maxtla.cie.unam.mxmaxtla.cie.unam.mx/db/unam2006/datafile.txtfn isi export format vr 1.0 pt j au...

Download maxtla.cie.unam.mxmaxtla.cie.unam.mx/db/unam2006/datafile.txtFN ISI Export Format VR 1.0 PT J AU Martinez-Montejano, JM AF Martinez-Montejano, Jorge M. TI Models for C-p(X) for atriodic

If you can't read please download the document

Upload: vantu

Post on 08-Nov-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

FN ISI Export FormatVR 1.0PT JAU Martinez-Montejano, JMAF Martinez-Montejano, Jorge M.TI Models for C-p(X) for atriodic continuaSO TOPOLOGY AND ITS APPLICATIONSLA EnglishDT ArticleDE arc-like; atriodic; containment hyperspaces; hyperspacesAB A characterization of C-p(X), the family of subcontinua of X containing a fixed point of X, when X is an atriodic continuum, is given as follows. Assume that Z is a continuum and consider the following three conditions: (1) Z is a planar absolute retract; (2) cut points of Z have component number two; (3) any true cyclic element of Z contains at most two cut points of Z. If X is an atriodic continuum and p is an element of X, then C-p(X) satisfies (1)-(3) and, conversely, if Z satisfies (1)-(3), then there exist an arc-like continuum (hence, atriodic) X and a point P is an element of X such that C-p(X) is homeomorphic to Z. (c) 2006 Elsevier B.V. All rights reserved.C1 UNAM, Inst Matemat, Mexico City 04510, DF, Mexico.RP Martinez-Montejano, JM, UNAM, Inst Matemat, Circuito Exterior,Cd Univ, Mexico City 04510, DF, Mexico.EM [email protected] BELLAMY DP, 1971, DUKE MATH J, V38, P15 CAPEL CE, 1954, DUKE MATH J, V21, P233 EBERHART C, 1978, P AM MATH SOC, V68, P220 FORT MK, 1961, DUKE MATH J, V28, P253 ILLANES A, 1999, MONOGRAPHS TXB PURE, V216 KURATOWSKI K, 1966, TOPOLOGY, V1 KURATOWSKI K, 1968, TOPOLOGY, V2 NADLER SB, 1978, MONOGRAPHS TXB PURE, V49 NADLER SB, 1992, FUND MATH, V141, P243 NADLER SB, 1992, MONOGRAPHS TXB PURE, V158 PELLICERCOVARRUBIAS P, 2005, HOUSTON J MATH, V31, P403NR 11TC 0PU ELSEVIER SCIENCE BVPI AMSTERDAMPA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDSSN 0166-8641J9 TOPOL APPLJI Topology Appl.PD JAN 1PY 2007VL 154IS 1BP 115EP 123PG 9SC Mathematics, Applied; MathematicsGA 112OUUT ISI:000242536600009ERPT JAU Aldeco-Perez, E Rudler, H Parlier, A Alvarez, C Apan, MT Herson, P Toscano, AAF Aldeco-Perez, Eugenia Rudler, Henri Parlier, Andree Alvarez, Cecilio Apan, Maria Teresa Herson, Patrick Toscano, AlfredoTI A simple synthesis of cytotoxic endoperoxide lactonesSO TETRAHEDRON LETTERSLA EnglishDT ArticleDE cycloadditions; endoperoxides; lactones; cytotoxicityID SINGLET OXYGEN; CARBOXYLIC-ACIDS; ANTIMALARIAL; ARTEMISININ; PEROXIDES; COMPLEXES; MECHANISMAB A series of dihydrobenzofuran-2-one 3 have been submitted to various dienophiles: whereas maleic anhydride led only to the adducts 4a,b, singlet oxygen gave the expected new endoperoxide lactones 5a-d, 6 and 7a,b, three of them showing interesting cytotoxicity towards various cancer cell lines. (c) 2006 Elsevier Ltd. All rights reserved.C1 CNRS, UMR 7611, Chim Organ Lab, Inst Chim Mol, F-75700 Paris, France. Univ Paris 06, Lab Chim Inorgan & Mat Mol, CNRS, UMR 7071, F-75252 Paris 5, France. Univ Nacl Autonoma Mexico, Inst Quim, Mexico City 04510, DF, Mexico.RP Rudler, H, CNRS, UMR 7611, Chim Organ Lab, Inst Chim Mol, F-75700 Paris, France.EM [email protected] BELLASSOUED M, 1999, CHEM COMMUN 0121, P187 CARRUTHERS W, 1990, CYCLOADDITION REACTI CHEN Y, 2002, J NAT PROD, V65, P1509 CLENNAN EL, 1985, J AM CHEM SOC, V107, P5178 CLENNAN EL, 2005, TETRAHEDRON, V61, P6665 ELSAYED KA, 2001, J NAT PROD, V64, P522 FONTANA A, 2001, J MED CHEM, P2362 GRELLEPOIS F, 2002, J ORG CHEM, V67, P1253 MONKS A, 1991, J NATL CANCER I, V83, P757 PAIK IH, 2006, J MED CHEM, V49, P2731 PERRY TL, 2001, TETRAHEDRON, V57, P1483 POSNER GH, 2004, ACCOUNTS CHEM RES, V37, P397 ROBERT A, 1998, CHEM SOC REV, V27, P273 RUDLER H, 2001, J ORGANOMET CHEM, V621, P284 SCHAAP AP, 1972, J CHEM SOC CHEM COMM, P490 TAKADA N, 2001, J NAT PROD, V64, P356 WANG DY, 2001, J CHEM SOC PERK T 1, P605 ZHOU WS, 1986, PURE APPL CHEM, V58, P817NR 18TC 0PU PERGAMON-ELSEVIER SCIENCE LTDPI OXFORDPA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLANDSN 0040-4039J9 TETRAHEDRON LETTJI Tetrahedron Lett.PD DEC 18PY 2006VL 47IS 51BP 9053EP 9056PG 4SC Chemistry, OrganicGA 112VOUT ISI:000242556000010ERPT JAU Gomez-Peresmitre, G de Cossio, MG Torres, CS Cuevas-Renaud, CAF Gomez-Peresmitre, Gilda de Cossio, Marcela Gonzalez Torres, Cuauhtemoc Sois Cuevas-Renaud, CorinaTI Obesity in college students: Prevalence, and relationship to aggression and compensatory and risky eating behaviorsSO REVISTA MEXICANA DE PSICOLOGIALA SpanishDT ArticleDE prevalence of obesity; body weight; compensatory behavior; physical aggression; emotional aggressionID BULIMIA-NERVOSA; DISORDERS; MODELAB The present study measured the level of obesity in college students, and determined the association between obesity in students and risky compensatory activities (such as eating and aggressive acts in the home and school). First-year undergraduate students (n = 31874) and first-year high school students (n = 12 822) completed the Medical Automatized Exam that inquires about physical health and risk for physical and psychological illnesses. Results reveal both a high prevalence of overweight individuals and indicators of anorexia nervosa. Results also showed a positive correlation between weight and physical and emotional abuse, particularly among female students.C1 Univ Nacl Autonoma Mexico, Fac Psicol, Mexico City 04510, DF, Mexico. Univ Nacl Autonoma Mexico, Direcc Gen Serv Med, Mexico City 04510, DF, Mexico. Inst Mexicano Psiquiatria, Div Invest Epidemiol & Sociales, Mexico City, DF, Mexico. Inst Seguridad & Serv Sociales Trabajadores Estad, Mexico City, DF, Mexico.RP Gomez-Peresmitre, G, Univ Nacl Autonoma Mexico, Fac Psicol, Av Univ 3004,Col Copilco Univ, Mexico City 04510, DF, Mexico.EM [email protected] *AS PSIQ AM, 2002, MAN EST DIAGN ENF ME *FUND MEX SAL, 1997, OB MEX *I NAC SAL PUBL, 1999, ENC NAC NUTR *ORG MUND SAL, 1992, TRAST MENT COMP DESC *SECR SAL, 1988, ENC NAC NUTR ENN 198 AGRAS WS, 1988, MANAGEMENT OBESITY B ALVAREZESTRADA ME, 2002, AVANCES TRASTORNOS C, P321 ARANDA O, 2002, SISTEMA NACIONAL DES AVILA CA, 1995, ENURBAL, V95 AVILA CA, 2002, ENCUERTA URBANA ALIM BROWN WJ, 2000, INT J OBESITY, V24, P1360 FAIRBURN CG, 1993, BINGE EATING NATURE, P361 GOMEZ PG, 1998, REV IBEROAMERICANA, V6, P37 HALMI KA, 1980, AM J CLIN NUTR, V33, P446 LEWIS DA, 2000, AM J PSYCHIAT, V157, P1 LOPEZBARCENA JJ, 2002, LIBRO ELECT PUIS LOWE MR, 1996, J ABNORM PSYCHOL, V105, P508 MOLINA TS, 1997, ACTA PEDIAT MEXICO, V18, P19 MRAZEK PJ, 1994, REDUCING RISKS MENTA ORTIZ HVG, 2003, THESIS FAC PSIC PERESMITRE GG, 1997, ACTA PEDIAT MEXICO, V18, P103 PERESMITRE GG, 1998, PSICOLOGIA CIENCIA S, V2, P27 PERESMITRE GG, 1998, REV IBEROAMERICANA, V6, P10 PERESMITRE GG, 2001, REV MEX PSICOL, V18, P313 PEREZMITRE GG, 1993, REV MEX PSICOL, V10, P17 PEREZMITRE GG, 1999, REV MEX PSICOL, V1, P153 PERREZMITRE GG, 2002, REV MEX PSICOL, V19, P125 POLIVY J, 1987, J CONSULT CLIN PSYCH, V55, P635 STICE E, 1994, CLIN PSYCHOL REV, V14, P633 TORRES FM, 2001, VIOLENCIA CASA VAZQUEZ AR, 2002, PSICOLOGIA SALUD, V12, P73NR 31TC 0PU SOCIEDAD MEXICANA PSICOLOGIAPI TLALPANPA APARTADO POSTAL 22-211, TLALPAN 14000, MEXICOSN 0185-6073J9 REV MEX PSICOLJI Rev. Mex. Psicol.PD DECPY 2006VL 23IS 2BP 135EP 147PG 13SC Psychology, MultidisciplinaryGA 114FDUT ISI:000242651200002ERPT JAU Silva-Gutierrez, C Sanchez-Sosa, JJAF Silva-Gutierrez, Cecilia Sanchez-Sosa, Juan JoseTI Family environment, food intake and eating disordersSO REVISTA MEXICANA DE PSICOLOGIALA SpanishDT ArticleDE eating disorders; food intake practices; family environmentID ANOREXIA-NERVOSA; BULIMIA-NERVOSA; SEXUAL-ABUSE; YOUNG-WOMEN; CHILDREN; ADOLESCENTS; PREDICTORS; CONFLICT; OBESITY; MOTHERSAB We explored the relationship between eating disorders, family environment, food accessibility, and family beliefs regarding body shape and weight. 100 women participated. 50 had formal diagnosis of eating disorders and 50 did not. All participants were given a family environment inventory, a food accessibility questionnaire, and a checklist concerned with beliefs about food. Results revealed 5 relevant factors: physical appearance as an important value among family members, discipline and eating patterns, quality of interaction with the mother, quality of interaction with the father, and a supportive and secure family environment. The clinical group showed less variety in food selection associated with beliefs about weight gain. The control participants' diet was more varied, and they tended to base their food choices on direct preferences rather than on their beliefs. Findings suggest that eating disorders could be more related to family beliefs about weight, body shape and body appearance, than to a problematic family environment.C1 Univ Nacl Autonoma Mexico, Fac Psicol, Mexico City 04510, DF, Mexico.RP Silva-Gutierrez, C, Univ Nacl Autonoma Mexico, Fac Psicol, Cubiculo 38 Edificio B,Av Univ 3004, Mexico City 04510, DF, Mexico.EM [email protected] ALVAREZ G, 2000, PSICOLOGIA SOCIAL ME, V8, P582 BECKER AE, 1999, NEW ENGL J MED, V340, P1092 BEMPORAD JR, 1996, INT J EAT DISORDER, V19, P217 BLISSETT J, 2006, APPETITE BRUSSET B, 1990, TRATADO PSIQUIATRIA, P514 CAROLI M, 2002, NUTR RES, V22, P221 COOPERM, 2001, BEHAV COGNITIVE PSYC, V29, P143 CORTES L, 1998, PSICOLOGIA SOCIAL ME, V8, P127 DEEP AL, 1999, INT J EAT DISORDER, V25, P1 DOYLE JP, 1999, J WOMEN HEALTH GEN-B, V8, P955 DUKE R, 2003, APPETITE, V43, P247 FRANCIS LA, 2001, APPETITE, V37, P231 GROGAN S, 1999, BODY IMAGE UNDERSTAN HENDERSON CW, 2000, WOMENS HLTH WEEKLY E HERNANDEZ B, 1998, THESIS HARVARD SCH P HERNANDEZ B, 1999, INT J OBESITY, V23, P845 HOLSTON JI, 2000, J COLL COUNSELING, V3, P5 KEARNEY R, 1996, INT J EAT DISORDER, V20, P115 LONGBOTTOM PJ, 2002, J HUM NUTR DIET, V15, P271 LUCAS AR, 1996, CHILD ADOL PSYCH CL, P114 MCGRANE D, 2002, CONTEMP FAM THER, V24, P385 MENELLA J, 2005, J AM DIET ASSOC, V105, P908 MUJTABA T, 2001, INT J SOC PSYCHIATR, V47, P24 NEUMARKSZTAINER D, 2004, J ADOLESCENT HEALTH, V35, P350 PATEL P, 2002, CLIN CHILD FAM PSYCH, V5, P1 POLIVY J, 2002, ANNU REV PSYCHOL, V53, P187 RUDD JM, 1999, CHILD ABUSE NEGLECT, V23, P915 SANCHEZSOSA JJ, 1993, INVENTARIO SALUD EST SANTOS SJ, 1998, J COMMUNITY PSYCHOL, V26, P491 SCHWARTZ DJ, 1999, INT J EAT DISORDER, V25, P339 SILVAGUTIERREZ C, 2001, CARACTERIZACION GRUP STEINER H, 1998, J AM ACAD CHILD PSY, V37, P352 STEINHAUSEN H, 1994, CHILD DEV PSYCHIAT M, P432 TIGGEMANN M, 2002, APPETITE, V39, P1 TWAMLEY EW, 1999, J SOC CLIN PSYCHOL, V18, P467 ZIOLKO HU, 1996, INT J EAT DISORDER, V20, P345NR 36TC 0PU SOCIEDAD MEXICANA PSICOLOGIAPI TLALPANPA APARTADO POSTAL 22-211, TLALPAN 14000, MEXICOSN 0185-6073J9 REV MEX PSICOLJI Rev. Mex. Psicol.PD DECPY 2006VL 23IS 2BP 173EP 183PG 11SC Psychology, MultidisciplinaryGA 114FDUT ISI:000242651200004ERPT JAU Cardenas, L McKenna, ST Kunkel, JG Hepler, PKAF Cardenas, Luis McKenna, Sylvester T. Kunkel, Joseph G. Hepler, Peter K.TI NAD(P)H oscillates in pollen tubes and is correlated with tip growthSO PLANT PHYSIOLOGYLA EnglishDT ArticleID PLANT-MITOCHONDRIA; FLUORESCENCE LIFETIME; ELECTRON-TRANSPORT; OXIDASE ACTIVITY; ACTIN-FILAMENTS; PLASMA-MEMBRANE; CELL-GROWTH; GUARD-CELLS; NADH; CA2+AB The location and changes in NAD(P) H have been monitored during oscillatory growth in pollen tubes of lily ( Lilium formosanum) using the endogenous fluorescence of the reduced coenzyme ( excitation, 360 nm; emission, > 400 nm). The strongest signal resides 20 to 40 mm behind the apex where mitochondria ( stained with Mitotracker Green) accumulate. Measurements at 3-s intervals reveal that NAD( P) H-dependent fluorescence oscillates during oscillatory growth. Cross-correlation analysis indicates that the peaks follow growth maxima by 7 to 11 s or 77 degrees to 116 degrees, whereas the troughs anticipate growth maxima by 5 to 10 s or 54 degrees to 107 degrees. We have focused on the troughs because they anticipate growth and are as strongly correlated with growth as the peaks. Analysis of the signal in 10-mu m increments along the length of the tube indicates that the troughs are most advanced in the extreme apex. However, this signal moves basipetally as a wave, being in phase with growth rate oscillations at 50 to 60 mm from the apex. We suggest that the changes in fluorescence are due to an oscillation between the reduced ( peaks) and oxidized ( troughs) states of the coenzyme and that an increase in the oxidized state [ NAD( P) 1] may be coupled to the synthesis of ATP. We also show that diphenyleneiodonium, an inhibitor of NAD( P) H dehydrogenases, causes an increase in fluorescence and a decrease in tube growth. Finally, staining with 5-(and-6)-chloromethyl-2',7'-dichlorohydrofluorescein acetate indicates that reactive oxygen species are most abundant in the region where mitochondria accumulate and where NAD(P)H fluorescence is maximal.C1 Univ Massachusetts, Dept Biol, Amherst, MA 01003 USA. Univ Massachusetts, Plant Biol Grad Program, Amherst, MA 01003 USA. Univ Nacl Autonoma Mexico, Inst Biotecnol, Dept Biol Mol Plantas, Morelia 62271, Michoacan, Mexico. Long Isl Univ, Dept Biol, Brooklyn, NY 11201 USA.RP Cardenas, L, Univ Massachusetts, Dept Biol, Amherst, MA 01003 USA.EM [email protected] BAKER CJ, 1998, BIOCHEM BIOPH RES CO, V252, P461 BLANCHOIN L, 1999, J BIOL CHEM, V274, P15538 BLINOVA K, 2005, BIOCHEMISTRY-US, V44, P2585 BRACHMANSKI M, 2004, CELL CALCIUM, V35, P381 BRILLINGER DR, 1975, TIME SERIES DATA ANA CAMACHO L, 2003, J EXP BOT, V54, P83 CLEVELAND WS, 1981, AM STAT, V35, P54 COELHO SM, 2002, PLANT CELL, V14, P2369 DANO S, 1999, NATURE, V402, P320 FEIJO JA, 1999, J CELL BIOL, V144, P483 FOREMAN J, 2003, NATURE, V422, P442 GHOSH A, 1964, BIOCHEM BIOPH RES CO, V16, P174 GIBBON BC, 1999, PLANT CELL, V11, P2349 GIEGE P, 2003, PLANT CELL, V15, P2140 GOLDBETER A, 1996, BIOCH OSCILLATIONS C HEPLER PK, 2001, ANNU REV CELL DEV BI, V17, P159 HOLDAWAYCLARKE TL, 2003, NEW PHYTOL, V159, P539 HU QH, 2002, J BIOL CHEM, V277, P32546 HWANG JU, 2006, PLANT CELL MONOGR, V3, P95 IHAKA R, 1996, J COMPUTATIONAL GRAP, V5, P299 KASIMOVA MR, 2006, PLANT CELL, V18, P688 LAKOWICZ JR, 1992, P NATL ACAD SCI USA, V89, P1271 LANCELLE SA, 1992, PROTOPLASMA, V167, P215 LOVYWHEELER A, 2005, PLANTA, V221, P95 MESSERLI MA, 2000, DEV BIOL, V222, P84 MICHALECKA AM, 2004, PLANT J, V37, P415 MILLER KE, 2004, J CELL SCI, V117, P2791 MOLLER IM, 2001, ANNU REV PLANT PHYS, V52, P561 MORRE DJ, 1998, PLANT J, V16, P277 MORRE DJ, 2004, METHOD ENZYMOL, V378, P179 MURATA Y, 2001, PLANT CELL, V13, P2513 PARTON RM, 2001, J CELL SCI, V114, P2685 PAUL RJ, 1996, NATURWISSENSCHAFTEN, V83, P32 PEI ZM, 2000, NATURE, V406, P731 POGUE BW, 2001, PHOTOCHEM PHOTOBIOL, V74, P817 ROBERTS TH, 1995, FEBS LETT, V373, P307 SCHUCHMANN S, 2001, BRAIN RES PROTOC, V7, P267 VIDALI L, 2001, MOL BIOL CELL, V12, P2534 WAKITA M, 1995, J BIOCHEM-TOKYO, V118, P1151 ZONIA L, 2002, PLANT CELL, V14, P2233NR 40TC 2PU AMER SOC PLANT BIOLOGISTSPI ROCKVILLEPA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USASN 0032-0889J9 PLANT PHYSIOLJI Plant Physiol.PD DECPY 2006VL 142IS 4BP 1460EP 1468PG 9SC Plant SciencesGA 113TYUT ISI:000242621800011ERPT JAU Soriano, O Regalado, M Torrero, C Salas, MAF Soriano, Ofelia Regalado, Mirelta Torrero, Carmen Salas, ManuelTI Contributions of undernutrition and handling to huddling development of ratsSO PHYSIOLOGY & BEHAVIORLA EnglishDT ArticleDE huddling; neonatal undemutrition; early handling; maternal separation; enriched environment; ratsID NEONATAL FOOD RESTRICTION; SELF-GROOMING DEVELOPMENT; NERVE GROWTH-FACTOR; NEUROTROPHIC FACTOR; MATERNAL-BEHAVIOR; ENVIRONMENTAL ENRICHMENT; MESSENGER-RNA; NUTRITIONAL REHABILITATION; UNDERNOURISHED RATS; VOLUNTARY EXERCISEAB When newborn rats are separated from the mother, they consistently exhibit the huddling response to maintain body temperature and physical contact. Therefore, we investigated if preweaning handling/sensory stimulation may overcome the huddling deficiencies associated to neonatal undernourishment/matemal deprivation of Wistar rats maintained at constant temperature (30 degrees C). The data indicated that initial and final temperatures in the pile of undernourished (U) and undernourished stimulated (Us) pups was reduced compared to their controls (C and Cs, respectively). Huddling latency was prolonged at 5 days of age in the Us group and at 20 days of age in the U pups. On postpartum day 5, U and Us subjects were similar in battery and pile-huddling performance compared to their controls; thereafter, the frequency of battery type was low and pile type was high (in frequency) in all experimental treatments. The frequency of recycling from the pile in the Us pups in most of the ages was significantly reduced compared to U and C subjects, suggesting that early sensory stimulation possibly accelerates the maturation of thermoregulatory brain structures underlying the huddling response and causing increased physical contacts. The data provide evidence that both neonatal undernutrition/maternal deprivation and early sensory stimulation may modify the huddling response by reducing or increasing, respectively, brain mechanisms underlying huddling. The amount of physical contact the newborns receive from their littermates and the mother may be a fundamental source of sensory cues for neuronal maturation and brain functioning. (c) 2006 Elsevier Inc. All rights reserved.C1 Univ Nacl Autonoma Mexico, Inst Neurobiol, Dept Dev Neurobiol & Neurophysiol, Queretaro 76001, Mexico.RP Salas, M, Univ Nacl Autonoma Mexico, Inst Neurobiol, Dept Dev Neurobiol & Neurophysiol, POB 1-1141,Campus Juriquilla Queretaro, Queretaro 76001, Mexico.EM [email protected] ADLARD PA, 2004, NEUROSCIENCE, V124, P985 ALBERTS JR, 1978, J COMP PHYSIOL PSYCH, V92, P220 ALBERTS JR, 1978, J COMP PHYSIOL PSYCH, V92, P231 ALBERTS JR, 1984, DEV PSYCHOBIOL, V17, P161 ALBERTS JR, 1988, PSYCHOBIOL BEHAV ECO, P1 ALTMAN J, 1970, DEV PSYCHOBIOL, V4, P97 ARABZADEH E, 2003, J NEUROSCI, V23, P9146 BARNETT SA, 1967, NATURE, V213, P150 BEANE ML, 2002, HORM BEHAV, V41, P33 BHATNAGAR S, 1995, J NEUROENDOCRINOL, V7, P97 BRIESE E, 1998, NEUROSCI BIOBEHAV R, V22, P427 CALLISON DA, 1968, DEV PSYCHOBIOL, V1, P196 CARVELL GE, 1996, J NEUROSCI, V16, P2750 CLARKE KA, 1992, PHYSIOL BEHAV, V52, P823 COLEMAN JR, 1990, DEV SENSORY SYSTEMS, P628 CRNIC LS, 1980, DEV PSYCHOBIOL, V13, P615 ERCHOVA IA, 2003, BRAIN RES BULL, V60, P373 FALKENBERG T, 1992, NEUROSCI LETT, V138, P153 FARMER J, 2004, NEUROSCIENCE, V124, P71 FERNANDEZTERUEL A, 1992, NEUROSCI LETT, V137, P185 FLEMING AS, 1999, NEUROSCI BIOBEHAV R, V23, P673 FRANCIS D, 1999, SCIENCE, V286, P1155 GALLER JR, 1981, J NUTR, V112, P332 GONZALEZ A, 2001, DEV PSYCHOBIOL, V38, P11 GREENOUGH WT, 1990, BIOL MEMORY, P159 ICKES BR, 2000, EXP NEUROL, V164, P45 KOLB B, 1998, ANNU REV PSYCHOL, V49, P3 LEAH J, 1985, BIOL PSYCHOL, V20, P21 LEE MHS, 1974, ANIM BEHAV, V22, P679 LEVINE S, 1994, PSYCHONEUROENDOCRINO, V19, P143 LIU D, 1997, SCIENCE, V277, P1659 LUINE V, 1996, PHYSIOL BEHAV, V59, P27 MATHUR M, 1975, AM J PATHOL, V81, P9 MCCLOSKEY DP, 2001, BRAIN RES, V891, P168 MEANEY MJ, 1996, DEV NEUROSCI-BASEL, V18, P49 MEANEY MJ, 2000, NEUROSCIENCE, V20, P3925 MICHEL C, 1999, PHYSIOL BEHAV, V67, P617 NEEPER SA, 1996, BRAIN RES, V726, P49 PASCUAL R, 1996, BIOL NEONATE, V69, P399 PHAM TM, 1999, NEUROSCIENCE, V94, P279 PLOTSKY PM, 1993, MOL BRAIN RES, V18, P195 REGALADO M, 1999, NUTR NEUROSCI, V2, P7 ROSENZWEIG MR, 1996, BEHAV BRAIN RES, V78, P57 ROTHWELL NJ, 1982, BIOL NEONATE, V42, P93 RUBEL EW, 1984, ANNU REV PHYSIOL, V46, P213 RUBIO L, 2004, NUTR NEUROSCI, V7, P291 SALAS M, 1984, PHYSIOL BEHAV, V33, P273 SALAS M, 1991, PHYSIOL BEHAV, V50, P567 SALAS M, 1998, GROWTH DEVELOP AGING, V62, P67 SALAS M, 2001, NUTR NEUROSCI, V4, P311 SALAS M, 2002, NUTR NEUROSCI, V5, P399 SCHANBERG SM, 1987, CHILD DEV, V58, P1431 SCHAPIRO S, 1970, SCIENCE, V167, P292 SERVATIUS RJ, 1994, BEHAV NEUROSCI, V108, P1101 SEVERINSEN T, 1999, ACTA PHYSIOL SCAND, V165, P299 SOKOLOFF G, 2001, DEV PSYCHOBIOL, V39, P65 SULLIVAN RM, 1986, DEV PSYCHOBIOL, V19, P625 SULLIVAN RM, 1988, DEV PSYCHOBIOL, V20, P225 TEICHER MH, 1976, SCIENCE, V193, P422 TONKISS J, 2003, DEV PSYCHOBIOL, V43, P1 TORRERO C, 2003, NUTR NEUROSCI, V6, P317 TORRERO C, 2005, NUTR NEUROSCI, V8, P63 TURNER CA, 2003, DEV PSYCHOBIOL, V43, P20 VANOERS HJJ, 1998, J NEUROSCI, V18, P10171 WESTERGA J, 1990, DEV BRAIN RES, V57, P163 WILSON SJ, 1988, DEVELOPMENT, V102, P815 ZHOU JZ, 2000, BRAIN RES, V885, P182NR 67TC 0PU PERGAMON-ELSEVIER SCIENCE LTDPI OXFORDPA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLANDSN 0031-9384J9 PHYSIOL BEHAVJI Physiol. Behav.PD NOV 30PY 2006VL 89IS 4BP 543EP 551PG 9SC Psychology, Biological; Behavioral SciencesGA 112PSUT ISI:000242539600014ERPT JAU Gorin, T Prosen, T Seligman, TH Znidaric, MAF Gorin, Thomas Prosen, Tomaz Seligman, Thomas H. Znidaric, MarkoTI Dynamics of Loschmidt echoes and fidelity decaySO PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERSLA EnglishDT ReviewDE Loschmidt echo; fidelityID QUANTUM-CLASSICAL CORRESPONDENCE; NUCLEAR-MAGNETIC-RESONANCE; QUBIT-QUBIT INTERACTION; ERROR-CORRECTING CODES; RANDOM-MATRIX APPROACH; MANY-BODY SYSTEMS; CHAOTIC SYSTEMS; KICKED TOP; STATISTICAL PROPERTIES; POLARIZATION ECHOESAB Fidelity serves as a benchmark for the reliability in quantum information processes, and has recently attracted much interest as a measure of the susceptibility of dynamics to perturbations. A rich variety of regimes for fidelity decay have emerged. The purpose of the present review is to describe these regimes, to give the theory that supports them, and to show some important applications and experiments. While we mention several approaches we use time correlation functions as a backbone for the discussion. Vanicek's uniform approach to semiclassics and random matrix theory provides important alternatives or complementary aspects. Other methods will be mentioned as we go along. Recent experiments in micro-wave cavities and in elastodynamic systems as well as suggestions for experiments in quantum optics shall be discussed. (c) 2006 Elsevier B.V. All rights reserved.C1 Univ Ljubljana, Fac Math & Phys, Dept Phys, SI-1000 Ljubljana, Slovenia. Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. Ctr Int Ciencias, Cuernavaca 62132, Morelos, Mexico. Univ Mexico, UNAM, Inst Ciencias Fis, Cuernavaca 62132, Morelos, Mexico.RP Prosen, T, Univ Ljubljana, Fac Math & Phys, Dept Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia.EM [email protected] [email protected] [email protected] [email protected] ABRAMOWITZ M, 1970, HDB MATH FUNCTIONS ADAMOV Y, 2003, PHYS REV E 2, V67 AGARWAL GS, 1981, PHYS REV A, V24, P2889 ALICKI R, 1996, PHYS REV LETT, V77, P838 ANDERSEN MF, 2003, PHYS REV LETT, V90 ANGELO RM, 2001, PHYS REV A, V64 ANGELO RM, 2004, PHYSICA A, V338, P458 ARAKI H, 1970, COMMUN MATH PHYS, V18, P160 BALLENTINE LE, 1996, PHYS REV A, V54, P3813 BANDYOPADHYAY JN, 2002, PHYS REV LETT, V89 BANDYOPADHYAY JN, 2004, PHYS REV E 2, V69 BENENTI G, 2001, PHYS REV LETT, V87 BENENTI G, 2002, EUR PHYS J D, V20, P293 BENENTI G, 2002, PHYS REV E 2, V65 BENENTI G, 2003, EUR PHYS J D, V22, P285 BENENTI G, 2003, INT J MOD PHYS B 1, V17, P3932 BENENTI G, 2003, PHYS REV E, V67 BENET L, 1993, PHYS REV LETT, V71, P529 BENET L, 2003, J PHYS A-MATH GEN, V36, P3569 BERMAN GP, 1978, PHYSICA A, V91, P450 BERMAN GP, 2001, PHYS REV E, V64, P56226 BERMAN GP, 2002, PHYS REV E, V65 BERMAN GP, 2002, PHYS REV E, V66 BERMAN GP, 2003, INT J QUANTUM INF, V1, P51 BERRY MV, 1977, PHILOS T ROY SOC A, V287, P237 BETTELLI S, 2004, PHYS REV A, V69 BEVILAQUA DV, 2004, NLINCD0409007 BIENERT M, 2002, PHYS REV LETT, V89 BOGOMOLNY EB, 1992, NONLINEARITY, V5, P805 BOHIGAS O, 1984, PHYS REV LETT, V52, P1 BOLTE J, 2006, PHYS REV E 2, V73 BOLTZMANN L, 1872, SITZUNGSBERICHTE AKA, V66, P275 BOLTZMANN L, 1877, SITZUNGSBER AKAD WIS, V2, P67 BRAUN D, 2001, PHYS REV LETT, V86, P2913 BRAUN PA, 1996, J PHYS B-AT MOL OPT, V29, L329 BRESLIN JK, 1999, PHYS REV A, V59, P1781 BRODY TA, 1981, REV MOD PHYS, V53, P385 BRUNE M, 1996, PHYS REV LETT, V77, P4887 BRUSH S, 1966, KINETIC THEORY, V2 BUIVIDOVICH PV, 2006, PHYS REV A, V73 CALDERBANK AR, 1996, PHYS REV A, V54, P1098 CAPEL HW, 1977, PHYSICA A, V87, P211 CARTAN E, 1935, ABH MATH SEM HAMBURG, V11, P116 CARY JR, 1981, PHYS REV A, V24, P2664 CASATI G, 1980, LETT NUOVO CIMENTO, V28, P279 CASATI G, 1986, PHYS REV LETT, V56, P2437 CASATI G, 1999, PHYS REV LETT, V83, P4729 CASATI G, 2000, PHYS REV LETT, V85, P4261 CASATI G, 2005, PHYS REV LETT, V94 CELARDO GL, 2005, INT J QUANTUM INF, V3, P441 CERCIGNANI C, 1998, L BOLTZMANN MAN WHO CERRUTI NR, 2002, PHYS REV LETT, V88 CERRUTI NR, 2003, J PHYS A-MATH GEN, V36, P11915 CERRUTI NR, 2003, J PHYS A-MATH GEN, V36, P3451 CHIRIKOV B, 1969, 267 I NUCL PHYS SOAN CHIRIKOV BV, 1979, PHYS REP, V52, P263 CHIRIKOV BV, 1984, PHYSICA D, V13, P395 CLEMENS JP, 2004, PHYS REV A, V69 COHEN D, 1999, PHYS REV LETT, V82, P4951 COHEN D, 2000, ANN PHYS-NEW YORK, V283, P175 COHEN D, 2000, PHYS REV LETT, V84, P2052 COHEN D, 2000, PHYS REV LETT, V85, P4839 COMBESCURE M, 2005, QUANTPH0510151 COMBESCURE M, 2006, J MATH PHYS, V47 COPPERSMITH D, 1994, 19642 IBM RC CUCCHIETTI F, 2002, PHYS REV E, V65 CUCCHIETTI FM, 2002, PHYS REV E 2A, V65 CUCCHIETTI FM, 2003, PHYS REV LETT, V91 CUCCHIETTI FM, 2004, PHYS REV B, V70 CVITANOVIC P, 2005, CHAOS CLASSICAL QUAN DARCY MB, 2001, PHYS REV LETT, V87 DARCY MB, 2003, PHYS REV A, V67 DEALMEIDA AMO, 1998, PHYS REP, V295, P265 DEMKOWICZDOBRZANSKI R, 2004, PHYS REV E 2, V70 DIETZ B, 1996, PHYS LETT A, V215, P181 DUAN LM, 1998, PHYS REV A, V57, P737 ECKHARDT B, 2003, J PHYS A-MATH GEN, V36, P371 EKERT A, 1996, REV MOD PHYS, V68, P733 EKERT DBA, 2000, PHYS QUANTUM INFORM EMERSON J, 2002, PHYS REV LETT, V89 ENGELBRECHT CA, 1973, PHYS REV C, V8, P859 FACCHI P, 2004, PHYS REV A, V69, P2314 FACCHI P, 2005, PHYS REV A, V71 FARHI E, 2000, QUANTPH0001106 FARHI E, 2001, SCIENCE, V292, P472 FEINGOLD M, 1986, PHYS REV A, V34, P591 FEINGOLD M, 1989, PHYS REV A, V39, P6507 FISHMAN S, 1982, PHYS REV LETT, V49, P509 FLAMBAUM VV, 2000, AUST J PHYS, V53, P489 FLEMING GN, 1973, NUOVO CIMENTO A, V16, P232 FLORES J, 2005, QUANTPH0502050 FOX RF, 1994, PHYS REV E, V50, P2553 FRAHM KM, 2004, EUR PHYS J D, V29, P139 FUJISAKI H, 2003, PHYS REV E 2, V67 FYODOROV YV, 1995, Z PHYS B, V99, P123 GARDINER SA, 1997, PHYS REV LETT, V79, P4790 GARDINER SA, 1998, PHYS REV LETT, V80, P2968 GEABANACLOCHE J, 1998, PHYS REV A, V57, R1 GEABANACLOCHE J, 1999, PHYS REV A, V60, P185 GEORGEOT B, 2000, PHYS REV E A, V62, P3504 GEORGEOT B, 2000, PHYS REV E A, V62, P6366 GHOSE S, 2004, PHYS REV A, V70 GIULINI D, 1996, DECOHERENCE APPEAREN GNUTZMANN S, 2004, PHYS REV LETT, V93 GONG J, 2003, PHYS REV LETT, V90 GONG JB, 2003, PHYS REV A, V68 GONG JB, 2003, PHYS REV A, V68 GORIN T, IN PRESS GORIN T, 1999, J PHYS A-MATH GEN, V32, P2315 GORIN T, 2002, J OPT B-QUANTUM S O, V4, S386 GORIN T, 2002, PHYS REV E, V65 GORIN T, 2003, PHYS LETT A, V309, P61 GORIN T, 2004, NEW J PHYS, V6 GORIN T, 2004, PHYS REV A, V70 GORIN T, 2006, PHYS REV E 2, V73 GORIN T, 2006, PHYS REV LETT, V96 GREMPEL DR, 1984, PHYS REV A, V29, P1639 GRET A, 2005, GEOPHYS RES LETT, V32, P1 GUHR T, 1998, PHYS REP, V299, P189 GUTZWILLER M, 1990, CHAOS CLASSICAL QUAN HAAKE F, 1987, Z PHYS B CON MAT, V65, P381 HAAKE F, 2000, J MOD OPTIC, V47, P2883 HAAKE F, 2000, QUANTUM SIGNATURES C HAHN EL, 1950, PHYS REV, V80, P580 HAUG F, 2005, PHYS REV A, V71 HELLER E, 1991, CHAOS QUANTUM PHYS HILLER M, 2004, PHYS REV LETT, V92 HORVAT M, 2003, J PHYS A-MATH GEN, V36, P4015 HORVAT M, 2006, NONLINEARITY, V19, P1471 IOMIN A, 2004, PHYS REV E 2, V70 IZRAILEV FM, 2004, P SOC PHOTO-OPT INS, V5472, P252 JACQUOD P, 2001, PHYS REV E 2, V64 JACQUOD P, 2002, PHYS REV LETT, V89 JACQUOD P, 2003, EUROPHYS LETT, V61, P729 JACQUOD P, 2004, PHYS REV LETT, V92 JACQUOD P, 2004, PHYS REV LETT, V93 JALABERT RA, 2001, PHYS REV LETT, V86, P2490 JAYNES E, 1963, P IEEE, V51, P8 JORDAN A, 2001, QUANTPH0112139 JOZSA R, 1994, J MOD OPTIC, V41, P2315 KAPLAN L, 1998, PHYS REV E, V58, P2383 KAPLAN L, 2002, NEW J PHYS, V4 KAPLAN L, 2003, PHYS REV E, V70 KAPLAN L, 2005, PHYS REV E 2, V72 KARKUSZEWSKI ZP, 2002, PHYS REV LETT, V89 KARNEY CFF, 1983, PHYSICA D, V8, P360 KERN O, 2005, EUR PHYS J D, V32, P153 KERN O, 2005, PHYS REV LETT, V95 KIM JI, 1996, PHYS REV LETT, V77, P207 KUBLER O, 1973, ANN PHYS-NEW YORK, V76, P405 KUHR S, 2003, PHYS REV LETT, V91 KUVSHINOV VI, 2003, PHYS LETT A, V316, P391 KUVSHINOV VI, 2006, PHYS REV A, V73 LAGES J, 2005, PHYS REV E 2, V72 LEICHTLE C, 1996, PHYS REV A, V54, P5299 LEVI B, 2003, PHYS REV E 2, V67 LEVSTEIN PR, 1998, J CHEM PHYS, V108, P2718 LEVSTEIN PR, 2004, J CHEM PHYS, V121, P7313 LEYVRAZ F, 1992, PHYS LETT A, V168, P348 LIDAR DA, 2001, PHYS REV A, V63 LIDAR DA, 2001, PHYS REV A, V63 LOBKIS OI, 2003, PHYS REV LETT, V90 LOMBARDI M, 1993, PHYS REV A, V47, P3571 LOSCHMIDT J, 1876, SITZUNGSBER KAIS A 2, V73, P128 MAGNUS W, 1954, COMMUN PURE APPL MAT, V7, P649 MAHAUX C, 1969, SHELL MODEL APPROACH MANDELSTAM L, 1945, J PHYS USSR, V9, P245 MARTINEZ D, 2005, COMMUNICATION MEHTA M, 1991, RANDOM MATRICES STAT MEYSTRE P, 1990, ELEMENTS QUANTUM OPT MILLER PA, 1999, PHYS REV E A, V60, P1542 MIQUEL C, 1996, PHYS REV A, V54, P2605 MIQUEL C, 1997, PHYS REV LETT, V78, P3971 MISRA B, 1977, J MATH PHYS, V18, P756 MONTANGERO S, 2005, EUROPHYS LETT, V71, P893 MOORE FL, 1995, PHYS REV LETT, V75, P4598 MULLER S, 2004, PHYS REV LETT, V93 MULLER S, 2005, PHYS REV E, V72 NIELSEN M, 2001, QUANTUM COMPUTATION NIEMEIJER T, 1967, PHYSICA, V36, P377 OPPEN F, 1994, PHYS REV LETT, V73, P798 OPPEN F, 1995, PHYS REV E, V51, P2647 OSELEDEC VI, 1968, T MOSCOW MATH SOC, V19, P197 PASTAWSKI HM, 1995, PHYS REV LETT, V75, P4310 PASTAWSKI HM, 2000, PHYSICA A, V283, P166 PERES A, 1980, AM J PHYS, V48, P913 PERES A, 1984, PHYS REV A, V30, P1610 PERES A, 1995, QUANTUM THEORY CONCE PETITJEAN C, 2005, PHYS REV E 2, V71 PINEDA C, 2006, PHYS REV A, V73 PINEDA C, 2006, PHYS REV E 2, V73 PINEDA C, 2006, QUANTPH0605169 PORTER CE, 1956, PHYS REV, V104, P483 PROSEN T, 1993, J PHYS A, V26, P319 PROSEN T, 1994, ANN PHYS-NEW YORK, V235, P115 PROSEN T, 2000, PROG THEOR PHYS SUPP, P191 PROSEN T, 2001, J PHYS A-MATH GEN, V34, L681 PROSEN T, 2002, J PHYS A-MATH GEN, V35, P1455 PROSEN T, 2002, J PHYS A-MATH GEN, V35, P4707 PROSEN T, 2002, PHYS REV E 2A, V65 PROSEN T, 2003, NEW J PHYS, V5 PROSEN T, 2003, PHYS REV A, V67 PROSEN T, 2003, PHYS REV A, V67 PROSEN T, 2003, PROG THEOR PHYS SUPP, P200 PROSEN T, 2005, PHYS REV LETT, V94 RAIMOND JM, 1999, ADV ATOM MOL OPT PHY, V41, P43 RHIM WK, 1970, PHYS REV LETT, V25, P218 RNOLD V, 1968, ERGODIC PROBLEMS CLA ROBINETT RW, 2004, PHYS REP, V392, P1 ROSSINI D, 2004, PHYS REV A, V69 ROSSINI D, 2004, PHYS REV E 2, V70 RUFFO S, 1996, PHYS REV LETT, V76, P3300 RYAN CA, 2005, PHYS REV LETT, V95 SANKARANARAYANAN R, 2003, PHYS REV E 2, V68 SANTOS LF, 2005, PHYS REV A, V72 SCHAADT K, 2003, PHYS REV E, V67 SCHACK R, 1992, PHYS REV LETT, V69, P3413 SCHACK R, 1993, PHYS REV LETT, V71, P525 SCHACK R, 1994, PHYS REV E A, V50, P972 SCHACK R, 1996, PHYS REV E A, V53, P3257 SCHAFER R, 2003, J PHYS A-MATH GEN, V36, P3289 SCHAFER R, 2005, NEW J PHYS, V7 SCHAFER R, 2005, PHYS REV LETT, V95 SCHLEICH WP, 2001, QUANTUM OPTICS PHASE SCHRODINGER E, 1935, NATURWISSENSCHAFTEN, V23, P807 SCOTT AJ, 2003, J PHYS A-MATH GEN, V36, P9553 SHAPIRA D, 2003, PHYS REV A, V67 SHEPELYANSKY DL, 1983, PHYSICA D, V8, P208 SHOR PW, 1994, P 35 ANN S FDN COMP, P124 SHOR PW, 1995, PHYS REV A, V52, R2493 SILVESTROV P, 2001, PHYS REV LETT, V89, P5192 SILVESTROV P, 2003, PHYS REV E, V67 SIMONS BD, 1993, PHYS REV B, V48, P5422 SOKOLOV V, QUANTPH0504141 STEANE A, 1996, P ROY SOC LOND A MAT, V452, P2551 STEANE A, 1998, REP PROG PHYS, V61, P117 STEANE AM, 1996, PHYS REV LETT, V77, P793 STOCKMANN H, 1999, QUANTUM CHAOS INTRO STOCKMANN HJ, 2004, NEW J PHYS, V6 STOCKMANN HJ, 2005, PHYS REV LETT, V94 STOCKMANN HJ, 2006, PHYS REV E 2, V73 STRUNZ WT, 2003, PHYS REV A, V67 STRUNZ WT, 2003, PHYS REV A, V67 TANAKA A, 2002, PHYS REV E, V66 TAVIS M, 1968, PHYS REV, V170, P379 TAYLOR JR, 1972, QUANTUM THEORY NONRE TERRANEO M, 2003, PHYS REV LETT, V90 THOMSON W, 1874, P ROY SOC EDINB, V8, P325 TWORZYD J, 2003, PHYS REV B, V68 UFFINK J, 1993, AM J PHYS, V61, P935 UHLMANN A, 1976, REP MATH PHYS, V9, P273 USAJ G, 1998, MOL PHYS, V95, P1229 VANICEK J, 2003, PHYS REV E 2, V68 VANICEK J, 2004, PHYS REV E, V70 VANICEK J, 2004, QUANTPH0410205 VANICEK J, 2006, COMMUNICATION VANVLLCK JH, 1928, P NATL ACAD SCI USA, V14, P178 VEBLE G, 2005, PHYS REV E 2, V72 VERBAARSCHOT JJM, 1985, PHYS REP, V129, P367 VIOLA L, 1998, PHYS REV A, V58, P2733 VIOLA L, 1999, PHYS REV LETT, V82, P2417 VIOLA L, 2003, PHYS REV LETT, V90 VIOLA L, 2005, PHYS REV LETT, V94 WANG W, 2004, PHYS REV E, V69 WANG W, 2005, PHYS REV E, V71 WANG W, 2006, COMMUNICATION WANG WG, 2002, PHYS REV E, V66 WANG WG, 2005, PHYS REV E 2, V71 WANG XG, 2004, PHYS REV E 2, V70 WEHRL A, 1978, REV MOD PHYS, V50, P221 WEINSTEIN Y, 2003, QUANTUM INF PROCESS, V1, P439 WEINSTEIN Y, 2005, PHYS REV E, V71 WEINSTEIN YS, 2002, PHYS REV LETT, V89 WEINSTEIN YS, 2002, PHYS REV LETT, V89 WEINSTEIN YS, 2005, PHYS REV E 2, V71 WILKINSON M, 1987, J PHYS A-MATH GEN, V20, P2415 WIMBERGER S, 2006, J PHYS B-AT MOL OPT, V39, L145 WISNIACKI D, 2002, PHYS REV E, V65 WISNIACKI DA, 2002, PHYS REV E 2, V66 WISNIACKI DA, 2003, PHYS REV E 2, V67 ZANARDI P, 1997, PHYS REV LETT, V79, P3306 ZANARDI P, 1999, PHYS LETT A, V264, P94 ZHANG S, 1992, PHYS REV LETT, V69, P2149 ZHANG WR, 1998, PHYS REV LETT, V80, P1324 ZNIDARIC M, 2003, J PHYS A-MATH GEN, V36, P2463 ZNIDARIC M, 2004, THESIS U LJUBLJANA ZNIDARIC M, 2005, J OPT B-QUANTUM S O, V7, P306 ZNIDARIC M, 2005, PHYS REV A A, V71 ZUREK WH, 1981, PHYS REV D, V24, P1516 ZUREK WH, 1991, PHYS TODAY, V44, P36 ZUREK WH, 1993, PHYS REV LETT, V70, P1187 ZUREK WH, 2001, NATURE, V412, P712NR 292TC 6PU ELSEVIER SCIENCE BVPI AMSTERDAMPA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDSSN 0370-1573J9 PHYS REP-REV SECT PHYS LETTJI Phys. Rep.-Rev. Sec. Phys. Lett.PD NOVPY 2006VL 435IS 2-5BP 33EP 156PG 124SC Physics, MultidisciplinaryGA 113LJUT ISI:000242599100001ERPT JAU Durgun, E Ciraci, S Zhou, W Yildirim, TAF Durgun, E. Ciraci, S. Zhou, W. Yildirim, T.TI Transition-metal-ethylene complexes as high-capacity hydrogen-storage mediaSO PHYSICAL REVIEW LETTERSLA EnglishDT ArticleID NANOPARTICLES; TIAB From first-principles calculations, we predict that a single ethylene molecule can form a stable complex with two transition metals (TM) such as Ti. The resulting TM-ethylene complex then absorbs up to ten hydrogen molecules, reaching to gravimetric storage capacity of similar to 14 wt %. Dimerization, polymerizations, and incorporation of the TM-ethylene complexes in nanoporous carbon materials are also discussed. Our results are quite remarkable and open a new approach to high-capacity hydrogen-storage materials discovery.C1 Bilkent Univ, Dept Phys, TR-06800 Ankara, Turkey. Bilkent Univ, UNAM, TR-06800 Ankara, Turkey. Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.RP Durgun, E, Bilkent Univ, Dept Phys, TR-06800 Ankara, Turkey.EM [email protected] AKMAN N, 2006, J PHYS-CONDENS MAT, V18, P9509 BOGDANOVIC B, 2003, ADV MATER, V15, P1012 COONTZ R, 2004, SCIENCE, V305, P957 CRABTREE GW, 2004, PHYS TODAY, V57, P39 DAG S, 2005, PHYS REV B, V72 GOGOTSI Y, 2005, J AM CHEM SOC, V127, P16006 GULSEREN O, 2001, PHYS REV LETT, V87 KIRAN B, 2006, J CHEM PHYS, V124 KRESSE G, 1993, PHYS REV B, V47, P558 KUBAS GJ, 2001, METAL DIHYDROGEN BON LEE H, 2006, PHYS REV LETT, V94 SUN O, 2005, J AM CHEM SOC, V127, P14582 YILDIRIM T, 2005, PHYS REV B, V72 YILDIRIM T, 2005, PHYS REV LETT, V94 YILDIRIM T, 2005, PHYS REV LETT, V95 ZHAO YF, 2005, PHYS REV LETT, V94 ZHAO YF, 2006, CHEM PHYS LETT, V425, P273 ZHOU W, IN PRESS PHYS REV B ZUTTEL A, 2003, MATER TODAY, V6, P24NR 19TC 0PU AMERICAN PHYSICAL SOCPI COLLEGE PKPA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USASN 0031-9007J9 PHYS REV LETTJI Phys. Rev. Lett.PD DEC 1PY 2006VL 97IS 22AR 226102DI ARTN 226102PG 4SC Physics, MultidisciplinaryGA 112PLUT ISI:000242538700037ERPT JAU Baig, S Damian, RT Morales-Montor, J Ghaleb, A Baghdadi, A White, ACAF Baig, Salman Damian, Raymond T. Morales-Montor, Jorge Ghaleb, Amr Baghdadi, Amjed White, A. Clinton, Jr.TI Protection from murine cysticercosis by immunization with a parasite cysteine proteaseSO MICROBES AND INFECTIONLA EnglishDT ArticleDE Taenia; neurocysticercosis; vaccineID TAENIA-SOLIUM PARAMYOSIN; VACCINATION; PROTEINASE; IMMUNITYAB Central nervous system infection by Taenia solium cysts causes neurocysticercosis, a common neurological infection in the Third World. We have previously isolated cysteine proteases from Taenia crassiceps and T. solium. In this study, we immunized BALB/c mice with the purified T. solium cysteine protease and challenged them with Taenia crassiceps. Immunized mice had a 72% reduction in parasite burden compared to mice that received no immunization. Immunized mice developed antigen specific lymphocyte proliferation. These data support further studies of the T. solium cysteine protease as a vaccine candidate. (c) 2006 Elsevier Masson SAS. All rights reserved.C1 Baylor Coll Med, Dept Med, Infect Dis Sect, Houston, TX 77030 USA. Univ Georgia, Dept Cellular Biol, Athens, GA 30603 USA. Univ Nacl Autonoma Mexico, Inst Invest Biomed, Dept Inmunol, Mexico City 04510, DF, Mexico.RP White, AC, Baylor Coll Med, Dept Med, Infect Dis Sect, 1 Baylor Plaza,535EA, Houston, TX 77030 USA.EM [email protected] BAIG S, 2005, PARASITOLOGY, V131, P1 BOGH HO, 1988, PARASITE IMMUNOL, V10, P255 FLISSER A, 2004, INFECT IMMUN, V72, P5292 ITO A, 2003, LANCET, V362, P1918 KHALIL AI, 1998, J PARASITOL, V84, P513 LIGHTOWLERS MW, 2004, DEV BIOLOGICALS, V119, P361 MOLINARI JL, 1983, EXP PARASITOL, V55, P340 SOLIS CF, 2005, INFECT IMMUN, V73, P1895 VAZQUEZTALAVERA J, 2001, INFECT IMMUN, V69, P5412 WHITE AC, 1997, MOL BIOCHEM PARASIT, V85, P243NR 10TC 0PU ELSEVIER SCIENCE BVPI AMSTERDAMPA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDSSN 1286-4579J9 MICROBES INFECTJI Microbes Infect.PD OCTPY 2006VL 8IS 12-13BP 2733EP 2735PG 3SC Immunology; Microbiology; VirologyGA 114MVUT ISI:000242671200008ERPT JAU Aguirre, J Hansberg, W Navarro, RAF Aguirre, Jesus Hansberg, Wilhelm Navarro, RosaTI Fungal responses to reactive oxygen speciesSO MEDICAL MYCOLOGYLA EnglishDT ArticleDE antioxidant; oxidative stress; aspergillus; SakA; MAPK; AP-1; ROS signaling; signal transductionID ACTIVATED PROTEIN-KINASE; OXIDATIVE STRESS-RESPONSE; ASPERGILLUS-NIDULANS DEVELOPMENT; ATF1 TRANSCRIPTION FACTOR; CRYPTOCOCCUS-NEOFORMANS; FISSION YEAST; CANDIDA-ALBICANS; MAP KINASE; COCHLIOBOLUS-HETEROSTROPHUS; SIGNAL-TRANSDUCTIONAB Reactive oxygen species (ROS) such as hydrogen peroxide, produced externally or during normal metabolism, can damage different cell components and usually trigger a counteracting antioxidant response. The fact that animals and humans utilize ROS and related nitrogen reactive species to prevent fungal infection has generated great interest in defining the components of the antioxidant response and studying their role as virulence determinants in fungi. Here we review the role of specific enzyme and non-enzyme mediated antioxidant mechanisms in virulence, as well as the signal transduction mechanisms that fungal cells use to perceive high ROS levels and induce gene expression. We focus on Schizosaccharomyces pombe antioxidant responses, which involve a prokaryotic-type multistep phosphorelay coupled to a stress-response MAP kinase pathway and an AP-1 type transcription factor, in relation to homologous mechanisms in Aspergillus nidulans and the human pathogen A. fumigatus. Compared to S. pombe and other unicellular fungi, filamentous fungi have additional mechanisms to handle ROS, such as the presence of a larger number of phosphorelay sensor kinases, antioxidant enzymes and secondary metabolites with antioxidant functions. In addition, filamentous fungi have enzymes like the NADPH oxidases, which regulate multicellular development through ROS production and therefore, offer a unique opportunity to study the interplay between ROS production, perception and detoxification, and the role of these processes in cell differentiation and pathogenesis.C1 Univ Nacl Autonoma Mexico, Dept Mol Genet, Inst Fisiol Celular, Mexico City 04510, DF, Mexico.RP Aguirre, J, Univ Nacl Autonoma Mexico, Dept Mol Genet, Inst Fisiol Celular, Apartado Postal 70-242, Mexico City 04510, DF, Mexico.EM [email protected] AGUIRRE J, 2005, TRENDS MICROBIOL, V13, P111 ALONSOMONGE R, 2003, EUKARYOT CELL, V2, P351 BOSE I, 2003, EUKARYOT CELL, V2, P655 BUCK V, 2001, MOL BIOL CELL, V12, P407 CATLETT NL, 2003, EUKARYOT CELL, V2, P1151 CHANG YC, 1996, INFECT IMMUN, V64, P1977 CHATURVEDI V, 1996, J IMMUNOL, V156, P3836 CHEN DR, 2003, MOL BIOL CELL, V14, P214 COX GM, 2003, INFECT IMMUN, V71, P173 DEJESUSBERRIOS M, 2003, CURR BIOL, V13, P1963 DELAUNAY A, 2002, CELL, V111, P471 ENJALBERT B, 2006, MOL BIOL CELL, V17, P1018 FURUKAWA K, 2005, MOL MICROBIOL, V56, P1246 GALAGAN JE, 2005, NATURE, V438, P1105 HALLIWELL B, 1989, FREE RADICALS BIOL M HESS J, 2004, J CELL SCI, V117, P5965 IKNER A, 2005, MUTAT RES-FUND MOL M, V569, P13 KAWASAKI L, 1988, THESIS U NACL AUTONO KAWASAKI L, 1997, J BACTERIOL, V179, P3284 KAWASAKI L, 2001, J BACTERIOL, V183, P1434 KAWASAKI L, 2002, MOL MICROBIOL, V45, P1153 LANGFELDER K, 2003, FUNGAL GENET BIOL, V38, P143 LARAORTIZ T, 2003, MOL MICROBIOL, V50, P1241 LEE BN, 2005, EUKARYOT CELL, V4, P545 LEE J, 1999, J BIOL CHEM, V274, P16040 LEV S, 2005, EUKARYOT CELL, V4, P443 MAY GS, 2005, MED MYCOL S1, V43, S83 MISSALL TA, 2004, EUKARYOT CELL, V3, P835 MISSALL TA, 2004, MOL MICROBIOL, V51, P1447 MISSALL TA, 2005, EUKARYOT CELL, V4, P202 MISSALL TA, 2005, EUKARYOT CELL, V4, P487 MISSALL TA, 2005, MOL MICROBIOL, V57, P847 MOYEROWLEY WS, 2003, EUKARYOT CELL, V2, P381 NARASIPURA SD, 2005, MOL MICROBIOL, V55, P1782 NAVARRO RE, 1998, J BACTERIOL, V180, P5733 NGUYEN AN, 2000, MOL BIOL CELL, V11, P1169 NOVENTAJORDAO MA, 1999, MICROBIOL-UK 11, V145, P3229 OHMIYA R, 1999, J BIOCHEM-TOKYO, V125, P1061 PARIS S, 2003, INFECT IMMUN, V71, P3551 PHILIPPE B, 2003, INFECT IMMUN, V71, P3034 POMPOSIELLO PJ, 2001, TRENDS BIOTECHNOL, V19, P109 RODRIGUEZGABRIEL MA, 2003, EMBO J, V22, P6256 SEGAL AW, 2005, ANNU REV IMMUNOL, V23, P197 SHIOZAKI K, 1996, GENE DEV, V10, P2276 TKALCEVIC J, 2000, IMMUNITY, V12, P201 TOONE WM, 1998, GENE DEV, V12, P1453 WILKINSON MG, 1996, GENE DEV, V10, P2289 XUE T, 2004, EUKARYOT CELL, V3, P557 ZHANG XT, 2000, MOL MICROBIOL, V36, P618NR 49TC 0PU TAYLOR & FRANCIS LTDPI ABINGDONPA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLANDSN 1369-3786J9 MED MYCOLJI Med. Mycol.PD SEPPY 2006VL 44SU Suppl. 1BP S101EP S107PG 7SC Mycology; Veterinary SciencesGA 113MGUT ISI:000242601400019ERPT JAU Reimbert, CG Minzoni, AA Smyth, NF Worthy, ALAF Reimbert, Cathy Garcia Minzoni, Antonmaria A. Smyth, Noel F. Worthy, Annette L.TI Large-amplitude nematicon propagation in a liquid crystal with local responseSO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICSLA EnglishDT ArticleID NONLINEAR SCHRODINGER-EQUATION; SPATIAL SOLITONSAB The evolution of polarized light in a nematic liquid crystal whose directors have a local response to reorientation by the light is analyzed for arbitrary input light power. Approximate equations describing this evolution are derived based on a suitable trial function in a Lagrangian formulation of the basic equations governing the electric fields involved. It is shown that the nonlinearity of the material response is responsible for the formation of solitons, so-called nematicons, by saturating the nonlinearity of the governing nonlinear Schrodinger equation. Therefore in the local material response limit, solitons are formed due to the nonlinear saturation behavior. It is finally shown that the solutions of the derived approximate equations for nematicon evolution are in excellent agreement with numerical solutions of the full nematicon equations in the local regime. (c) 2006 Optical Society of America.C1 Univ Nacl Autonoma Mexico, IIMAS, Dept Math & Mech, FENOMEC, Mexico City 01000, DF, Mexico. Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia.RP Reimbert, CG, Univ Nacl Autonoma Mexico, IIMAS, Dept Math & Mech, FENOMEC, Apartado 20-726, Mexico City 01000, DF, Mexico.EM [email protected] [email protected] [email protected] [email protected] ABRAMOWITZ M, 1972, HDB MATH FUNCTIONS F ASSANTO G, 2003, IEEE J QUANTUM ELECT, V39, P13 ASSANTO G, 2003, J NONLINEAR OPT PHYS, V12, P123 CONTI C, 2003, PHYS REV LETT, V91, P73901 FORNBERG B, 1978, PHILOS T ROY SOC A, V289, P373 KATH WL, 1995, PHYS REV E, V51, P1484 KAUP DJ, 1978, P ROY SOC LOND A MAT, V361, P413 KHOO IC, 1995, LIQUID CRYSTALS PHYS REIMBERT CG, 2006, J OPT SOC AM B, V23, P294 REYES JA, 1998, PHYS REV E A, V58, P5855 SARKISSIAN H, 2005, 2005 C LAS EL APPL L, P505 WHITHAM GB, 1974, LINEAR NONLIJNEAR WA YANG JK, 1997, STUD APPL MATH, V98, P61NR 13TC 0PU OPTICAL SOC AMERPI WASHINGTONPA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USASN 0740-3224J9 J OPT SOC AM B-OPT PHYSICSJI J. Opt. Soc. Am. B-Opt. Phys.PD DECPY 2006VL 23IS 12BP 2551EP 2558PG 8SC OpticsGA 114ESUT ISI:000242650100013ERPT JAU Dugas, AS Martinez-Villa, RAF Dugas, Alex S. Martinez-Villa, RobertoTI A note on stable equivalences of Morita typeSO JOURNAL OF PURE AND APPLIED ALGEBRALA EnglishDT ArticleID FINITE-DIMENSIONAL ALGEBRASAB We investigate when an exact functor F congruent to - circle times M-Lambda(Gamma) : mod-Lambda -> mod-Gamma which induces a stable equivalence is pan of a stable equivalence of Morita type. If Lambda and Gamma are finite dimensional algebras over a field k whose semisimple quotients are separable, we give a necessary and sufficient condition for this to be the case. This generalizes a result of Rickard's for self-injective algebras. As a corollary, we see that the two functors given by tensoring with the bimodules in a stable equivalence of Morita type are right and left adjoints of one another, provided that these bimodules are indecomposable. This fact has many interesting consequences for stable equivalences of Morita type. In particular, we show that a stable equivalence of Morita type induces another stable equivalence of Morita type between certain self-injective algebras associated to the original algebras. We further show that when there exists a stable equivalence of Morita type between Lambda and Gamma, it is possible to replace Lambda by a Morita equivalent k-algebra Delta such that Gamma is a subring of Delta and the induction and restriction functors; induce inverse stable equivalences. (c) 2006 Elsevier B.V. All rights reserved.C1 Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA. UNAM, Inst Matemat, Unidad Morelia, Morelia 58089, Michoacan, Mexico.RP Dugas, AS, Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA.EM [email protected] [email protected] AUSLANDER M, 1978, COMMUN ALGEBRA, V6, P267 AUSLANDER M, 1991, CMS C P, V11, P53 AUSLANDER M, 1994, ADV MATH, V104, P297 AUSLANDER M, 1995, CAMBRIDGE STUDIES AD, V36 BROUE M, 1994, FINITE DIMENSIONAL A, P1 CURTIS CW, 1962, REPRESENTATION THEOR LAM TY, 2001, SPRINGER GRADUATE TE, V131 LINCKELMANN M, 1996, MATH Z, V223, P87 LINCKELMANN M, 1998, LECT NOTES MATH, V1685, P221 LIU Y, 2005, IN PRESS T AM MATH S LIU YM, 2003, P AM MATH SOC, V131, P2657 LIU YM, 2005, MATH Z, V251, P21 MARTINEZVILLA R, 1990, COMMUN ALGEBRA, V18, P4141 POGORZALY Z, 2001, C MATH, V88, P243 RICKARD J, 1998, CMS C P, V23, P157 VILLA RM, 1980, LECT NOTES MATH, V832, P396NR 16TC 0PU ELSEVIER SCIENCE BVPI AMSTERDAMPA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDSSN 0022-4049J9 J PURE APPL ALGJI J. Pure Appl. Algebr.PD FEBPY 2007VL 208IS 2BP 421EP 433PG 13SC Mathematics, Applied; MathematicsGA 113XYUT ISI:000242632500002ERPT JAU Mata, J Duran, A Martinez, E Escamilla, R Heiras, J Siqueiros, JMAF Mata, J. Duran, A. Martinez, E. Escamilla, R. Heiras, J. Siqueiros, J. M.TI Crystal structure and relaxor-type transition in SrBi2Ta2O9 doped with praseodymiumSO JOURNAL OF PHYSICS-CONDENSED MATTERLA EnglishDT ArticleID BOND-VALENCE PARAMETERS; FERROELECTRIC PROPERTIES; POLARIZATION PROPERTIES; CATION DISORDER; CA; SR; TANTALATE; CHEMISTRY; SOLIDS; OXIDESAB The effects of Pr substitution in the structure and ferroelectric response for the Sr(1-x)PrxBi(2)Ta(2)O(9) ( SBT- Pr) compound have been studied. Rietveld refinement of the x- ray diffraction patterns indicates that the Pr ion progressively replaces the Sr site in the A2(1)am space group structure. The solubility of Pr in solid solution is around 15%. The replacement induces a change in the crystal structure and, as a consequence, the dielectric properties are affected. The ferroelectric transition at T-m similar to 558 K is shifted to lower temperatures, T-m similar to 413 K for x = 0.15 composition. Apparently, the tilt angle (alpha) associated with the c- axis does not play an important role since it remains essentially constant. However, the rotation in the ab- plane ( beta) as well as the octahedral distortion observed are strongly related to the coupling between T-m and x. A relaxor- type transition is observed as Pr is increased, leading to polar microregions above the nominal ferroelectric transition. The local disorder induced by the Pr ion is confirmed by the continuous increase in the diffuseness coefficient according to Isupov's model. These facts hinder the displacement of the TaO6 octahedra with respect to Bi2O2 along the polarization axis, decreasing the polarization values.C1 Univ Nacl Autonoma Mexico, Ctr Ciencias Mat Condensada, Ensenada 22800, Baja California, Mexico. Univ Guadalajara, Ctr Invest Mat, DIP CUCEI, Guadalajara 44281, Jalisco, Mexico. Univ Nacl Autonoma Mexico, Inst Invest Mat, Mexico City 04510, DF, Mexico.RP Mata, J, Univ Nacl Autonoma Mexico, Ctr Ciencias Mat Condensada, Apartado Postal 2681, Ensenada 22800, Baja California, Mexico.CR BLAKE SM, 1997, J MATER CHEM, V7, P1609 BOULLAY P, 2002, J SOLID STATE CHEM, V164, P252 BRESE NE, 1991, ACTA CRYSTALLOGR B, V47, P192 BROWN ID, 1981, STRUCTURE BONDING CR, V1 BROWN ID, 1985, ACTA CRYSTALLOGR B, V41, P244 BROWN ID, 1992, ACTA CRYSTALLOGR B, V48, P553 DURAN A, 2005, J APPL PHYS 1, V97 FORBESS MJ, 2000, APPL PHYS LETT, V76, P2934 HERVOCHES CH, 2001, PHYS REV B, V64 ISMUNANDAR BJ, 1999, J MATER CHEM, V9, P541 MACQUART R, 2001, J SOLID STATE CHEM, V160, P174 MILLAN P, 1995, J MATER SCI LETT, V14, P1657 NOGUCHI T, 1996, JPN J APPL PHYS 1, V35, P4900 NOGUCHI Y, 2001, PHYS REV B, V63 NOGUCHI Y, 2002, JPN J APPL PHYS 1, V41, P7062 NOGUCHI Y, 2003, J APPL PHYS, V94, P6749 NOGUCHI Y, 2004, J APPL PHYS, V95, P4261 PAZ CA, 1995, NATURE, V374, P627 PEREZMATO JM, 2004, PHYS REV B, V70 RAE AD, 1992, ACTA CRYSTALLOGR B, V48, P418 SCOTT JF, 1989, SCIENCE, V246, P1400 SHANNON RD, 1976, ACTA CRYSTALLOGR A, V32, P751 SHIMAKAWA Y, 1999, APPL PHYS LETT, V74, P1904 SHIMAKAWA Y, 2000, PHYS REV B, V61, P6559 SUBBARAO EC, 1962, J AM CERAM SOC, V45, P166 SUBBARAO EC, 1962, J PHYS CHEM SOLIDS, V23, P665 WILLS AS, 1999, QUANTO RIETVELD PROG XU Y, 1991, FERROELECTRICS MAT T, V15NR 28TC 0PU IOP PUBLISHING LTDPI BRISTOLPA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLANDSN 0953-8984J9 J PHYS-CONDENS MATTERJI J. Phys.-Condes. MatterPD NOV 22PY 2006VL 18IS 46BP 10509EP 10520PG 12SC Physics, Condensed MatterGA 113LNUT ISI:000242599500017ERPT JAU Martinez, AI Huerta, L de Leon, JMOR Acosta, D Malik, O Aguilar, MAF Martinez, A. I. Huerta, L. de Leon, J. M. O-Rueda Acosta, D. Malik, O. Aguilar, M.TI Physicochemical characteristics of fluorine doped tin oxide filmsSO JOURNAL OF PHYSICS D-APPLIED PHYSICSLA EnglishDT ArticleID ELECTRICAL-PROPERTIES; THIN-FILMS; TRANSPARENT CONDUCTORS; SPRAY-PYROLYSIS; SNO2 FILMS; X-RAY; SPECTROSCOPY; GLASSAB In this work, relationships between chemical and physical properties of fluorine doped tin oxide films prepared by the chemical spray pyrolysis technique have been studied. Changes in the structural, optical and electrical properties of these films in relation to their doping concentrations determined by the resonant nuclear reaction analysis and x-ray photoelectron spectroscopy (XPS) techniques have been correlated. By XPS measurements, it was found that the fluorine content in the tin oxide films does not induce any chemical shift of the Sn and O core levels. At the same time, XPS measurements are carried out at low binding energy, shown that the valence band of heavy doped tin oxide changes with respect to that determined in SnO2 powder, due to the influence of the fluorine doping. In addition, it was shown that the formation of F-Sn complexes provides a decrease in both the concentration and mobility of the carriers.C1 INAOE, Dept Elect, Puebla 72000, Mexico. Univ Nacl Autonoma Mexico, Inst Invest Mat, Mexico City 04510, DF, Mexico. Univ Nacl Autonoma Mexico, Inst Phys, Mexico City 04510, DF, Mexico.RP Martinez, AI, INAOE, Dept Elect, Luis E Erro 1, Puebla 72000, Mexico.EM [email protected] AMANULLAH FM, 1998, MAT SCI ENG B-SOLID, V52, P93 AREFIKHONSARI F, 2003, THIN SOLID FILMS, V427, P208 ASOMOZA R, 1991, THIN SOLID FILMS, V203, P195 BISHT H, 1999, THIN SOLID FILMS, V351, P109 BRUNEAUX J, 1991, THIN SOLID FILMS, V197, P129 CHOISNET J, 2004, J SOLID STATE CHEM, V177, P3748 CHOPRA KL, 1983, THIN SOLID FILMS, V102, P1 COX PA, 1982, SURF SCI, V123, P179 CRANDALL RS, 1977, PHYS REV LETT, V39, P232 DELUCIO OG, 1999, INSTRUMENTATION DEV, V4, P12 DEMICHELIS F, 1985, J PHYS D APPL PHYS, V18, P1825 GOTTLIEB B, 1991, THIN SOLID FILMS, V199, P13 GRANQVIST CG, 2002, THIN SOLID FILMS, V411, P1 HAMBERG I, 1986, J APPL PHYS, V60, P123 KAWAZOE H, 2000, MRS BULL, V25, P28 KIM KH, 1986, THIN SOLID FILMS, V141, P287 MARTEL A, 2001, SURF COAT TECH, V148, P103 MARTINEZ AI, 2005, THIN SOLID FILMS, V483, P107 MESSAD A, 1994, J MATER SCI, V29, P5095 MINAMI T, 2000, MRS BULL, V25, P38 NIETERING KE, 1986, ANAL CHIM ACTA, V186, P279 PARAGUAY F, 1999, THIN SOLID FILMS, V350, P192 SANON G, 1991, PHYS REV B, V44, P5672 SCOFIELD JH, 1976, J ELECTRON SPECTROSC, V8, P129 SETO JYW, 1975, J APPL PHYS, V46, P5247 SHANTHI E, 1982, THIN SOLID FILMS, V88, P93 THANGARAJU B, 2002, THIN SOLID FILMS, V402, P71 THEMLIN JM, 1992, PHYS REV B, V46, P2460 YUEYUAN X, 1992, APPL PHYS LETT, V60, P335 ZHOU ZB, 2001, J MATER SCI-MATER EL, V12, P417NR 30TC 0PU IOP PUBLISHING LTDPI BRISTOLPA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLANDSN 0022-3727J9 J PHYS-D-APPL PHYSJI J. Phys. D-Appl. Phys.PD DEC 7PY 2006VL 39IS 23BP 5091EP 5096PG 6SC Physics, AppliedGA 114EUUT ISI:000242650300030ERPT JAU Juarez, AM Sokell, E Bolognesi, P Siggel-King, MRF King, GC de Simone, M Coreno, MAF Juarez, A. M. Sokell, E. Bolognesi, P. Siggel-King, M. R. F. King, G. C. de Simone, M. Coreno, M.TI Observation of an (N+-N=4) ro-vibrational transition in the photoionization of D-2SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICSLA EnglishDT ArticleID QUANTUM-DEFECT THEORY; PHOTOELECTRON ANGULAR-DISTRIBUTIONS; ROTATIONAL STATE DISTRIBUTIONS; DIATOMIC-MOLECULES; HIGH-RESOLUTION; H2 MOLECULE; H-2; AUTOIONIZATION; SPECTROSCOPY; SPECTRUMAB We present high-resolution photoelectron spectra (PES) of D-2 in the photon energy range from 15.648 to 15.677 eV. This range encompasses autoionizing Rydberg states of D-2 converging on various vibrational levels of the X-2 Sigma(+)(g) state of the D-2(+) ion. The PES show features that correspond to the transitions, D2X1 Sigma(g)(v = 0, N = 0) -> (D2+X2)Sigma(+)(g)(v(+) = 0, N+ = 0, 2, and 4). This is the first time that a change of Delta N = N+ - N = 4 in rotational angular momentum has been reported in a PES, where the magnetic field was negligible ( less than a few milligauss). The autoionizing state giving rise to the Delta N = 4 transition is observed at a photon energy of 15.674 eV and is assigned to the R(2) n = 5p pi Rydberg state converging to the v(+) = 4 vibrational level of the D-2(+) ion. It is suggested that the large change in rotational angular momentum results from the relatively long lifetime of this state.C1 UNAM, Ctr Ciencias Fis, Cuernavaca, Morelos, Mexico. Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. IMIP, CNR, Monterotondo, Italy. Daresbury Lab, CCLRC, Keckwick Lane WA4 4AD, Cheshire, England. Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. TASC, INFM, I-34012 Trieste, Italy. Univ Trieste, Unita INSTM, Trieste, Italy.RP Juarez, AM, UNAM, Ctr Ciencias Fis, Av Univ S-N Col Champilpa, Cuernavaca, Morelos, Mexico.EM [email protected] BERRY RS, 1970, PHYS REV A-GEN PHYS, V1, P395 BEUTLER H, 1936, Z PHYS, V100, P80 CHANDRA N, 1986, J PHYS B ATOM MOL PH, V19, P1959 CHUPKA WA, 1969, J CHEM PHYS, V51, P4244 COHEN HD, 1966, PHYS REV, V150, P30 CUBRIC D, 2002, J ELECTRON SPECTROSC, V123, P133 DEHMER JL, 1989, J CHEM PHYS, V90, P6243 DEHMER PM, 1976, J CHEM PHYS, V65, P2243 DEHMER PM, 1977, J CHEM PHYS, V66, P1972 EYLER EE, 1986, PHYS REV A, V34, P2881 FANO U, 1970, PHYS REV A, V2, P353 HERZBERG G, 1972, J MOL SPECTROSC, V41, P425 ITIKAWA Y, 1979, CHEM PHYS, V37, P401 JUAREZ AM, 2005, J PHYS B-AT MOL OPT, V38, P2109 JUNGEN C, 1980, J CHEM PHYS, V73, P3338 JUNGEN C, 1995, J PHYS CHEM-US, V99, P1700 NIEHAUS A, 1971, CHEM PHYS LETT, V11, P55 OHRWALL G, 1998, PHYS REV A, V58, P1960 POLLARD JE, 1982, J CHEM PHYS, V77, P34 PRATT ST, 1990, J CHEM PHYS, V92, P1831 PRINCE KC, 1998, J SYNCHROTRON RADI 3, V5, P565 RAOULT M, 1981, J CHEM PHYS, V74, P3388 RITCHIE B, 1982, CHEM PHYS LETT, V92, P667 RUF MW, 1983, J PHYS B-AT MOL OPT, V16, P1549 SOKELL E, 1995, J PHYS B-AT MOL OPT, V28, P2915 SOKELL E, 1998, J ELECTRON SPECTROSC, V94, P107 SOKELL E, 2002, J PHYS B-AT MOL OPT, V35, P1393 STEPHENS JA, 1994, J CHEM PHYS, V100, P7135 TAKEZAWA S, 1975, J MOL SPECTROSC, V54, P379NR 29TC 0PU IOP PUBLISHING LTDPI BRISTOLPA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLANDSN 0953-4075J9 J PHYS-B-AT MOL OPT PHYSJI J. Phys. B-At. Mol. Opt. Phys.PD DEC 14PY 2006VL 39IS 23BP L377EP L383PG 7SC Optics; Physics, Atomic, Molecular & ChemicalGA 114ERUT ISI:000242650000001ERPT JAU Dagdug, L Garcia-Colin, LS Goldstein, PAF Dagdug, Leonardo Garcia-Colin, L. S. Goldstein, PatriciaTI Contribution of floppy modes to configurational and excess entropy in chalcogenide glassesSO JOURNAL OF NON-CRYSTALLINE SOLIDSLA EnglishDT ArticleDE glass transition; chalcogenides; calorimetry; enthalpy relaxation; thermodynamicsID FORMING LIQUIDS; GLASSFORMING LIQUIDS; SUPERCOOLED LIQUIDS; MOLECULAR LIQUIDS; KINETIC FRAGILITY; RELAXATION; TRANSITION; KAUZMANN; ENTHALPY; POLYMERSAB In this work, following Naumis' ideas [G.G. Naumis, Phys. Rev. B 61 (2000) R9205], we include the floppy modes as a free energy in order to obtain the configurational and excess entropy as well as the jump of the heat capacity of the chalcogenide glasses as function of the coordination number < r >. Theoretically, we find that S-ex/S-c ranges from 1.5 for strong liquids (< r > = 2) to 2 for fragile ones (< r > = 2.4). These results are consistent with the values reported by Angell and Borick [C.A. Angell, S. Borick, J. Non-Cryst. Solids 307&310 (2002) 393], who find experimentally for selenium, < r > = 2, S-ex/S-c = 1.47. The proportionality between the configurational and total excess entropies supports the non-existence of the Adam-Gibbs equation paradox. Finally, using S, in the Adam-Gibbs equation we obtain a VFT-like equation as function of < r >, predicting that when < r > increases, D decreases as well, as it has been seen in previous work. (c) 2006 Elsevier B.V. All rights reserved.C1 Univ Nacl Autonoma Mexico, Dept Fis, Fac Ciencias, Mexico City 04510, DF, Mexico. Univ Autonoma Metropolitana Iztapalapa, Mexico City 09340, DF, Mexico.RP Goldstein, P, Univ Nacl Autonoma Mexico, Dept Fis, Fac Ciencias, Ciudad Univ, Mexico City 04510, DF, Mexico.EM [email protected] ADAM G, 1965, J CHEM PHYS, V43, P139 ANGELL CA, 1991, J NON-CRYST SOLIDS, V131, P13 ANGELL CA, 2002, J NON-CRYST SOLIDS, V307, P393 BOHMER R, 1993, J CHEM PHYS, V99, P4201 DAGDUG L, 2005, REV MEX FIS, V51, P114 DEBENEDETTI PG, 1996, METASTABLE LIQUIDS C DONTH E, 2001, GLASS TRANSITION REL GOLDSTEIN M, 1976, J CHEM PHYS, V64, P4767 HODGE IM, 1994, J NONCRYST SOLIDS, V169, P211 HUANG DH, 2001, J CHEM PHYS, V114, P5621 HUANG DH, 2002, J CHEM PHYS, V116, P3925 ITO K, 1999, NATURE, V398, P492 JOHARI GP, 2000, J CHEM PHYS, V113, P751 JOHARI GP, 2002, J NON-CRYST SOLIDS, V307, P387 MARTINEZ LM, 2001, NATURE, V410, P663 MOHANTY U, 2000, J CHEM PHYS, V113, P3719 MOYNIHAN CT, 2000, J NON-CRYST SOLIDS, V274, P131 NAUMIS GG, 2000, PHYS REV B, V61, P9205 NGAI KL, 1999, J CHEM PHYS, V111, P10403 PHILLIPS WA, 1989, PHYS REV LETT, V63, P2381 SCOPIGNO T, 2003, SCIENCE, V302, P849 TAKAHARA S, 1994, J NON-CRYST SOLIDS, V171, P259 TAKEDA K, 1999, J MOL STRUCT, V479, P227 TATSUMISAGO M, 1990, PHYS REV LETT, V64, P1549 THORPE MF, 1995, J NON-CRYST SOLIDS, V182, P135 WANG LM, 2002, J CHEM PHYS, V117, P10184NR 26TC 0PU ELSEVIER SCIENCE BVPI AMSTERDAMPA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDSSN 0022-3093J9 J NON-CRYST SOLIDSJI J. Non-Cryst. SolidsPD DEC 1PY 2006VL 352IS 50-51BP 5399EP 5402PG 4SC Materials Science, Ceramics; Materials Science, MultidisciplinaryGA 112YWUT ISI:000242565100022ERPT JAU Monroy, BM Santana, G Fandino, J Ortiz, A Alonso, JCAF Monroy, B. M. Santana, G. Fandino, J. Ortiz, A. Alonso, J. C.TI Growth of silicon nanoclusters on different substrates by plasma enhanced chemical vapor depositionSO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGYLA EnglishDT ArticleDE silicon nanoclusters; growth; substrates; PECVDID QUANTUM DOTS; NANOCRYSTALLINE SILICON; LIGHT-EMISSION; NITRIDE; FILMS; CONFINEMENTAB We report an atomic force microscopy study of the early stages of growth of silicon nanoclusters formed on different substrates by plasma-enhanced chemical vapor deposition, using dichlorosilane (SiH2Cl2) and hydrogen (H-2) as reactive gases. (100) n-type single crystalline silicon, fused silica, amorphous silicon nitride and corning glass, were used as substrates for the growth of the nanoclusters, which were formed at low substrate temperature (200 C). The diameter, height and number density of the clusters were controlled by the deposition time and pressure. It was found that not only the plasma conditions but also the surface characteristics of the substrate influence the cluster density, shape, and size. For the ordered silicon surface and the amorphous fused silica, the nanoclusters result oval in shape and exhibit preferential growth along the surface. When deposited over amorphous silicon nitride and corning glass, the density of nanoclusters increases and there is a tendency toward columnar growth since the diameter of the nanoclusters tends to decrease. We conclude that although the specific features of the nanoclusters originate from the chlorine chemistry introduced by the SiHxCly deposition precursor and the chemical stability of chlorine-terminated surfaces under hydrogen plasma, the surface quality and roughness also plays an important role on the nucleation and mobility of the species. The combination of both effects gives rise to the different nanostructured growths observed.C1 Univ Nacl Autonoma Mexico, Inst Invest & Mat, Coyoacan 04510, Mexico.RP Santana, G, Univ Nacl Autonoma Mexico, Inst Invest & Mat, Cd Univ AP 70-360, Coyoacan 04510, Mexico.CR CHEN LY, 2005, APPL PHYS LETT, V86 CHO KS, 2005, APPL PHYS LETT, V86 DOBISZ EA, 1996, NANOFABRICATION NANO, P495 FUKAI C, 1999, JPN J APPL PHYS, V38, P554 IYER SS, 1993, SCIENCE, V260, P40 KASOUIT S, 2004, J NON-CRYST SOLIDS, V338, P86 KIM TY, 2004, APPL PHYS LETT, V85, P5355 LIU HP, 2001, JPN J APPL PHYS 1, V40, P44 LIU HP, 2001, JPN J APPL PHYS 2, V40, L215 LU ZH, 1995, NATURE, V378, P258 MAZEN F, 2003, J CRYST GROWTH, V255, P250 PARK NM, 2001, APPL PHYS LETT, V78, P2575 PARK NM, 2002, APPL PHYS LETT, V81, P1092 PARK NM, 2002, CHEM VAPOR DEPOS, V8, P254 SHIRAI H, 2000, J NON-CRYST SOLIDS A, V266, P131 SHIRAI H, 2002, THIN SOLID FILMS, V407, P12 SHIRAI H, 2003, PHYSICA E, V16, P388NR 17TC 0PU AMER SCIENTIFIC PUBLISHERSPI STEVENSON RANCHPA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USASN 1533-4880J9 J NANOSCI NANOTECHNOLJI J. Nanosci. Nanotechnol.PD DECPY 2006VL 6IS 12BP 3752EP 3755PG 4SC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed MatterGA 113MDUT ISI:000242601100012ERPT JAU Robles, M de Haro, ML Santos, AAF Robles, Miguel Lopez de Haro, Mariano Santos, AndresTI Equation of state of a seven-dimensional hard-sphere fluid. Percus-Yevick theory and molecular-dynamics simulations (vol 120, pg 9113, 2004)SO JOURNAL OF CHEMICAL PHYSICSLA EnglishDT CorrectionC1 UNAM, Ctr Invest Energia, Morelia 62580, Michoacan, Mexico. Univ Extremadura, Dept Fis, E-06071 Badajoz, Spain.RP Robles, M, UNAM, Ctr Invest Energia, Morelia 62580, Michoacan, Mexico.EM [email protected] [email protected] [email protected] ROBLES M, 2004, J CHEM PHYS, V120, P9113NR 1TC 0PU AMER INST PHYSICSPI MELVILLEPA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USASN 0021-9606J9 J CHEM PHYSJI J. Chem. Phys.PD DEC 7PY 2006VL 125IS 21AR 219903DI ARTN 219903PG 1SC Physics, Atomic, Molecular & ChemicalGA 114DFUT ISI:000242646200045ERPT JAU Soriano-Correa, C Ruiz, JFS Raya, A Esquivel, ROAF Soriano-Correa, Catalina Sanchez Ruiz, Juan F. Raya, A. Esquivel, Rodolfo O.TI Electronic structure and physicochemical properties of selected penicillinsSO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRYLA EnglishDT ArticleDE electronic structure; beta-lactam compounds; penicillins; ab initio calculationsID BETA-LACTAM ANTIBIOTICS; QUANTUM-CHEMICAL CALCULATIONS; AB-INITIO CALCULATIONS; THEORETICAL CALCULATIONS; MINDO/3 CALCULATIONS; BINDING PROTEINS; CEPHALOSPORINS; HYDROLYSIS; MECHANISM; SOLVENTAB Traditionally, penicillins have been used as antibacterial agents due to their characteristics and widespread applications with few collateral effects, which have motivated several theoretical and experimental studies. Despite the latter, their mechanism of biological action has not been completely elucidated. We present a theoretical study at the Hartree-Fock and density functional theory (DFT) levels of theory of a selected group of penicillins such as the penicillin-G, amoxicillin, ampicillin, dicloxacillin, and carbenicillin molecules, to systematically determine the electron structure of full beta-lactam antibiotics. Our results allow us to analyze the electronic properties of the pharmacophore group, the aminoacyl side-chain, and the influence of the substituents (R and X) attached to the aminoacyl side-chain at 6' (in contrast with previous studies focused at the 3' substituents), and to corroborate the results of previous studies performed at the semiempirical level, solely on the beta-lactam ring of penicillins. Besides, several density descriptors are determined with the purpose of analyzing their link to the antibacterial activity of these penicillin compounds. Our results for the atomic charges (fitted to the electrostatic potential), the bond orders, and several global reactivity descriptors, such as the dipole moments, ionization potential, hardness, and the electrophilicity index, led us to characterize: the active sites, the effect of the electron-attracting substituent properties and their physicochemical features, which altogether, might be important to understand the biological activity of these type of molecules. (C) 2006 Wiley Periodicals, Inc.C1 UNAM, FES Zaragoza, Lab Quim Computac QFB, Mexico City 09230, DF, Mexico. Univ Autonoma Metropolitana Iztapalapa, Dept Quim, Mexico City 09340, DF, Mexico.RP Raya, A, UNAM, FES Zaragoza, Lab Quim Computac QFB, Mexico City 09230, DF, Mexico.EM [email protected] ALVAREZIDABOY JR, 2000, J MOL STRUC-THEOCHEM, V504, P13 BANIK I, 2003, J MED CHEM, V46, P12 BOUNAIM L, 2001, J MOL STRUC-THEOCHEM, V539, P233 BOYD DB, 1973, J MED CHEM, V16, P1195 BOYD DB, 1974, J PHYS CHEM-US, V78, P2604 BOYD DB, 1975, J MED CHEM, V18, P408 BOYD DB, 1979, J MED CHEM, V22, P778 BOYD DB, 1980, J AM CHEM SOC, V102, P1812 BOYD DB, 1982, CHEM BIOL BETA LACTA, V1, P437 CONTRERAS R, 2005, TETRAHEDRON, V61, P417 DIAZ N, 2003, J COMPUT CHEM, V24, P1864 FLYNN EH, 1972, CEPHALOSPORINS PENIC FRAU J, 1991, J MOL STRUCT THEOCHE, V231, P109 FRAU J, 1992, J COMPUT CHEM, V13, P681 FRAU J, 1993, J COMPUT CHEM, V14, P1545 FRAU J, 1993, THEOR CHIM ACTA, V86, P229 FRAU J, 1997, J MOL STRUC-THEOCHEM, V390, P247 FRISCH MJ, 1998, GAUSSIAN 98 REVISION GHUYSEN JM, 1979, ANNU REV BIOCHEM, V48, P73 GRAHAM LP, 1995, INTRO MED CHEM HARDMAN JG, 2001, GOODMAN GILMANS PHAR HEHRE WJ, 1986, AB INITIO MOL ORBITA KOOPMANS T, 1933, PHYSICA, V1, P104 LOWDIN PO, 1950, J CHEM PHYS, V18, P365 MASSOVA I, 2002, J COMPUT CHEM, V23, P1559 MICHAELLA W, 1997, J AM CHEM SOC, V119, P9793 MOLDER U, 2001, INT J QUANTUM CHEM, V82, P73 OLSEN L, 2004, J PHYS CHEM B, V108, P17639 PARR RG, 1999, J AM CHEM SOC, V121, P1922 PENAGALLEGO A, 1999, J MOL STRUC-THEOCHEM, V491, P177 PITARCH J, 1997, J PHYS CHEM B, V101, P3581 POLITZER P, 1981, CHEM APPL ATOMIC MOL PRTHASARATHI R, 2004, BIOORGAN MED CHEM, V12, P5533 SANDANAYAKA VP, 2003, J MED CHEM, V46, P2569 SORIANOCORREA C, 2003, INT J QUANTUM CHEM, V94, P165 SORIANOCORREA C, 2005, INT J QUANTUM CHEM, V104, P491 TIPPER DJ, 1965, P NATL ACAD SCI USA, V54, P1133 WAXMAN DJ, 1983, ANNU REV BIOCHEM, V52, P825 ZHOU LX, 2000, J MOL STRUC-THEOCHEM, V497, P137NR 39TC 1PU JOHN WILEY & SONS INCPI HOBOKENPA 111 RIVER ST, HOBOKEN, NJ 07030 USASN 0020-7608J9 INT J QUANTUM CHEMJI Int. J. Quantum Chem.PD MAR 5PY 2007VL 107IS 3BP 628EP 636PG 9SC Chemistry, Physical; Mathematics, Interdisciplinary Applications; Physics, Atomic, Molecular & ChemicalGA 115ANUT ISI:000242706900011ERPT JAU Sanchez-Roman, FR Juarez-Perez, CA Madrid, GA Haro-Garcia, L Borja-Aburto, VH Claudio, LAF Sanchez-Roman, Francisco Raul Juarez-Perez, Cuauhtemoc Arturo Madrid, Guadalupe Aguilar Haro-Garcia, Luis Borja-Aburto, Victor Hugo Claudio, LuzTI Occupational health in MexicoSO INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HEALTHLA EnglishDT ArticleDE occupational health; occupational medicine; social security; MexicoAB This article describes the current situation of occupational health (OH) in Mexico, including socioeconomic context, legislation, health system, and educative and investigative resources, as well as the practice of OH. Workplace accidents per 100 workers decreased from 7.23 to 2.3 workers in 20 years; deaths decreased from 1.68 to 0.9 per 10,000 workers, while the occupational disease rate increased from 0.6 to 1 per 10,000 workers. This can be interpreted as an improvement in preventive measures as well as problems of recognition and registry. In Mexico OH faces challenges that range from needs for professional training and performance to needs for development of legal measures, coordination, information, and research.C1 Inst Mexicano Seguro Social, Unidad Invest Salud Trabajo, Cuauhtemoc, Mexico. Inst Mexicano Seguro Social, Div Discapac & Reincorp Laboral Coordinac Salud T, Cuauhtemoc, Mexico. Univ Nacl Autonoma Mexico, Div Estudios Postgrado & Invest, Fac Med, Mexico City 04510, DF, Mexico. Mt Sinai Sch Med, Dept Community & Prevent Med, Div Int Hlth, New York, NY USA.RP Sanchez-Roman, FR, Inst Mexicano Seguro Social, Coordinac Salud Trabajo, Ctr Med Nacl Siglo 21, Av Cuauhtemoc 330,Edificio C,Col Doctores, Mexico City 06725, DF, Mexico.EM [email protected] 1999, B INFORM ESTADISTICA 2003, REGLAMENTO FEDERAL S *BANC MEX, 2005, BAL PAG *CAP 3 SEG RIESG T, 2003, AG SEG SOC, P22 *CONS MEX MED TRAB, 2001, REV LATINOAMERICANA, V1, P18 *CTR PROT WORK RIG, 2002, CONSTR CHART BOOK *FM UNAM, 2003, PLAN UN ESP MED MED *I MEX SEG SOC, 2004, 23 INF MENS PATR COT *I MEX SEG SOC, 2005, MEM EST SAL TRAB 200 *I MEX SEG SOC, 2005, MEM I 2004 *I NAC EST GEOGR I, 2000, 12 CENS GEN POBL VIV *I NAC EST GEOGR I, 2002, ENC NAC MICR NEG *I NAC EST GEOGR I, 2004, ENC NAC EMPL SEG SOC *ORG INT TRAB, 1995, EST TAS DAN OC ACT E *REGL LEY SEG SOC, 2003, AG SEG SOC REGL INST, P1 *U AUT AG DEP SAL, ESP SAL TRAB AGUILAR SA, 2001, REV LATINOAMERICANA, V1, P6 AGUILARMADRID G, 2003, INT J OCCUP ENV HEAL, V9, P272 BEDRIKOW B, 1997, INT ARCH OCC ENV HEA, V70, P215 BORJA AV, 2005, MULTIPLES FACETAS IN, P115 BRENA GF, 1988, FEDERAL TRABAJO COME, P424 DELAHOZ RE, 1998, INT ARCH OCC ENV HEA, V71, P155 FRANCO EJ, 1994, SALUD PROBLEMA, V24, P33 GOMEZ DO, 1999, INFORM REFORMANDO, V1, P6 LOPEZ RP, 2002, 6 REUN NAC INV SAL T MARKOWITZ SB, 2003, SOZ PRAVENTIV MED, V48, P1 MURPHY PL, 1996, AM J IND MED, V30, P130 PALLARES AR, 2000, 15 JORN NAC 3 S INT RAMOS JM, 2000, REV LATINOAMERICANA, V1, P28 SALINASTOVAR JS, 2004, SALUD PUBLICA MEXICO, V46, P204 TORNERO AF, 2000, 1 JORN DEL ED COMP P VALDEZ ME, 2000, GAC MED MEX, V136, P319NR 32TC 0PU ABEL PUBLICATION SERVICESPI BURLINGTONPA 1611 AQUINAS COURT, BURLINGTON, NC 27215 USASN 1077-3525J9 INT J OCCUP ENVIRON HEALTHJI Int. J. Occup. Environ. HealthPD OCT-DECPY 2006VL 12IS 4BP 346EP 354PG 9SC Public, Environmental & Occupational HealthGA 113ZDUT ISI:000242635600008ERPT JAU Sanchez, J Lopez-Villasenor, IAF Sanchez, Joaquin Lopez-Villasenor, ImeldaTI A simple model to explain three-base periodicity in coding DNASO FEBS LETTERSLA EnglishDT ArticleDE three-base periodicity; DNA periodicity and triplet clustering; codon usage frequency; frequency distribution of distances; context-dependent codon bias; artificial induction of 2-3-and 4-base periodicities in DNAID RNA SECONDARY STRUCTURE; DEPENDENT CODON BIAS; USAGE; SEQUENCES; GENESAB A simple model is put forward to explain the long-known three-base periodicity in coding DNA. We propose the concept of same-phase triplet clustering, i.e. a condition wherein a triplet appears several times in one phase without interruption by the two other possible phases. For instance, in the sequence (i): NTT_GNN_NTT_GNN_NTT_GNN_NNN_NTT_GNN (where N is any nucleotide but combinations producing TTG are excluded) there would be clustering of same-phase TTG because this triplet appears uninterruptedly in phase 2. In contrast, in the sequence (ii): TTG_NTT_GNN_NNT_TGN_NNN_NTT_GNN there is no same-phase clustering because neighboring TTGs are all in different phases. Observe also that in sequence (i) TTG triplets are separated by 3, 3 and 6 nucleotides (3n distances), while in sequence (ii) they are separated by 1, 4 and 5 nucleotides (non-3n distances). In this work, we demonstrate that in coding DNA the 3n distances generated by (i)-type sequences proportionally outnumber the non-3n distances generated by (ii)-type sequences, this condition would be the basis of three-base periodicity. Randomized sequences had (i)- and (ii)-type sequences too but clustering was statistically different. To prove our model we generated (i)type sequences in a randomized sequence by inducing clustering of same-phase triplets. In agreement with the model this sequence displayed three-base periodicity. Furthermore, two- and four-base periodicities could also be induced by artificially inducing clustering of duplets and tetraplets. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.C1 UAEM, Fac Med, Cuernavaca 62210, Morelos, Mexico. Univ Nacl Autonoma Mexico, Inst Invest Biomed, Mexico City 04510, DF, Mexico.RP Sanchez, J, UAEM, Fac Med, Av Univ 1001, Cuernavaca 62210, Morelos, Mexico.EM [email protected] CARLINI DB, 2005, MOL BIOL EVOL, V22, P1403 DUAN JB, 2003, J MOL EVOL, V57, P694 ESKESEN ST, 2004, BMC MOL BIOL, V5 FEDOROV A, 2002, NUCLEIC ACIDS RES, V30, P1192 IKEMURA T, 1985, MOL BIOL EVOL, V2, P13 JIA MW, 2005, FEBS LETT, V579, P5333 KATZ L, 2003, GENOME RES, V13, P2042 LOPEZVILLASENOR I, 2004, BIOCHEM BIOPH RES CO, V325, P467 PRIDE DT, 2003, GENOME RES, V13, P145 SHABALINA SA, 2006, NUCLEIC ACIDS RES, V34, P2428 SUPEK F, 2005, BMC BIOINFORMATICS, V6 SUSSILLO D, 2004, EURASIP J APPL SIG P, P29 TRIFONOV EN, 1998, PHYSICA A, V249, P511 YIN CC, 2005, J COMPUT BIOL, V12, P1153NR 14TC 0PU ELSEVIER SCIENCE BVPI AMSTERDAMPA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDSSN 0014-5793J9 FEBS LETTJI FEBS Lett.PD NOV 27PY 2006VL 580IS 27BP 6413EP 6422PG 10SC Biochemistry & Molecular Biology; Biophysics; Cell BiologyGA 114KSUT ISI:000242665700019ERPT JAU Mendoza-Cozatl, DG Rodriguez-Zavala, JS Rodriguez-Enriquez, S Mendoza-Hernandez, G Briones-Gallardo, R Moreno-Sanchez, RAF Mendoza-Cozatl, David G. Rodriguez-Zavala, Jose S. Rodriguez-Enriquez, Sara Mendoza-Hernandez, Guillermo Briones-Gallardo, Roberto Moreno-Sanchez, RafaelTI Phytochelatin-cadmium-sulfide high-molecular-mass complexes of Euglena gracilisSO FEBS JOURNALLA EnglishDT ArticleDE aspartate; cadmium compartmentation; chloroplast; glutathione; sulfideID METAL-BINDING PEPTIDES; FISSION YEAST; SCHIZOSACCHAROMYCES-POMBE; ACCUMULATING PHENOTYPE; CANDIDA-GLABRATA; GLUTATHIONE; TRANSPORT; DERIVATIZATION; CHROMATOGRAPHY; LOCALIZATIONAB High-molecular-mass PC complexes (PC-HMWCs) constituted by phytochelatins (PCs), cadmium and sulfide are synthesized by several organisms after exposure to cadmium. In this study, PC-HMWCs were isolated from photoheterotrophic Euglena gracilis and purified to homogeneity, resulting in compounds of molecular mass 50-380 kDa depending on the CdCl2 and sulfate concentrations in the culture medium. In contrast with plants and some yeasts, PC-HMWCs from E. gracilis mainly comprise (57-75%) monothiol molecules (Cys, gamma-glutamylcysteine, GSH) and, to a lesser extent (25-43%), PCs. A similar acid-soluble thiol compound composition was found in whole cell extracts. The -SH/Cd(2+)and S2-/Cd2+ ratios found in purified PC-HMWCs were 1.5 and 1.8, respectively; the (-SH + S2-)/Cd2+ ratio was 3.2. PC-HMWCs of molecular mass 60 and 100 kDa were also localized inside Percoll-purified chloroplasts, in which cadmium and PCs were mainly compartmentalized. Cadmium and sulfur-rich clusters with similar sulfur/cadmium stoichiometries to those of the purified PC-HMWCs were detected in the chloroplast and throughout the cell by energy dispersive microanalysis and atomic resolution electron microscopy. The presence of PC-HMWCs in primitive photosynthetic eukaryotes such as the protist, E. gracilis, suggests that their function as the final cadmium-storage-inactivation process is widespread. Their particular intracellular localization suggests that chloroplasts may play a major role in the cadmium-resistance mechanism in organisms lacking a plant-like vacuole.C1 Inst Nacl Cardiol, Dept Bioquim, Mexico City 14080, DF, Mexico. Univ Nacl Autonoma Mexico, Dept Bioquim, Fac Med, Mexico City 04510, DF, Mexico. Univ Autonoma San Luis Potosi, Fac Ingn, Inst Met, San Luis Potosi, Mexico.RP Moreno-Sanchez, R, Inst Nacl Cardiol, Dept Bioquim, Juan Badiano 1,Col Secc 16, Mexico City 14080, DF, Mexico.EM [email protected] ALBERGONI V, 1980, COMP BIOCHEM PHYS C, V67, P121 AVILES C, 2003, ARCH MICROBIOL, V180, P1 AVILES C, 2005, ARCH MICROBIOL, V184, P83 BARBAS J, 1992, J INORG BIOCHEM, V48, P95 BIDLINGMEYER BA, 1984, J CHROMATOGR, V336, P93 BRUNOLD C, 1976, PLANT PHYSIOL, V57, P430 CREIGHTON TE, 1993, PROTEINS STRUCTURES DAMERON CT, 1989, J BIOL CHEM, V264, P17355 DEVARS S, 1998, ARCH ENVIRON CON TOX, V34, P128 FERRONI L, 2004, PROTOPLASMA, V224, P167 GAGGELLI E, 2002, ENVIRON HEALTH PE S5, V110, P733 GRILL E, 1991, METHOD ENZYMOL, V205, P333 HEINRIKSON RL, 1984, ANAL BIOCHEM, V136, P65 JUANG RH, 1993, ARCH BIOCHEM BIOPHYS, V304, P392 KING T, 1957, METHOD ENZYMOL, V10, P634 KOPLIK R, 2002, J CHROMATOGR B, V770, P261 MENDOZACOZATL D, 2002, PHYSIOL PLANTARUM, V115, P276 MENDOZACOZATL D, 2005, FEMS MICROBIOL REV, V29, P653 MENDOZACOZATL DG, 2005, BBA-BIOENERGETICS, V1706, P88 MENDOZACOZATL DG, 2006, J THEOR BIOL, V238, P919 MURASUGI A, 1983, J BIOCHEM-TOKYO, V93, P661 MURPHY JB, 1960, BIOCHIM BIOPHYS ACTA, V45, P382 NAGEL K, 1996, J PLANT PHYSIOL, V149, P86 ORTIZ DF, 1995, J BIOL CHEM, V270, P4721 PICAULT N, 2006, BIOCHIMIE RAUSER WE, 1991, METHOD ENZYMOL, V205, P319 RAUSER WE, 1995, PLANT PHYSIOL, V109, P195 REESE RN, 1988, J BIOL CHEM, V263, P12832 SAIDHA T, 1988, BIOCHEM J, V253, P533 SALT DE, 1995, PLANT PHYSIOL, V107, P1293 SANTIAGO R, 2005, J NANOSCI NANOTECHNO, V5, P1172 SPEISER DM, 1992, PLANT PHYSIOL, V99, P817 VANDEWEGHE JG, 2001, MOL MICROBIOL, V42, P29 WEBER DN, 1987, J BIOL CHEM, V262, P6962 WU JS, 1995, BIOCHEM MOL BIOL INT, V36, P1169 ZIESE U, 2002, J STRUCT BIOL, V138, P58NR 36TC 1PU BLACKWELL PUBLISHINGPI OXFORDPA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLANDSN 1742-464XJ9 FEBS JJI FEBS J.PD DECPY 2006VL 273IS 24BP 5703EP 5713PG 11SC Biochemistry & Molecular BiologyGA 114HSUT ISI:000242657900018ERPT JAU Rojas, FM Paez, A Mendez-Cruz, AR Varela, E Zapata, E Flores-Romo, L Rodriguez, E Montano, LFAF Rojas, F. Masso Paez, A. Mendez-Cruz, A. R. Varela, E. Zapata, E. Flores-Romo, L. Rodriguez, E. Montano, L. F.TI Newborn Human Umbilical Vein Endothelial Cells with backgrounds of strong familial heart infarction overexpress adhesion molecules and react differently to pro-atherogenic moleculesSO EUROPEAN HEART JOURNALLA EnglishDT Meeting AbstractC1 Inst Nacl Cardiol, Dept Cellular Biol, Mexico City, DF, Mexico. UNAM, FES Iztacala, Mexico City, DF, Mexico. IPN, CINVESTAV, Mexico City, DF, Mexico. UNAM, Fac Med, Mexico City, DF, Mexico.NR 0TC 0PU OXFORD UNIV PRESSPI OXFORDPA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLANDSN 0195-668XJ9 EUR HEART JJI Eur. Heart J.PD AUGPY 2006VL 27SU Suppl. 1BP 126EP 126PG 1SC Cardiac & Cardiovascular SystemsGA 086JAUT ISI:000240668400499ERPT JAU Paez, A Mendez-Cruz, AR Varela, E Rodriguez, E Zapata, E Flores-Romo, L Montano, LF Masso, FAF Paez, A. Mendez-Cruz, A. R. Varela, E. Rodriguez, E. Zapata, E. Flores-Romo, L. Montano, L. F. Masso, F.TI CD40 expression and function in human umbilical vein endothelial cells (HUVECs) from healthy newborns with strong family background of heart infarction. Hyper-reactivity to pro-atherogenic stimuliSO EUROPEAN HEART JOURNALLA EnglishDT Meeting AbstractC1 UNAM, FES Iztacala, Mexico City, DF, Mexico. IPN, CINVESTAV, Mexico City, DF, Mexico. UNAM, Fac Med, Mexico City, DF, Mexico.NR 0TC 0PU OXFORD UNIV PRESSPI OXFORDPA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLANDSN 0195-668XJ9 EUR HEART JJI Eur. Heart J.PD AUGPY 2006VL 27SU Suppl. 1BP 126EP 126PG 1SC Cardiac & Cardiovascular SystemsGA 086JAUT ISI:000240668400501ERPT JAU Juarez-Rojas, JRJG Jose, ZGJZG Liria, KLYK Guillermo, CSGS Rosalinda, PSRS Aida, MUAU Carlos, PRCRAF Juarez-Rojas, J. R. J. G. Zamora-Gonzalez Jose, Z. G. J. Yamamoto-Kimura Liria, Y. K. L. Cardoso-Saldana Guillermo, C. S. G. Posadas-Sanchez Rosalinda, P. S. R. Medina-Urrutia Aida, M. U. A. Posadas-Romero Carlos, P. R. C.TI Prevalence of high blood pressure and its association to cardiovascular risk factors in adolescents of Mexico citySO EUROPEAN HEART JOURNALLA EnglishDT Meeting AbstractC1 Inst Nacl Cardiol Ignacio Cha, Mexico City, DF, Mexico. Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico.NR 0TC 0PU OXFORD UNIV PRESSPI OXFORDPA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLANDSN 0195-668XJ9 EUR HEART JJI Eur. Heart J.PD AUGPY 2006VL 27SU Suppl. 1BP 666EP 666PG 1SC Cardiac & Cardiovascular SystemsGA 086JAUT ISI:000240668404391ERPT JAU Carrillo-Tripp, M San-Roman, ML Hernandez-Cobos, J Saint-Martin, H Ortega-Blake, IAF Carrillo-Tripp, Mauricio Luisa San-Roman, Maria Hernandez-Cobos, Jorge Saint-Martin, Humberto Ortega-Blake, IvanTI Ion hydration in nanopores and the molecular basis of selectivitySO BIOPHYSICAL CHEMISTRYLA EnglishDT ArticleDE selectivity to ions; numerical simulations; polarizability; transferable analytical potentialsID POTASSIUM CHANNEL; K+ CHANNEL; DYNAMICS SIMULATION; CRYSTAL-STRUCTURE; MODEL POTENTIALS; FORCE-FIELD; FREE-ENERGY; WATER; CONDUCTION; NANOTUBEAB Using a simple model, it is shown that the cost of constraining a hydrated potassium ion inside a narrow pore is smaller than the cost of constraining hydrated sodium or lithium ions in pores of radius around 1.5 angstrom. The opposite is true for pores of radius around 2.5 angstrom. The reason for the selectivity in the first region is that the potassium ion allows for a greater distortion of its hydration shell and can therefore maintain a better coordination, and the reason for the reverse selectivity in the second region is that the smaller ions retain their hydration shells in these pores. This is relevant to the molecular basis of ion selective channels, and since this mechanism does not depend on the molecular details of the pore, it could also operate in all sorts of nanotubes. (c) 2006 Published by Elsevier B.V.C1 CINVESTAV, Dept Fis Aplicada, Merida 97310, Yucatan, Venezuela. Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62251, Morelos, Mexico. Univ Autonoma Estado Morelos, Ctr Invest Quim, Cuernavaca 62210, Morelos, Mexico. Wabash Coll, Dept Chem, Crawfordsville, IN 47933 USA.RP Ortega-Blake, I, CINVESTAV, Dept Fis Aplicada, Km 6 Carretera Antigua Progreso, Merida 97310, Yucatan, Venezuela.EM [email protected] ALLEN TW, 1999, BIOPHYS J, V77, P2502 ALLEN TW, 2000, J CHEM PHYS, V112, P8191 ANDREEV S, 2005, J CHEM PHYS, V123 BAKER NA, 1999, J CHEM PHYS, V110, P10679 BENJAMIN I, 1991, J CHEM PHYS, V95, P3698 BENZANILLA F, 1972, J GEN PHYSIOL, V60, P588 BERNECHE S, 2000, BIOPHYS J, V78, P2900 BERNECHE S, 2001, NATURE, V414, P73 CAPENER CE, 2000, BIOPHYS J, V78, P2929 CARRILLOTRIPP M, 2003, J CHEM PHYS, V118, P7062 CARRILLOTRIPP M, 2004, PHYS REV LETT, V93 COLLINS MD, 2005, P NATL ACAD SCI USA, V102, P16668 COMPOINT M, 2005, J CHEM PHYS, V122 DOYLE DA, 1998, SCIENCE, V280, P69 ERIKSSON MAL, 2002, BIOPHYS J, V83, P2595 FLYVBJERG H, 1989, J CHEM PHYS, V91, P461 GROSSFIELD A, 2003, J AM CHEM SOC, V125, P15671 GUARDIA E, 1990, J PHYS CHEM-US, V94, P6049 GUIDONI L, 1999, BIOCHEMISTRY-US, V38, P8599 GUILLOT B, 2002, J MOL LIQ, V101, P219 HAIDER S, 2005, BIOPHYS J, V88, P3310 HARRELL CC, 2004, J AM CHEM SOC, V126, P15646 HILLE B, 1992, IONIC CHANNELS EXCIT HODGKIN AL, 1952, J PHYSIOL, V117, P500 HUMMER G, 2001, NATURE, V414, P188 JAYARAM B, 1990, J PHYS CHEM-US, V94, P7288 JIANG YX, 2002, NATURE, V417, P515 JIANG YX, 2002, NATURE, V417, P523 JIANG YX, 2003, NATURE, V423, P33 KOWALL T, 1995, J AM CHEM SOC, V117, P3790 LONG SB, 2005, SCIENCE, V309, P897 PATEL S, 2004, J COMPUT CHEM, V25, P1504 RANATUNGA KM, 2001, BIOPHYS J, V80, P1210 ROUX B, 2005, ANNU REV BIOPH BIOM, V34, P153 SAINTMARTIN H, 2000,