical quantities of the ref-

erence axis of a qirder.

     工n the modified torsional bending theory of first type,

the warping-shear correction factor  v★  appears in the con-

stitutive equation for warping torque [see Eq. (3.62)], which

is derived from the requirement that the principle of complemen-

tary virtual work shOuld be employed as a basis for establishing

compatible state of deformation.  Then, the warping-shear

correction parameter  K★  defined in Eq. (3.65) appears

in Eq. (q),which is obtained by eliminating the primary and

warping torque from the constitutive equations for these

quantitites.  In the modified torsional bending theory of sec-

ond type, on・the other hand, the warping-shear correctlon

Page 119: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一112 一

parameter  η★  defined.in Eq. (3.103) appears in the first

fundament・,1・quati・n relating th・t・tal t・rsi。nal m。ment Tx’

t・th・quantitie・ψx★and X★’which result・f・。m the「e-

quiremen七 that the shear flows expressed in terms of the

kinematical quantitie’s of the reference axis of girder bridge

should satisfy the equation of allover equilibrium [see Eqs.

(3.90) and (3.102)].

                                      「」

     Between  K★  and  η★, the warping-shear correction param-

eters, there exists an inequality such that  l ≧ n★ ≧ K★ ,≧ 0・

     The a▽enue of the formula七ion of these modified torsional

bending theories is shown in Table 3.l diaqramatically.  工n

the final analysis, 七he foregoing considerations may be briefly

su㎜ed up as follows:The fundamental equations in the modi-

fied torsional bending theory of first type are derived on the

basis of the idea of force method, while those in the theory

of second 七ype are derived on the basis of the idea of dis-

placement method.

     Furthermore, in the limi七 as the parameters  K★  and  η★

approach unity, respectively, the modified torsional bending

theories agree with the conven七ional ones. Therefore, we see

that the conventional torsional bendinq theories may be re-

garded as special cases of the modified ones.

Page 120: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

①口42

唱O

0づCω〉ぼ

ωρ白

叶.m

ωHρ

H可qO叶o?糾O

唱Φ叶U叶勺O〔輪

oo

¢三Φ臣

一一 撃撃R一

u。

純S柄芒m昌

H句OW山㊦巨Oβ句

Galerkin,s Method

一“・・-一一・・一一一一

一 一

Strain Fieユd in Terms of

Kine皿atical Quantities永

3Φ  Σ〉

・パ   }一

↓」   o

コ  唱山・r→  c

4」   oり)  ・r→

Stress Field in Terms ofc  ↓」n   Cd

O   Pひ

Stress Resultant国‘

and Couples

oコ雲ぴ国

七ρコち・国

’一’一一一一一一一一一一一 黷吹D

]o

∈』ωト

・H

Galerkin,s 柏ethod

’一一}一一一一一一一一r

Page 121: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一ll4一

(H+毛)

  

@ 

「1-1ーーー1

「ーー1ーーーー

  

@ 

  

@ 

「3

L_____________________」

Page 122: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

_115一

IV. NUMERICAL EXAMPLES [46]

4.1  Geometrical Characteristics of Curved Box Girder Brid es

      工t is interesting to evaluate the dimensionless cross-

 sectional characteristics  1」tO,  v★,  1ぐ★t  η★,  and  β  for

several types of cross sections, since they are the important

parameters which characterize the statical behaviour of curved

box girder bridges.

     The cross-sectional dimensions used for computation were

qu°ted fr・m the specificati・ns・f the bridges c・nstructed by

Hanshin Express Highway Corporation and were modified a little

for the sake of convenience of computation.

     Fig. 4.1(a), (b), and (c) show the cross sections of     ・

curved box girder bridges which are made composite with a rein-

forced concrete deck slab.  工n cases (a) and (c), it was assumed

that the steel b。x・ecti。n・w。uld resi・t al・ne when carrying

their own weight and those of the concrete slabs, and that the

composlte sections would resist the moments due to live loads

and those due to dead loads added after the concrete decks had

hardened.  工n case (b), howevert it was assumed that the cross

secti・n・re・i・t th.e m・ment・due t・all kind・・f the 1。ad・after

the c・mp・site acti・n・f the secti・ns was ensured. Furtherm。re,

the values°f the「ati。・ne and ng were assumed t・be 7・・

and 6.3, respectively. Fig. 4.1(d) and (e) show the cross

secti・n・・f curved b・x girder bridges with an・’・rth・tr・pic。teel

deck plate.

     The results obtained are tabulated in Table 4.1.  工n cases

Page 123: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

(ε

否口マ~

o・-ooN

oo口マ

LZ6L

2t

Zt P三 8Z

9901

ZL

g三

eL

ZL

fLvz

(£

_U6一

「    8⑩N

(3

dt

OOO∩

09

9L

9

O口ON

L_」」SLSt

OOON

VZ6t

・9τ「「

  『

∠L

。。司」

l/l

]斑

・・,P「

⌒り)

(巴

    OO鴇

[・

ーピ㍉

。のNN‘ーヰ,

OO縄」。8

・・「1「

Oマ☆09tz

令’

i/

09W

zz引/

㎡コ劇ー

」i∋「」

儀.|

    l!.一一一一..一一.一一.9

 0カZZ

Page 124: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一ll7一

mmN.C

∀mひ.O

マN.m

Q●

(①)

トママ.O

叶⑩口.O

マロ寸.O

ひのN.O

め頃

(o)

W◎◎m.O

めトマ.O

◎◎

艫}.O

叶ooN.O

否マ

(£(㊦)

弔⊂

*y

弔♪

①*ユ

℃①〉臼コO

H.e Φ司ム応臼

Page 125: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一ll8一

(a) and (c), the numbers in parentheses indicate the corres-  .

ponding v41ues of the cross-sectional constants for the steel

bOX SeCtiOnS alOne.

     Additionally, the values of  K★  and  η★  for a rectan-

gular b・x cr・ss secti。n are pl・tted again・t the vari・us values

of the ratio of height 七〇width, b/a, while the wall thick-

ness and the area enclosed by 七he median line of the cross                                      、

section are kept constant. We should be reminded that the tor-

・i・nal rigidities G。JT★・f the cr・ss secti。ns are kept

constant under these conditions, except for curvature effect.

The resul七s are represented in Fig. 4.2.

     What is evident from Table 4.1 and Fig. 4.2 is that the

values of  η★  are always slightly larger than those of  K★  as

is predicted theoretically in Subsection 3.6.2.

4.2  1nfluence-Lines for Stress Cou les Related to Restrained

Torsion, 工ntensity of Warping, and Angle of Rotation

     In 七his section, we will investigate to what extent the

warping-shear correction factor  v★  affects the influence-

line ordinates for the stress couples related to res七rained

t・r・i。n’Mω★’T。“’and Tω㌔the inten・ity。f wa「ping’X★’

and the angle of rotation of cross section,  φ.  For this pur-

pose, let us consider a curved box girder bridge continuous over

two spans, supported in the manner shown in Fig. 4.3, as a

simple example. The bridge has two equal developed span lengths

and constant curvature throughout its axis.

Page 126: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一ll9 一

バ,η’

0.6

0.5

0.4

0.3

0.2

0.1

0

‘‘、

11!

η一「\/1 !!

       ’      ’     !    ’   ノ   !  ! ノ!

 、、

x 1

  / !

      ノ

  !

 ! !

v、、、 1

、\

N

RL--1

R・80mob=10m2

tニconst

0 1.0 2.0 3.0

   %

4.0

Fig.4.2 Wa・ping-Shear C。rrecti・n Pa「amete「s

            for Rectangular Cross Sec七ions

Page 127: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一120 一

     \       \     /ノ1\、<<\

   \\\    \

    \×i怒\\\

       \  \        \〉\

Fiq. 4.3  Curved Box Girder Bridge Continuous over Two Spans

Page 128: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一121 一

     The bridge is s七atically indeterminate to the second

degree. For the analysis of this indeterminate system, it is

・・nvenien七t・trea七th・bendinq m°ment M凵@and wa「ping m°ment

Mω★dev・1・p・d。n the c・・ss secti・n・n th・inte「mediate supP°「t

as the redundants・Let us den・te these stress c。uples by Xl

and X2’re・pec七iv・ly・The equati。n・・f c。n・i・tent def°「ma-

tions are given in the form:

                                      、

             δllXl+δ12×2+δ10=0

                                                     (4.1)

             δ21Xl+δ22×2+δ20=0

The first (second) equation indicates 七he compatibility condi-

ti・n phy・ica・・y・tatinq that th・def・ecti・n ang・e謡★

(warping  U-which amounts to the same as the intensity of

warping, X★, as is evident from Eq. (3.1) 一) of the left side

relative to the right side at the cross section on the inter-

mediate supP・rt mu・t be zer。・The flexibility c°efficientsδi」

(i=1’2andゴ=1’2)andδiO(i=1’2)in Eq・・(4・1)

can be obtained from the expressions for w★  and  Xk  given in

Appendix工工工.

     Using Eqs. (4.1), the compu七ation to find the influence--

lines for the aforementioned quantities at some points on the

reference qirder axis was carried out for the loadinq cases of                                                                      り

unit concentrated torque  T  and force  P  moving across the

bridge, separately. The resul七s obtained for the former loading

case are represented in Fig. 4.4 through Fig. 4.12.

Page 129: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一122 一

The influence-line diagrams f・r the latter l・ading case’  、

however, are omitted because it has been found from the compu-

tation that the influence-line ordinates are scarcely affected

by 七he factor  v★, in other words, they are in dlose agreement

with the corresponding ones obtained from the conventional

theory.

     For the sake of qenerality, the influence-1ine diagrams

are represented in a non-dimensional fδrm by makinq use of the

dimensionless quantities by

              M ★           RT ★          RT t

       愈♂=G。#・’lis★=G。*・’eω★ -G。Jl・

                                    ●●....・●・.●●・・●◆ (4●2)

and

       《★ = Rx★ ’     6 = φ          ................ (4.3)

工n the diagrams, the dimensionless quantities mentioned above

versus  θ/θ  are plotted for the three ▽alues of the factor  v★

as parameter, namely, 0.3(dot-dash line), 1.0(broken line), and

infinity(solid line), while  p★O  is kept to 20 0r 50,  β  to

O.4, and  θ  to O.4.

4.3  Shear Flows- and Normal Stresses- Distributions

     エn a Cross Section

     By inspecting the influence-lines for the stress couples

related to res・ヒrained torsion, we can suppose that the influ-

ence of the fac七〇r  v★  on the distributions of stresses in a

Page 130: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一123 一

    向ω×二2

       xlO-1.0

一〇.8

一〇.6

一〇.4

一〇.2

O

   I

  I--

  F  l

  「

  |

      /  1 ..〆∠一一

    ノ            ノ

/乙/

  \    、

㊦\こ巨  

@十

二/ト一

。。己

 

 1/ ・

/  

/一

 /一

 乙4吐  一

 W!~\「

     プニ      ジー 

り、

二ー-

r「  

Ct

1

11

._

k己◎。2。

Z

@=04

β=・O.4

忘\\

O 1.0

s2cg6

    ^ ★    M     ω   一2       x10-0.6

一〇.4

一〇.2

O

@ @ @ @ 

  

@ @ @ @ 

)E

 ★」

V→OO

1   1.Org-、.一一.(-6∫\1,(

 11rノ          コ

/’、i1 …-Wl

.,.._寸

x’「~、 、、

0 1.O

μ★◎=50

 ◎=0.4

 β=0.4

N、<ミこべ Q。%

                                                バFig. 4.4  工nfluenOe-Lines for the Warping DCornent  M ★  On the                                                  

         Cross Secrヒion on the 工ntermediate Support.

Page 131: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一工24 一

 S(〔1

一1.0

一〇.5

0

05

}1’,/’C3「ガこ」

多∠イ

       ノ  1/オ互迄!]v-G.

   11D  i

 l  l曹潤E20

@⑤二〇.4

@β=0・4110 \_

\一 ¥一=r-=

@  1

  一→一==一  ’

1   2.

★^丁唱

一1.0

一〇.5

0

0.5

力o

oD

                                                           へFig・4・5エ・fluence-Lines f。・th・Primary T。r・i・nal M。ment Ts★

          on 七he Cross Sec七iOn Just to the Right of the 工nter-

          mediate Suppor七.

Page 132: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一125一

 ω(Tー

一1.O

- O.5

 0O 1.O

μ★⑨ 20

     04

     0.4

  %2.O

ピ一1.O

-O.5

 0

   l@  i@  l-一一・・一一..十

  f

|一一一

@ 1

畑・50

| .一.一一 一一一」’

★V-r-oo

@  一

1        /@  1.oノ/1__一一’015

!/   一一__⊥

 .   ◎ニ0.4

@    β=0.4@        { 、⊥  、、ゴこごこ_1_

.-「

一」:r一一 一  一

0 1.O

  %2.0

Fig. 4.6  1nfluence-Lines for the Secondary Torsional Momen七         A         T ★  on the Cross Section Just to the Right of the          ω

         Intermediate SupPort.

Page 133: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一126 一

ズ0.4

   7P

’  、@ 、黶u\\、 !    工

μ★⑪=’20

J=0.4Q21

・} 一

1     、1 1     、11      、

i β=0.4

1 i 11.0

0o i    ,

l l 、、 2.0

」…/

Q21

i   }l    l\、

’\

1 「 ・ 、、 、一,二

04

(X

Q6i    i

Q41

  一P       、

1 1   、   、

ぱ⑪・50 11 ~

Q2i

⑭=0ム i

、1 1.0βニ0.4

b0O i

2.

Q2 1 1

、 1、

1 、

1

0.4一’.一 ㌧て㌔

、 11

                                                       AFig. 4.7  工nfluence-Lines for the 工ntensity of Warping,  X★,

         wi“ヒh Respec七 to the Shear Center Axis a七 the Middle

         and Four-Fifth Points of the First Span.

Page 134: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一127 一

(2 Q 一

0

 4βR~02  00    tOO

Mω  一2メ10

 -    一一▼}

SL-v一

一t u  『 +’+- s    1    1

    1

O 工、…°・5

08 .

        i-,=二±====≡』_こ二__ _一 一 一  _  _

一一,

1

} t-1▽1  ll

‥》

r

ク\↑ー

   ’ll.O

カー一

㌣一斗

一一一一一e-一

..

k-一一__..

μ★◎ニ20

@β  「|⊥

1  2.Ol

l

L  ._

=0.4-「

     1

=04 i   -.一』tt- 一

一〇.2

  0

02

0.4

Mω★|2

   XIO

O.5 8 

0

゜  1”XN/’i、

一十一÷」一す一     1

z to

吻 ニ50

⑧=o.4

β=04

2.。%

Fig・ 4・8  工nfluence-Lines for the Warping Moment

         Cross Section Located at the Middle and

         Points of the First Span.

M ★ on 七he ω

Four-Fifth

Page 135: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一128一

  ^ )ヒ  Ts

-C.3

-C6

-・4十一

一〇2]

  O

o.4

ti◎二20

   二)k   l5

-08

-0.6寸一一一一一一...

.Q4!.一.

-02

[コニニニニ

¢◎=50

.③=c・4

B σ4

、ニ

シ会

 )

 OOO

t

i

}LO   l

1

1

   i

    ・一一・

@・-F

  

@   

@ @ @ 

  @ @ @ 

  

@ 

@ 

@ 

  e/

2.0/9-i

l

i

Fig.4.9エnfluence-Lines f・r・]・e Pri・…yT・・si・nal}i・r・,・江e♂

         o江 七he Cross Sec七ions Looこ七e(ヨ a七 the Middle and Fc ur-一

         二’izi‘t:; Poin七S Oこ 七h已 ご二ごS『こ ご二こ☆.

Page 136: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

   ■

-129 一

^ >k

1.t★◎;20

一〇6

-0.4

-0.2

  0

σ4

C.6

二二⊥

o

o.2」.._._o・iヒ

leニ04

Qジー}

1.0

[コ 「

/O

Q)/

一〇.6

-O.4

-0.2

  0

0.2

04

06

^瓦

一⊥

1 }    @   [

  !一一u 

  l

nl q影十一一‘-

  I               l

--t-一   一一

0ノ特ζ》(U

==

◎()★

‥←「,ー

04亡一,

「]

o=04

13=04

、。%

=ゴゴ

Fi~1. 4.10  工nfl uence-Lines for the Secondary Tor合iOnal Xo㌫e二t

           A           T ★  On the Cross Sec七ions Located a七 t二三:e :.二idd二e            ω

           and Four-Fifth ]≡)〇二nts こ三 .七he F二ごεt Span

Page 137: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一130一

R★

Q8

●Q6   1@ 1@ンンE〃

’一@、

@ 、@ 、Q   、’     、

@  、0.4

O.2

’一、

f、

いぱ0・20

M=0.4、、

@、t

、、 1.0 、

β=0.4

__≡≡≡一

≡二≡_≡一 一  一  一  一 一  一  一  一

軸 一O O.5

@ 、、   、

0.8一  2.

0020.4

 ち~,!

又★

0.8

ッニ~・

10.6

グ 1| ¢⑪=50

O.4ミ、

o=04、

β=σ4Q2

1 1.0O 一

0 .5 0.8、こ 2.O

Q2‘

、、

、、

O.4

                                                         AFig. 4.11  工nfluence-Lines for the 工ntensity of Warping’  X★’

           with Respect to the Shear Center Axis at the Middle

           and Four-Fifth Points of the First Span.

Page 138: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一i31一

5001‥

Aψ.1 x10

A

0 1.0ココー

A

2.O

O

診 ぱO・20

〃5、

◎=σ4

β=Q4

0、》

/◎(シ

Aψ x1σ1

0              1.0 2.O O

p5

P.O

ぱ⑭・50

◎=Q4

タ=04

                                                     AFiq. 4.12  1nfluence-Lines for the Angle of Rotation,  φ,  of

          the Cross Sections Loca七ed a七 ・ヒhe Niddle a; d Four-

          Fif七h Points of 七he #ir3t Span.

Page 139: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

_132 _

                                                         ,cross section may apPear to some extent at 七he cross sectエons

where torsion is highly restrained.  工n the case of composエte

box girder bridges used frequently as ramp structures, as

shown in Fiq. 4.1(a) and (b), larger amounts of influence may 、

arise in the cross sections mentioned above. This is because

it seems that the cross-sectional characteristics  μ★θ  and

v★  of the composite box girder bridges are relatively small

(see Table 4.1). 工t is well known that, in this case, stress

analysis with the help of the torsional bending theory エs

available [47, 48】.

     エnc。nsiderati。n。f the c・nゴecture menti・ned ab・ve’the

calculati。n。 were carried・ut t・find the di・tributi。n・・f shea「

fl。ws and n。rmal。tresses in the cr・ss secti。n’・espectively’

ゴu。t t・the righ七・f and。n the intermediate・upP・rt°f the r.

curved c。mp。site b・x qirder b・idge c・ntinu・uS・ver tw・・pan・・

The brdige used f・r the numerical calculati・n purp・ses has the

same ge。metrical characteri・tics a・th・・e c。n・idered in Secti°n

                                                             4.2 and the cross section shown in Fig. 4.1(a). The geometrl-

cal characteristics of the bridge considered herein are given

below.

(1)・pening angle’Ol=θ2・θ=0・3200「adian・

(2)Radiu・・f cu・vature, R、=R2・R=・・8…xl°8 crn・

(3)Cross-sectional constants

Page 140: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一133 一

for the steel box section alone,

Jy=°・1354 x lO8 cm㌔ JT★=0・2・・2

J  = 0.1699 x lO8 cm4    C ★ = 0.2254                     ’     ω Z

J =-0.2268xlO6 cm4.yz

xlO8 cm4         ’

xlO10 cm6          ’

.for the composite section,

Jy=°・3325 x 1°8@cm㌔ JT★=

」。=0・1378xlOg cm㌔ Cω★=

」 =-0.2643xlO7 cm㎏. yz

0.2732 x lO8 cm㌔

0.1353 x 1012 cm6,

     Calculations were carried out by using the standard design

load  工、-20  specified in the Bridge Specifications of the Japan

Load Association. Various critical combinations of loadinq

which produce unfavourable stresses in the aforementioned cross

sections were determined by inspecting the characteristics of

the influence-lines as follows.  To calculate the shear flows

(normal stresses), the standard line load  P  was placed at the

P・int where the abs・lute valud。f the・rdinate t。 the influence-

・ine f・r the quantity dMy/dθ(bendinq 「n°ment My》is at a

maximum. It was considered necessary to check the magnitudes

of the shear flows developed on the cross sec七ion under 七he two

loadinq conditions with reference to the standard distributed

l・ad P. Hereafter, let us den。te the・e l・ading c。pditi。ns・・by

Loading A and 1 Loading B, respectively(Fig.4.13). 工n Loading A,

the standard load was. placed in the first span as close to the

Page 141: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

5

ロ叶勺司o迫

寄∧

ズ捻…黍へ帳

一134一

「C<尽N

oooc、^,

ゴ「剰」

「目合1㌶

8鵠

Page 142: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一135一

  inner curb and in the Sec・nd・pan as c1・se t・・uter cu「b’「e-

  。pective・y, a・wa・required by the specificati・n・・エn L°ading B’

  the l。ad was placed in b・th the span・as cl・se t・the inner cu「b

  as was required by七he・pecificati・n・・T・evaluate七he n°「「nal ・

  。tresse。, h。w。vert the l・ad was placed・n the・pP・・ite side°f

  the lane t。 that。ccupied by L・adinq B・。 as t。 pr・duce the

t。rque・。ad・in the reverse directi・n・Let u・den°te this

  1。ading c・nditi・n by L・ading C(Fig・4・13)・

       The。hear fl。w。 and n・・mal・tresse・di・tributi・n・in the

  cr。ss secti。n。。f the bridge are sh・wn in Fig・4・14 th「°ugh

  Fig.4.2・. The dashed・ine in the figure・indicates the dis-

  t。ibuti。n。。f these quantities in the case whe・e the influence

  。f the warping-shear c・rrecti。n fact。r v’i・taken int°

  c。n。iderati。n. The numbers in the parenthese・in the figu「es

  indicate the corresponding values.

       The v。lues。f the shear fl・w・and n・rma1・tresses sh°wn ln

・th。 figures have unit・・f kg/cm and kg/cm2’respectively・

Shear flows and normal stresses evaluated from the two types

。f the m。dified t。rsi・nal bending th・eries are tabulated in

Table 4.2 thr。ugh Table 4.4 f・r the・ake・f c。mpari・・n・The

directi。n。。f the shear f1・w・agree with th・se indicated with

arr。w。 in Fig.4.15 thr。ugh Fig・4・18・Fig・4・22・hρws the

numbers。f the n・dal p。ints・f the cr・ss secti・n・

Page 143: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一136 一

([ (」(マ.ご)『ひ

    一  一  一  一  一   一  一  一  一  一  ●   _   _  _  _  _

・一一

(18.3)8.91

i18.3)8.91↓ 中{

19.4(|9.419.4(19.4)

(28・o)11・4「

一 一 ~●一 一 一 一 一一 _ _            一一 一一一 一 _ _

@         Q o112・0(29・9)

・ 1

1 N( NA N⌒ 1

1、 N 頃

1

1

ひ o 6‘

) 一 ’凸

) 下 1        :

@       l        l(28.0)11.4L

1;」12.0(29.9)

L _ _ _ _ __ _ _ _ 一_ 一 一 一_ ___」

(a》 Loading A

⌒マ.】・こ (ひ.u・こ (否

(15.4

i15.4)◎

●~

↑ 日ε:引

(24.4}

(24.4)

AOひ)●Aま) ↑

(26.0)

i26.0)

⌒噂.苦)

⌒『鵠) ⌒O.ON)

(b) Loading B

             ■

Fig・4・14 Shear F1。w・Due t・Primary T・rsi。nal M°ment Ts★

Page 144: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

_137-一

(°o.F)O.吟

(P

⌒ひ.N)m.oD

門一  一  一  一  一  一  一  一  一  一

一  一 一一一一一一一一●一゜一 i9.0)26.2

@  (8.6)24.91

 ●              一                一

戟@          I           ←1

27.4(9.3 ●-Q6.2(9.0)

(8.7)25.4 1 28.2(8.5)

、 1 un                        O                        . 1

1 6       -      N1一      『r      め 1

55.5「       ひo        ・潤@         un)           o

1 55.9

)1

52.9}          }

52.3

(2.9)10.0 一9.8(3.8)

o 一亘A ひ⌒

『  ・

ミN ) 、

) P三(°。.苦)

(a)Loading A

(O

⌒ト

⌒め

(13.8)42.1

(13.2)40.5

(13.4)41.2

66.9

59.9

(4.6)4.0

トoUt)

⌒●.(ひ)  マoo’

44.414.42.5(13.9)

43.4(13.1)

66.4

58.3

2.3(6.1)

(b) Loading B

Fig.4.・5 Shear F・・w・Due t。 Sec・ndary T。rsi・na1 M°ment T♂

Page 145: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

 w.

-138一

一.

nN)u「,マP

(N(⑰

(0.9)17.3 1

{9.7)16.o l

[.三〇.Nuっ

0

8’01

1

li 2.2(33.7)

」」一一一一一

 一 一 一 一 一 一 一 ~

一~、、

(ト.留)

N.N

(O.08

守.一

(㌻ひ巴  Nu、一

⌒へ.守

(a) 工・oading A

 (1.6)42.1

 (2.2)40.5

(11◆0)41.2

66.9

59.9

cハひ

ト・oo

44.4(2◆σ)

42.5(2.4)

43.4(12.9)

66.4

58.3

            f28.9、4.o C                        」 2.3(32.1)

                   x-_       り                  cσ・’、 一一一一一一一一一”

                  守㏄

                          マこ

                          竺巴       (b) Loading B

Fig. 4.16  Shear Flows Due to Total Torsional Moment  T ★                                                     x                      Tx★(=Ts★+Tω★)

Page 146: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一139_

⌒中

 ⌒

盾盾n一)ooO{

⌒【

 ⌒

gO【)(O’

(167》167

i171)171

、 {         ←  ↑     一                      一一

16716ガ170170)

(332)332

i363)363

i367)367

i330)330

  ApU⊃                     uou⊃o_P                    ◎M)@ )                               7-■「一一

@                      )

p      1

@    ●                      一

336(336)

@376(376)

@374(374)

R35(335)

Oのひ(Om⑰)

(守

⌒ト

nP)トO一

吟nの⌒頃ひひ)

  

@(gO’)NO{

(a) Loading A

← (167)167

i171)171

↑こ   ゜ 専                   ←

166(166)170170) 一(331)331

335(335)

(363)363   ⌒怐怐@                   OQ 376(376)F■F-                    ●昭)@ )                                      ”

)(367)367↑       } 374(374)

(329)329 q画●一                一334(334)

              忠              竺              9              9

Fig. 4.17  Shear

             曇

              苔   (b) Loading B

             )

Flows Due to Bending Moment  M                              y

Page 147: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一140一

(°。.トこO⑩.マeF

㊨ ■ 卜、F    一  一  一  一  一 ⑩ ト、〈、

一 ’

● (158)184

i162)1871 ・ ↓

一一

          ,  一         ’      一  一

@  一  一黶@ 一

@        ~

@        ●

、  、  、  、

 、 、 ~@ 、  、     一  、

@       、  、           、  、

@  即)320(358)(313)346

      ’@    ’@  ’@ ’@’f

’  、@  、@   、@     、@      、@(           、          、

\1

(342)407

i344)409

竺⌒三)

●un怐f@)

〇三: 332(399)

R34(400》

1 )1

}{ 」

1’

(298)328、

一 一

 ’

v 337(368)!

ノ 、

! \

ノ 、ノ \

! 、ノ F-       、

γ uぴ         、

F          、(             、

ひ×

9N)ooホ

 (

F巴

(マ.マこ

(°。u。ひ)

卜留

(O

(a》Loading A

・ ●

            一  一  一 一@        ’  一@     , 一@  ,  ’C  ’

〔      〈吋“つoo

, ’

@  ← (165)209

i169)211

            】5              -{                       一      、                    ”               、 、 一一~_       __一”            、一_                                    、  、

P ←        ●  ↓   ←                    一

;ll}日1男◆

(320)373/  \、/’                 、

「292(348) 、

,”         o     、、                    、、

{348)429             ◆              、黶@             ぐ】怐@           o            un|            (      ・    o

、1309(392)

(349)427

11 ll315(394)

t)

1

t、 1            ↑

(300)332

●                        呼■口

 ’

v333(366)’   、

!      、  !       \@!            、!            、

!             \!                \

へ」       、

oo        \ ●F-            、

Fig● 4●18

  ⌒             o             ∨

 ouo                              

 留自      G     留$  )       )      「° s≧    (b) Loading B

Final Shear Flows Distribution

                           on the 工ndicated Sectエon

Page 148: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

141

⌒N

㌃ マ め

1

一 一 一 一一 一 一

一一一一一一一一@           (2.7)4.8 一5.5(-3.2)

(1.7)2.8 1一4.1(・2.4)

(1.8)12.1 ’

一14.1(-2.5}

 (茶ソi|

∫ ⌒『rへ」q字

“WF一↓

1 ■■一∫

7-一) 1 )  11 1

↓∫

1 1∫

∫ 1

∫ 1

ン’} ’ 1

一26.1(-19.6)

C ’

「o

P.

盾m二〇.竺,)

★ ωMto Warping MomentDueStressesNorma14.19Fig.

言.3言.3

お 沿 8

(51.9》51.9

i51.9)51.9

50.1(50.1)50.1(50.1)

(455)455 453(453}

(-429卜429一425(-425)

yM七〇 Bending MomentStresses DueNorma14.20Fig.

Page 149: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一142一

(’ (「O」)F.N〈

⌒ψ

(70.1)72.1 60.3(62.6)

(53.6)54.7 54.9(47.7)

(457)467 439(451)

A                                      (

ト、ト、                     Pσ、Qun                     ‘ρ“内q宮r字                     守マ

)                                      )

(-410)-403一451(-445)

8マ♂’マ)

F蛤㌣(ω=-)

Fig.4.21 Final N・rma1 Stresse・Di・tribu七i。n

                on the 工ndicated Sectエon

Page 150: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

_143一

43-133-r 9 r●

221一

2

UO  U

1一

6

1

3-u

5-0

5-u

Fig.4.22 N頑er・f the N・da1 P・in七s

              of the Cross Sec七ion                    ご

Page 151: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一144一

O.αマ

ひ.叶め

ooD叶

o◎

O.ψN

◎o

ooDマN

ひ.ooN

HH

H.マ叶

〇一口H

卜.守

卜.マ

の.O

H.O

H.ひ

N.O叶

OH

ひ.『[

oo

N.O

N.O

叶.叶

H.叶

Q。Dめ.[

卜.◎o叶

マ●の

oonm

頃のm

吟の∩

ひ.の

◎oDの

口.めN

ひ.ひN

oo

のO∩

ひひN

Oのの

O∩m

N.m

ひ.N

H.マN

O.◎◎N

∩m丙

◎o

゚の

Om∩

ゆの∩

ひ.oo

的.co

O.口N

ひ.σN

コーO

卜卜H

O◎o.[

Oト一

・  O卜H

マ.ひ

O.ひ

H.ゆH

マ.ひ叶

OlO

Q卜H

卜卜H

⑩ロバ

QO叶

的.O

口.O

m.ひ

の.OH

叶lO

卜叶∩

N叶m

Nmの

Nのm

O.ひ

卜.◎o

H.マN

O.◎oN

コーm

の⑩H

N⑩H

吋卜H

H卜叶

ひ.◎◎

N.m叶

m.ooパ

Oーめ

NmH

吋的吋

HOH

HQH

叶.O

H.O

ひ.oo

卜.ひ

相ーm

O

O

O

O

O

O

O

O

叶口一

◎o

フH

卜口叶

卜●H

の.α

O.ひ

N.めH

m.◎◎叶

コー∩

α叶H

oDD吋

◎o

n叶

◎o

nH

マ.吋叶

◎oDOH

O

O

→1∩

マ.Nマ

マ.ひの

m.ひm

め.ひめ

ひ.H

◎oDH

N.めH

の.ooH

臼1∩

卜卜H

卜OH

卜Qパ

卜.O

の.ひ

H.O叶

マ.ひH

51N

H.O卜

マ.Noo

叶.O⑩

パ.Oψ

O.の

⑦.N

マ.ぴH

m.マひ

Q.寸ひ

卜OH

卜OH

卜.N叶

N.NH

O

O

臼lN

O

O

O

O

O

O

O

O

(ρ)

⌒㊦)

⌒Ω)

(ε

⌒e

⌒㊦)

⌒ρ)

言)

N.マ ΦHρ㊦㊤

Page 152: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一145一

叶.OO

O.叶O

ooDH

oo

マ.ひ叶

O.トの

め.ooN

N.めN

叶H

m.マ叶

N.卜

ト.マ

卜.寸

N.O

マ.O

O.OH

m.ひ

O叶

H.卜H

マ.マ叶

N.O

N.O

ひ.叶

卜.H

o◎

ひ.m叶

α

Oトの

QOの

マmの

マのm

m,O

叶.O

め.ひN

O.ON

oo

トひN

OOm

ぴNm

ひNm

叶.口

uっDマ

O.卜N

マ.マN

叶口∩

o◎

}m

口∩m

め∩の

coDmパ

H.mH

吟.ひN

O.ON

口IQ

マト叶

N卜叶

O卜H

O卜H

ψ.マH

ひ.の叶

N.α叶

∩.O.[

OIO

卜卜吋

O卜H

OOH

OOH

ooDO

◎oDO

の.OH

卜.ひ

叶1ψ

oogの

ON∩

H∩m

O.マ叶

マ.の叶

O.卜N

マ.マN

うーめ

0口叶

ひ●H

叶卜H

叶卜叶

◎o

N.m叶

叶.ooH

マ.め叶

Olm

HのH

Nm叶

HO叶

パロ叶

N.O

N.O

頃.ひ

O.ひ

臼1め

O

O

O

O

O

O

O

O

のOH

めQH

卜OH

卜O叶

マ.マ叶

ooDmH

叶.ooH

マ.吟H

コー∩

吟N叶

マNH

卜O叶

卜OH

め◆卜.[

ooDOH

O

O

Hーの

H.◎oの

O..[マ

の.ひめ

マ.ひめ

O.m

叶.ooH

マ.めH

臼-何

・ 叶卜H

oon叶

りOH

口⑩H

m.mH

m.マ叶

N.ひH

の.OH

コーN

ψ.の◎o

O.Ooo

◎◎

ooDひm

O.マ

口.マ

N.ひ叶

m.O叶

叶IN

ひ.O◎o

◎o

卜O叶

卜O叶

卜.ひ叶

oo

O

O

臼lN

O

O

O

O

O

O

O

O

H

(8

(ε

(8

(ε

(ρ)

(ε

(8

(㊦)

Page 153: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

(ρ)⌒厄》

一146一

マママー

めママー

のNマー

吟N寸1

m.ひHI

O.ひ.[1

◎o

O吋マー

O叶マー

ひNマー

ひNマー

ひ.ooH

卜.co叶

Oめマ

叶のマ

∩ロマ

のmマ

O.NI

め.NI

Q

トのマ

卜吟寸

mのマ

め的マ

ひ.H

◎oDH

m

ひ.ひめ

H.Oψ

マ.c◎uっ

マ.◎oQ

口.OO1

m.◎ol

N.O卜

叶.O卜

マ.卜O

マ.卜●

◎oDN

卜.N

Q.NO

O.Nゆ

oo

coD吟O

N.∩1

N.ml

N

叶.マト

ひ.のト

∩.マO

の.マ⑩

ooDひ

O.ひ

H

(ρ)

⌒㊦)

(ρ)

⌒㊦)

(£

(ε

マ.マ Φ叶ρ㊦白

Page 154: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一147 一

V. SUMMARY AND CONCLUSIONS

     It seems that, in the conventional torsional bending

theoriest the influence of the secondary shear defomation due

to restrained torsion is not taken into consideration in

deriving the fundamental equations. In the case of a girder              δ

bridge with closed cross sections, however, disregard of the

secondary shear deformation will lead to an unsatisfactory

result, especially at the sections highly restrained against

torsion. This is because the secondary shear deformations

appear, in genera1, to be about the same amount as, or, accord-

ing to circumstances, to be considerably greater than the

primary ones evaluated from the Saint-Venant solution as the

first order approximation of the shear deformation.

     It should be noted that torsional moments play a still

more important role in the desiqn of the curved girder bridges,                                                             、

since much higher torsional moments develope throughout their

length owing to the curvature effects of their longitudinal

axes even though they are subコected to the transverse loadings.

Therefore, it is desirable to analyse more precisely the

stresses produced by torsional moments.

     From this viewpoint, the author has developed the two

kinds of the modified torsional bending theories, in which the

influence of the secondary shear deformations due to restrained

torsion is taken into account, so as to cover the circularly

curved box girder bridges. In the theoriest the dimensionless

cross-sectiOnal properties,  1ぐ★  and  n★,  are newly introduced.

Page 155: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一148一

They may serve as a meqsure for evaluating the influence of the

secondary shear deformation on the distribution of the stresses

in the cross sections. Therefore, they are called the

”warping-shear correction parameters°°. As these parameters

approach unity in the limit, respectivelyt the modified tor-

sional bending theories agree with the conventional ones.

Therefore, we see that the conventional torsional bending the-

ories may be regarded as special cases of the modified ones.

     The fact that between these parameters there exists an in-

equality such that  l ≧n★ ≧ K★ ≧ O  was derived from a

theoretical study by the author. This will provide us with

information as to which one of the theories gives a moderate or

hiqher estimate of the statical and kinematical quantities re-

lated to restrained torsiont as can be seen from the conclusions

stated below.

     The summary of the results obtained by using the modified

torsional bending theory of first-type is shown below. However,

it should be noted that the same may be said of the theory of

second-type because in both the theories the fundamental

equations governing torsional bendinq phenomenon are of the

same form.  If it is possible to generalize from the numerical

examples invetigated in Chapter 工V, it would appear that:

     (1) As the value of the warping-shear correction factor  v★

gets larger (which is the same as the warping-shear parameter

K★  or  n★  getting larger), the absolute values of the ordi-

                                Anate・t。 the influence-1ine f。r T。“・n the cr。ss secti。n ju・t

Page 156: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一149_

t。the right。f the intermediate・upP・rt bec・me・malle「in the

first。pan. H・wever, the re・ati。n is reversed in the sec°nd

。pan. Under the same c・nditi・n, the ab…ute va・ues f・r Mω’

                                                     パ。n the cr。ss secti。n・f th・intermediate・upP・rt and Tω★°n

the cr。ss secti。n」u;t t・the riqht・f the intermediate・upP°「t

bec。me、a。ger in b。th the・pan・(・ee Fig・4・4 thr。ugh Fig・4・6)・

                                                  ヘ           ハ     (2)The。.dinate・t・the inf・uence-・ine・f・r Mω★’Ts★’

and稔ω・・n the intermediate sect’・n・1。cated at the m’dd’e

and f。ur.fifth。 p。int・・f the first・pan decrea・e rapidly f「°m

the。ecti。n。 under c・n・iderati・n t・ward b・th end secti。ns(see

Fig.4.8 thr。ugh Fiq・4・10)・

      (3)晒en the parameterμ・θchange・fr・m 20 t・5°’the                                                            べab。。、ute va、ue。。f the・rdinate・t・the inf・uence-・ine f・r Mω★

                                               ハ                    ベ

bec。me sma、1er as awh・・e, h・wever, th・se f。r Ts★and Tω★

。h。w n。 apPreciab・e change・except in the neighb・urh。°d°f the

secti。n。 under c。n。iderati・n(see Fig・4・4 thr・ugh Fig・4・6 and

Fig. 4.8 through Fiq. 4.10).

      (4)A。the value・f the parameter v★get・1arge「’the                                                            へab。。lute value。。f the・rdinate・t。 the influence-1ine f・r X★

。n the secti。n]ust t・the right・f the intermediate supP・「t and

。n the intermediate secti・n・bec・me larger・In the f°「me「case’

h。wever, there apPear・n・apPreciable change・except in the

neighb。urh・・d・f the・ecti。n・under c・n・iderati・n(・ee Figs・

 4.7 and 4.10).

      (5)⑰en the parameterμ・θchange・fr・m 20 t・50’the

influence。f七he fact・r v・・n七he。rdinate・t。七he influence-

1ines f。r 9 ?Eis reduced as a matter。f c。ur・e(see Figs・4・7

Page 157: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

_150一

  and 4.11).

       (6)The・rdinate・t・the inf・uence-・ines f。r a。n the

  ロ1nte「mediate・ecti。ns are・carce・y affected by the fact。r。.

except in the neighbqurh。。d・f the secti・n・under c。n。iderati。n

  (see Fig. 4.12).

       (7)エn the ・ecti・nゴu・t t・the right・f the intermediate

supP°「t whe「e t・rsi・n i・high・y re・trainedt the di。tributi。ns

°fshea「fl。w・has the f。・・。wing tendency. A。 the parameter。。

apP「°aches infinity in the・imit, the va・ue。f the fina、。hear

f’°ws increases in the web p・ate and the・hear c。nnect。r。f the

°ute「side and decreases in th・se・f the inner。ide, at the

m°st’by ab。ut 20 percent(see Fig.4.18).

      (8)ln the ca・e・f curved c・mp・・ite b・x girder bridges

used f「equently a・the ramp・tructures, the va・ue。。f the cr。ss.

sect’°na’cha「acter’・tics P’θand v・seem t・be re・ative、y

smal1(see Table 4・・)・Since thi・i・the case, the inf、uence

°fthe fact・r・★・n the di・tributi・n・・f the。hear f、。w。 in

ac「°ss secti°n・f・uch・tructures apPear・t・。。me extent at

tbe c「。ss secti・n where t・r・i・n i・high・y re。trained.

      (9)The value・f the n・rma・・tresse・is scarce・y affected

by the fact°「v★even・n the・ecti。n where t・r・i・n i。 high、y

restrained (see Fig. 4.12).

    (1°)As can be seen fr・m Tab・e 4.・, there seem。 t。 exi。t

n°apP「eciable deffernce・between the va・ue・’。f the tw。 types

°f the warping-shear c・rrecti・n parameter・,。・and n・.

The「ef°「e’it can be・upP。sed that the c・mputati。n u。ing the

tw°types°f the m。dified t。rsi・na・bending the。ries wi、、 、ead

Page 158: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一151一

                                                   jヘ            ノ 

t・nearly the same reもults f・r the stress c。uples’Mω★’Ts★’

     A       ★,  and hencet for the stresses distributions (see Tableand T      ω

4.2 through Table 4.4).

     The results menti・ned ab・ve will be useful in the dete「-

minati。n。f the strength・f web plates required七。 prevent

bu。kling and in the de・ign・f・hear c。nnect・rs・f the cu「ved

composite box girder bridges.

     エt。h。uld be n。ted that these results are derived fr°m

the。retical investigati・ns. Theref・re, we mu・t wait f。r the

de七ai・ed experimenta・・tudir・t。 c・nfirm the c。r「ectness°f

these conc1US工ons・『

Page 159: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一152一

APPEND工X 工.

Demonstration of Ortho onalit  Relation with an Exam le

     To demonstrate the procedure for proof, let us consider

atw。-celled structute sh・wn in Fig.3.3(a).エn the figure,

the positive directions of paths along which integrations are

to be performed are indicated by the arrows. The flow type of

quantities q。’Cial , and Sω★are taken as p・・itive when they

act in the directions indicated by the arrows, as shown in

Fig. 3.3(b), (c), and (d), respectively.

     In order to reduce the structure to a thin-walled open

section, imaginary cuts will be made at the right ends of the

               lcover plates.  Then, according to Eq. (3.32), the equations of

consistent deformation for the secondary shear flows  qω  can

be written in an expanded form as follows:

q;,・{S,,、詩d・+工,4爵d・+S4,5玲d・

Sdn』t

Lゴ   74

工   72

輔一

} S dn』t

Lゴ   口 十

=∫、吉Sω孕d・→

(A.1)

1

Page 160: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一153一

q劔2⊇d三+工,3爵d・+工,4詩d・

Sdn』t

ーア   ユ

エ  β

閲} S d

n』t

ーア   ユ

エ十

=蛙Sω・謬d・

●   ●   ●   ●   ●   ●   ●   ●   ●   ●   ●   ●   ●   ●   ●(A.2)

The expression obtained from the addition of

Eq・(A・・)mu・tip・ied by q9,、 and Eq・(A・2)

q9,2’can be rearranged as f・11。ws・

            two expresslons,

multiplied by

Sd生t

ωS

ーア β

鰭 十 S dn』t

★ ωSーアー ユ

=q:,・q;,・{S,,、詩d・+工,5⊇d・+S5,。詩d・}

+q:,2q誠2詩ds+工,3⊇d・+工,4⊇d・}

+qg,1(q;,,

一q9,2(q;,・

Sdnユt

ーア  凶

ーノ

  ’ 0ω ~q 「

Sdn』t

-口  己

£  ’ 0ω ~q

Page 161: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一154一

= qg,・q;,・{S,,、計瓢ds+工,5⊇・+」,,。断江d・}」

+q&,・q;,2{/,2詩d・+工,3詩d・+S3,4詩d・}

+(qg,、-q:,2)(q;,・ Sdn~-許

  パ

エノ

  ’

 ~q

Sdn』t

ーア ω~q S~q£=

●・●●●●●●●●●●●■●(A.3)

By notinq the positive directions of the flow type of quan-

titie・Sω★’we can tran・f・rm七he left・ide・f Eq・(A・3)int°

the following alternative form:

Sdn』t

★ ωSーアX  ら

OS~q

 十 S dnユt

★ ωSーアー

  710S

 ~q

=qg,・{S,,、トSω・瓢d・+/,4詰Sω・江d・

★ ωSーア

   。5

工十

ーア β{ 2 ’

OS~q

n_≦[ds+t

    n

St_旦ds+ ω  t

J,,。詰Sω・きd・}

Sdn』t

★ ωSーア

  β

Page 162: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一155一

} S dn』t

★ ωSーア

    。1

十Sd曳t

 ωSーア

   μ

工十

Sd生t ★  ω S T1一ρ

  β

工十Sd

当t

 ωS-ひ

   ’1

‘{ 1 OS ~q =

、~

白n9亡

♂Sーデ

 。0

工十

Sdn』t

ωS

-ひ   β

工十Sd

nユt

ω

S-ひ

   ソ

ー{  2 OS ~q 十

} S dn』t

 ωSーア

   。4

工十

Sd生t

ω

S1ひ  74

£∂鰭一1

 ’OS~q(

=S,q。Sω・詩d・     ’一一                              …  ●●●●・●●●・●・・. (A.4)

Thus, we find from Eqs. (A.3) and (A.4) that the orthogonality.

relation (3.30) holds for the two-celled structure.

Page 163: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一156一

APPEND工X   工工.

List of Solutions for Statica1 and Kinematical Quantities

     For simplicity, we introduce

            り            θ = θ一 θ

                               β=

            べ            Φ = θ 一 Φ

            α=;〔・一、+i≡;v.、+

Then, the solutions are given by

    Mv(θ)

           ~      sinθ

=M凵E。in。+M凾Q

sinθ    十

sinO

the following notations

G    JJ ★ S    Z ?

E JJ  -」  2 s y Z   yz

β

●  ●  ●  ●   ●   ●  ●   ●  ●   ●   ●

M★(θ) ω

= RM    yl

          り       sinΦ

だ             のプ

(T 十 RP)   ・sinθ

       sinO

(A.5)

             だ、+1≡;v.,〔ii≡9-

K“’2

クiii一

for  O < e < Φ

                  sinθへv             り

(T 十 RP)     sinΦ    for  Φ ≦ θ ≦ O

       sinO

          ・◆●・●.●●●●●● (A●6》

十 RM    y21+。・・tit・

       At三i:i≡i≡i〕

蒜≡i≡i〕

Page 164: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一157一

        りsinhK★1」★θ

+Mω1★       。inh.・ti・e

sinhK★}1「ke

}く★2

+Mω2★       sinhKtp★0

1+K★2vt2

         si頑

(R壬 十 R2登)     sinθ

         sinO

+〔・・μ・R予一。≒.R・司        ゼsinhK★μ★Φ

K★2          sinΦ

(Ri+R・i) sinる         sinO

sinhKtl」ft e

sinhK★1」★O

  for  O < θ < Φ         一       =:口

1+。・・tit・

+〔K★V…ROI-K≒. R・司 sinhKtμ★Φ                 N          sinhlぐtv★e

  sinhK★P★O

    for  Φ < θ < 0           =

・●・・●●●●・・●●・●(A●7)

Tst(e)

=-M凵A{〔・

               り一、+≡≡;μ.、〕ii三i+、+K★3 ハ★        NcoshK★V★e

+M凾Q{〔・ 一、+三≡;V.、〕ii三i+、+

            N     coshK★V★e

               一

Krk2 魔狽Q sinhK★v★0

Kt3 ハ★ coshK★1」★θ

}1一〇

+1・ω、・〔・・v・  

1一〇

K★2 魔狽Q sinhK★1」★θ

÷ω2・〔・・P・

  11

-5∫

sinhKtμ★0

coshKkla★e

sinhK★ut◎

 1一〇

Page 165: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一158一

                            lv+(⊇〔・一、+1≡;V.、巴il-・θ

   のの            り

一 (T-RP)         .1 +

に★.㌔★2

           Φ

   だ

一RP-     0

        りsinhKtμtΦ

   N              ば

一 (T+RP》〔・一、+

1く★2

K・…ti・・

sinΦ〕

sin◎

sinhK★vfto

COS6

coshK★μke

Kt2 魔狽Q

     Φ   り

十RP一     θ

for 0く θ くΦ  ■■t      一

   jV            N

+ (T-RP)K“pt2 sinhlく★V★Φ        ~

          coshK★V★θ

1 + }ぐ★21」t2 sinhKltvto

for

●  ●  ●  ●  ■  ●  ■  ●  ●  ●  ●  ・  ・

Φ< θ <O  m       ■■

(A.8)

T★(θ) ω

= - M     yl        l+

K★2

Kt2 P」t2

   べCOSθ〔。in。一

Ktv de

        だcosh1ぐ★V★θ

sinhK★μtO

十M   y21+

Kft 2

Kt2 魔狽Q

  1

--l、、1ft K“vk

  R

COSθ〔。in。一

       dVco shK★V ft e

K★μt

sinhK★μ★0

coshKkvte

sinhK★μ★0

  i

+r M、。2“K★vt  R

coshK★1」★e

8inhK★1」★◎

                         べ

「+・+i≡;v・・ぽlll-+

Page 166: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一159一

K★2

+(。.・㍉・・壬

{(R鱗)三iii-・る+

             り   ~ sinhK★1.t★Φ

一RP)

1+KSt 2 V★2

sinhK★1」★O

       for O

C・・h・・V・ep

< θ < Φ一       一

          +(K★2pt2!r   ~ sinhK★ptΦ

一RP)sinhK★vto

       for

●   ■  ●   ●  ●   ●  ■  ●   ●   ■  ●  ●   ■  ●

c・・h・・μ・6}

Φ < θ < O  s      一

(A.9)

’Tt(θ)

 X

        COS6

=-M凵E。in。+M凾Q

COSθ     一

sinO

1

-Mω1★R

l  l     l

。+ 奄戟@Mω2★。

             り          sinΦ   のv             り

十  (T 十 RP)     cose

          sine

     N   ~ Φ

一 RP -

     O

                           へ   一 1一κ★2P★2 sinhK★μ★Φ一 RPK★2

          sinΦ   べ              り                  だ   一 (T + RP)     COSθ

          sinO

1+Kt2P★2 sinhK㌔★θ

   ~ Φ

十 RP -

     0

coshlくtu★e

for  O < θ < Φ       ■=       =1t

   ~    1 - K★2P★2 sinhK★1」★Φ        ~

+RPKt2         coshKrkv★e1 + Kt2μt2 sinhK★μ★0

O<エθ〈=ΦrOf

)01 ◆A( ● ● ● ● ● ● ● ■ ● ● ● ● ● ● ●

Page 167: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一160一

GsJT’x“(θ)

    ’ K、★2P.★2

-M

   りcose〔。in。+K t.1」 t coshK★μ、★6  

1一〇

y11+Kt2v★2

  Kt2pt2

十M   y21+.・㍉・・

1+K・㍉〆sinh。㍉・0

COSθ〔。in。+、+Kkpt coshKtv★e

+1・ω、・〔芸        りcoshKtv★e

K・・狽堰E・

sinhKt1」★0

一i〕÷ω2・〔芸

1一〇

sinhKtl」★O

coshK★1」te

sinhKtμtO

 

1一〇

                       N+、i★;i;f,、{N              N(T+RP)≡i≡1-・θ

一〔i-K.≒.、壺〕        ぺsinhKtμ★Φ

8inhK★μ★ec・・h・・V・e

p’一   N   Φ りRP -   ◎

for  O < e < Φ      ■■口       ■■■

K★2 垂狽Q

1+Kt2P★2

       sinΦヤ           だ

               べ(T 十 RP)     cose

       sinO

一ト..≒.,∋ sinhiく★1」★Φ

sinh}ぐ★1」★0

c・・h・㌔・6}

for

     Φ   lv十 RP-     0

Φ < θ < ◎  =       一

(A.11)

Page 168: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一161一

    ★φ(θ》GJ s T

=-凵E{(、+K-vt2

K★2 磨嘯Q)2

   りsinθ〔sin。一

        NsinhKtv★e

sinhK★μto

一α

一y2{(、+K一μt2   sinθ、〔

       -

  sinO

   NCOSθ     一

sinO

sinhK★μte

i≡≡il・inδ〕}

Kt2 ハt2)

sinhK★口★0

一Ct (e COSθ

sinO

Kt2 浮汲Q

+Mω1★       1+K★2ロ★2

   Nsine〔。in。一        のsinhKtμke

sinhK★μto

i≡iii・inθ〕}

K★2 ハt2十M  t   ω21+。・・V・・

sine〔。in。一

+(Kt2vt2Rfii-R25)

sinhK★ptθ

sinhK★μto

K-vt2

(1+K★2vt2)2

1

    NsinΦ〔

sinOsine一

        だ8inhKtμtΦ

                 り

一 ( のv               だqT十R2P)・・r{iiil〔・一・・

1ぐtμk sinhKtpt◎

sinθ     一

sine

・inh・・μ・θl

θc・・θl+

Page 169: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一162一

      べ+ (sinΦ

一5-・5)iiii}

               り          ’ sinΦ   り+RT(1-K★2)  sinθ             sinO

+(K・2り・2R壬一R26)K“vt2    り

sinΦ〔

sinO

for

sinθ一

0 < θ < Φ  ■■■      ■■■

(1+K★2リ★2)2

   1

  Ktv★

       iVsinhK★U★Φ

sinhKtutθ・inh・・v・el

一(前+R・予)α{三ii;〔・一・・ sin葛

     一

sinO

6c・・司+

+ (sinΦ

           Iv

一Φ一・Φ)Oili}

   N+RT(1      sinΦ

一K★2 j  sinδ      sinO

O〈エθ<=ΦrOf

)21 ●

A( ● ● ● ● ■ ● ● ● ● ● ● ● ●

    twt (e)GJ s T

=R2M凵E{(、・+

}ぐt2

Kt2 魔狽Q)2

   りsine〔。in。一

        NsinhKkute

+αkδ

sinhK★μ★0

   りCOSθ

8inO

       ぽ

〕-iiii

  ◎cosO-

  sin2◎

~θ一〇

・inδ〕}

Page 170: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一163一

+R・M凾Q{《、+i≡;1.1.≒、⊂iil-ii:≡≡i≡i〕一≡ii晶+

                 .+α〔θii三i-i≡三ii・inθ〕}

                     り                                                                       り                                                N

+RM、、、・

k、≡★;i;;.、 i:i+、+i.、V.、≡iil≡≡i≡㍉〕

一ω2・

k  Kt2μt2   sinθ      1     sinhlぐtu★e   θ               十                   一 一1 + Kt2μt2 sinO   1 + Kt21」★2 sinhlぐtV★O   e〕

                                   り一(…り・・R・予一R・P》に+≡≡;V.、),〔iil・inθ一

                                      り                       一。≒.ii:i≡i≡1・inh・・V・e〕

                 lv-(R・売+R・V)α{iii;〔・一・θiiii一θ一・θ〕+(・in6-5-・5)liil9.19}

         だ                      り

一R・i kiil・inθ÷〕

                                        for  O < θ < Φ                                               ■■3      目

一(…μぷ一R・i)i、+i≡;胆。、)、〔iill・in6一

Page 171: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一一 P64一

1

Kkμ★

=・inh・・V・司

一(R2i+R・b ct{ sinΦ 〔・c…

   dVsinθ

sinO

一5C・・6〕+(・inΦ一ΦCOSΦ)

   だsinθ

sinO 8in◎

一R・i〔 sinΦ

sinθ

   りsinθ ÷〕

for Φ< θ <◎  一       =

●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ●  ・  ●(A.13)

APPEND工X 1工1..

Flexibilit  Coefficients in E uations of Consistent

Deformation

δ・・= ?o(、+}ぐ★2

ー  一2 cosO

一 KtvtcoshK★μtθ

K★2 磨嘯Q) sinθ sinhKtvto

一αkθ一 cosO

8inθ

+iil;1〕一 cosO

sinO

}1一◎

δ

22G。i♂〔芸 coshK★1」★0

sinhKtvto

1一〇

    =δδ

       2112 =-

f。it.〔、+Kt2 浮狽Q cose

K★2 磨嘯Q sinO十

Page 172: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一165一

                       ’+、+K≡;iμ.、ii三蒜一1〕

                                        .・.●●.●・....●●(A・14)

                                                       だ      工n the case where the unit concentrated torque  T  or load

i  moves across the first span, the flexibility coefficients

δ10andδ20 are given by

      δ・・=一轟{(、宗;.・)・Cii虻烹〕+

                             +α〔・iil隠i;一Φiiil〕}

 or

      δ・・=蒜{(、+i≡;V.・)・∈i:;-i鷲〕一 ・

                        一α〔  cosO sinΦ     cosΦ0        一Φ  sinO sinO     sinO〕-Zil ll.1¢,+1}

 and

      δ2・=G。1:.;.、;;1≡;.・〔iil一叢〕

.or

      δ2・=G;子、;;蠕;.・〔i三i+、+i.・μ.蒜≡i≡i-9)

                                       ・.●.●●●.○●●.●●・● (A●15)

Page 173: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一166 ■一一

                                                    N     工n the case 壷here .the unit concentrated torque  T  or

l。ad P m。ves acr。ss the sec。nd span, the c・rresp・nding ex-

pressi。n・f・rδ、O andδ2。’can be。btained by「eplacing

in七he above expressions by O一Φ・

Page 174: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一167 一

REFERENCES

【1】

【2】

【3]

【4】

【5]

[6】

【7]

【8】

【9]

【10]

Th. von K6rm6n and N. B. Christensen:Methods of Analysis

for Torsion with Variable Twist, Journal of the Aeronau-                                                       ■tical Sciences, Vol. 11, No. 2, Aprilt 1944, pp. llO-124.

F. W. Bornscheuer: Systematische Darstellung des Biege-

und Verdrehvorgangs unter besonderer Beriicksichtigung der

W61bkrafttorsion, Der Stahlbau 21, Heft 1, 1952, S. 1-9.

工. Konishi and S. Komatsu: On the Fundamental Theory of

Thin-Walled Curved Girdero Japan Society of Civil Engi--

neers-Transac七ions, No. 87, Nov., 1962, pp. 35-48,

(in Japanese).

                       :Three Dimensional Analysis of

Simpiy Supported Curved Girder Bridges, ibid.t No. 90,

Feb., 1963, pp. 11-28, (in Japanese).

                       : Three Dimensional Analysis for

Continuous Curved Girder Bridges, ibid., No. 91, March,

1963, pp. 13-24, (in Japanese).

S. Kuranishi:Analysis of Thin-Walled Curved Beams, ibid.,

No. 108, Aug., 1964, pp. 7-12, (in Japanese).

Y. Fukazawaヌ Fundamental Theory of Thin-Walled Curved Bars

in Static Analysis, ibid.,No. llO, Oct., 1964, pp. 30-51,

(in Japanese).

E. Reissner: On Non-Uniform Torsion of Cylindrical Rods,

Journal of Mathematics and Physics, Vo1. 31, 1952,

pp. 214-221.

S.U. Benscoter:ATheory of Torsion Bending for Multicell

Beams t Journal of Applied Mechanics, Vo1. 21, No. 1, 1954,

pp. 25-34.

                                         . R. Heilig: Beitrag zur Theorie der Kastentrager beliebiger

Querschnittsform, Der Stahlbau 30, Heft 11, 1961, i.

S. 333-349.

Page 175: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一168一

【11】

【12】

【13】

[14】

【15]

【16]

口7]

口8】

口9】

[20】

                                                         W.Graβe:Wδ1bkrafttorsion dUnnwandiger prismatischer Stabe

beliebigen Querschnitts, Ingenieur-Archiv 34, Heft 5, 1965,

S. 330-338.

E. Schlechte: Die Torsion dUnnwandiger Stabe mit Schub-

verformung aus behinderter Querschnittsverw61bung,

Bauplanung-Bautechnik, Jg. 18, Heft 11, Nov., 1964,

S. 556-560.

K. Roik und G. Sedlacek: Theorie der W61bkrafttorsion unter

BerUcksichtigung der sekund5ren Schubverforrnungen-Analogie-

Betrachtung zur Berechnung des Querbelasteten Zugstabes’

Der Stahlbau 35, Heft 2, 1966, S. 43-52.

D. Schade: Zur Wδlbkrafttorsion von Staben mit dUnnwandigem

Querschnitt, Ingenieur-Archiv 38, Heft l, 1969, S. 25-34.

K. Washizu: Some Consideration on the Center of Sheart

Trans. Japan Soc. Aero. Space Sci.’ Vo1. 9, No. 15, 1966,

pp. 77-83.

P.MUIIer; Torsion von Iくastentr5gern mit elastisch verforrn-

barem symmetrischem Querschnitt, Schweizerische Bauzeitung,Jg. 71, Nr. 46, Nov., 1953, S. 673-676.

R. Dabrowski‡ Der Schubverformungseinfluss auf die W61b-

krafttorsion der Kastentrager mit verformbarem biegesteifemProfi1, Der Bauingenieur, Jg. 40, Heft ll, 1965, S. 444-449.

A. Steinle; Torsion und Profilverformung beim einzelligen

Kastentriiger, Beton- und Stahlbetonbau 65, Heft 9ク 1970,

S. 215-222.

R.Dabrowski:Naherungsberechnung der gekril’ mmten Kasten-

trager mit verformbarem Querschnitt, 工ABSE, Seventh

Congress, Rio de Janeiro, Prelim. Publ. V工, 1964,

pp. 299-306.

            :Gekr込mmte dUnnwandige Trager, Springer-Verlag,

          Berlin-Gottingen-Heidelberg・-New York, 1968,.

Page 176: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一169一

【21】

【22】

[23]

【24】

【25】

【26】

【27】

【28]

1.Konishi, N. Shi・raishi, and S. Kambe:AStudy on the

Torsional Bending Theory of the Curved Girder Bridge with

Thin-Walled Closed Cross Sections Taking the Secodary Shear

Deformation into Account, 14th National Simposium on Bridge

and Structural Engineeringt Japan Soc. of Civ. Eng., Dec.,

1967, pp. 153-167.

S. Kambe and H. Tanaka; On the Torsional Bendinq Theories

of S. U. Benscoter and R. Heili●’s Type for the Curved Box

Girder Bridges, The Abstract of 24th Annual Conference Of’

the Japan Soc. of Civ. Eng., Oct.t l973.

V. Z.Vlasov:Thin-Walled Elastic Beams, 2nd Ed., Moscow,

1959, 工srael Proqram for Scientific Translationst Jerusalemt

l961.

G. Lacher: Zur Berechnunq des Einflusses der Querschnitts-

verforrnung auf die Spannungsverteilung bei durch elastische

order starre Querschotte versteiften Tragwerken mit pris-

matischemt offenem oder geschlossenem biegesteifem

Querschnitt unter Querlast, Der Stahlbau 10, Heft 6, 1962,

S、 299-308.

S. R. Abdel-Samad, R. N. Wright, and A. R. Robinson:

Analysis of Box Girders with Diaphragms, Journal of the

Structural Division, ASCE, Vol. 94, No. STIO, Proc.

Paper 6153, 0ct., 1968, pp. 2231-2256.

T. Okumura and F. Sakai: Distorsional Behaviours and 工nflu-

ence of Diaphragms in Ribbed Trapezoidal Box Girderst

Proceedings of the Japan Society of Civil Engineers r

No. 209, Jan., 1973, pp. 1-14.

S. Ochiai:Anaiysis of Box Girder Taking the Influence of

diaphragms into Considerationt Civil Engineering, Vol. 23,

No. 2, 1968, pp. 49-57, (.il} Japanese).

S. Ochiai and S. Kitahara: CharacteriS・ヒic BehaviOur of                                                ロ                        ロ

Diaphragms on Box Girderr The Bridge and Foundatlon Eng1←

neeringt’ uo1. 5t No. 4, 1970, PP. 1-7, 《in J∂panese).

Page 177: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

_170一

[29]

【30】

【31】

【32]

【33】

[34】

【35】

[36】

【371

【38】

【39】

【40】

Z. P. Bazant: Piece longue a voiles epais et calcul des

poutres a section deformable, Annales des Pont et

Chaussees, No. 1工工, Mai-Juin, 1968, pp. 155-169.

J. E. Goldenberg and H. L. Leve: Theory of Prismatic Folded

Plate Structures, Publs. of 工ABSE, ZUrich, Vol. 17, .1957,

pp..69-86.

A.C. Scordelis:AMatrix Formulation of the Folded Plate

Equations, Journal of the Structural Division’ ASCE’

Vo1. 86, STlO, Oc七.r 1960, pp. 1-22.

                                        ロ      コ                         

Y. K. Cheung: Folded Plate Structures by Flnite Strip

Method, ibid.,Vo1. 95, ST12, Dec., 1969, pp. 2963-2979.

K. H. Chu and S. G. Pinjarkar: Multiple Folded Plate Struc-

tures, ibid., Vo1. 92, ST2, Apr., 1966, pp. 297-321.

K. S. Lo and A. C. Scordelis: Finite Segment Analysis of

Folded Plates, ibid., Vo1. 95, ST5, May, 1969, pp. 831-852.

A.DeFrie-Skene and A. C. Scordelis:Direct Stiffness So-

1ution for Folded Plates, ibid.,Vo1. 900 ST4, Aug.t 1964,

pp. 15-47.

C.Meyer and A. C. Scordelis:Analysis of Curved Folded

Plate Structures, ibid., Vol. 97, STIO, Oct., 1971,

pp. 2459-2480.

K. H. Chu and S. G. Pinjarkar: Analysis of Horizontally

Curved Box Girder Bridges, ibid., Vo1. 97, STlO, Oct.,

1971, pp・ 2481-2501●

K. C. Lockey’ J. L. Bannister’ and H. R. Evans: Develop-・

ments in Bridge Design and Construction t Crosby Lockwood &

Son Ltd., 1971, p. 204.

S. P. Timoshenko‡ History of Strength of Materialt Mcgraw-

Hill Book Co., Inc., 1953, PP. 152-155.

S. Kambe and N. Takaoka: Contemporary Trend of the Analy-

sis of Box Girder Bridgest Reporrヒs of the Faculty of

Engine6ring, Tottori University, Vo1. 3, No. 2, March, 1973,

pp. 57-62, (in Japanese).

Page 178: repository.kulib.kyoto-u.ac.jprepository.kulib.kyoto-u.ac.jp/dspace/bitstream/... · (ii) ACKNOWLEDGEMENTS The author should like to express his special thanks to Professor 工chiro

一 171一

[41】

【42]

【43】

[44】

[45】

【46】

【47]

148]

P. F.McManus, G..A. Nasirr and C. G. Culver: Horizontally

Curved Girders -State of the Art, Journal of the Struc-

tural Division, ASCE, Vol. 95, ST5, May, 1969, pp. 853-870.

Th. von Karman and W. Z. Chien3 Torsion・with Variable

Twistt」・urnal gf the Aer・nautica1 Sciences’V。1・13’

No. 10, 0ct., 1946, pp. 503-510.

N. Saeki‡ Warping Torsion Theory in Consideration of the

Deformation Due to Secondary Shearing Stress and Its

Numerical Examples, Proceedings of the Japan Society of

Civil Enqineers, No. 209, Jan., 1973, pp. 27-36

(in Japanese).

S. Timoshenko and J. N. Goodier: Theory of Elasticity,

2nd ed., McGraw-Hill Book Company, Incり 1951 (Asian Stu-.

dents’ Edition, Kogakusha Company, Ltd., Tokyo).

S. Kambe: The Relation between Two Types of the Torsional

Bending Theories after S. U. Benscoter and R. Heiliq,                             ロ                 ,                                                    ロ                 の

Reports of the Faculty of Enqlneerエnq, Tottorエ Unエversユty,

Vol. 4, No. 1, Sept., 1973, pp. 92-104.

S.Kambe and H. Tanaka:AStudy on the Continuous Curved

Girder Bridge with Closed Cross Section, ibid.,Vol. 2,

No. 2, March, 1972, pp. 100-lll.

S.Komatsu, H. Nakai, and Y. Taido:AProposition for

Designing the Horizontally Curved Girder Bridqes in Con-

nection with Ratio between Torsional and Flexural Rigidities,

Proceedings of the Japan・Sciety of Civil Engineers, No. 224,

April, 1974, pp. 55-66 (in Japanese).

N. Watanabe‡ Theory and Calculation of Curved Girder,

Gihodo BoOk Co., 1967.