implementation of a wireless mesh network of ultra light mavs with dynamic routing

84
Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing Alberto Jimenez-Pacheco Laboratory of Mobile Communications, EPFL, Switzerland alberto.jimenez@epfl.ch Globecom Wi-UAV Workshop 2012 Anaheim, December 7th 2012 Joint work with: Denia Bouhired, Yannick Gasser, Jean-Christophe Zufferey, Dario Floreano and Bixio Rimoldi alberto.jimenez@epfl.ch (EPFL) SMAVNET Aneheim, Dec. 7th 2012 1 / 17

Upload: others

Post on 11-Sep-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Implementation of a Wireless Mesh Network of UltraLight MAVs with Dynamic Routing

Alberto Jimenez-Pacheco

Laboratory of Mobile Communications, EPFL, [email protected]

Globecom Wi-UAV Workshop 2012Anaheim, December 7th 2012

Joint work with: Denia Bouhired, Yannick Gasser, Jean-Christophe Zufferey,

Dario Floreano and Bixio [email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 1 / 17

Page 2: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Outline

1 Introduction

2 Flying Platform

3 Communication Systems and Dynamic Routing

4 Experimental results

5 Conclusions and future work

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 2 / 17

Page 3: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Introduction

SMAVNET: Swarm Micro Air Vehicle NETwork

Framework: Swarming network of unmanned micro air vehicles fordeployment in outdoor areas and challenging terrain:

Disaster areas of difficult accessUrban environments

⇒ Fast deployment + high maneuverability + no pre-existinginfrastructure

Goal: To improve the wireless communications

Extend communication rangeAvoid obstacles (nLOS communication)

Challenge: system must cope with

Fast variability of the wireless channelHigh mobility of the MAVs

Proposed solution: WiFi + dynamic routing with OLSR (with linkquality extensions)

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 3 / 17

Page 4: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Introduction

SMAVNET: Swarm Micro Air Vehicle NETwork

Framework: Swarming network of unmanned micro air vehicles fordeployment in outdoor areas and challenging terrain:

Disaster areas of difficult accessUrban environments

⇒ Fast deployment + high maneuverability + no pre-existinginfrastructure

Goal: To improve the wireless communications

Extend communication rangeAvoid obstacles (nLOS communication)

Challenge: system must cope with

Fast variability of the wireless channelHigh mobility of the MAVs

Proposed solution: WiFi + dynamic routing with OLSR (with linkquality extensions)

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 3 / 17

Page 5: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Introduction

SMAVNET: Swarm Micro Air Vehicle NETwork

Framework: Swarming network of unmanned micro air vehicles fordeployment in outdoor areas and challenging terrain:

Disaster areas of difficult accessUrban environments

⇒ Fast deployment + high maneuverability + no pre-existinginfrastructure

Goal: To improve the wireless communications

Extend communication rangeAvoid obstacles (nLOS communication)

Challenge: system must cope with

Fast variability of the wireless channelHigh mobility of the MAVs

Proposed solution: WiFi + dynamic routing with OLSR (with linkquality extensions)

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 3 / 17

Page 6: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Introduction

SMAVNET: Swarm Micro Air Vehicle NETwork

Framework: Swarming network of unmanned micro air vehicles fordeployment in outdoor areas and challenging terrain:

Disaster areas of difficult accessUrban environments

⇒ Fast deployment + high maneuverability + no pre-existinginfrastructure

Goal: To improve the wireless communications

Extend communication rangeAvoid obstacles (nLOS communication)

Challenge: system must cope with

Fast variability of the wireless channelHigh mobility of the MAVs

Proposed solution: WiFi + dynamic routing with OLSR (with linkquality extensions)

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 3 / 17

Page 7: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Flying Platform

Flying Platform

Built on expanded poly-propylene

Total weight ≈ 450 gVery small inertiaSafe for third parties

Payload ≈ 150 gTight constraints forcommunication equipment:weight, power consumption,computing power

Propelled by DC electrical motor inthe rear end

Elevons: two control surfaces thatserve as combined ailerons andelevators

LiPo battery (≈ 60 min autonomy)

80 cm

!"#$ %$ &'() !*"+# ,"+# (-. -/01--. )23)."4)+05 4'1) -/0 -( 5-(0 4'0)."'6'+1 ,"07 ' 8'9:;4-/+0)1 3.-3)66).$ <7) .-8-0 "5 )=/"33)1 ,"07 '+ '/0-3"6-0>)48)11)1 ?"+/2> @"!" 1-+#6) '+1 AB& C-+6* (-. 6-##"+# 3/.3-5)5D$

1 cm

WiFi module computer autopilot

!"#$ E$ F-+0.-6 )6)90.-+"95 "+96/1"+# 07) '/0-3"6-0 '+1 07) '1'30).;9'.1"+0).('9"+# 0- 07) F-6"8." ?"+/2 8-'.1 '+1 07) G&H @"!" 1-+#6)$

8'5)1 -+ "+3/0 (.-4 -+6* I 5)+5-.5J -+) #*.-59-3) '+1 0,-3.)55/.) 5)+5-.5$<7) 9-44/+"9'0"-+;8'5)1 '6#-."074 "5 "436)4)+0)1 -+ '

<-.'1)2 F-6"8." BKLMEN FBG 8-'.1 ./++"+# ?"+/2> 9-+;+)90)1 0- '+ -((;07);57)6( G&H @"!" 1-+#6) C!"#$ ED$ <7)-/03/0 -( 07"5 7"#7;6)O)6 9-43/0).> +'4)6* ' 1)5".)1 0/.+.'0)> "5 5)+0 '5 9-+0.-6 9-44'+1 0- 07) '/0-3"6-0$ L60"0/1)'+1 '".53))1 9-44'+15 1/."+# 07) )23)."4)+05 .)4'"+)19-+50'+0 '0 EN 4 '+1 PM 4Q5> .)53)90"O)6*$ R+ -.1). 0- 6-#!"#70 0.'S)90-.")5> 07) .-8-0 "5 (/.07). )=/"33)1 ,"07 ' /;86-2I?TL;UV AB& 4-1/6)$!-. 07) @"!" 9-44/+"9'0"-+> W)0#)'.X @WYLIPNN 1-+;

#6)5 ,).) /5)1 07'0 "436)4)+0 07) ZNM$PP+ 50'+1'.1 '+10.'+54"0 "+ 07) U AV[ 8'+1$ <7"5 "5 "+0).)50"+# ,"07 .)53)900- 0.'+54"55"-+5 "+ 07) M$X AV[ 8'+1 8)9'/5) "0 '66-,5 (-.6)55 "+0).().)+9) ,"07 07) 9-+5"1).'86) +/48). -( 1)O"9)59/..)+06* /5)1 "+ 07"5 8'+1$ Y-+#6)5 '.) 9-+"#/.)1 (-. '1;7-9 4-1) '+1 7'O) ' 9-44/+"9'0"-+ .'+#) -( +)'.6* UNN4 6"+);-(;5"#70$ !-. 07) 3/.3-5) -( 07) )23)."4)+05 .)3-.0)1

I7003JQQ,,,$/;86-2$9-4X7003JQQ+)0#)'.$9-4

−200 0 200−300

−200

−100

0

100

200

300

Y [m

]

X [m]

0 50 100 150 200 2500

2

4

6

8

10

12

numb

er o

f mes

sage

sre

ceive

d by

the

robo

t

distance from base [m]

conservativecommunication

range of 135m

!"#$ Z$ F7'.'90)."['0"-+ -( 07) 9-44/+"9'0"-+ 8)0,))+ 07) 8'5) C50'.D'+1 .-8-0$ <7) 0-3 #.'37 57-,5 07) 0.'S)90-.* -( 07) .-8-0 3).(-.4"+#07) 97'.'90)."['0"-+$ <7) 8-00-4 #.'37 57-,5 07) 4"+"4/4> 4)1"'+ '+14'2"4/4 +/48). -( 4)55'#)5 .)9)"O)1 8* 07) .-8-0 -O). UN 45 '5 '(/+90"-+ -( 1"50'+9) (.-4 07) 8'5)$

"+ 07"5 3'3).> ,) 4-1"")1 07) 1."O). -( 07) @"!" 4-1/6) 0-.)1/9) 07) 9-44/+"9'0"-+ .'+#) -( 07) 8'5)$

!" !#$% &'#'()*<7) 5'4) ?"+/2 9-43/0). '+1 @"!" 1-+#6) ,).) /5)1

(-. 07) 8'5) 50'0"-+ '+1 07) !*"+# .-8-0 0- )+5/.) 07'0 07))23)."4)+05 3.)5)+0)1 7).) 9'+ )'5"6* 8) )20)+1)1 0- 4-.)9-436)2 59)+'."-5 "+O-6O"+# 4/60"36) .-8-05$ <7) 8'5) 50';0"-+ "5 9-+0'"+)1 "+ ' 54'66 8-2 '+1 9'+ )'5"6* 8) 0.'+53-.0)1'+1 3-5"0"-+)1 "+ '+* )+O".-+4)+0$

R\$ ]T&G?<&

@) 3.-#.)55)1 8* ".50 "1)+0"(*"+# 07) 4"+"4'6 9-44/+";9'0"-+ .'+#) -( 07) 8'5)$ @) 07)+ /5)1 "0 0- 3'.'4)0)."[) 07).)9-++)90"-+ 8)7'O"-. C8* 5)00"+# b -( 07) 53".'6 "+ CPDD '+1"1)+0"(* 07) '4-/+0 -( ,"+1 07) 8)7'O"-. 9'+ 0-6).'0)$ @"07"+07"5 .)#"4)> ,) 07)+ 1)4-+50.'0)1 07'0 07) .-8-0 "5 '86) 0-

!"

motor and propeller

battery

elevons

autopilot & embedded PC

pitot tube

wifi card

Drone cruise speed ≈ 10 m/s

Can operate in light breeze,with wind speeds up to 7 m/s

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 4 / 17

Page 8: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Flying Platform

Flying Platform

Built on expanded poly-propylene

Total weight ≈ 450 gVery small inertiaSafe for third parties

Payload ≈ 150 gTight constraints forcommunication equipment:weight, power consumption,computing power

Propelled by DC electrical motor inthe rear end

Elevons: two control surfaces thatserve as combined ailerons andelevators

LiPo battery (≈ 60 min autonomy)

80 cm

!"#$ %$ &'() !*"+# ,"+# (-. -/01--. )23)."4)+05 4'1) -/0 -( 5-(0 4'0)."'6'+1 ,"07 ' 8'9:;4-/+0)1 3.-3)66).$ <7) .-8-0 "5 )=/"33)1 ,"07 '+ '/0-3"6-0>)48)11)1 ?"+/2> @"!" 1-+#6) '+1 AB& C-+6* (-. 6-##"+# 3/.3-5)5D$

1 cm

WiFi module computer autopilot

!"#$ E$ F-+0.-6 )6)90.-+"95 "+96/1"+# 07) '/0-3"6-0 '+1 07) '1'30).;9'.1"+0).('9"+# 0- 07) F-6"8." ?"+/2 8-'.1 '+1 07) G&H @"!" 1-+#6)$

8'5)1 -+ "+3/0 (.-4 -+6* I 5)+5-.5J -+) #*.-59-3) '+1 0,-3.)55/.) 5)+5-.5$<7) 9-44/+"9'0"-+;8'5)1 '6#-."074 "5 "436)4)+0)1 -+ '

<-.'1)2 F-6"8." BKLMEN FBG 8-'.1 ./++"+# ?"+/2> 9-+;+)90)1 0- '+ -((;07);57)6( G&H @"!" 1-+#6) C!"#$ ED$ <7)-/03/0 -( 07"5 7"#7;6)O)6 9-43/0).> +'4)6* ' 1)5".)1 0/.+.'0)> "5 5)+0 '5 9-+0.-6 9-44'+1 0- 07) '/0-3"6-0$ L60"0/1)'+1 '".53))1 9-44'+15 1/."+# 07) )23)."4)+05 .)4'"+)19-+50'+0 '0 EN 4 '+1 PM 4Q5> .)53)90"O)6*$ R+ -.1). 0- 6-#!"#70 0.'S)90-.")5> 07) .-8-0 "5 (/.07). )=/"33)1 ,"07 ' /;86-2I?TL;UV AB& 4-1/6)$!-. 07) @"!" 9-44/+"9'0"-+> W)0#)'.X @WYLIPNN 1-+;

#6)5 ,).) /5)1 07'0 "436)4)+0 07) ZNM$PP+ 50'+1'.1 '+10.'+54"0 "+ 07) U AV[ 8'+1$ <7"5 "5 "+0).)50"+# ,"07 .)53)900- 0.'+54"55"-+5 "+ 07) M$X AV[ 8'+1 8)9'/5) "0 '66-,5 (-.6)55 "+0).().)+9) ,"07 07) 9-+5"1).'86) +/48). -( 1)O"9)59/..)+06* /5)1 "+ 07"5 8'+1$ Y-+#6)5 '.) 9-+"#/.)1 (-. '1;7-9 4-1) '+1 7'O) ' 9-44/+"9'0"-+ .'+#) -( +)'.6* UNN4 6"+);-(;5"#70$ !-. 07) 3/.3-5) -( 07) )23)."4)+05 .)3-.0)1

I7003JQQ,,,$/;86-2$9-4X7003JQQ+)0#)'.$9-4

−200 0 200−300

−200

−100

0

100

200

300

Y [m

]

X [m]

0 50 100 150 200 2500

2

4

6

8

10

12

numb

er o

f mes

sage

sre

ceive

d by

the

robo

t

distance from base [m]

conservativecommunication

range of 135m

!"#$ Z$ F7'.'90)."['0"-+ -( 07) 9-44/+"9'0"-+ 8)0,))+ 07) 8'5) C50'.D'+1 .-8-0$ <7) 0-3 #.'37 57-,5 07) 0.'S)90-.* -( 07) .-8-0 3).(-.4"+#07) 97'.'90)."['0"-+$ <7) 8-00-4 #.'37 57-,5 07) 4"+"4/4> 4)1"'+ '+14'2"4/4 +/48). -( 4)55'#)5 .)9)"O)1 8* 07) .-8-0 -O). UN 45 '5 '(/+90"-+ -( 1"50'+9) (.-4 07) 8'5)$

"+ 07"5 3'3).> ,) 4-1"")1 07) 1."O). -( 07) @"!" 4-1/6) 0-.)1/9) 07) 9-44/+"9'0"-+ .'+#) -( 07) 8'5)$

!" !#$% &'#'()*<7) 5'4) ?"+/2 9-43/0). '+1 @"!" 1-+#6) ,).) /5)1

(-. 07) 8'5) 50'0"-+ '+1 07) !*"+# .-8-0 0- )+5/.) 07'0 07))23)."4)+05 3.)5)+0)1 7).) 9'+ )'5"6* 8) )20)+1)1 0- 4-.)9-436)2 59)+'."-5 "+O-6O"+# 4/60"36) .-8-05$ <7) 8'5) 50';0"-+ "5 9-+0'"+)1 "+ ' 54'66 8-2 '+1 9'+ )'5"6* 8) 0.'+53-.0)1'+1 3-5"0"-+)1 "+ '+* )+O".-+4)+0$

R\$ ]T&G?<&

@) 3.-#.)55)1 8* ".50 "1)+0"(*"+# 07) 4"+"4'6 9-44/+";9'0"-+ .'+#) -( 07) 8'5)$ @) 07)+ /5)1 "0 0- 3'.'4)0)."[) 07).)9-++)90"-+ 8)7'O"-. C8* 5)00"+# b -( 07) 53".'6 "+ CPDD '+1"1)+0"(* 07) '4-/+0 -( ,"+1 07) 8)7'O"-. 9'+ 0-6).'0)$ @"07"+07"5 .)#"4)> ,) 07)+ 1)4-+50.'0)1 07'0 07) .-8-0 "5 '86) 0-

!"

motor and propeller

battery

elevons

autopilot & embedded PC

pitot tube

wifi card

Drone cruise speed ≈ 10 m/s

Can operate in light breeze,with wind speeds up to 7 m/s

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 4 / 17

Page 9: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Flying Platform

Flying Platform

Built on expanded poly-propylene

Total weight ≈ 450 gVery small inertiaSafe for third parties

Payload ≈ 150 gTight constraints forcommunication equipment:weight, power consumption,computing power

Propelled by DC electrical motor inthe rear end

Elevons: two control surfaces thatserve as combined ailerons andelevators

LiPo battery (≈ 60 min autonomy)

80 cm

!"#$ %$ &'() !*"+# ,"+# (-. -/01--. )23)."4)+05 4'1) -/0 -( 5-(0 4'0)."'6'+1 ,"07 ' 8'9:;4-/+0)1 3.-3)66).$ <7) .-8-0 "5 )=/"33)1 ,"07 '+ '/0-3"6-0>)48)11)1 ?"+/2> @"!" 1-+#6) '+1 AB& C-+6* (-. 6-##"+# 3/.3-5)5D$

1 cm

WiFi module computer autopilot

!"#$ E$ F-+0.-6 )6)90.-+"95 "+96/1"+# 07) '/0-3"6-0 '+1 07) '1'30).;9'.1"+0).('9"+# 0- 07) F-6"8." ?"+/2 8-'.1 '+1 07) G&H @"!" 1-+#6)$

8'5)1 -+ "+3/0 (.-4 -+6* I 5)+5-.5J -+) #*.-59-3) '+1 0,-3.)55/.) 5)+5-.5$<7) 9-44/+"9'0"-+;8'5)1 '6#-."074 "5 "436)4)+0)1 -+ '

<-.'1)2 F-6"8." BKLMEN FBG 8-'.1 ./++"+# ?"+/2> 9-+;+)90)1 0- '+ -((;07);57)6( G&H @"!" 1-+#6) C!"#$ ED$ <7)-/03/0 -( 07"5 7"#7;6)O)6 9-43/0).> +'4)6* ' 1)5".)1 0/.+.'0)> "5 5)+0 '5 9-+0.-6 9-44'+1 0- 07) '/0-3"6-0$ L60"0/1)'+1 '".53))1 9-44'+15 1/."+# 07) )23)."4)+05 .)4'"+)19-+50'+0 '0 EN 4 '+1 PM 4Q5> .)53)90"O)6*$ R+ -.1). 0- 6-#!"#70 0.'S)90-.")5> 07) .-8-0 "5 (/.07). )=/"33)1 ,"07 ' /;86-2I?TL;UV AB& 4-1/6)$!-. 07) @"!" 9-44/+"9'0"-+> W)0#)'.X @WYLIPNN 1-+;

#6)5 ,).) /5)1 07'0 "436)4)+0 07) ZNM$PP+ 50'+1'.1 '+10.'+54"0 "+ 07) U AV[ 8'+1$ <7"5 "5 "+0).)50"+# ,"07 .)53)900- 0.'+54"55"-+5 "+ 07) M$X AV[ 8'+1 8)9'/5) "0 '66-,5 (-.6)55 "+0).().)+9) ,"07 07) 9-+5"1).'86) +/48). -( 1)O"9)59/..)+06* /5)1 "+ 07"5 8'+1$ Y-+#6)5 '.) 9-+"#/.)1 (-. '1;7-9 4-1) '+1 7'O) ' 9-44/+"9'0"-+ .'+#) -( +)'.6* UNN4 6"+);-(;5"#70$ !-. 07) 3/.3-5) -( 07) )23)."4)+05 .)3-.0)1

I7003JQQ,,,$/;86-2$9-4X7003JQQ+)0#)'.$9-4

−200 0 200−300

−200

−100

0

100

200

300

Y [m

]

X [m]

0 50 100 150 200 2500

2

4

6

8

10

12

numb

er o

f mes

sage

sre

ceive

d by

the

robo

t

distance from base [m]

conservativecommunication

range of 135m

!"#$ Z$ F7'.'90)."['0"-+ -( 07) 9-44/+"9'0"-+ 8)0,))+ 07) 8'5) C50'.D'+1 .-8-0$ <7) 0-3 #.'37 57-,5 07) 0.'S)90-.* -( 07) .-8-0 3).(-.4"+#07) 97'.'90)."['0"-+$ <7) 8-00-4 #.'37 57-,5 07) 4"+"4/4> 4)1"'+ '+14'2"4/4 +/48). -( 4)55'#)5 .)9)"O)1 8* 07) .-8-0 -O). UN 45 '5 '(/+90"-+ -( 1"50'+9) (.-4 07) 8'5)$

"+ 07"5 3'3).> ,) 4-1"")1 07) 1."O). -( 07) @"!" 4-1/6) 0-.)1/9) 07) 9-44/+"9'0"-+ .'+#) -( 07) 8'5)$

!" !#$% &'#'()*<7) 5'4) ?"+/2 9-43/0). '+1 @"!" 1-+#6) ,).) /5)1

(-. 07) 8'5) 50'0"-+ '+1 07) !*"+# .-8-0 0- )+5/.) 07'0 07))23)."4)+05 3.)5)+0)1 7).) 9'+ )'5"6* 8) )20)+1)1 0- 4-.)9-436)2 59)+'."-5 "+O-6O"+# 4/60"36) .-8-05$ <7) 8'5) 50';0"-+ "5 9-+0'"+)1 "+ ' 54'66 8-2 '+1 9'+ )'5"6* 8) 0.'+53-.0)1'+1 3-5"0"-+)1 "+ '+* )+O".-+4)+0$

R\$ ]T&G?<&

@) 3.-#.)55)1 8* ".50 "1)+0"(*"+# 07) 4"+"4'6 9-44/+";9'0"-+ .'+#) -( 07) 8'5)$ @) 07)+ /5)1 "0 0- 3'.'4)0)."[) 07).)9-++)90"-+ 8)7'O"-. C8* 5)00"+# b -( 07) 53".'6 "+ CPDD '+1"1)+0"(* 07) '4-/+0 -( ,"+1 07) 8)7'O"-. 9'+ 0-6).'0)$ @"07"+07"5 .)#"4)> ,) 07)+ 1)4-+50.'0)1 07'0 07) .-8-0 "5 '86) 0-

!"

motor and propeller

battery

elevons

autopilot & embedded PC

pitot tube

wifi card

Drone cruise speed ≈ 10 m/s

Can operate in light breeze,with wind speeds up to 7 m/s

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 4 / 17

Page 10: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Flying Platform

Flying Platform

Built on expanded poly-propylene

Total weight ≈ 450 gVery small inertiaSafe for third parties

Payload ≈ 150 gTight constraints forcommunication equipment:weight, power consumption,computing power

Propelled by DC electrical motor inthe rear end

Elevons: two control surfaces thatserve as combined ailerons andelevators

LiPo battery (≈ 60 min autonomy)

80 cm

!"#$ %$ &'() !*"+# ,"+# (-. -/01--. )23)."4)+05 4'1) -/0 -( 5-(0 4'0)."'6'+1 ,"07 ' 8'9:;4-/+0)1 3.-3)66).$ <7) .-8-0 "5 )=/"33)1 ,"07 '+ '/0-3"6-0>)48)11)1 ?"+/2> @"!" 1-+#6) '+1 AB& C-+6* (-. 6-##"+# 3/.3-5)5D$

1 cm

WiFi module computer autopilot

!"#$ E$ F-+0.-6 )6)90.-+"95 "+96/1"+# 07) '/0-3"6-0 '+1 07) '1'30).;9'.1"+0).('9"+# 0- 07) F-6"8." ?"+/2 8-'.1 '+1 07) G&H @"!" 1-+#6)$

8'5)1 -+ "+3/0 (.-4 -+6* I 5)+5-.5J -+) #*.-59-3) '+1 0,-3.)55/.) 5)+5-.5$<7) 9-44/+"9'0"-+;8'5)1 '6#-."074 "5 "436)4)+0)1 -+ '

<-.'1)2 F-6"8." BKLMEN FBG 8-'.1 ./++"+# ?"+/2> 9-+;+)90)1 0- '+ -((;07);57)6( G&H @"!" 1-+#6) C!"#$ ED$ <7)-/03/0 -( 07"5 7"#7;6)O)6 9-43/0).> +'4)6* ' 1)5".)1 0/.+.'0)> "5 5)+0 '5 9-+0.-6 9-44'+1 0- 07) '/0-3"6-0$ L60"0/1)'+1 '".53))1 9-44'+15 1/."+# 07) )23)."4)+05 .)4'"+)19-+50'+0 '0 EN 4 '+1 PM 4Q5> .)53)90"O)6*$ R+ -.1). 0- 6-#!"#70 0.'S)90-.")5> 07) .-8-0 "5 (/.07). )=/"33)1 ,"07 ' /;86-2I?TL;UV AB& 4-1/6)$!-. 07) @"!" 9-44/+"9'0"-+> W)0#)'.X @WYLIPNN 1-+;

#6)5 ,).) /5)1 07'0 "436)4)+0 07) ZNM$PP+ 50'+1'.1 '+10.'+54"0 "+ 07) U AV[ 8'+1$ <7"5 "5 "+0).)50"+# ,"07 .)53)900- 0.'+54"55"-+5 "+ 07) M$X AV[ 8'+1 8)9'/5) "0 '66-,5 (-.6)55 "+0).().)+9) ,"07 07) 9-+5"1).'86) +/48). -( 1)O"9)59/..)+06* /5)1 "+ 07"5 8'+1$ Y-+#6)5 '.) 9-+"#/.)1 (-. '1;7-9 4-1) '+1 7'O) ' 9-44/+"9'0"-+ .'+#) -( +)'.6* UNN4 6"+);-(;5"#70$ !-. 07) 3/.3-5) -( 07) )23)."4)+05 .)3-.0)1

I7003JQQ,,,$/;86-2$9-4X7003JQQ+)0#)'.$9-4

−200 0 200−300

−200

−100

0

100

200

300

Y [m

]

X [m]

0 50 100 150 200 2500

2

4

6

8

10

12

numb

er o

f mes

sage

sre

ceive

d by

the

robo

t

distance from base [m]

conservativecommunication

range of 135m

!"#$ Z$ F7'.'90)."['0"-+ -( 07) 9-44/+"9'0"-+ 8)0,))+ 07) 8'5) C50'.D'+1 .-8-0$ <7) 0-3 #.'37 57-,5 07) 0.'S)90-.* -( 07) .-8-0 3).(-.4"+#07) 97'.'90)."['0"-+$ <7) 8-00-4 #.'37 57-,5 07) 4"+"4/4> 4)1"'+ '+14'2"4/4 +/48). -( 4)55'#)5 .)9)"O)1 8* 07) .-8-0 -O). UN 45 '5 '(/+90"-+ -( 1"50'+9) (.-4 07) 8'5)$

"+ 07"5 3'3).> ,) 4-1"")1 07) 1."O). -( 07) @"!" 4-1/6) 0-.)1/9) 07) 9-44/+"9'0"-+ .'+#) -( 07) 8'5)$

!" !#$% &'#'()*<7) 5'4) ?"+/2 9-43/0). '+1 @"!" 1-+#6) ,).) /5)1

(-. 07) 8'5) 50'0"-+ '+1 07) !*"+# .-8-0 0- )+5/.) 07'0 07))23)."4)+05 3.)5)+0)1 7).) 9'+ )'5"6* 8) )20)+1)1 0- 4-.)9-436)2 59)+'."-5 "+O-6O"+# 4/60"36) .-8-05$ <7) 8'5) 50';0"-+ "5 9-+0'"+)1 "+ ' 54'66 8-2 '+1 9'+ )'5"6* 8) 0.'+53-.0)1'+1 3-5"0"-+)1 "+ '+* )+O".-+4)+0$

R\$ ]T&G?<&

@) 3.-#.)55)1 8* ".50 "1)+0"(*"+# 07) 4"+"4'6 9-44/+";9'0"-+ .'+#) -( 07) 8'5)$ @) 07)+ /5)1 "0 0- 3'.'4)0)."[) 07).)9-++)90"-+ 8)7'O"-. C8* 5)00"+# b -( 07) 53".'6 "+ CPDD '+1"1)+0"(* 07) '4-/+0 -( ,"+1 07) 8)7'O"-. 9'+ 0-6).'0)$ @"07"+07"5 .)#"4)> ,) 07)+ 1)4-+50.'0)1 07'0 07) .-8-0 "5 '86) 0-

!"

motor and propeller

battery

elevons

autopilot & embedded PC

pitot tube

wifi card

Drone cruise speed ≈ 10 m/s

Can operate in light breeze,with wind speeds up to 7 m/s

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 4 / 17

Page 11: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Flying Platform

Flying Platform

Built on expanded poly-propylene

Total weight ≈ 450 gVery small inertiaSafe for third parties

Payload ≈ 150 gTight constraints forcommunication equipment:weight, power consumption,computing power

Propelled by DC electrical motor inthe rear end

Elevons: two control surfaces thatserve as combined ailerons andelevators

LiPo battery (≈ 60 min autonomy)

80 cm

!"#$ %$ &'() !*"+# ,"+# (-. -/01--. )23)."4)+05 4'1) -/0 -( 5-(0 4'0)."'6'+1 ,"07 ' 8'9:;4-/+0)1 3.-3)66).$ <7) .-8-0 "5 )=/"33)1 ,"07 '+ '/0-3"6-0>)48)11)1 ?"+/2> @"!" 1-+#6) '+1 AB& C-+6* (-. 6-##"+# 3/.3-5)5D$

1 cm

WiFi module computer autopilot

!"#$ E$ F-+0.-6 )6)90.-+"95 "+96/1"+# 07) '/0-3"6-0 '+1 07) '1'30).;9'.1"+0).('9"+# 0- 07) F-6"8." ?"+/2 8-'.1 '+1 07) G&H @"!" 1-+#6)$

8'5)1 -+ "+3/0 (.-4 -+6* I 5)+5-.5J -+) #*.-59-3) '+1 0,-3.)55/.) 5)+5-.5$<7) 9-44/+"9'0"-+;8'5)1 '6#-."074 "5 "436)4)+0)1 -+ '

<-.'1)2 F-6"8." BKLMEN FBG 8-'.1 ./++"+# ?"+/2> 9-+;+)90)1 0- '+ -((;07);57)6( G&H @"!" 1-+#6) C!"#$ ED$ <7)-/03/0 -( 07"5 7"#7;6)O)6 9-43/0).> +'4)6* ' 1)5".)1 0/.+.'0)> "5 5)+0 '5 9-+0.-6 9-44'+1 0- 07) '/0-3"6-0$ L60"0/1)'+1 '".53))1 9-44'+15 1/."+# 07) )23)."4)+05 .)4'"+)19-+50'+0 '0 EN 4 '+1 PM 4Q5> .)53)90"O)6*$ R+ -.1). 0- 6-#!"#70 0.'S)90-.")5> 07) .-8-0 "5 (/.07). )=/"33)1 ,"07 ' /;86-2I?TL;UV AB& 4-1/6)$!-. 07) @"!" 9-44/+"9'0"-+> W)0#)'.X @WYLIPNN 1-+;

#6)5 ,).) /5)1 07'0 "436)4)+0 07) ZNM$PP+ 50'+1'.1 '+10.'+54"0 "+ 07) U AV[ 8'+1$ <7"5 "5 "+0).)50"+# ,"07 .)53)900- 0.'+54"55"-+5 "+ 07) M$X AV[ 8'+1 8)9'/5) "0 '66-,5 (-.6)55 "+0).().)+9) ,"07 07) 9-+5"1).'86) +/48). -( 1)O"9)59/..)+06* /5)1 "+ 07"5 8'+1$ Y-+#6)5 '.) 9-+"#/.)1 (-. '1;7-9 4-1) '+1 7'O) ' 9-44/+"9'0"-+ .'+#) -( +)'.6* UNN4 6"+);-(;5"#70$ !-. 07) 3/.3-5) -( 07) )23)."4)+05 .)3-.0)1

I7003JQQ,,,$/;86-2$9-4X7003JQQ+)0#)'.$9-4

−200 0 200−300

−200

−100

0

100

200

300

Y [m

]

X [m]

0 50 100 150 200 2500

2

4

6

8

10

12

numb

er o

f mes

sage

sre

ceive

d by

the

robo

t

distance from base [m]

conservativecommunication

range of 135m

!"#$ Z$ F7'.'90)."['0"-+ -( 07) 9-44/+"9'0"-+ 8)0,))+ 07) 8'5) C50'.D'+1 .-8-0$ <7) 0-3 #.'37 57-,5 07) 0.'S)90-.* -( 07) .-8-0 3).(-.4"+#07) 97'.'90)."['0"-+$ <7) 8-00-4 #.'37 57-,5 07) 4"+"4/4> 4)1"'+ '+14'2"4/4 +/48). -( 4)55'#)5 .)9)"O)1 8* 07) .-8-0 -O). UN 45 '5 '(/+90"-+ -( 1"50'+9) (.-4 07) 8'5)$

"+ 07"5 3'3).> ,) 4-1"")1 07) 1."O). -( 07) @"!" 4-1/6) 0-.)1/9) 07) 9-44/+"9'0"-+ .'+#) -( 07) 8'5)$

!" !#$% &'#'()*<7) 5'4) ?"+/2 9-43/0). '+1 @"!" 1-+#6) ,).) /5)1

(-. 07) 8'5) 50'0"-+ '+1 07) !*"+# .-8-0 0- )+5/.) 07'0 07))23)."4)+05 3.)5)+0)1 7).) 9'+ )'5"6* 8) )20)+1)1 0- 4-.)9-436)2 59)+'."-5 "+O-6O"+# 4/60"36) .-8-05$ <7) 8'5) 50';0"-+ "5 9-+0'"+)1 "+ ' 54'66 8-2 '+1 9'+ )'5"6* 8) 0.'+53-.0)1'+1 3-5"0"-+)1 "+ '+* )+O".-+4)+0$

R\$ ]T&G?<&

@) 3.-#.)55)1 8* ".50 "1)+0"(*"+# 07) 4"+"4'6 9-44/+";9'0"-+ .'+#) -( 07) 8'5)$ @) 07)+ /5)1 "0 0- 3'.'4)0)."[) 07).)9-++)90"-+ 8)7'O"-. C8* 5)00"+# b -( 07) 53".'6 "+ CPDD '+1"1)+0"(* 07) '4-/+0 -( ,"+1 07) 8)7'O"-. 9'+ 0-6).'0)$ @"07"+07"5 .)#"4)> ,) 07)+ 1)4-+50.'0)1 07'0 07) .-8-0 "5 '86) 0-

!"

motor and propeller

battery

elevons

autopilot & embedded PC

pitot tube

wifi card

Drone cruise speed ≈ 10 m/s

Can operate in light breeze,with wind speeds up to 7 m/s

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 4 / 17

Page 12: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Flying Platform

Flying Platform

Built on expanded poly-propylene

Total weight ≈ 450 gVery small inertiaSafe for third parties

Payload ≈ 150 gTight constraints forcommunication equipment:weight, power consumption,computing power

Propelled by DC electrical motor inthe rear end

Elevons: two control surfaces thatserve as combined ailerons andelevators

LiPo battery (≈ 60 min autonomy)

80 cm

!"#$ %$ &'() !*"+# ,"+# (-. -/01--. )23)."4)+05 4'1) -/0 -( 5-(0 4'0)."'6'+1 ,"07 ' 8'9:;4-/+0)1 3.-3)66).$ <7) .-8-0 "5 )=/"33)1 ,"07 '+ '/0-3"6-0>)48)11)1 ?"+/2> @"!" 1-+#6) '+1 AB& C-+6* (-. 6-##"+# 3/.3-5)5D$

1 cm

WiFi module computer autopilot

!"#$ E$ F-+0.-6 )6)90.-+"95 "+96/1"+# 07) '/0-3"6-0 '+1 07) '1'30).;9'.1"+0).('9"+# 0- 07) F-6"8." ?"+/2 8-'.1 '+1 07) G&H @"!" 1-+#6)$

8'5)1 -+ "+3/0 (.-4 -+6* I 5)+5-.5J -+) #*.-59-3) '+1 0,-3.)55/.) 5)+5-.5$<7) 9-44/+"9'0"-+;8'5)1 '6#-."074 "5 "436)4)+0)1 -+ '

<-.'1)2 F-6"8." BKLMEN FBG 8-'.1 ./++"+# ?"+/2> 9-+;+)90)1 0- '+ -((;07);57)6( G&H @"!" 1-+#6) C!"#$ ED$ <7)-/03/0 -( 07"5 7"#7;6)O)6 9-43/0).> +'4)6* ' 1)5".)1 0/.+.'0)> "5 5)+0 '5 9-+0.-6 9-44'+1 0- 07) '/0-3"6-0$ L60"0/1)'+1 '".53))1 9-44'+15 1/."+# 07) )23)."4)+05 .)4'"+)19-+50'+0 '0 EN 4 '+1 PM 4Q5> .)53)90"O)6*$ R+ -.1). 0- 6-#!"#70 0.'S)90-.")5> 07) .-8-0 "5 (/.07). )=/"33)1 ,"07 ' /;86-2I?TL;UV AB& 4-1/6)$!-. 07) @"!" 9-44/+"9'0"-+> W)0#)'.X @WYLIPNN 1-+;

#6)5 ,).) /5)1 07'0 "436)4)+0 07) ZNM$PP+ 50'+1'.1 '+10.'+54"0 "+ 07) U AV[ 8'+1$ <7"5 "5 "+0).)50"+# ,"07 .)53)900- 0.'+54"55"-+5 "+ 07) M$X AV[ 8'+1 8)9'/5) "0 '66-,5 (-.6)55 "+0).().)+9) ,"07 07) 9-+5"1).'86) +/48). -( 1)O"9)59/..)+06* /5)1 "+ 07"5 8'+1$ Y-+#6)5 '.) 9-+"#/.)1 (-. '1;7-9 4-1) '+1 7'O) ' 9-44/+"9'0"-+ .'+#) -( +)'.6* UNN4 6"+);-(;5"#70$ !-. 07) 3/.3-5) -( 07) )23)."4)+05 .)3-.0)1

I7003JQQ,,,$/;86-2$9-4X7003JQQ+)0#)'.$9-4

−200 0 200−300

−200

−100

0

100

200

300

Y [m

]

X [m]

0 50 100 150 200 2500

2

4

6

8

10

12

numb

er o

f mes

sage

sre

ceive

d by

the

robo

t

distance from base [m]

conservativecommunication

range of 135m

!"#$ Z$ F7'.'90)."['0"-+ -( 07) 9-44/+"9'0"-+ 8)0,))+ 07) 8'5) C50'.D'+1 .-8-0$ <7) 0-3 #.'37 57-,5 07) 0.'S)90-.* -( 07) .-8-0 3).(-.4"+#07) 97'.'90)."['0"-+$ <7) 8-00-4 #.'37 57-,5 07) 4"+"4/4> 4)1"'+ '+14'2"4/4 +/48). -( 4)55'#)5 .)9)"O)1 8* 07) .-8-0 -O). UN 45 '5 '(/+90"-+ -( 1"50'+9) (.-4 07) 8'5)$

"+ 07"5 3'3).> ,) 4-1"")1 07) 1."O). -( 07) @"!" 4-1/6) 0-.)1/9) 07) 9-44/+"9'0"-+ .'+#) -( 07) 8'5)$

!" !#$% &'#'()*<7) 5'4) ?"+/2 9-43/0). '+1 @"!" 1-+#6) ,).) /5)1

(-. 07) 8'5) 50'0"-+ '+1 07) !*"+# .-8-0 0- )+5/.) 07'0 07))23)."4)+05 3.)5)+0)1 7).) 9'+ )'5"6* 8) )20)+1)1 0- 4-.)9-436)2 59)+'."-5 "+O-6O"+# 4/60"36) .-8-05$ <7) 8'5) 50';0"-+ "5 9-+0'"+)1 "+ ' 54'66 8-2 '+1 9'+ )'5"6* 8) 0.'+53-.0)1'+1 3-5"0"-+)1 "+ '+* )+O".-+4)+0$

R\$ ]T&G?<&

@) 3.-#.)55)1 8* ".50 "1)+0"(*"+# 07) 4"+"4'6 9-44/+";9'0"-+ .'+#) -( 07) 8'5)$ @) 07)+ /5)1 "0 0- 3'.'4)0)."[) 07).)9-++)90"-+ 8)7'O"-. C8* 5)00"+# b -( 07) 53".'6 "+ CPDD '+1"1)+0"(* 07) '4-/+0 -( ,"+1 07) 8)7'O"-. 9'+ 0-6).'0)$ @"07"+07"5 .)#"4)> ,) 07)+ 1)4-+50.'0)1 07'0 07) .-8-0 "5 '86) 0-

!"

motor and propeller

battery

elevons

autopilot & embedded PC

pitot tube

wifi card

Drone cruise speed ≈ 10 m/s

Can operate in light breeze,with wind speeds up to 7 m/s

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 4 / 17

Page 13: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Flying Platform

Flying Platform

Built on expanded poly-propylene

Total weight ≈ 450 gVery small inertiaSafe for third parties

Payload ≈ 150 gTight constraints forcommunication equipment:weight, power consumption,computing power

Propelled by DC electrical motor inthe rear end

Elevons: two control surfaces thatserve as combined ailerons andelevators

LiPo battery (≈ 60 min autonomy)

80 cm

!"#$ %$ &'() !*"+# ,"+# (-. -/01--. )23)."4)+05 4'1) -/0 -( 5-(0 4'0)."'6'+1 ,"07 ' 8'9:;4-/+0)1 3.-3)66).$ <7) .-8-0 "5 )=/"33)1 ,"07 '+ '/0-3"6-0>)48)11)1 ?"+/2> @"!" 1-+#6) '+1 AB& C-+6* (-. 6-##"+# 3/.3-5)5D$

1 cm

WiFi module computer autopilot

!"#$ E$ F-+0.-6 )6)90.-+"95 "+96/1"+# 07) '/0-3"6-0 '+1 07) '1'30).;9'.1"+0).('9"+# 0- 07) F-6"8." ?"+/2 8-'.1 '+1 07) G&H @"!" 1-+#6)$

8'5)1 -+ "+3/0 (.-4 -+6* I 5)+5-.5J -+) #*.-59-3) '+1 0,-3.)55/.) 5)+5-.5$<7) 9-44/+"9'0"-+;8'5)1 '6#-."074 "5 "436)4)+0)1 -+ '

<-.'1)2 F-6"8." BKLMEN FBG 8-'.1 ./++"+# ?"+/2> 9-+;+)90)1 0- '+ -((;07);57)6( G&H @"!" 1-+#6) C!"#$ ED$ <7)-/03/0 -( 07"5 7"#7;6)O)6 9-43/0).> +'4)6* ' 1)5".)1 0/.+.'0)> "5 5)+0 '5 9-+0.-6 9-44'+1 0- 07) '/0-3"6-0$ L60"0/1)'+1 '".53))1 9-44'+15 1/."+# 07) )23)."4)+05 .)4'"+)19-+50'+0 '0 EN 4 '+1 PM 4Q5> .)53)90"O)6*$ R+ -.1). 0- 6-#!"#70 0.'S)90-.")5> 07) .-8-0 "5 (/.07). )=/"33)1 ,"07 ' /;86-2I?TL;UV AB& 4-1/6)$!-. 07) @"!" 9-44/+"9'0"-+> W)0#)'.X @WYLIPNN 1-+;

#6)5 ,).) /5)1 07'0 "436)4)+0 07) ZNM$PP+ 50'+1'.1 '+10.'+54"0 "+ 07) U AV[ 8'+1$ <7"5 "5 "+0).)50"+# ,"07 .)53)900- 0.'+54"55"-+5 "+ 07) M$X AV[ 8'+1 8)9'/5) "0 '66-,5 (-.6)55 "+0).().)+9) ,"07 07) 9-+5"1).'86) +/48). -( 1)O"9)59/..)+06* /5)1 "+ 07"5 8'+1$ Y-+#6)5 '.) 9-+"#/.)1 (-. '1;7-9 4-1) '+1 7'O) ' 9-44/+"9'0"-+ .'+#) -( +)'.6* UNN4 6"+);-(;5"#70$ !-. 07) 3/.3-5) -( 07) )23)."4)+05 .)3-.0)1

I7003JQQ,,,$/;86-2$9-4X7003JQQ+)0#)'.$9-4

−200 0 200−300

−200

−100

0

100

200

300

Y [m

]

X [m]

0 50 100 150 200 2500

2

4

6

8

10

12

numb

er o

f mes

sage

sre

ceive

d by

the

robo

t

distance from base [m]

conservativecommunication

range of 135m

!"#$ Z$ F7'.'90)."['0"-+ -( 07) 9-44/+"9'0"-+ 8)0,))+ 07) 8'5) C50'.D'+1 .-8-0$ <7) 0-3 #.'37 57-,5 07) 0.'S)90-.* -( 07) .-8-0 3).(-.4"+#07) 97'.'90)."['0"-+$ <7) 8-00-4 #.'37 57-,5 07) 4"+"4/4> 4)1"'+ '+14'2"4/4 +/48). -( 4)55'#)5 .)9)"O)1 8* 07) .-8-0 -O). UN 45 '5 '(/+90"-+ -( 1"50'+9) (.-4 07) 8'5)$

"+ 07"5 3'3).> ,) 4-1"")1 07) 1."O). -( 07) @"!" 4-1/6) 0-.)1/9) 07) 9-44/+"9'0"-+ .'+#) -( 07) 8'5)$

!" !#$% &'#'()*<7) 5'4) ?"+/2 9-43/0). '+1 @"!" 1-+#6) ,).) /5)1

(-. 07) 8'5) 50'0"-+ '+1 07) !*"+# .-8-0 0- )+5/.) 07'0 07))23)."4)+05 3.)5)+0)1 7).) 9'+ )'5"6* 8) )20)+1)1 0- 4-.)9-436)2 59)+'."-5 "+O-6O"+# 4/60"36) .-8-05$ <7) 8'5) 50';0"-+ "5 9-+0'"+)1 "+ ' 54'66 8-2 '+1 9'+ )'5"6* 8) 0.'+53-.0)1'+1 3-5"0"-+)1 "+ '+* )+O".-+4)+0$

R\$ ]T&G?<&

@) 3.-#.)55)1 8* ".50 "1)+0"(*"+# 07) 4"+"4'6 9-44/+";9'0"-+ .'+#) -( 07) 8'5)$ @) 07)+ /5)1 "0 0- 3'.'4)0)."[) 07).)9-++)90"-+ 8)7'O"-. C8* 5)00"+# b -( 07) 53".'6 "+ CPDD '+1"1)+0"(* 07) '4-/+0 -( ,"+1 07) 8)7'O"-. 9'+ 0-6).'0)$ @"07"+07"5 .)#"4)> ,) 07)+ 1)4-+50.'0)1 07'0 07) .-8-0 "5 '86) 0-

!"

motor and propeller

battery

elevons

autopilot & embedded PC

pitot tube

wifi card

Drone cruise speed ≈ 10 m/s

Can operate in light breeze,with wind speeds up to 7 m/s

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 4 / 17

Page 14: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Flying Platform

Flying Platform

Built on expanded poly-propylene

Total weight ≈ 450 gVery small inertiaSafe for third parties

Payload ≈ 150 gTight constraints forcommunication equipment:weight, power consumption,computing power

Propelled by DC electrical motor inthe rear end

Elevons: two control surfaces thatserve as combined ailerons andelevators

LiPo battery (≈ 60 min autonomy)

80 cm

!"#$ %$ &'() !*"+# ,"+# (-. -/01--. )23)."4)+05 4'1) -/0 -( 5-(0 4'0)."'6'+1 ,"07 ' 8'9:;4-/+0)1 3.-3)66).$ <7) .-8-0 "5 )=/"33)1 ,"07 '+ '/0-3"6-0>)48)11)1 ?"+/2> @"!" 1-+#6) '+1 AB& C-+6* (-. 6-##"+# 3/.3-5)5D$

1 cm

WiFi module computer autopilot

!"#$ E$ F-+0.-6 )6)90.-+"95 "+96/1"+# 07) '/0-3"6-0 '+1 07) '1'30).;9'.1"+0).('9"+# 0- 07) F-6"8." ?"+/2 8-'.1 '+1 07) G&H @"!" 1-+#6)$

8'5)1 -+ "+3/0 (.-4 -+6* I 5)+5-.5J -+) #*.-59-3) '+1 0,-3.)55/.) 5)+5-.5$<7) 9-44/+"9'0"-+;8'5)1 '6#-."074 "5 "436)4)+0)1 -+ '

<-.'1)2 F-6"8." BKLMEN FBG 8-'.1 ./++"+# ?"+/2> 9-+;+)90)1 0- '+ -((;07);57)6( G&H @"!" 1-+#6) C!"#$ ED$ <7)-/03/0 -( 07"5 7"#7;6)O)6 9-43/0).> +'4)6* ' 1)5".)1 0/.+.'0)> "5 5)+0 '5 9-+0.-6 9-44'+1 0- 07) '/0-3"6-0$ L60"0/1)'+1 '".53))1 9-44'+15 1/."+# 07) )23)."4)+05 .)4'"+)19-+50'+0 '0 EN 4 '+1 PM 4Q5> .)53)90"O)6*$ R+ -.1). 0- 6-#!"#70 0.'S)90-.")5> 07) .-8-0 "5 (/.07). )=/"33)1 ,"07 ' /;86-2I?TL;UV AB& 4-1/6)$!-. 07) @"!" 9-44/+"9'0"-+> W)0#)'.X @WYLIPNN 1-+;

#6)5 ,).) /5)1 07'0 "436)4)+0 07) ZNM$PP+ 50'+1'.1 '+10.'+54"0 "+ 07) U AV[ 8'+1$ <7"5 "5 "+0).)50"+# ,"07 .)53)900- 0.'+54"55"-+5 "+ 07) M$X AV[ 8'+1 8)9'/5) "0 '66-,5 (-.6)55 "+0).().)+9) ,"07 07) 9-+5"1).'86) +/48). -( 1)O"9)59/..)+06* /5)1 "+ 07"5 8'+1$ Y-+#6)5 '.) 9-+"#/.)1 (-. '1;7-9 4-1) '+1 7'O) ' 9-44/+"9'0"-+ .'+#) -( +)'.6* UNN4 6"+);-(;5"#70$ !-. 07) 3/.3-5) -( 07) )23)."4)+05 .)3-.0)1

I7003JQQ,,,$/;86-2$9-4X7003JQQ+)0#)'.$9-4

−200 0 200−300

−200

−100

0

100

200

300

Y [m

]

X [m]

0 50 100 150 200 2500

2

4

6

8

10

12

numb

er o

f mes

sage

sre

ceive

d by

the

robo

t

distance from base [m]

conservativecommunication

range of 135m

!"#$ Z$ F7'.'90)."['0"-+ -( 07) 9-44/+"9'0"-+ 8)0,))+ 07) 8'5) C50'.D'+1 .-8-0$ <7) 0-3 #.'37 57-,5 07) 0.'S)90-.* -( 07) .-8-0 3).(-.4"+#07) 97'.'90)."['0"-+$ <7) 8-00-4 #.'37 57-,5 07) 4"+"4/4> 4)1"'+ '+14'2"4/4 +/48). -( 4)55'#)5 .)9)"O)1 8* 07) .-8-0 -O). UN 45 '5 '(/+90"-+ -( 1"50'+9) (.-4 07) 8'5)$

"+ 07"5 3'3).> ,) 4-1"")1 07) 1."O). -( 07) @"!" 4-1/6) 0-.)1/9) 07) 9-44/+"9'0"-+ .'+#) -( 07) 8'5)$

!" !#$% &'#'()*<7) 5'4) ?"+/2 9-43/0). '+1 @"!" 1-+#6) ,).) /5)1

(-. 07) 8'5) 50'0"-+ '+1 07) !*"+# .-8-0 0- )+5/.) 07'0 07))23)."4)+05 3.)5)+0)1 7).) 9'+ )'5"6* 8) )20)+1)1 0- 4-.)9-436)2 59)+'."-5 "+O-6O"+# 4/60"36) .-8-05$ <7) 8'5) 50';0"-+ "5 9-+0'"+)1 "+ ' 54'66 8-2 '+1 9'+ )'5"6* 8) 0.'+53-.0)1'+1 3-5"0"-+)1 "+ '+* )+O".-+4)+0$

R\$ ]T&G?<&

@) 3.-#.)55)1 8* ".50 "1)+0"(*"+# 07) 4"+"4'6 9-44/+";9'0"-+ .'+#) -( 07) 8'5)$ @) 07)+ /5)1 "0 0- 3'.'4)0)."[) 07).)9-++)90"-+ 8)7'O"-. C8* 5)00"+# b -( 07) 53".'6 "+ CPDD '+1"1)+0"(* 07) '4-/+0 -( ,"+1 07) 8)7'O"-. 9'+ 0-6).'0)$ @"07"+07"5 .)#"4)> ,) 07)+ 1)4-+50.'0)1 07'0 07) .-8-0 "5 '86) 0-

!"

motor and propeller

battery

elevons

autopilot & embedded PC

pitot tube

wifi card

Drone cruise speed ≈ 10 m/s

Can operate in light breeze,with wind speeds up to 7 m/s

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 4 / 17

Page 15: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Flying Platform

Flying Platform: Electronic Systems

Two electronic subsystems integrated in the EPP body (surrounded withprotective foam):

Autopilot

Uses a dedicated DSP to implement flight control strategies

Integrates a GPS unit, pressure sensors and inertial sensors

It enables autonomous take-off, followed by way-point navigation atpreset altitudes, and autonomous landing

Embedded Computer

Responsible for mission control: data logging, WiFi communications,camera control, etc

Gumstix Overo-Tide COM (Computer on Module)

ARM arch @720 MHz, OS Angstrom Linux, 4.3 g, 58× 17× 4.2 mm

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 5 / 17

Page 16: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Flying Platform

Flying Platform: Electronic Systems

Two electronic subsystems integrated in the EPP body (surrounded withprotective foam):

Autopilot

Uses a dedicated DSP to implement flight control strategies

Integrates a GPS unit, pressure sensors and inertial sensors

It enables autonomous take-off, followed by way-point navigation atpreset altitudes, and autonomous landing

Embedded Computer

Responsible for mission control: data logging, WiFi communications,camera control, etc

Gumstix Overo-Tide COM (Computer on Module)

ARM arch @720 MHz, OS Angstrom Linux, 4.3 g, 58× 17× 4.2 mm

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 5 / 17

Page 17: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Flying Platform

Flying Platform: Electronic Systems

Two electronic subsystems integrated in the EPP body (surrounded withprotective foam):

Autopilot

Uses a dedicated DSP to implement flight control strategies

Integrates a GPS unit, pressure sensors and inertial sensors

It enables autonomous take-off, followed by way-point navigation atpreset altitudes, and autonomous landing

Embedded Computer

Responsible for mission control: data logging, WiFi communications,camera control, etc

Gumstix Overo-Tide COM (Computer on Module)

ARM arch @720 MHz, OS Angstrom Linux, 4.3 g, 58× 17× 4.2 mm

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 5 / 17

Page 18: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Flying Platform

Flying Platform: Electronic Systems

Two electronic subsystems integrated in the EPP body (surrounded withprotective foam):

Autopilot

Uses a dedicated DSP to implement flight control strategies

Integrates a GPS unit, pressure sensors and inertial sensors

It enables autonomous take-off, followed by way-point navigation atpreset altitudes, and autonomous landing

Embedded Computer

Responsible for mission control: data logging, WiFi communications,camera control, etc

Gumstix Overo-Tide COM (Computer on Module)

ARM arch @720 MHz, OS Angstrom Linux, 4.3 g, 58× 17× 4.2 mm

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 5 / 17

Page 19: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

Communication Systems

Control Link

Point-to-multipoint topology

Navigation instructions from control ground station to each MAV

Based on an XBee Pro radio (IEEE 802.15.4)

ISM Band 2.4 GHz (channel bandwidth = 5 MHz)

Long range (1.6 Km), limited delay, high reliability, small bandwidth(max 250 Kbps)

Data Link

Mesh topology (multi-hop, relaying, ferrying)

Based on WiFi (IEEE 802.11)

ISM Bands, 2.4 GHz and 5 GHz (channel bandwidth = 20/40 MHz)

Higher data rates, required for multimedia applications

But reduced communication range (≈ 400 m in free space)[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 6 / 17

Page 20: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

Communication Systems

Control Link

Point-to-multipoint topology

Navigation instructions from control ground station to each MAV

Based on an XBee Pro radio (IEEE 802.15.4)

ISM Band 2.4 GHz (channel bandwidth = 5 MHz)

Long range (1.6 Km), limited delay, high reliability, small bandwidth(max 250 Kbps)

Data Link

Mesh topology (multi-hop, relaying, ferrying)

Based on WiFi (IEEE 802.11)

ISM Bands, 2.4 GHz and 5 GHz (channel bandwidth = 20/40 MHz)

Higher data rates, required for multimedia applications

But reduced communication range (≈ 400 m in free space)[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 6 / 17

Page 21: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

Communication Systems

Control Link

Point-to-multipoint topology

Navigation instructions from control ground station to each MAV

Based on an XBee Pro radio (IEEE 802.15.4)

ISM Band 2.4 GHz (channel bandwidth = 5 MHz)

Long range (1.6 Km), limited delay, high reliability, small bandwidth(max 250 Kbps)

Data Link

Mesh topology (multi-hop, relaying, ferrying)

Based on WiFi (IEEE 802.11)

ISM Bands, 2.4 GHz and 5 GHz (channel bandwidth = 20/40 MHz)

Higher data rates, required for multimedia applications

But reduced communication range (≈ 400 m in free space)[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 6 / 17

Page 22: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

IEEE 802.11 WiFi communications

Pros

Operate in the freely usable ISM bands

Inexpensive COTS components

Reduced weight, dimensions and power consumption

Support for ad-hoc mode

Cons

Designed for indoor, static environments (low Doppler)

Limited Linux support

Ad-hoc mode offers no support for routing

Overcome by using routing protocols on top of the WiFi stack

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 7 / 17

Page 23: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

IEEE 802.11 WiFi communications

Pros

Operate in the freely usable ISM bands

Inexpensive COTS components

Reduced weight, dimensions and power consumption

Support for ad-hoc mode

Cons

Designed for indoor, static environments (low Doppler)

Limited Linux support

Ad-hoc mode offers no support for routing

Overcome by using routing protocols on top of the WiFi stack

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 7 / 17

Page 24: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

Optimal Link State Routing (OLSR)

Why OLSR for dynamic routing?

Proactive algorithm (continously maintain routes to all destinations)

High mobility of the MAVs, rapidly changing channel

Operates at OSI layer 3 (MAC and PHY agnostic protocol)

No need to modify driversDaemon modifies kernel routing tables in a transparent wayEasier to simulate (ns2, core, etc)

compared to routing protocols operating at OSI layer 2

OLSRd is an open source project under a BSD-style licence

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 8 / 17

Page 25: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

Optimal Link State Routing (OLSR)

Why OLSR for dynamic routing?

Proactive algorithm (continously maintain routes to all destinations)

High mobility of the MAVs, rapidly changing channel

Operates at OSI layer 3 (MAC and PHY agnostic protocol)

No need to modify driversDaemon modifies kernel routing tables in a transparent wayEasier to simulate (ns2, core, etc)

compared to routing protocols operating at OSI layer 2

OLSRd is an open source project under a BSD-style licence

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 8 / 17

Page 26: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

Optimal Link State Routing (OLSR)

Why OLSR for dynamic routing?

Proactive algorithm (continously maintain routes to all destinations)

High mobility of the MAVs, rapidly changing channel

Operates at OSI layer 3 (MAC and PHY agnostic protocol)

No need to modify driversDaemon modifies kernel routing tables in a transparent wayEasier to simulate (ns2, core, etc)

compared to routing protocols operating at OSI layer 2

OLSRd is an open source project under a BSD-style licence

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 8 / 17

Page 27: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

Optimal Link State Routing (OLSR)

Why OLSR for dynamic routing?

Proactive algorithm (continously maintain routes to all destinations)

High mobility of the MAVs, rapidly changing channel

Operates at OSI layer 3 (MAC and PHY agnostic protocol)

No need to modify driversDaemon modifies kernel routing tables in a transparent wayEasier to simulate (ns2, core, etc)

compared to routing protocols operating at OSI layer 2

OLSRd is an open source project under a BSD-style licence

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 8 / 17

Page 28: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

Optimal Link State Routing (OLSR)

How does it work?

HELLO packets: periodically broadcast for link quality sensing

Each node builds list of neighbours and associated link qualities

TC (Topology control) messages: used by nodes to declare their listof neighbours

Propagate topology information of the network to all member nodesUsed special nodes MPR (Multi-Point Relays) to forward control trafficintended for diffusion in the entire network

Dijkstra’s algorithm to select minimum cost routes

Every node keeps a table with the next hop for the routes to all othernodes in the network

Topology database must be kept synchronised accross the network!

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 9 / 17

Page 29: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

Optimal Link State Routing (OLSR)

How does it work?

HELLO packets: periodically broadcast for link quality sensing

Each node builds list of neighbours and associated link qualities

TC (Topology control) messages: used by nodes to declare their listof neighbours

Propagate topology information of the network to all member nodesUsed special nodes MPR (Multi-Point Relays) to forward control trafficintended for diffusion in the entire network

Dijkstra’s algorithm to select minimum cost routes

Every node keeps a table with the next hop for the routes to all othernodes in the network

Topology database must be kept synchronised accross the network!

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 9 / 17

Page 30: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

Optimal Link State Routing (OLSR)

How does it work?

HELLO packets: periodically broadcast for link quality sensing

Each node builds list of neighbours and associated link qualities

TC (Topology control) messages: used by nodes to declare their listof neighbours

Propagate topology information of the network to all member nodesUsed special nodes MPR (Multi-Point Relays) to forward control trafficintended for diffusion in the entire network

Dijkstra’s algorithm to select minimum cost routes

Every node keeps a table with the next hop for the routes to all othernodes in the network

Topology database must be kept synchronised accross the network!

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 9 / 17

Page 31: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

Optimal Link State Routing (OLSR)

How does it work?

HELLO packets: periodically broadcast for link quality sensing

Each node builds list of neighbours and associated link qualities

TC (Topology control) messages: used by nodes to declare their listof neighbours

Propagate topology information of the network to all member nodesUsed special nodes MPR (Multi-Point Relays) to forward control trafficintended for diffusion in the entire network

Dijkstra’s algorithm to select minimum cost routes

Every node keeps a table with the next hop for the routes to all othernodes in the network

Topology database must be kept synchronised accross the network!

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 9 / 17

Page 32: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

Optimal Link State Routing (OLSR)

How does it work?

HELLO packets: periodically broadcast for link quality sensing

Each node builds list of neighbours and associated link qualities

TC (Topology control) messages: used by nodes to declare their listof neighbours

Propagate topology information of the network to all member nodesUsed special nodes MPR (Multi-Point Relays) to forward control trafficintended for diffusion in the entire network

Dijkstra’s algorithm to select minimum cost routes

Every node keeps a table with the next hop for the routes to all othernodes in the network

Topology database must be kept synchronised accross the network!

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 9 / 17

Page 33: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

Optimal Link State Routing (OLSR)

How does it work?

HELLO packets: periodically broadcast for link quality sensing

Each node builds list of neighbours and associated link qualities

TC (Topology control) messages: used by nodes to declare their listof neighbours

Propagate topology information of the network to all member nodesUsed special nodes MPR (Multi-Point Relays) to forward control trafficintended for diffusion in the entire network

Dijkstra’s algorithm to select minimum cost routes

Every node keeps a table with the next hop for the routes to all othernodes in the network

Topology database must be kept synchronised accross the network!

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 9 / 17

Page 34: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

ETX Metric (Expected Transmission Count)

ETX : expected number of MAC layer transmission needed tosuccessfully deliver a packet over a link

LQ (Link Quality): fraction of HELLO packets correctly received froma neighbour in a sliding time windowNLQ (Neighbour Link Quality): probability that a HELLO messagethat we send is correctly received by that neighbourRoundtrip: p = LQ × NLQ : transmission successfully received andcorrectly acknowledgedNumber of trials before successful transmission: geometric RV withparameter p and mean

ETX = 1/(LQ × NLQ)

For multi-hop routes, the aggregate ETX is the sum of the ETX ofeach link in the route

Minimizing aggregate ETX ≡ Find routes of maximum throughput

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 10 / 17

Page 35: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

ETX Metric (Expected Transmission Count)

ETX : expected number of MAC layer transmission needed tosuccessfully deliver a packet over a link

LQ (Link Quality): fraction of HELLO packets correctly received froma neighbour in a sliding time windowNLQ (Neighbour Link Quality): probability that a HELLO messagethat we send is correctly received by that neighbourRoundtrip: p = LQ × NLQ : transmission successfully received andcorrectly acknowledgedNumber of trials before successful transmission: geometric RV withparameter p and mean

ETX = 1/(LQ × NLQ)

For multi-hop routes, the aggregate ETX is the sum of the ETX ofeach link in the route

Minimizing aggregate ETX ≡ Find routes of maximum throughput

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 10 / 17

Page 36: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

ETX Metric (Expected Transmission Count)

ETX : expected number of MAC layer transmission needed tosuccessfully deliver a packet over a link

LQ (Link Quality): fraction of HELLO packets correctly received froma neighbour in a sliding time windowNLQ (Neighbour Link Quality): probability that a HELLO messagethat we send is correctly received by that neighbourRoundtrip: p = LQ × NLQ : transmission successfully received andcorrectly acknowledgedNumber of trials before successful transmission: geometric RV withparameter p and mean

ETX = 1/(LQ × NLQ)

For multi-hop routes, the aggregate ETX is the sum of the ETX ofeach link in the route

Minimizing aggregate ETX ≡ Find routes of maximum throughput

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 10 / 17

Page 37: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

ETX Metric (Expected Transmission Count)

ETX : expected number of MAC layer transmission needed tosuccessfully deliver a packet over a link

LQ (Link Quality): fraction of HELLO packets correctly received froma neighbour in a sliding time windowNLQ (Neighbour Link Quality): probability that a HELLO messagethat we send is correctly received by that neighbourRoundtrip: p = LQ × NLQ : transmission successfully received andcorrectly acknowledgedNumber of trials before successful transmission: geometric RV withparameter p and mean

ETX = 1/(LQ × NLQ)

For multi-hop routes, the aggregate ETX is the sum of the ETX ofeach link in the route

Minimizing aggregate ETX ≡ Find routes of maximum throughput

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 10 / 17

Page 38: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

ETX Metric (Expected Transmission Count)

ETX : expected number of MAC layer transmission needed tosuccessfully deliver a packet over a link

LQ (Link Quality): fraction of HELLO packets correctly received froma neighbour in a sliding time windowNLQ (Neighbour Link Quality): probability that a HELLO messagethat we send is correctly received by that neighbourRoundtrip: p = LQ × NLQ : transmission successfully received andcorrectly acknowledgedNumber of trials before successful transmission: geometric RV withparameter p and mean

ETX = 1/(LQ × NLQ)

For multi-hop routes, the aggregate ETX is the sum of the ETX ofeach link in the route

Minimizing aggregate ETX ≡ Find routes of maximum throughput

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 10 / 17

Page 39: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

ETX Metric (Expected Transmission Count)

ETX : expected number of MAC layer transmission needed tosuccessfully deliver a packet over a link

LQ (Link Quality): fraction of HELLO packets correctly received froma neighbour in a sliding time windowNLQ (Neighbour Link Quality): probability that a HELLO messagethat we send is correctly received by that neighbourRoundtrip: p = LQ × NLQ : transmission successfully received andcorrectly acknowledgedNumber of trials before successful transmission: geometric RV withparameter p and mean

ETX = 1/(LQ × NLQ)

For multi-hop routes, the aggregate ETX is the sum of the ETX ofeach link in the route

Minimizing aggregate ETX ≡ Find routes of maximum throughput

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 10 / 17

Page 40: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

ETX Metric (Expected Transmission Count)

ETX : expected number of MAC layer transmission needed tosuccessfully deliver a packet over a link

LQ (Link Quality): fraction of HELLO packets correctly received froma neighbour in a sliding time windowNLQ (Neighbour Link Quality): probability that a HELLO messagethat we send is correctly received by that neighbourRoundtrip: p = LQ × NLQ : transmission successfully received andcorrectly acknowledgedNumber of trials before successful transmission: geometric RV withparameter p and mean

ETX = 1/(LQ × NLQ)

For multi-hop routes, the aggregate ETX is the sum of the ETX ofeach link in the route

Minimizing aggregate ETX ≡ Find routes of maximum throughput

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 10 / 17

Page 41: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

OLSR for MANETs

OLSRd does not specifically take into account the mobility of thenodes

But if it is configured to propagate route metrics quickly, then ETXwill choose good routes in spite of mobility

Configuration parameters should be tuned according to node speedand expected mobility patterns

HELLO intervalTC intervalAgeing parameter

Fundamental trade-off:accuracy of link measurements ⇔ responsiveness to mobility

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 11 / 17

Page 42: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

OLSR for MANETs

OLSRd does not specifically take into account the mobility of thenodes

But if it is configured to propagate route metrics quickly, then ETXwill choose good routes in spite of mobility

Configuration parameters should be tuned according to node speedand expected mobility patterns

HELLO intervalTC intervalAgeing parameter

Fundamental trade-off:accuracy of link measurements ⇔ responsiveness to mobility

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 11 / 17

Page 43: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

OLSR for MANETs

OLSRd does not specifically take into account the mobility of thenodes

But if it is configured to propagate route metrics quickly, then ETXwill choose good routes in spite of mobility

Configuration parameters should be tuned according to node speedand expected mobility patterns

HELLO intervalTC intervalAgeing parameter

Fundamental trade-off:accuracy of link measurements ⇔ responsiveness to mobility

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 11 / 17

Page 44: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Communication Systems and Dynamic Routing

OLSR for MANETs

OLSRd does not specifically take into account the mobility of thenodes

But if it is configured to propagate route metrics quickly, then ETXwill choose good routes in spite of mobility

Configuration parameters should be tuned according to node speedand expected mobility patterns

HELLO intervalTC intervalAgeing parameter

Fundamental trade-off:accuracy of link measurements ⇔ responsiveness to mobility

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 11 / 17

Page 45: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Experimental results

Experimental results - Throughput vs Distance

1-hop scenario

0 200 400 600 800

2

5

8

11

14

Distance [m]

Thr

ough

put [

Mbp

s]

Theoretical Max 13 Mbps

Fixed ground station and one MAV thatflies back and forth in straight line

2-hop scenario

0 200 400 600 800

2

5

8

11

14

Distance [m]

Thr

ough

put [

Mbp

s]

Theoretical Max 6.5 Mbps

Relay MAV describes circular waypointcentered halfway between ground stationand destination MAV.Relaying enforced

⇒ Max throughput halved, but extended range

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 12 / 17

Page 46: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Experimental results

Experimental results - Throughput vs Distance

1-hop scenario

0 200 400 600 800

2

5

8

11

14

Distance [m]

Thr

ough

put [

Mbp

s]

Theoretical Max 13 Mbps

Fixed ground station and one MAV thatflies back and forth in straight line

2-hop scenario

0 200 400 600 800

2

5

8

11

14

Distance [m]

Thr

ough

put [

Mbp

s]

Theoretical Max 6.5 Mbps

Relay MAV describes circular waypointcentered halfway between ground stationand destination MAV.Relaying enforced

⇒ Max throughput halved, but extended range

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 12 / 17

Page 47: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Experimental results

Experimental results - Throughput vs Trajectory

1-hop scenario

-100 0 100 200 300 400 500 600 700 800-100

0

100

200

300

400

X distance [m]

Y d

ista

nce

[m]

Data rate

Trajectory

Direction of travel

Ground station at origin of coordinates

Several circular waypoints of radius 50 m

Center in straight line, progressively further fromground station

Diameter of blue data points ∝ throughput

Orientation of the MAVaffects performance

Short range (d < 300 m):little sensitivity toorientation

Long-range (d > 450 m):lost connection

Mid-range(300 < d < 450m):inbound rate higher thanoutbound rate

Motor/electronics shadowcommunication path?

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 13 / 17

Page 48: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Experimental results

Experimental results - Throughput vs Trajectory

1-hop scenario

-100 0 100 200 300 400 500 600 700 800-100

0

100

200

300

400

X distance [m]

Y d

ista

nce

[m]

Data rate

Trajectory

Direction of travel

Ground station at origin of coordinates

Several circular waypoints of radius 50 m

Center in straight line, progressively further fromground station

Diameter of blue data points ∝ throughput

Orientation of the MAVaffects performance

Short range (d < 300 m):little sensitivity toorientation

Long-range (d > 450 m):lost connection

Mid-range(300 < d < 450m):inbound rate higher thanoutbound rate

Motor/electronics shadowcommunication path?

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 13 / 17

Page 49: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Experimental results

Experimental results - Throughput vs Trajectory

1-hop scenario

-100 0 100 200 300 400 500 600 700 800-100

0

100

200

300

400

X distance [m]

Y d

ista

nce

[m]

Data rate

Trajectory

Direction of travel

Ground station at origin of coordinates

Several circular waypoints of radius 50 m

Center in straight line, progressively further fromground station

Diameter of blue data points ∝ throughput

Orientation of the MAVaffects performance

Short range (d < 300 m):little sensitivity toorientation

Long-range (d > 450 m):lost connection

Mid-range(300 < d < 450m):inbound rate higher thanoutbound rate

Motor/electronics shadowcommunication path?

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 13 / 17

Page 50: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Experimental results

Experimental results - Throughput vs Trajectory

1-hop scenario

-100 0 100 200 300 400 500 600 700 800-100

0

100

200

300

400

X distance [m]

Y d

ista

nce

[m]

Data rate

Trajectory

Direction of travel

Ground station at origin of coordinates

Several circular waypoints of radius 50 m

Center in straight line, progressively further fromground station

Diameter of blue data points ∝ throughput

Orientation of the MAVaffects performance

Short range (d < 300 m):little sensitivity toorientation

Long-range (d > 450 m):lost connection

Mid-range(300 < d < 450m):inbound rate higher thanoutbound rate

Motor/electronics shadowcommunication path?

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 13 / 17

Page 51: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Experimental results

Experimental results - Throughput vs Trajectory

1-hop scenario

-100 0 100 200 300 400 500 600 700 800-100

0

100

200

300

400

X distance [m]

Y d

ista

nce

[m]

Data rate

Trajectory

Direction of travel

Ground station at origin of coordinates

Several circular waypoints of radius 50 m

Center in straight line, progressively further fromground station

Diameter of blue data points ∝ throughput

Orientation of the MAVaffects performance

Short range (d < 300 m):little sensitivity toorientation

Long-range (d > 450 m):lost connection

Mid-range(300 < d < 450m):inbound rate higher thanoutbound rate

Motor/electronics shadowcommunication path?

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 13 / 17

Page 52: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Experimental results

Experimental results - Throughput vs Trajectory

1-hop scenario

-100 0 100 200 300 400 500 600 700 800-100

0

100

200

300

400

X distance [m]

Y d

ista

nce

[m]

Data rate

Trajectory

Direction of travel

Ground station at origin of coordinates

Several circular waypoints of radius 50 m

Center in straight line, progressively further fromground station

Diameter of blue data points ∝ throughput

Orientation of the MAVaffects performance

Short range (d < 300 m):little sensitivity toorientation

Long-range (d > 450 m):lost connection

Mid-range(300 < d < 450m):inbound rate higher thanoutbound rate

Motor/electronics shadowcommunication path?

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 13 / 17

Page 53: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Experimental results

Experimental results - Relay status

3 nodes, dynamic routing with OLSRd.Relay status and trajectory followed by destination MAV

-200 0 200 400 600 800 1000-100

0

100

200

300

400

500

600

X distance [m]

Y d

ista

nce

[m]

Relay status

Two-hops communicationOne-hop communication

Direction of travel

Relaying MAV describes circular way-pounts, radius50m, center half-way between ground station andthat of way-points described by destination MAV

Short range(d < 400 m):strong 1-hopconnection

Long range(d > 600 m),outbound: stable2-hop connection

Mid-range (400 <d < 600 m): jitteryrelay status,sensitive toorientation

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 14 / 17

Page 54: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Experimental results

Experimental results - Relay status

3 nodes, dynamic routing with OLSRd.Relay status and trajectory followed by destination MAV

-200 0 200 400 600 800 1000-100

0

100

200

300

400

500

600

X distance [m]

Y d

ista

nce

[m]

Relay status

Two-hops communicationOne-hop communication

Direction of travel

Relaying MAV describes circular way-pounts, radius50m, center half-way between ground station andthat of way-points described by destination MAV

Short range(d < 400 m):strong 1-hopconnection

Long range(d > 600 m),outbound: stable2-hop connection

Mid-range (400 <d < 600 m): jitteryrelay status,sensitive toorientation

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 14 / 17

Page 55: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Experimental results

Experimental results - Relay status

3 nodes, dynamic routing with OLSRd.Relay status and trajectory followed by destination MAV

-200 0 200 400 600 800 1000-100

0

100

200

300

400

500

600

X distance [m]

Y d

ista

nce

[m]

Relay status

Two-hops communicationOne-hop communication

Direction of travel

Relaying MAV describes circular way-pounts, radius50m, center half-way between ground station andthat of way-points described by destination MAV

Short range(d < 400 m):strong 1-hopconnection

Long range(d > 600 m),outbound: stable2-hop connection

Mid-range (400 <d < 600 m): jitteryrelay status,sensitive toorientation

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 14 / 17

Page 56: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Experimental results

Experimental results - Relay status

3 nodes, dynamic routing with OLSRd.Relay status and trajectory followed by destination MAV

-200 0 200 400 600 800 1000-100

0

100

200

300

400

500

600

X distance [m]

Y d

ista

nce

[m]

Relay status

Two-hops communicationOne-hop communication

Direction of travel

Relaying MAV describes circular way-pounts, radius50m, center half-way between ground station andthat of way-points described by destination MAV

Short range(d < 400 m):strong 1-hopconnection

Long range(d > 600 m),outbound: stable2-hop connection

Mid-range (400 <d < 600 m): jitteryrelay status,sensitive toorientation

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 14 / 17

Page 57: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Conclusions and future work

Conclusions

Designed single-frequency MANET of ultra-light MAVs and groundnodes

ISM band, standard technologies, COTS components, open sourcesoftware

Ideal for economic, quick, temporary deployment - anywhere

Demonstrate feasibility of using dynamic routing with OLSRd to copewith the high mobility of the MAVs and harsh wireless channel

Characterised the effects of distance and aircraft orientation onend-to-end achievable throughput and routing decisions

Multi-hop to extend range (and/or reliability), data rate reduced byeach additional relayNot only distance but orientation impact performance (unless MAVsare within short range)

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 15 / 17

Page 58: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Conclusions and future work

Conclusions

Designed single-frequency MANET of ultra-light MAVs and groundnodes

ISM band, standard technologies, COTS components, open sourcesoftware

Ideal for economic, quick, temporary deployment - anywhere

Demonstrate feasibility of using dynamic routing with OLSRd to copewith the high mobility of the MAVs and harsh wireless channel

Characterised the effects of distance and aircraft orientation onend-to-end achievable throughput and routing decisions

Multi-hop to extend range (and/or reliability), data rate reduced byeach additional relayNot only distance but orientation impact performance (unless MAVsare within short range)

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 15 / 17

Page 59: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Conclusions and future work

Conclusions

Designed single-frequency MANET of ultra-light MAVs and groundnodes

ISM band, standard technologies, COTS components, open sourcesoftware

Ideal for economic, quick, temporary deployment - anywhere

Demonstrate feasibility of using dynamic routing with OLSRd to copewith the high mobility of the MAVs and harsh wireless channel

Characterised the effects of distance and aircraft orientation onend-to-end achievable throughput and routing decisions

Multi-hop to extend range (and/or reliability), data rate reduced byeach additional relayNot only distance but orientation impact performance (unless MAVsare within short range)

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 15 / 17

Page 60: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Conclusions and future work

Future work

Need to optimize antenna placement for more uniform behaviour

Costly and time-consuming experimental testing

Need to combine with simulation/modelling toolsCurrent work: Flight simulator + Network simulator (CORE/EMANE)Evaluate and compare diverse routing protocols (BABEL,802.11s/HWMP)

Exploit interface between autopilot and embedded computer

Integrate GPS position into routing decisionsGuide flight decision/node placement based on communication needsEnable ferrying in sparse networks

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 16 / 17

Page 61: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Conclusions and future work

Future work

Need to optimize antenna placement for more uniform behaviour

Costly and time-consuming experimental testing

Need to combine with simulation/modelling toolsCurrent work: Flight simulator + Network simulator (CORE/EMANE)Evaluate and compare diverse routing protocols (BABEL,802.11s/HWMP)

Exploit interface between autopilot and embedded computer

Integrate GPS position into routing decisionsGuide flight decision/node placement based on communication needsEnable ferrying in sparse networks

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 16 / 17

Page 62: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Conclusions and future work

Future work

Need to optimize antenna placement for more uniform behaviour

Costly and time-consuming experimental testing

Need to combine with simulation/modelling toolsCurrent work: Flight simulator + Network simulator (CORE/EMANE)Evaluate and compare diverse routing protocols (BABEL,802.11s/HWMP)

Exploit interface between autopilot and embedded computer

Integrate GPS position into routing decisionsGuide flight decision/node placement based on communication needsEnable ferrying in sparse networks

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 16 / 17

Page 63: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Conclusions and future work

Future work

Need to optimize antenna placement for more uniform behaviour

Costly and time-consuming experimental testing

Need to combine with simulation/modelling toolsCurrent work: Flight simulator + Network simulator (CORE/EMANE)Evaluate and compare diverse routing protocols (BABEL,802.11s/HWMP)

Exploit interface between autopilot and embedded computer

Integrate GPS position into routing decisionsGuide flight decision/node placement based on communication needsEnable ferrying in sparse networks

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 16 / 17

Page 64: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Conclusions and future work

Future work

Need to optimize antenna placement for more uniform behaviour

Costly and time-consuming experimental testing

Need to combine with simulation/modelling toolsCurrent work: Flight simulator + Network simulator (CORE/EMANE)Evaluate and compare diverse routing protocols (BABEL,802.11s/HWMP)

Exploit interface between autopilot and embedded computer

Integrate GPS position into routing decisionsGuide flight decision/node placement based on communication needsEnable ferrying in sparse networks

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 16 / 17

Page 65: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Conclusions and future work

Future work

Need to optimize antenna placement for more uniform behaviour

Costly and time-consuming experimental testing

Need to combine with simulation/modelling toolsCurrent work: Flight simulator + Network simulator (CORE/EMANE)Evaluate and compare diverse routing protocols (BABEL,802.11s/HWMP)

Exploit interface between autopilot and embedded computer

Integrate GPS position into routing decisionsGuide flight decision/node placement based on communication needsEnable ferrying in sparse networks

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 16 / 17

Page 66: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Conclusions and future work

Future work

Need to optimize antenna placement for more uniform behaviour

Costly and time-consuming experimental testing

Need to combine with simulation/modelling toolsCurrent work: Flight simulator + Network simulator (CORE/EMANE)Evaluate and compare diverse routing protocols (BABEL,802.11s/HWMP)

Exploit interface between autopilot and embedded computer

Integrate GPS position into routing decisionsGuide flight decision/node placement based on communication needsEnable ferrying in sparse networks

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 16 / 17

Page 67: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Conclusions and future work

Future work

Need to optimize antenna placement for more uniform behaviour

Costly and time-consuming experimental testing

Need to combine with simulation/modelling toolsCurrent work: Flight simulator + Network simulator (CORE/EMANE)Evaluate and compare diverse routing protocols (BABEL,802.11s/HWMP)

Exploit interface between autopilot and embedded computer

Integrate GPS position into routing decisionsGuide flight decision/node placement based on communication needsEnable ferrying in sparse networks

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 16 / 17

Page 68: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Conclusions and future work

Thank you

Thank you for your attention!

Questions?

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 17 / 17

Page 69: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Extra Slides

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 1 / 5

Page 70: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

IEEE 802.11 WiFi communications

WiFi card - Sparklan WUBR507N

Multi standard (802.11 a/b/g/n), dual-band model (Ralink chipset)

Very flexible Linux driver, access to detailed PHY configuration

65×25×2 mm, 7 g ⇒ minimal impact on aerodynamics

Configuration

Driven by robustness

802.11n in 5 GHz band, MIMO with 2 antennas (Alamouti, no BLAST)

MCS (Modulation and Coding Scheme): QPSK, 13 Mb/s (fixed, data rateswitching disabled), rate 1/2 channel coding, long GI

“Greenfield” mode - all nodes in the network operate in 802.11n(and with exactly same settings)

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 2 / 5

Page 71: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

IEEE 802.11 WiFi communications

WiFi card - Sparklan WUBR507N

Multi standard (802.11 a/b/g/n), dual-band model (Ralink chipset)

Very flexible Linux driver, access to detailed PHY configuration

65×25×2 mm, 7 g ⇒ minimal impact on aerodynamics

Configuration

Driven by robustness

802.11n in 5 GHz band, MIMO with 2 antennas (Alamouti, no BLAST)

MCS (Modulation and Coding Scheme): QPSK, 13 Mb/s (fixed, data rateswitching disabled), rate 1/2 channel coding, long GI

“Greenfield” mode - all nodes in the network operate in 802.11n(and with exactly same settings)

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 2 / 5

Page 72: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Intra- and Inter-flow interference

Two communication flows:S1→ D1 and S2→ D2

Intra-flow: S1→ X1 andX2→ D1, or X1→ X2,but not bothsimultaneously

Inter-flow: X1→ X2 orX3→ X4, but not bothsimultaneously

Nodes contend for bandwidth with:

Other nodes in the same communication path

Nodes in geographic proximity belonging toother paths

Intra-flow interference reduces the throughput

with every node added in multi-hop chain ⇒Can be avoided using multiple wireless

interfaces on each node (multi-frequency

network)

Increased weight, reduced autonomy ofMAVsComplicate optimization of dynamicrouting

Interflow interference: routing protocol needsgeographic information to avoid it

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 3 / 5

Page 73: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Intra- and Inter-flow interference

Two communication flows:S1→ D1 and S2→ D2

Intra-flow: S1→ X1 andX2→ D1, or X1→ X2,but not bothsimultaneously

Inter-flow: X1→ X2 orX3→ X4, but not bothsimultaneously

Nodes contend for bandwidth with:

Other nodes in the same communication path

Nodes in geographic proximity belonging toother paths

Intra-flow interference reduces the throughput

with every node added in multi-hop chain ⇒Can be avoided using multiple wireless

interfaces on each node (multi-frequency

network)

Increased weight, reduced autonomy ofMAVsComplicate optimization of dynamicrouting

Interflow interference: routing protocol needsgeographic information to avoid it

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 3 / 5

Page 74: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Intra- and Inter-flow interference

Two communication flows:S1→ D1 and S2→ D2

Intra-flow: S1→ X1 andX2→ D1, or X1→ X2,but not bothsimultaneously

Inter-flow: X1→ X2 orX3→ X4, but not bothsimultaneously

Nodes contend for bandwidth with:

Other nodes in the same communication path

Nodes in geographic proximity belonging toother paths

Intra-flow interference reduces the throughput

with every node added in multi-hop chain ⇒Can be avoided using multiple wireless

interfaces on each node (multi-frequency

network)

Increased weight, reduced autonomy ofMAVsComplicate optimization of dynamicrouting

Interflow interference: routing protocol needsgeographic information to avoid it

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 3 / 5

Page 75: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Intra- and Inter-flow interference

Two communication flows:S1→ D1 and S2→ D2

Intra-flow: S1→ X1 andX2→ D1, or X1→ X2,but not bothsimultaneously

Inter-flow: X1→ X2 orX3→ X4, but not bothsimultaneously

Nodes contend for bandwidth with:

Other nodes in the same communication path

Nodes in geographic proximity belonging toother paths

Intra-flow interference reduces the throughput

with every node added in multi-hop chain ⇒Can be avoided using multiple wireless

interfaces on each node (multi-frequency

network)

Increased weight, reduced autonomy ofMAVsComplicate optimization of dynamicrouting

Interflow interference: routing protocol needsgeographic information to avoid it

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 3 / 5

Page 76: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Intra- and Inter-flow interference

Two communication flows:S1→ D1 and S2→ D2

Intra-flow: S1→ X1 andX2→ D1, or X1→ X2,but not bothsimultaneously

Inter-flow: X1→ X2 orX3→ X4, but not bothsimultaneously

Nodes contend for bandwidth with:

Other nodes in the same communication path

Nodes in geographic proximity belonging toother paths

Intra-flow interference reduces the throughput

with every node added in multi-hop chain ⇒Can be avoided using multiple wireless

interfaces on each node (multi-frequency

network)

Increased weight, reduced autonomy ofMAVsComplicate optimization of dynamicrouting

Interflow interference: routing protocol needsgeographic information to avoid it

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 3 / 5

Page 77: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Pros and Cons of the ETX metric

Advantages

Maximize throughput taking into account packet loss of the links

Handles asymmetric links

Accounts for Intra-flow interference

Summation of ETX in multi-hop routes reflects that a relay cannotreceive data from previous hop and forward it to next at the same time

Decreases energy consumed per packet

Criticism

ETX does not consider that links may have different PHY rates

Corrected by ETT metric (Expected Transmission Time)

ETX estimations use single (small) size for the probe packets

May lead to inaccurate metric estimation for bigger data packets

Cannot account for inter-flow interference

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 4 / 5

Page 78: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Pros and Cons of the ETX metric

Advantages

Maximize throughput taking into account packet loss of the links

Handles asymmetric links

Accounts for Intra-flow interference

Summation of ETX in multi-hop routes reflects that a relay cannotreceive data from previous hop and forward it to next at the same time

Decreases energy consumed per packet

Criticism

ETX does not consider that links may have different PHY rates

Corrected by ETT metric (Expected Transmission Time)

ETX estimations use single (small) size for the probe packets

May lead to inaccurate metric estimation for bigger data packets

Cannot account for inter-flow interference

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 4 / 5

Page 79: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Pros and Cons of the ETX metric

Advantages

Maximize throughput taking into account packet loss of the links

Handles asymmetric links

Accounts for Intra-flow interference

Summation of ETX in multi-hop routes reflects that a relay cannotreceive data from previous hop and forward it to next at the same time

Decreases energy consumed per packet

Criticism

ETX does not consider that links may have different PHY rates

Corrected by ETT metric (Expected Transmission Time)

ETX estimations use single (small) size for the probe packets

May lead to inaccurate metric estimation for bigger data packets

Cannot account for inter-flow interference

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 4 / 5

Page 80: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Pros and Cons of the ETX metric

Advantages

Maximize throughput taking into account packet loss of the links

Handles asymmetric links

Accounts for Intra-flow interference

Summation of ETX in multi-hop routes reflects that a relay cannotreceive data from previous hop and forward it to next at the same time

Decreases energy consumed per packet

Criticism

ETX does not consider that links may have different PHY rates

Corrected by ETT metric (Expected Transmission Time)

ETX estimations use single (small) size for the probe packets

May lead to inaccurate metric estimation for bigger data packets

Cannot account for inter-flow interference

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 4 / 5

Page 81: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Pros and Cons of the ETX metric

Advantages

Maximize throughput taking into account packet loss of the links

Handles asymmetric links

Accounts for Intra-flow interference

Summation of ETX in multi-hop routes reflects that a relay cannotreceive data from previous hop and forward it to next at the same time

Decreases energy consumed per packet

Criticism

ETX does not consider that links may have different PHY rates

Corrected by ETT metric (Expected Transmission Time)

ETX estimations use single (small) size for the probe packets

May lead to inaccurate metric estimation for bigger data packets

Cannot account for inter-flow interference

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 4 / 5

Page 82: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Pros and Cons of the ETX metric

Advantages

Maximize throughput taking into account packet loss of the links

Handles asymmetric links

Accounts for Intra-flow interference

Summation of ETX in multi-hop routes reflects that a relay cannotreceive data from previous hop and forward it to next at the same time

Decreases energy consumed per packet

Criticism

ETX does not consider that links may have different PHY rates

Corrected by ETT metric (Expected Transmission Time)

ETX estimations use single (small) size for the probe packets

May lead to inaccurate metric estimation for bigger data packets

Cannot account for inter-flow interference

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 4 / 5

Page 83: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Pros and Cons of the ETX metric

Advantages

Maximize throughput taking into account packet loss of the links

Handles asymmetric links

Accounts for Intra-flow interference

Summation of ETX in multi-hop routes reflects that a relay cannotreceive data from previous hop and forward it to next at the same time

Decreases energy consumed per packet

Criticism

ETX does not consider that links may have different PHY rates

Corrected by ETT metric (Expected Transmission Time)

ETX estimations use single (small) size for the probe packets

May lead to inaccurate metric estimation for bigger data packets

Cannot account for inter-flow interference

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 4 / 5

Page 84: Implementation of a Wireless Mesh Network of Ultra Light MAVs with Dynamic Routing

Thank you

Thank you for your attention!

Questions?

[email protected] (EPFL) SMAVNET Aneheim, Dec. 7th 2012 5 / 5