junji adachi, kyushu university

26
Cathode Anode ETL EML HTL - - 100nm 3rd Genera6on Delayed Fluorescence IQE~100% 1st Genera6on Fluorescence IQE~25% 3.5th Genera6on Hyper Fluorescence IQE~100% 2nd Genera6on Phosphorescence IQE~100% TADF TADF + Fluorescence 1987~ 2000~ 2012~ 2014~ DOE SSL R&D Workshop OPERA research team KYUSHU UNIVERSITY Chihaya Adachi Junji Adachi 1 High Performance TADF for OLEDs

Upload: vanngoc

Post on 01-Feb-2017

267 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Junji Adachi, Kyushu University

Cathode

Anode

ETL

EML

HTL -+

-+

-‐‑‒+100nm

3rd  Genera6on  

Delayed  Fluorescence  IQE~100%

1st    Genera6on

Fluorescence  IQE~25%

3.5th  Genera6on  

Hyper  Fluorescence  IQE~100%

2nd  Genera6on

Phosphorescence  IQE~100%

TADF TADF  +  Fluorescence

1987~ 2000~ 2012~ 2014~

DOE  SSL  R&D  Workshop    

 OPERA  research  team  KYUSHU  UNIVERSITY  Chihaya  Adachi  Junji  Adachi   1

High Performance TADF for OLEDs

Page 2: Junji Adachi, Kyushu University

i)  Molecular  design  for  high  efficiency  TADF  and  their  applicaGon  for  OLEDs    ii)  A  new  route  for  triplet  harvesGng  using  TADF  molecules  as  assistant  dopant                                              and  fluorescence  molecules  as  emiLer  (Hyperfluorescence)  iii)  Triplet  exciton  management  for  reduced  roll-­‐off  and  device  stability

2

Cathode

Anode

ETL

EML

HTL -+

-+

-‐‑‒+100nm

3rd  Genera6on  

Delayed  Fluorescence  IQE~100%

1st    Genera6on

Fluorescence  IQE~25%

3.5th  Genera6on  

Hyper  Fluorescence  IQE~100%

2nd  Genera6on

Phosphorescence  IQE~100%

TADF TADF  +  Fluorescence

OUTLINES

1987~ 2000~ 2012~ 2014~

Page 3: Junji Adachi, Kyushu University

3

Principle of Conventional Emitting Process

h+ e-

25% 75%

Low Efficiency Low Cost

Unlimited Design Deep Blue

High Efficiency High Cost

Limited Design Deep Blue

Page 4: Junji Adachi, Kyushu University

λ∝HSO

ΔESTFirst-order mixing

coefficient between singlet and triplet states (λ)

Hso: Spin-orbit coupling

Larger λ provides larger probability for transition between S1 and T1 states.

4

Principle of TADF

Page 5: Junji Adachi, Kyushu University

ES=(EH-­‐EL)+K  ET=(EH-­‐EL)-­‐K

ΔEST=2K

EH :HOMO Energy EL : LUMO Energy K :Exchange Energy

・ Small  ΔEST

φ φ φ φ τ τ= ∫∫ 1 212

1(1) (2) (2) (1)L U L UK d dr

(LUMO) (HOMO) (LUMO) (HOMO)

ü     Donor-­‐Acceptor  backbone  ü     X:Introduc6on  of  steric  hindrance  

Donor Acceptor X

・Large  ΔEST

µ = φL(∫∫ 1)φU (2)r 12φL(2)φU (1)dτ1dτ 2f ∝µ2

Small:ΔEST

Moderate  Oscillator  Strength:f    

Molecular  Design

Moderate radiative decay rate with small ΔEST

Transition dipole moment

HOMO

LUMO 5

Molecular design for efficient TADF

Page 6: Junji Adachi, Kyushu University

Al LiF

6wt% 4CzTPN/CBP α-NPD

ITO/Glass

TPBi

Very  high  efficiency  TADF  based  OLED  (Internal  QE~100%)  

10-3 10-2 10-1 100 101 10210-2

10-1

100

101

Exte

rnal

EL

quan

tum

effi

cien

cy (%

)

Current density (mA/cm2)

4CzIPN 4CzTPN-Ph 2CzPN

400 500 600 700

2CzPN 4CzIPN 4CzPN 4CzTPN 4CzTPN-Me 4CzTPN-Ph

Nor

mal

ized

PL

inte

nsity

Wavelength (nm)

EQE~20%    (Internal  QE:  approaching  to  100%)

Phthalonitrile  deriva6ves

T.  Uoyama  et  al.,  Nature,  492,  234  (2012)

HOMO LUMO

DFT (M06-2X/6-31G(d)) PLQY~95%

6

Page 7: Junji Adachi, Kyushu University

Internal  QE  nearly  100%  blue  OLED

EQE20%

Q. Zhang, et al., Nature Photonics, 8, 326 (2014) 7

Internal QE nearly 100% Blue OLED

Page 8: Junji Adachi, Kyushu University

Phenazine (PPZ)

Acridine (DMAC)

Phenoxazine (PXZ) Phenazine (PPZ)

Oxadiazole (DPO) Triazole (TPT)

Diphenyl sulfone (DPS)

B3LYP/6-­‐31G*  level

DMAC-DPS λ~460nm

DMAC-DPS τ~3µs

Phenazine (PPZ)

3LE=2.4eV

Phenoxazine (PXZ)

3LE=2.7eV

Acridine (DMAC)

3LE=3.0eV

ΔEST=0.08eV PLQY~90% λmax=465nm

8

High efficiency blue TADF: Optimization of donor and acceptor units

Page 9: Junji Adachi, Kyushu University

EQE 17.5 ± 1.5%, λEL~610nm CIE (0.60, 0.40)

J. Li, T. Nakagawa, J. MacDonald, Q. Zhang, H. Nomura, H. Miyazaki, and C. Adachi (CSIRO and Kyushu Univ.)

PL EL

Melem

Adv.  Mat.,  25,  3319  (2013)  

S1-T1 transition is an optically hidden process!

9

Red TADF

Page 10: Junji Adachi, Kyushu University

4CzIPN ⊿EST:0.01.eV λ max:513nm

EQE:19%

4CzPN ⊿EST:0.12.eV λ max:531nm

EQE :18%

4CzTPN ⊿EST:0.06.eV λ max:544nm

EQE:17%

Nature, 492, 234 (2012)

HAP-3TPA ⊿EST:0.17.eV λ max:610nm EQE:17.5%

Adv. Mat.,25, 3319 (2013)

Spiro-CN ⊿EST:0.06eV λ max:540nm

EQE:4.4% Chem. Com.,

48, 9580 (2012)

DMAC-DPS ⊿EST:0.08eV λ max:465nm

EQE:20%

Nat. Photo. 8, 326 (2014)

ACRFLCN  ⊿EST:0.10eV λ max:485nm

EQE:10%

Spiro-AN ⊿EST:0.025eV λ max:495nm EQE:16.5% Chem. Comm.

49, 10385 (2013)

a)

Angew. Chem. 2012, 51, 11311

⊿EST:0.1eV λ max:466nm

EQE:5.3%

PIC-TRZ2 ⊿EST:0.01eV λ max:505nm

EQE:14% Phys. Rev. Lett.

110, 247401 (2013)

PXZ-TRZ ⊿EST:0.0084.eV λ max:522nm EQE:15.5%

CC2TA ⊿EST:0.07eV λ max:493nm

EQE:11% Appl. Phys. Lett., 98, 83302 (2011)

Appl. Phys. Lett., 101, 93306 (2012)

Chem. Com., 48, 11392 (2012)

PIC-TRZ

Melem

Sulphone

Molecular  Design  ü  SeparaGon  of  HOMO  and  LUMO,  but  rather  gentle  decrease  of  HOMO  and  

LUMO  distribuGon  for  large  transiGon  dipole  moment.  ü  Use  of  donor/acceptor  units  having  a  high  localized  triplet  state  (3LE)  ü  Small  ΔEST  for  short  transient  Gme  ~µs  order

10

Molecular Design for TADF

Page 11: Junji Adachi, Kyushu University

²  High color purity (narrow spectrum) ²  Long lifetimes of operational stability ²  Unlimited molecular design ²  Theoretical limitation of ηr

25% - 62.5% (even TTA process)

Fluorescence based OLEDs

TADF based OLEDs²  High efficiency up to 100% ²  Unlimited molecular design ²  Broad spectra due to CT emission (not appropriate for display applications)

H.  Nakanotani,  et  al.,  Nature  Comm.  5,  4016  (2014)  

²  Long  life6mes  of  opera6onal  stability    ²  High  color  purity  ²  Flexibility  of  material  design  ²  Theore6cal  limita6on  of  ηr-­‐  100  %  

TADF as assistant & Fluorescence as emitter

 Fusion  of  two  

Func6ons

TADF:  Exciton-­‐  

genera6on

Fluo: Light-

emission

400 500 600 700

2CzPN 4CzIPN 4CzPN 4CzTPN 4CzTPN-Me 4CzTPN-Ph

Nor

mal

ized

PL

inte

nsity

Wavelength (nm)

T1

T1

S0

S1

S0

1/8

3/8 S0

3M*

4/8

3M*

Interamolecular:  T.  Uoyama  et  al.,  Nature,  492,  234  (2012)  Intermolecular:      K.  Goushi  et  al.,    Nature  Photo.  6,  253  (2012)

11

A new route to harvest triplets in OLEDs with fluorescence emitters

Page 12: Junji Adachi, Kyushu University

² Minimizing  concentra6on  quenching  of  TADF  molecules  ²  Efficient  FRET  but  no  Dexter  transfer

RISC

FRET

S1 T1

h+ e-

25% 75%

Host Assistant dopant DBP

T1S1

Exciton formationa

TBPe TTPA TBRb

b c

d e

TBPe

ACRSA

TTPA

ACRXTN

TBRb

PXZ-TRZ

DBP

tri-PXZ-TRZ

N

O

ON

O

NON

NN

NON

NN

N

N

O

OACRSA ACRXTN PXZ-TRZ tri-PXZ-TRZ

Assisting dopantTADF  (10-­‐20%) Fluorescence  emiher  (~1%)

S1

T1 X Exciton  forma6on

12

TADF as assistant dopant and Fluorescence as emitter in host layer

H. Nakanotani, et al, Nat. Commun., 5, 4016, 2014

Page 13: Junji Adachi, Kyushu University

13

Large chance of FRET and small chance for Dexter between TADF and Fluo.

Page 14: Junji Adachi, Kyushu University

100 101 102 103 1040

2

4

6

8

10

12

14

16

18

20

Ex

tern

al E

L qu

antu

m e

ffici

ency

(%)

Luminance (cd/m2)4

Flu. TADF (PXZ-TRZ)

Assistant dopant (TADF)+Fluorescence dopant

TADF emitter

Fluorescence emitter

● 1wt%-­‐TBRb:25wt%-­‐PXZTRZ:mCBP  

● 1wt%-TBRb:mCBP

● 25wt%-PXZTRZ:mCBP

Addition of TADF

14

Improved OLED architecture with double doped emitter layer

Page 15: Junji Adachi, Kyushu University

a b

c d

N N

e

a b

c d

N N

e

EQE 18.0% EQE 17.5%

EQE 15.8% EQE 13.4%

w/o TADF

w/o TADF w/o TADF

w/o TADF (b)

TBPe

ACRSA

TTPA

ACRXTN

TBRb

PXZ-TRZ

DBP

tri-PXZ-TRZ

N

O

ON

O

NON

NN

NON

NN

N

N

O

OACRSA ACRXTN PXZ-TRZ tri-PXZ-TRZ

TADF molecules(a)

(b)

TBPe

ACRSA

TTPA

ACRXTN

TBRb

PXZ-TRZ

DBP

tri-PXZ-TRZ

N

O

ON

O

NON

NN

NON

NN

N

N

O

OACRSA ACRXTN PXZ-TRZ tri-PXZ-TRZ

TADF molecules(a)

(b)

TBPe

ACRSA

TTPA

ACRXTN

TBRb

PXZ-TRZ

DBP

tri-PXZ-TRZ

N

O

ON

O

NON

NN

NON

NN

N

N

O

OACRSA ACRXTN PXZ-TRZ tri-PXZ-TRZ

TADF molecules(a)

(b)

TBPe

ACRSA

TTPA

ACRXTN

TBRb

PXZ-TRZ

DBP

tri-PXZ-TRZ

N

O

ON

O

NON

NN

NON

NN

N

N

O

OACRSA ACRXTN PXZ-TRZ tri-PXZ-TRZ

TADF molecules(a)

15

Improved OLED architecture with various emission colors

H. Nakanotani, et al, Nat. Commun., 5, 4016, 2014

Page 16: Junji Adachi, Kyushu University

-6.2

-5.8

-5.4

-5.0

-4.6

-4.2

-3.8

-3.4

-3.0

-2.6

-2.2 DMACDPSmCP

DBPTTPA

Energy transfer (ET)

Recombination site(Blue TADF donor)

Spacer (EBL)

Acceptor

a

b

c

ET

SO O

N N

N N

Energy  donor  (TADF)

Energy  acceptors  (Fluo.)

DMAC-‐‑‒DPS

TTPA

DBPspacer prohibits

Dextor transfer 16

W-­‐OLED:  Spa6ally  separa6on  of  D-­‐A  layer

T.  Higuchi,  H.  Nakanotani,  C.  Adachi  (Adv.  Mat.  in  press)

Page 17: Junji Adachi, Kyushu University

DMACDPS

DBPTTPA

DMACDPS

Device  A(EQE=16%)

Device  B(EQE=2%)

DBPTTPA

Energy transfer (ET)

ET

DMACDPS

Device  C(EQE=13%)

17

Spa6ally  separa6on  of  D-­‐A  layer  

T.  Higuchi,  H.  Nakanotani,  C.  Adachi  (submitted  to  Adv.  Mat.)

Page 18: Junji Adachi, Kyushu University

18

           "Promising  opera6onal  stability  of  high-­‐efficiency  organic  light-­‐emijng  diodes      based  on  thermally  ac6vated  delayed  fluorescence"    

Scien6fic  Reports,  3,  2127  (2013))  H.  Nakanotani,  K.  Masui,  J.  Nishide,  T.  Shibata  and  C.  Adachi  

Page 19: Junji Adachi, Kyushu University

c

Time (hr)

Scientific Reports, 3, 2127 (2013)

In  op6mized  OLED,  projected  half  life6me  LT50  is  ~10,000hrs.

ITO/HAT-­‐CN/TrisPCz/4CzIPN:mCBP/T2T/BPyTP2/LiF/Al

19

Improved  OLED  reliability  with  4CzIPN  deriva6ves    

Scien6fic  Reports,  3,  2127  (2013)

Page 20: Junji Adachi, Kyushu University

HAT-CN [10]

Tris-PCz [30]

4CzIPN

mCBP [30]

ITO

-9.5

5.5

6.0

5.6

2.1

5.8

3.4

2.4

Tris-PCz [50]

5.6

2.1

Au

+ + + +

×

Hole  only  devices  No  change  in  J-­‐V  characteris[cs

Electron  only  devices  Significant  improvement  of  J-­‐V  with  increase  of  4CzIPN  conc.

4CzIPN

mCBP [30]

T2T[10]

BPy-TP2[80]

ITO

LiF/Al

6.0

5.8

3.4

2.4

3.0

6.5

5.7

2.7

T2T[30]

3.0

6.5

- - -

×

-

20

Degrada6on  mechanism:  J-­‐V  in  HOD  and  EOD  with  different  4CzIPN  conc.  

Scien6fic  Reports,  3,  2127  (2013)

Page 21: Junji Adachi, Kyushu University

HAT-CN

Tris-PCz

4CzIPN

mCBP

T2T

BPy-TP2ITO

LiF/Al

-9.5

5.5

6.0

5.6

2.1

5.8

3.4

2.43.0

6.5

5.7

2.7

+

-

HAT-CN

Tris-PCz

4CzIPN

mCBP

T2T

BPy-TP2ITO

LiF/Al

-9.5

5.5

6.0

5.6

2.1

5.8

3.4

2.43.0

6.5

5.7

2.7

+

-

ü  Low  dopant  concentra6on  inhibits  electron  injec6on  from  T2T  into  EML  ü  Higher  dopant  concentra6on  facilitates  electron  injec6on,  resulted  in  

expansion  of  carrier  recombina6on  region  into  EML  

3〜6wt% >6wt%

Scien6fic  Reports,  3,  2127  (2013)

21

             Degrada6on  mechanism:  charge  accumula6on  at  T2T/EML  interface  

Page 22: Junji Adachi, Kyushu University

a

b

c

4CzIPN-MeTBRb +4CzIPN-MeTADF+Fluo.

4,000hr TADF  1,500hr  

22

 Hyperfluorescence  :Enhancement  of  device  reliability  (>  x2.5)    

TADF

Fluo

Page 23: Junji Adachi, Kyushu University

Features-‐‑‒Exciton  generation  via  TADF  (assistant  dopant  with  fluorescent  material  performing  the  light-‐‑‒emitting  function)·∙  Achieves  high  efficiency  light-‐‑‒emission  with  fluorescent  material    Fluorescent  materials  provide  a  high-‐‑‒purity  light  emission  color.·∙  TADF  is  prevented  from  rapid  deterioration  due  to  the  emission  process  by  performing  only  exciton  generation

EffectHigh  efficiency,  high  quality  emission  &  long  life    can  be  achieved  through  combination  of    the  properties  of  TADF  and  fluorescent  materials.

Superior,  high-‐‑‒purity  emission  color(Using  the  features  of  fluorescent  materials) Decreasing  TADF  Degradation

 Solu6on:  Assisted  Hyperfluorescence  with  TADF  

Page 24: Junji Adachi, Kyushu University

 Market

CollaboraTons  with  materials  &  panel  manufacturers    to  opTmize  devices  are  the  key  to  rapid  commercializaTon

Ways  to  Rapid  Commercializa6on  by  Achieving  Long  Life  Time    

Combination  of  Materials

Thickness  of  Each  Layer

Hole Injection Layer (HIL)

Glass Substrate

Hole Transport Layer (HTL)

Emitting Layer (EML) •  Host •  TADF: Assistant Dopant •  Fluo.: emitting Dopant

Electron Transport Layer (ETL)

Cathode (Metals)

Anode (ITO)

Electron Injection Layer (EIL)

Emission

A startup company has been established for

TADF commercialization

24

Page 25: Junji Adachi, Kyushu University

Summary  

² Small ΔEST realized 100%  upconversion from T1 to S1, resultedin 100%  delayed fluorescence.

² Assistant dopant system realized 100%  IQE from fluorescencemolecules.

² Device lifeQme is  significantly enhanced by opQmizingperipheral materials.

² Rapid upconversion shorter τT→S less  than 1µs will be expectedfor further development of high performance TADF  and lasers.

S1

S0

FRET

TADF Fluorescence

RISC 600 700 Wavelength (nm)

400 500

T1

25% 75%

25

Page 26: Junji Adachi, Kyushu University

   

Acknowledgement n OPERA  Research Team in Kyushu Univ. and collaborators   JST ERATO

2010-­‐2014 2014-­‐2019 This  work  was  supported by Funding Program for World-­‐Leading

InnovaQon R&D on Science and Technology (FIRST), WPI and JST ERATO.

・Supervisors  Prof. T. YasudaProf. K. Goushi

・SnF2OEP   A. Endo, A. Takahashi

・PIC-­‐TRZ, PIC-­‐TRZ2 K. Sato, H. Miyazaki, K. Yoshimura, A. Kawada

・Cz-­‐TRZ   SY.  Lee, S. Hirata

・PXZ-­‐TRZ   H. Tanaka. K. Shizu, J. Lee

・HAP-­‐3TPA   Jie Li, T. Nakagawa, James  MacDonald,K. Ueno (CSIRO), Q. Zhang, H. Nomura

・Phthalonitrile   T. Uoyama, K. Shizu,  H. Nomura

・4CzIPN (Reliability) H. Nakanotani, K. Masui,

J. Nishida, T. Shibata

・Anthraquinones  Q. Zhang, H. Kuwabara

・Blue TADF  Q. Zhang, BoLi

・Double doping of TADF  and Fluo.   H. Nakanotani, T. Higuchi, T. Furukawa

・Special thanks  to collaborators Profs. Kaji (Kyoto U), Murata (JAIST), Ishii (Chiba U),Orita (Okayama U), Takimiya (Hiroshima U), Naito (Osaka Pref. U.), Matsumoto (Osaka City U.), Ueda (Kobe U),Mizuno (Waseda U.), Sato (Nagaoka), Kawai (NAIST),Ueno (CSIRO)

JDI, TEL, Panasonic, Mitsbishi Ryon, Tokai Rubber, Hirata, Daiden,Toshiba, Hodogaya Chemical, NSCC, Nippon Kayaku

26