introduction to power...

47
1 Introduction to Power Electronics NCTU 2004 Power Electronics Course Notes pag e 1 電 力 電 子簡介 2004912鄒應嶼 教授 國立交通大學 電機與控制工程研究所 File nam e: :\投影片:電力電 子(研究所)\PE- 01.電力 電子簡介. ppt 國立交通大學電力電子晶片設計與DSP控制實驗室 Power Elect ronics IC Design & DSP Cont rol Lab., NCTU, Taiwan http://powerlab.cn.nctu.edu.tw/ POWERLAB NCTU 電力電子晶片設計與DSP 控制實驗室 Power Elec tronics I C Des ign & DSP Control Lab. 台灣新竹交通大學 電機 與控制 工程研 究所 pag e 2 Introduction to Power Electronics 1. Introduction 2. Linear vs. Switching Power Supply 3. Power Conversion Process 4. Unique Aspects of Power Electronics 5. Power Semiconductor Devices 6. Applications 7. Power Converters for Power Supplies 8. Power Converters for Motor Drives 9. Future Development of Power Electronics pag e 3 Introduction Power Electronics Lab., NCTU, Taiwan 電力電子晶片設計與DSP控制實驗室 Power Electronics IC & DSP Control Lab. 國立交通大學 電機 與控 制工程 研究所

Upload: nguyennhan

Post on 23-Jun-2018

247 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 1

    2004912

    Filenam e: :\ ()\PE- 01.. ppt

    DSPPower Elect ronics IC Design & DSP Cont rol Lab., NCTU, Taiwan

    http://powerlab.cn.nctu.edu.tw/

    POWERLABNCTU

    DSPPower Elec tronics I C Des ign & DSP Control La b.

    page 2

    Introduction to Power Electronics

    1. Introduction 2. Linear vs. Switching Power Supply 3. Power Conversion Process4. Unique Aspects of Power Electronics5. Power Semiconductor Devices6. Applications7. Power Converters for Power Supplies8. Power Converters for Motor Drives9. Future Development of Power Electronics

    page 3

    Introduction

    Power Electronics Lab., NCTU, Taiwan

    DSPPower Electronics IC & DSP Control Lab.

  • 2

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 4

    Foundations of Modern Civilization

    ()

    (power electronics)

    1956 General Electric, SCR

    (energy processing)

    (microelectronics)

    1971 INTEL, 4004 Microprocessor

    (information processing)

    Power ProcessingSignal Processing

    page 5

    What is Power Electronics?

    Power electronics can be defined as technology in application ofelectronics to power processing.

    Power electronics is a branch of electrical engineering that is concerned with the conversion and control of electrical power for various applications, such as heating and lighting control, electrochemical processes, dc and ac regulated power supplies, induction heating, dc and ac electrical machine drives, e lectrical welding, active power line filtering, static VAR compensation, and many more.

    page 6

    Characteristics of Power Electronics

    Power Electronics is a Synergy Technology

    Power Electronics is an Enabling Technology

    Power Electronics technology inherently integrates signal (analog & digita l) processing technology. Power Electronics = Efficient Power Conversion + Robust Power Control

  • 3

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 7

    (synergy technology)

    CircuitTheory

    ConverterCircuits

    ElectricalMachines

    Control

    Electronics

    Pow erElectronics

    Solid-StatePhysics

    P/DSP

    ComputerSimulation

    EMI/EMC

    Saf ety

    Reliability

    Magnetics

    ThermalDesign

    PackageDesign

    page 8

    Approaches to Advanced Power Electronics Technology

    PowerElectronics

    Theory PracticeSimulation

    page 9

    Power Electronics Technologies and Applications

    Domestic Robots

    ASDHVACCustom PowerFACTs

    SIC

    Bipolar Transistor

    Power MOSFET

    8-bit Microprocessor

    IGBT

    III-N

    ASDIGCT

    1960 1970 1980 1990 20002010

    2020

    Silicon Transistor

    GTO

    Integrated Circuit

    SIT

    Wide Spread Use of Superconductors

    Artificial Limbs

    MCT IPEM

    Transportation Hybrid & Electric Vehicles

    Thyristor

  • 4

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 10

    Power Electronics in Modern Life

    Power electronics plays a key role in all these products for energy saving, high power density, and quite operation requirements!

    page 11

    Applications of Power Electronics

    Power Electronics

    Power Supply

    Motor Drive

    SPS for C&CDC-DC ConvertersVRM/LDOChargerAdaptorBallastUPS, AV R, Pow er SourcePV Inverter, Fuel-Cell InverterEDM/Sputter/Wielding

    InverterServo DriveFA N DriveInformation Appliance DriveWhite Goods Dr iveToy DriveE-Bike/Sport Dr iveSport/Rehabilitat ion Dr iveAutomobile/EV /HEV Drive

    page 12

    The Worldwide Electronics Marketplace (1997)

    PowerElectronics

    is an EnablingTechnology

    Equipment Sales: $60B

    Hardware Ele ctr onic s$1000B

    Total Elec tronics Marke t $2,00 0B

    Power Semiconductor Devices $8B

  • 5

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 13

    Energy and Power Electronics

    Motor55%

    Other20%

    Lighting21%

    Computers4%

    1997: 40%2010: 80%

    Total E nergy

    ElectricalEnergy

    20181614121086420

    1800 1900 2000 2100Year

    20 40 60 80 20 40 60 80 20 40 60 80

    Electrical Energy

    Total Energy

    30% sav ings with improv ed power electronics

    *Output of 84 0 power pla nts

    *EPRI

    Electrical E ner gy

    page 14

    1997

    361012 KWH

    23%

    16%

    81

    page 15

    (PEBB)

  • 6

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 16

    /

    /

    /

    page 17

    page 18

  • 7

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 19

    Power Electronic for Efficient Energy Conservation

    (a) conventional drive (b) adjustable-speed drive

    MotorLine input

    Output

    InputPump

    Thr ottli ngv alv e

    Line input

    Output

    InputPump

    Adj ustable -spee d driv e

    page 20

    Power Semiconductor Application Functions

    S TATIC SWI TCHINGSolid-state rela ys, contactors, a nd circuit brea ke rsLogic systemsCircuit protecto rs---cro wba rs, limit activated inte rrupt ers

    AC PHASE CONTROLLight dimmersMo tor spee d controlsVoltage regulato rsVAR regulato rs

    PHASE-CONTROLLED RECTI FIER/I NVERTERdc motor d rivesRegulated dc po wer suppliesHVDCWind generat or con ve rters

    CYCLOCONVERTERAircraft VSCF syste msVariable-frequenc y ac moto r d rivesFreq uency multiplierInduction-heating sup pliesHigh-frequenc y lighting

    TRANSIS TOR LINEAR AMPLI FIERdc-dc buck, boost, and buck-boost con ve rtersHigh-pe rformance regulated po wer supplies

    THYRIS TOR CHOPPE RElectric transportation prop ulsion controlGene rato r e xcitersHigh-pe rformance, high -powe r regulated supplies

    INVERTERAircraft and space powe r suppliesUninterruptible powe r supplies

    page 21

    Historic Review of Power Electronics Development

    1897 DEV ELOPMENT OF GRA ETZ CIRCUIT1901 COOPER HEWITT PA TENT ON MERCURY-ARC RECTIFIER1913 DISCOV ER OF GRID CONTROL1923 DEV ELOPMENT OF COOL-CATHODE THY RATRON1926 DEV EI OPMENT OF HOT-CATHODE THY RATRON1931 CY CLOCONV ERTER INTRODUCED FOR RAILWAY SERV ICE1933 DISCORY OF IGNITION PRINCIPLE1936 HV DC TRA NSMISSION LINE INTRODUCED1942 FREQUENCY CHA NGER FOR 25/60Hz, 20MW1948 INV ENTION OF TRANSISTOR (Bardeen, Brattain, and Shockley, Bell Lab.)1956 INV ENTION OF PNPN TRANSISTOR (Bell Lab.)1958 GE Commercialize the FIRST THYRISTOR1970 500V,20A SILICON TRANSISTOR

  • 8

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 22

    Historic Review of Power Electronics Development ..

    1971 8008 MICROPROCESSOR ANNOUNCED BY INTEL1972 FIELD-ORIENTED V ECTOR CONTROL PRINCIPLE1975 300V, 400A TOSHIBA GIA NT TRA NSISTOR1978 100V, 25A POWER MOSFET BY INTERNA TIONAL RECTIFIER1980 2500V, 1000A GTO (HITACHI, MITSUBISHI, AND TOSHIBA)1982 400V, 20A GE IGBT1986 1000V, 200A TOSHIBA IGBT1988 600V, 50A GE MCT1997 Development of Low-Cost Single-Chip DSP Controller (TMS320C240)2001 VPEC Development of Pow er Electronics Building Block (PEBB)2002 Development of VRM for Advanced Microprocessors (Pentium IV)2004 Digital PWM Control IC and Digital Pow er Management ICs

    page 23

    Summary of Chronology of Electronic Power Conversion

    Dates Device or Technology Conversion Technologies

    1880s Transforme r, M-G sets

    Vacuum diodes

    Me rcury-arc tub es

    Selenium rectifiers, grid cont rol

    Ma gnetic amplifiers

    Semiconductors

    Silicon-controlled rectifier (SCRs)

    Power bipola r tra nsistors

    IGBT

    Electromechanical units for ac-dc con ve rsion, volta ge level shifting fo r ac.

    Develop ment of major a pplications.

    Electronic rectification. Electronic circuits for ac-dc and dc-ac conve rsion. Basic techniques worked out f or ac -ac conve rsion.

    Semiconductor rectifier technologies in regula r production.

    High-power semiconducto r de vices. These quickly replaced gas tu bes, and made cont rollable ac-dc con vert ers p ractical and cheap.

    Nearl y an y application now p ossible. Emphasis on the best alternative for a given application.

    New me thods fo r dc-dc con version. The influence o f de vice prope rties on powe r electronics begins to wane. Rapid e xpansion of m arkets fo r miniature power supplies.

    Substantial simplification of dc-ac and dc-dc conversion techniques. Emergence o f powe r electronics as a separate discipline.

    Inception of electronic con version fo r high-voltag e dc powe r t ransmission. Growing need for sm all power sup plies for electronic gea r.

    Electronic power a mplifiers. Fu rthe r ad vances in electronic con version.

    1900s

    1920s

    1930s

    1940s

    1950s

    1960s

    1970s

    1980s

    1990s

    Power field-effect t ransistors

    page 24

    Smaller! Smaller! Smaller! Smaller! Smaller! The Biggest Biggest Biggest Challenges!

  • 9

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 25

    page 26

    (battery)

    (ultracapacitor)

    MOS (MOS-controlled thyristor, MCT)

    (intelligent power module, IPM)

    (digital signal processor, DSP)

    page 27

    Driving Forces for Modern Power Electronics

    (SPS)

    (UPS)

    HVDC

    Micro Turbine

  • 10

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 28

    Research Thrusts

    Adjustable Speed AC Drives Resonant Power ConvertersAutomotive Power ElectronicsElectronic AutomobilesHigh-Speed Electr ic RailwaysHVDC Power TransmissionEnergy Storage FEM Analysis of Electrical MachinesActive Power Factor CorrectionPower Electronics Control ICsIntelligent Control Strategies Using DSP/PsIntelligent Power Devices/ModulesSuperconducting Power Electronics

    page 29

    SPSUPS

    HVDC

    page 30

    Linear vs. Switching Power Supply

    Power Electronics Lab., NCTU, Taiwan

    DSPPower Electronics IC & DSP Control Lab.

  • 11

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 31

    page 32

    Linear DC Power Supply

    vd

    +

    Rload

    +

    Vo

    Vo, ret

    Controller

    Line-freq uencytransformer

    Utilitysupply

    Rectifier Filter-capacitor

    vd(t)

    0 t

    Vo

    vd range

    vd min

    page 33

    B

    C E

    iC

    iB

    transistor

    iC

    vCE

    ACTIVE

    i h iC FE B=

    CUT-OFF, iC 0

    SATURATI ON, vCE = 0

  • 12

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 34

    60 Hztransformer

    basedrive r

    OP

    unregulated DC

    Vref

    ACinput

    load

    load

    equivalent circuit

    outputinput

    ACinput

    DC outp ut

    page 35

    +5V

    ++

    AC 125V400mA

    AC 100V

    8V 2A

    3900 F/16V

    50V 1.5A

    0.1 F/50V

    47 F/16V

    GND

    5V, 1A

    7805 (5V 1.0A)

    +

    ~

    ~

    3-terminal regulator

    page 36

  • 13

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 37

    Switch-Mode DC Power Supply

    +

    Power processor

    High frequencytransformer

    Rectifier Low-passfilter

    Power processor

    Rectifier Filtercapacitor

    Utilitysupply

    +

    Vd

    VoControllerController

    vd

    Vo

    +

    RloadVo

    +

    Rload

    Vo, retVo, ret

    (a) (b)

    page 38

    +vd

    +

    Rload

    +

    vovoi

    a

    b

    toffton

    ss f

    T1

    =

    voi

    Voi0 t

    0 t

    vripple(t)

    rmshoiV )(

    Harmo nich0 1 2 3 4 5 6 7 8 9

    (a)

    (b)

    (c)

    (d)

    C

    L

    page 39

    "" (Sw itch) "" (Saturation Region) "" (Cut-Off Region)

    "" (CLOSED)"" (OPEN)

    ()

  • 14

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 40

    10

    LPS

    SPS

    ?W

    Cos

    t(D

    olla

    rs p

    erW

    stt)

    20KHz SPS versus Linear Performance

    Parameter SPS LPS

    EfficiencySizeWeightLine Load RegulationOutput Ripple VNoise VTransient ResponseHold-Up Time

    75 2.0W/in40 W/lb

    0.1 50 mV

    100 mV500 S20 mS

    30 0.5W/in 10 W/lb

    0.1 5 mV------

    20 S1mS

    cost comparison

    Power

    page 41

    Power Conversion Process

    Power Electronics Lab., NCTU, Taiwan

    DSPPower Electronics IC & DSP Control Lab.

    page 42

    Basis in Power Electronics

    Requirements (Specifications)

    High Efficiency (>90%)High Power Density (> 100W/in3)High Reliability (MTBF > 105 Hrs)Low Cost (< 0.1-0.5 US/Watt)EMC Regulations (FCC Class B)Safety Regulations (UL)

    Modern Power DevicesPower MOSFETInsulated Gated Bipolar Transistor (IGBT)Static Induction Thyristor (SIT)MOS Controlled Thyristor (MCT)Insulated Gated Control Thyristor (IGCT)Injection Enhanced Gate Thyristor (IEGT)

    Power Switching Techniques

    Pulse Width Modulation (PWM)Resonant SwitchingQuasi-Resonant SwitchingSoft PWM SwitchingPhase Shift PWM

    Basic Power ConvertersAC/DC Converter (Rectifier)DC/DC Converter (Chopper)DC/AC Converter (Inverter)AC/AC Converter (Cycloconverter)

  • 15

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 43

    Power Conversion Process

    Input Power Power Conversion Output Power

    Passive Power ComponentsControl and Sensing Devices

    Active Power Devices

    battery

    mains

    Photo

    voltaic

    DCAC

    page 44

    Power Electronic Systems

    LOADINPUTPOWER

    What are the applications?What is the power source?

    Specs. Specs.

    OUTPUTPOWER

    What is the power requirement?

    POWERCONVERTER

    EfficiencyPower Density

    CONTROLLER

    RegulationDynamics

    Power Supply Design

    Power Electronics = Efficient Power Conversion + Robust Power Control

    page 45

    Control of Power Electronic Systems

    ControllingSy stem Digital Circuit Power Circuits

    ControlledSy stem

    Power Input

    (feedback sensing)(loop gain shaping)(realization)

  • 16

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 46

    Power MOSFET

    IGBT

    page 47

    500V, 3000A GTO

    6000V, 2500A Light Triggered SCR

    1000V, 400A BJT

    400V, 20A and 50V, 100A Power MOSFET

    500V, 400A and 1000V, 300A IGBT

    SIT and SITH (Static Induction Transistor/Thyristor)

    MCT (MOS Controlled Thyristor)

    IGCT (Insulated Gate Controlled Thyristor)

    IEGT (Injection Enhanced Gate Thyristor)

    page 48

    Unique Aspects of Power Electronics

    Switching Losses Analysis Switching of Power DevicesPower Semiconductor Device Characteristics

  • 17

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 49

    Assumed Transistor Switching Waveforms

    i(t)

    (a)

    v(t)

    E

    +

    (c)

    (Time to switch)

    t0

    Leakage Saturated drop

    (b)

    v(t) i(t)

    t

    offdissipation

    ondissipation

    0

    p(t) = v(t) i(t)

    TSW

    E I

    page 50

    Switching Loss Analysis

    The instantaneous power dissipated during the switching interval can be expressed as

    PT

    v t i t dtTSWSW

    TSW=

    10

    ( ) ( )

    ttTTEI

    TtI

    TtTEtitvP SW

    SWSWSW

    SWT )()(

    ]][)([)()( 2 ===

    In the expressions for v(t) and i(t), the beginning of the switching interval is assumed to be t=0. Also, the saturated voltage drop and collect leakage current are both assumed to be negligible.

    page 51

    Average Switching Loss

    6]

    3)(

    2)([

    )()(

    )(

    33

    0 33EITT

    TEItdttT

    TEIP SWSW

    T

    SWSW

    SWTSW

    SW===

    The total average dissipation in a switching element is obtained by adding the on-state, off-state, and switching losses. For example, with a switching period of T, assuming linear switching with a switching times of TSW for both turn-on and turn-off and an on-time and off-time of TON and TOFF respectively.

    The average power dissipated during a switching interval is important since it determines the maximum number of switchings possible in a given time interval. The average dissipation during the interval TSW is given by

  • 18

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 52

    Total Device Losses

    PEI T V I T EI T

    TTSW CE SAT ON leakage OFF

    + +2 6( ) ( ) ( )( )

    Total device average dissipation = PT

    If VCE(S AT) and Ileakage can be neglected, then

    TTEIP SWT 3

    page 53

    Switching of Power Devices

    Commutation of Thyristor

    Gating of Power Transistor/MOSFET

    Switching Technique

    PWM Control Strategy

    Thermal Effect

    EMI/EMS

    page 54

    Power Semiconductor Devices Characteristics

    Temperature Effect

    Voltage and Current Rating

    dv/dt and di/dt Effect

    Forward and Reverse Recovery

    Secondary Breakdown

    FBSOA and RBSOA

  • 19

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 55

    Basic Types of Power Converters

    AC

    DC

    VOLTAGE

    CURRENT

    AC

    DC

    VOLTAGE

    CURRENT

    AC/DC Converter (Rectifier)DC/DC Converter (Chopper)DC/AC Converter (Inverter)AC/AC Converter (Cycloconverter)

    page 56

    Basic Power Converters

    AC-DC Converter (Rectifier)

    DC-DC Converter (Chopper)

    DC-AC Converter (Inverter)

    AC-AC Converter (Cycloconverter)

    page 57

    The Core of Power Electronics is Power Converter

    Input Power Power Conversion Output Power

    battery

    mains

    PV

    DCAC

    DC-DC vs. DC-AC ConvertersSingle-Quadrant vs. Multiple-Quadrant ConvertersSingle-Phase vs. Multiple-Phase Converters Hard-Switching vs. Soft-Switching ConvertersUni-Directional vs. Bi-Directional Converters

  • 20

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 58

    Basic Components in a Switching Power Supply

    Inductor Capacitor MOSFET Diode PWM Control IC

    page 59

    Power Conversion in V-I Plane (Four-Quadrant)

    1Inverter

    2Rectifier

    3Inverter 4Rectifier

    0

    si

    sv

    14 32

    DC-AC Converter Load

    page 60

    Basic PWM Converter Topologies

    Single-Ended Half-Bridge Full-Bridge

    Three-Phase Multi-Phase Multi-Level

  • 21

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 61

    Bidirectional AC-to-DC Converters

    CONV ERTER

    Rectifier Mode

    Inverter Mode

    AC DC

    1dcV

    Input180-260V50/60Hz

    AC input (hot)

    AC input(neutr al)

    2dcV

    1C

    2C

    1L

    LR ov

    1Li

    1C

    si

    svQ2

    Q1

    GD

    GD

    0

    si

    sv

    2

    3 40

    oi

    ov

    11Inverter

    3Inverter

    2Rectifier

    4Rectifier

    14 32

    page 62

    Common-Neutral Bidirectional AC-to-AC Converters

    1dcV

    Input180-260V50/60Hz

    AC input (hot)

    AC input(neutr al)

    2dcV

    1C

    2C

    1L oL

    oC LR ov

    oi1Li Loi

    1C

    si

    svQ2

    Q1 Q3

    Q4

    GD

    GD

    GD

    GD

    1Inverter2

    Rectifier

    3Inverter

    4Rectifier

    0

    i o

    v o

    14 32

    1Inverter

    2Rectifier

    3Inverter 4

    Rectifier

    0

    si

    sv

    14 32

    Inherent bi-directionalUniversal power converterDC-link capacitor as energy bufferComplex dynamic controlCritical traces

    page 63

    Block Diagram of an AC Drive

    +

    Power Processor

    Utility

    ac ac ac motorDC CConverter 1 Converter 2

  • 22

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 64

    Control of Power Converters and Motor Drives

    uud

    Power Factor Control

    Regenerativ e Braking Control

    DC-Link Voltage Regulation

    DC-Link Cap. Minimization

    Cd

    to switches

    Inputconv erter

    Outputconv erter

    ud

    to switches

    u1u2u3

    N S

    PWM Control Inv erter Control DTC Vector Control Sensorless Control Serv o Control Auto-Tuning

    page 65

    Multi-Level Bi-Directional High-Power Induction Motor Drives

    Direct Digital Control Circuit

    Direct Digital Control Circuit

    FPGA/DSP-Based Controller

    Five -Le vel Rectifier

    A/D Converter3/2 3/2

    IM

    c

    L Five -Le vel Rectifier

    cc

    c

    P1

    N1

    N2

    vi

    wi

    vv

    wV

    bi

    ci

    aV

    bv

    cVEncoder

    page 66

    Control Scheme for a 5-Level Double-Converter Induction Drive

    IM

    MHC

    MHCMHC

    PI

    MHC

    MHC

    MHC

    PI

    PI

    aV

    bVcV

    iaib

    ic

    +

    +

    + i

    Voa

    Vdc*

    Vou Vov Vow

    Vdc

    iwiviu

    *iu

    *iv

    *iw

    1aS

    2aS

    3aS

    4aS

    5aS

    6aS

    7aS

    8aS

    1bS2bS

    3bS4bS

    5bS

    6bS

    7bS

    8bS

    1cS2cS

    3cS4cS

    5cS

    6cS

    7cS

    8cS

    1uS2uS

    3uS4uS

    5uS

    6uS

    7uS

    8uS

    1vS2vS

    3vS4vS

    5vS

    6vS

    7vS

    8vS

    1wS2wS

    3wS4wS

    5wS

    6wS

    7wS

    8wS

  • 23

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 67

    Matrix Converter as a Power Processor

    (a) matrix converter (b) voltage source

    Power Processor

    InputsOutputs

    Utility source

    Voltage source

    . . .

    .

    .

    .

    page 68

    Power Switch is the Core of Power Converter

    Power Converter

    InputsOutputs . . .

    .

    .

    .

    page 69

    Power Semiconductor Devices

    3200V, 3000A GTO

    6000V, 2500A Light Triggered SCR

    12000V, 400A BJT

    400V, 20A and 50V, 100A Power MOSFET

    600V, 400A and 1200V, 300A IGBT

    SIT and SITH (Static Induction Transistor/Thyristor)

    MCT (MOS Controlled Thyristor)

    IGCT (Insulated Gate Controlled Thyristor)

    IEGT (Injection Enhanced Gate Thyristor)

  • 24

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 70

    Switching trajectories of the power transistor with inductive load

    VCC0

    load line

    turn off

    turn on

    Switch wi th induc tiv e loa d

    current sensing

    VCC+

    switch

    Measurement of load line

    vCE

    vCE

    iC

    iC

    VCC0

    turn off

    turn on

    VCC0

    turn off

    turn on

    Switch wi th inductiv e loa d shunted by a di ode

    Switch wi th inductiv e load shunte d by a diode

    and capacitor

    page 71

    Classification of Converters by Switching

    Line Frequency (naturally commutated) Converters

    Switching (forced-commutated) Converters

    Pulse Width Modulated Converters

    Resonant/Quasi/Multi-Resonant Converters

    Soft Switching Converters

    Phase Shift PWM Converters

    page 72

    Basic Switches

    Time constants: 1-100 ns(Determined by parasitics, i.e. not by the power conversion functionality.)

    Variables: ON/OFF, Fault(Binary amplitude, continuous timing of transition instants, i.e. analog.)

    A switch is NOT an elementary control cell !

    SingleQuadrant

    VoltageUnidirectional

    CurrentUnidirectional

    FourQuadrant

    SeriesParallel

  • 25

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 73

    Functional Switch Assemblies: Full-Bridge Example

    VoltageUnidirectional

    CurrentUnidirectional

    +

    AC

    DC+

    AC

    +DC

    +

    + +Voltage

    Unidirectional

    Tw oSignal-Pole

    Double-Throw

    Sw itches

    CurrentUnidirectional

    Tw oSignal-Pole

    Double-Throw

    Sw itches

    Topological Restrictions: No shorted voltage sources (capacitors)No open current sources (inductors)

    page 74

    Singe-Pole Multiple-Throw Switch: An Elementary Control Cell

    Faults: Can and MUST be Handled at SPMT Level(Catastrophic faults: shorted capacitors and opened inductors.)

    Time Constants: 1-10 s(Determined by outside components, i.e. converter filtering functions.)

    Control Variables: Sw itch Position, Pulse Widths(Digital amplitude, updated every switching period, i.e. digital & discrete.)

    Controlled Variables: Pole Current, Throw Voltages(Either input sources or state variables; can be sampled and digitized.)

    Models: Switching and Average Models Well Defined(Power conversion function is completely described by SPMT operation.)

    VoltageUnidirectional

    CurrentUnidirectional

    FourQuadrant

    page 75

    Intelligent Unidirectional Single-Pole Double-Throw Switch

    Serial Communications Link & Control Power Supply

    PWMGenerator

    Fault & ErrorLogic

    CommunicationControl

    Current &TemperatureMeasurement

    OpticalIsolation

    OpticalIsolation

    GateDrive

    GateDrive

    FloatingPower

    Supplies

    Snubber

    Snubber

    CurrentSensor

    AC

    +

    T

    V

  • 26

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 76

    PES-Net: Daisy Chained Fiber Optic Control Network

    PEBB & Hardware Manager=

    Smart, Digitally InterfacedSingle-Pole Multiple-Throw Switch

    Single Fiber Bus

    UniversalController

    (AM)Communication

    Interface & PWM

    GateDrives

    M

    PEBB& HM

    PEBB& HM

    Higher

    Level

    BUS

    A

    V

    T

    Signal Processing

    PEBB & HM

    page 77

    Signal Communication in PES-Net

    page 78

    Network-Controlled Power Converting System

    Universal Controller/ Application Manager

    Soft-Switched, SPDT Voltage Unidirectional PEBBs

  • 27

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 79

    Power Conversion Measured in Time

    page 80

    Power Conversion Measured in Watts

    H2000: 1 GOPS, 10MB DRAM, 100MB Flash

    H2010: 100 GOPS, 1GB DRAM, 10GB Flash/Ferro

    ( Electr icity is 25% of running costs )

  • 28

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 82

    Powering PC

    PowerSupplyPowerSupply

    VRM

    VRM

    AGP

    PCI

    Memory

    CPU

    SystemSystem

    ACAC 5V5V

    12V12V

    3.3V3.3V

    3.3V

    12V 1.7V

    2.5V12V

    12V3.3V

    5V

    Processor PowerDelivery

    page 83

    Development Status of Switching Power Supplies

    Changes in technology are APPLICATION driven Distributed Power Supplies

    50V, 100A

    withPFC

    PRE-REGULATO RS

    Power Factor Correction

    High power densityon board converters

    Soft switching techniquesLow voltage converters (1V)Planar magnetics

    page 84

    Power Supplying for Microprocessor

    Development of MicroprocessorsPower Dissipation Inside CPUCPU Power Losses Reduction SchemesPower Supply Voltage for Advanced MicroprocessorsRoadmap for Semiconductor Technology Developmentdi/dt Decoupling in Power Supplying for High-Speed PsDRAM Power Supply Development TrendSwitching Frequencies Roadmap of SPSPossible Power Supply for Future (2010) MicroprocessorsTechnology Roadmap for Advanced SPS

  • 29

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 85

    Powering Advanced Microprocessors

    Pentium IV: 5,500 , .13 m3.2GHz, 1.7VRated: 92W, Peak: 110W

    New specs demand new power solutions!

    Inte l Pentium IV

    page 86

    VRM for Advanced Microprocessors

    Custom processor power100W - 56Vin1.2 - 2 .0 4 bit programmable55 Amps

    Standard processor powerTitania Divisionup to 30AParallelableOutput 5 bit VID programmable

    page 87

    Distributed Power Systems & Architecture

    Pre-regulator

    PowerFactor

    Correction

    High Volt VRM

    On-boardConverter

    ConverterOn-board

    Low Volt VRM

    Testbed Partners: Intel IBM Artesyn Technologies Celestica

    60HzAC

    Voltage Regulator Module (VRM)

    Processor

  • 30

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 88

    Realization of Distributed Power Architecture

    page 89

    Possible Power Supply for Future (2010) Microprocessors

    Possible Specs:Distributed power supply within the chip packageDC input range: 0.5VMaximum Current: 250AInput Voltage: 48VDC or 12VDCEfficiency > 90%Size: 0.1x044x0.1 inchPower Density: 1000W/in3

    DC-DCConverter

    Multiple SystemsONA Chip

    FilterCapacitor

    page 90

    Power Supplies for Portable Information Appliances

    LCD-Display

    PDA

    CPU:~1~2WLCD:~1WCCD:~1W ~3W

    CPU:10~15W :~10WLCD:~3W :3~6W

    CPU:~1~4W :~2WLCD:~1W :~1W

    CPU:~1WT/R:~1W

    CPU:~1~2WLCD:~1W CCD:~1W

    CPU:~1~2WLCD:~1W :~6W:5~10W

    CPU:~1~2W:5~10W

  • 31

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 91

    Human Energy Generation

    Ppeak 10 mW

    1 mW

    Piezoceramics: PZTEfficiency: 50 %

    Piezoceramics: PZTEfficiency: 50 %

    Piezopolimers:PVDF (Polifluoruro de Vinilideno)

    Efficiency (25%)More flexible (embedded systems)

    Piezopolimers:PVDF (Polifluoruro de Vinilideno)

    Efficiency (25%)More flexible (embedded systems)

    SoleSole

    Ppeak 50 mW

    10 mW

    MIT Media LabMIT Media LabMIT Media Lab

    IBMIBMIBM UPCUPCUPC

    HeelHeel

    page 92

    Power Supplying for Mobile Phones

    Battery Charger

    DC-DC

    Display

    Audio

    Vibrator

    P/DSPcore

    D/A

    A/DI/O

    Antenna

    2.5V 2.5V

    2.7-5.5V

    3.6V 2.5V1.5V

    Baseband digital

    Power distribution: Vg = 2.85.5V

    1-3.6V

    Analog/RF

    LO

    2.5V

    Buck SMPSregulators

    PA

    LNA

    DC-DC

    DC-DC

    DC-DC DC-DC

    DC-DCDC-DC

    DC-DC

    3.6V

    DC-DC

    page 93

    Standard Module Platforms

    1W to 330W: over 500 codes

    Filter Modules

    Flat Open Frame

    Surface Mount

    1/4 & 1/2 Brick

    DIP Non Isolated

    SIP Non Isolated

    Processors

    Full Brick

    Source: Locent 2003

  • 32

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 94

    Technology Direction

    Technology direction:

    Open frame Surface mountThrough hole

    From Power Electronics to Power IC Design

    page 95

    Power Supply for Data Centers

    Power Electronics Lab., NCTU, Taiwan

    DSPPower Electronics IC & DSP Control Lab.

    page 96

  • 33

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 97

    UPS for Servers

    page 98

    UPS

    The flywheel (center) mounted between the motor and generator in the dynamic energy storage system converts stored rotational energy into DC bus voltage. The dynamic energy storage system may be used to either replace or supplement the lead-acid batteries of any conventional static or rotary UPS. (Courtesy of International Computer Power Co.)

    DRUPS: Dynamic Rotary UPS

    page 99

    Power Supply for Green Energy

    Power Electronics Lab., NCTU, Taiwan

    DSPPower Electronics IC & DSP Control Lab.

  • 34

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 100

    PV Inverter for Green House

    The End of Cheap OilA Grid-Connected PV SystemWorld PV Module ShipmentsThe USA National PV Program Plan for 2000-2004Million Solar Roofs

    page 101

    The End of Cheap Oil

    C. Campbell and J. Laherrere, The end of cheap oil, Science American, vol. 278, pp. 7883, Mar. 1998.

    GLOBAL PRODUCTION OF OIL both conventional and unconventional (red), recovered after falling in 1973 and 11979. But a more permanent decline is less than 10 y ears away , according to the authors model, based in part on multiple Hubbertcurves (lighter lines). U.S. and Canadian oil (brown) topped out in 1972; production in the f ormer Sov iet Union (yellow) has fallen 45 percent since 1987. A crest in the oil produced outside the Persian Gulf region (purple) now appears imminent. AN

    NU

    AL

    OIL

    PR

    OD

    UC

    TIO

    N (

    BIL

    LIO

    N O

    F B

    AR

    RO

    ER

    S)

    2004

    page 102

    World PV Module Shipments 19882000 ( in megaw atts)

    S. R. Bull, "Re ne wa ble e ner gy toda y a nd tomorrow, " Proc eedi ngs of the IEEE, v ol. 89, no. 8, pp. 1216 -1226, Aug. 2 001.

  • 35

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 103

    The USA National Photovoltaics Program Plan for 2000-2004

    page 104

    Million Solar Roofs

    Sussex Central M iddle Sc hoolDelaw are, USA

    State Capit ol, Hel ena, Montana, USA

    Portl and Pi oneer Square, Portl and, USA

    Private house, Almero, Net herlands

    Announced in June 1997, Million Solar Roofs (MSRI) is an initiative to install solar energy systems on one million U.S. buildings by 2010. The initiative includes two types of solar technology: solar electric systems (orphotovoltaics) that produce electricity from sunlight and solar thermal systems that produce heat f or domestic hot water, space heating, or heating swimming pools. http://www/millionsolarroofs.com/

    page 105

    A Grid-Connected PV System

    Full -Bri dge I nv erter

    DSP Controller

    load

    InverterGate Drive

    RelayGate Drive

    FeedbackSensing Circuit

    Meter

    DC Side isolation switch

    To high efficiency AC

    appliances

    inverter

    PV Array(usually building mounted)

    AC mains supply

    Main fuse box

    PV Panel

    DC ACACDC

    PV Inv erter

    ElectricalDistribution

    Sy stem

  • 36

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 106

    19.5 (2003/3/24)

    2003/03/24 BP19.520021018.5HIT41200W HIT

    200W HIT200W123HIT17152450kWh/200W3530kWh/4420200W4795kWh/3kW210kg90kg

    page 107

    Single-Phase Three-Wire PV Inverter

    A

    NB

    P

    +

    +

    N

    PV Module

    Q3 Q5

    Q4 Q6

    Q1

    Q2

    Digital Signal Processor

    DSP

    Optional Front Panel Controller

    RS 232 or 422

    Grid Voltage Feedback

    Inverter Current Feedback

    Grid Voltage FeedbackGround

    Current Feedback

    Control interface for system integration

    AC220VLoad

    AC110VLoad

    AC110VLoad

    NFB3P220V

    page 108

  • 37

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 109

    page 110

    page 111

  • 38

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 112

    2003/06/30 BP 1412030/1.332/2003102 2m/s

    2/ms

    12/ms

    10/ms

    9/ms

    8/ms

    7/ms

    4/ms

    1800W

    1400W730W320W

    1060W800W430W190W

    770W580W310W140W

    550W410W220W97W

    370W280W150W66W

    67W51W26W12W

    8W6W3W1.5W

    2.0m2.0m2.0m0.9m 4.0m3.0m1.6m1.6m

    WG40-20

    WG30-20

    WG16-20

    WG16-09

    14

    page 113

    (2003/4/18)

    2003/04/18 BP

    26394021.06kwh6.24kwh/14.82kwh/371030t

    page 114

    Power Electronics for Transportation

    Power Electronics Lab., NCTU, Taiwan

    DSPPower Electronics IC & DSP Control Lab.

  • 39

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 115

    Convert your existing bicycle into an ELECTRIC BICYCLE.

    Top Speed = 23 kph Range = 13-16 km Weight = 12.5 lbs Recharge = 10-12 hours

    PEDAL WITHOUT OR WITH ELECTRIC ASSIST TO BOOST RANGE AND SPEED

    COMPLETE CONVERSION KIT INCLUDING CHARGER & BATTERY $199 U.S. + Shipping & Handling($18.00)

    Allow 3 to 4 weeks for delivery.

    OPTIONS: SOLAR PANEL $50 BATTERY MONITOR $32 EXTRA BATTERY $40

    EARTHMIND INC.Suite 310300 Earl Grey DriveKanata, OntarioCanada, K2T 1C1

    page 116

    HONDA

    HONDA

    SegwaySegway HT

    page 117

  • 40

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 118

    1992

    page 119

    Electric Vehicle & Hybrid Electric Vehicle

    EV1 (Electric Vehicle No. 1)

    Insight, HONDA, 2000

    page 120

    On Oct. 23, 1997, Solectria Sunrise completes its 339.4 km journey from Boston to New York on one charge! The car runs at an average speed of 90 km/h and top speed is 120 km/h. The adopted nickel/metal-hydride battery has a power density of 77 Wh/kg. The battery had a total capacity of 150 Ah and an average voltage of 221 V.

  • 41

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 121

    page 122

    2 0 02/ 0 6/ 0 7 BP DaimlerChryslerNECAR5520166432635250km(CaFCP600965kmNECAR5300483km38.461.8km

    2002/ 04/ 18 BP H PowerHannover Fair 2002 Hydrogen+Fuel Cells95km/h200km300km5.5kW4858980L3001.21.6

    page 123

    20052005IMTSFCHV

    IMTSIMTSHSSTLinimo2005IMTSHSST

    IMTSCNG3

  • 42

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 124

    &

    risiqss

    idse

    iqse

    de

    qe

    ds

    qs

    e

    er

    Rotor axis

    sl

    idss

    *emT

    *s

    *sfqsi

    *sfdsi

    rfje

    *sqsi

    *sdsi

    Curre ntRegula tedAmplifi er

    sf

    InductionMotor

    emTrr ,

    Tor que&

    FluxRegula tor

    sqds Anti-Alias

    Filter s

    Stator Fl uxMa gnitude &

    Angle Calcul ator

    sqssds

    Stator Flux

    Sensing

    page 125

    ias

    ics

    ibs

    S1

    S2

    S3

    S4

    S5

    S6

    3-PhasePowerSupply

    o n

    stator rotor

    vasvcs

    vbs

    Vdc

    t

    i tas ( ) i tbs ( ) i tcs( )

    a s

    as'

    bs'

    bs

    c s

    c s'

    t=t1t=t1

    ar

    ar'

    brb r'

    cr

    c r'

    a s

    a s'bs

    bs'

    cs

    cs'

    N S CW

    N

    S

    N

    S

    N

    S

    A

    C

    B

    page 126

    System Integration of Motor, Power, Motion Control, and MMI

    New Solutions of M otion Control Problems Using Advanced Technology!

    DSP-Based Software Control Techniques

    Power ConverterDigital Controller Motor Load

    Four-Quadra ntVolta ge/AmpereContr ol

    Four-Quadra ntTor que/S pee dContr ol

    Close d-LoopSpee d/Posi ti onContr ol

    Coordi natedMoti on ProfileContr ol

    X

    Y

    Motion Prof ile

    III

    III IVtorque

    speed

    Motor Trajectory

    amperes

    volts RBSOA/FBSOA

    Converter Trajectory

    x2

    x1

    Control TrajectoryDSP

    Inside

  • 43

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 127

    Power Supply for LCD Display

    Power Electronics Lab., NCTU, Taiwan

    DSPPower Electronics IC & DSP Control Lab.

    page 128

    Power Supply for a 42-inch Plasma Display Panel (PDP)

    Power Supply for PDPMains

    rectifierDC- DC HF

    Gener ator

    Power Supply Configuration

    page 129

    PDP Power Supply

    Main PFC Rectifier DC-DC Conv erter HF Generator

    L D

    TC R

    IL

    Ui Uo

    T

    D

    L

    CR

    a, T=1/f

    Uin Ud Uout

    IL Io

    UinUd

    Uout =Ui n a

    IL Io=Uout/R

    0

    0

    T

    TaT

    aT

    T D

    1

    0.5

    0

    -0.5

    -1

    0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

    recovery operation (normalised)

    0.511(t)-12(t)UP(t)

    I1

    I2Ip

    UoD1 L1

    D2 L2

    T11

    T12cs >>cp

    T2 T4

    T1 T3off

    on

    Cp

    Up

    20U

    Mains rectif ier DC-DC

    HF generator

  • 44

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 130

    Power Electronics for Power Generation

    Power Electronics Lab., NCTU, Taiwan

    DSPPower Electronics IC & DSP Control Lab.

    page 131

    Future Power Generation

    Microelectronics Power Electronics Electric Power

    Moores Law: Every 1.5 years the cost of a bit

    drops 50%.

    Between 1920 - 1970, every 1.5 years the cost

    of kWh dropped 5%.Since then it is constant.

    Future?Power electronics is the

    enabling technology driving to the future!

    page 132

  • 45

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 133

    page 134

    The Power Electronics Revolution

    Source: EPRI (Electric Power Research Institute, USA)

    page 135

    Homework Assignment

    A4

    (10%)(20%)(40%)(20%) (10%)

  • 46

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 136

    (1)

    1. (VRM)2. IC3. (mobile phone)4. IC5. DC-DCPower MOSFET6. IGBT7. PC8. PWMIC9. (synchronous rectifier)10. DC-DC(multiphase dc-dc converter)11. 12. IC13. PFCIC14. (single-stage single-switch)PFC15. PFCEMI16. PFC

    page 137

    (2)

    17. IC18. IC19. 20. (Space Vector PWM)21. (multi-level)(inverter)22. LCDIC23. 24. LED25. (UPS)26. 27. 28. UPS29. 30. 31. 32. (PV inverter)

    page 138

    (3)

    33. Class-D Amplifier34. Class-E Amplifier35. 36. EMI37. (double-layer capacitor)38. 39. IC40. (distributed power generation system)41. 42. 43. 44. 45. (Green Energy)46. (Department of Energy)47. (Center of Power Electronics, CPES)48. (Electric Power Research Institute, EPRI)

  • 47

    Introduction to Power Electronics

    NCTU 2004 Power Electronics Course Notes

    page 139

    References (1)

    [1] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications and Design, John Wiley & Sons, 3rd Edition, 2003.

    [2] R. W. Erickson and D. Maksimov ic, Fundamentals of Power Electronics, Chapman & Hall, 1998.[3] J. G. Kassakian, M. F. Schlecht, and G. C. Verghese, Principle of Power Electronics, Addison-Wesley,

    1991.[4] IEEE Proc., Special Issue on Power Electronics Technology: Present Trends & Future Dev elopments, June

    2001.[5] IEEE Proc., Special Issue on Low Power Systems, Oct. 2000.[6] V. Rajagopalan (Guest Editor), Special Issue on Computers in Power Electronics, IEEE Trans. on Power

    Electronics, vol. 12, no. 3, May 1997. [7] IEEE Proc., Special Issue on Power Electronics and Motion Control, August 1994. [8] IEEE Proc., Special Issue on Power Electronics, April 1988.[9] B. K. Bose (Editor), Chap. 1: Introduction to Power Electronics of Modern Power Electronics - Evolution,

    Technology, and Applications, IEEE Press, 1992.[10] B. K. Bose, Power electronics - a technology rev iew, Proc. of IEEE, vol. 80, no. 8, pp. 1303-1334, Aug.

    1992.[11] E. Ohno, The semiconductor evolution in Japan - a four decade long maturity thriving to an indispensable

    social standing, Proceeding of the International Power Electronics Conference, v ol. 1, pp. 1-10, Toky o, 1990.

    [12] M. Nishihara, Power electronics diversity, Proceeding of the International Power Electronics Conference, vol. 1, pp. 21-28, Tokyo, 1990.

    page 140

    References (2)

    [13] Keith Billings, Switchmode Power Supply Handbook, McGrwa-Hill Inc., 1999.[14] Marty Brown, Power Supply Cookbook, Butterworth-Heinemann, 1994.[15] Marian K. Kazimierczuk and Dariusz Czarkowski, Resonsnt Power Conv erters, John Wiley & Sons, Inc.,

    1995.[16] Andre'S. Kislovski, Richard Redl and Nathan O. Sokal, Dy namic Analysis of Switching-Mode DC/DC

    Converters, Van Nostrand Reinhold, New york, 1991.[17] Abraham l. Pressman, Switching Power Supply Design, McGraw-Hill, Inc., 1998.[18] B. K. Bose, Power Electronics and AC Drives, Prentice-Hall, Inc., 1986.[19] B. K. Bose, Modern Power Electronics and AC Drives, Prentice-Hall, Inc., 2001.[20] B. K. Bose, Power Electronics and Variable Frequency Drives, IEEE Press, 1997.[21] Yasuhiko Dote, Servo Motor and Motion Control Using Digital Signal Processors, Prentice Hall, Inc.,1990.[22] A. E. Fitzgerald, C. Kingsley, JR., and S. D. Umans, Electric Machinery, McGraw-Hill, Inc.,1992.[23] D. W. Nov otny and T. A. Lipo, Vector Control and Dy namics of AC Driv es, Clarendon Press, Oxford, 1996.[24] W. Leonhard, Control of Electrical Drives, Varlag Berlin, Heidelberg, 1985.[25] S. J. Chapman, Electric Machinery Fundamentals, McGraw-Hill, Inc., 1991.

    page 141

    References (3)

    [26] N. G. Hingorani, Flexible AC transmission, IEEE Spectrum, pp. 40-45, April 1993.[27] T. Yamada, G. Majumdar, S. Mori, H. Hagino, H. Kondoh, and T. Hirao, "Next generation power module,"

    IEEE ISPSD Conf. Rec., pp. 3-8, 1994.[28] N. Mohan, Power electronics circuits: an overview, IEEE IECON Conf. Rec., vol. 3, pp. 525-527, 1988.[29] N. Mohan and R. J. Ferraro, Techniques for energy conservation in AC motor driv en system, Electric

    Power Research Institute Final Report EM-2037, Project 1201-1213, Sept. 1981.[30] P. L. Hower, "Power semiconductor devices: an overview," IEEE Proc., vol. 76, no. 4, pp. 335-342, April

    1988.