không gian metric

Upload: tranthevut

Post on 14-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Khng gian metric

    1/88

    I HC HU

    TRUNG TM O TO TXA

    TS. NGUYN HONG

    GIO TRNH

    KHNG GIANMTRIC

    (CSGII TCH)

    Hu - 2007

    1

  • 8/2/2019 Khng gian metric

    2/88

    MC LC

    LI NI U ...........................................................................................................3A. KIN THC B SUNG.......................................................................................5

    1 TP HP S THC.......................................................................................52. LC LNG CA CC TP HP............................................................10

    B. KHNG GIAN MTRIC....................................................................................161. KHI NIM MTRIC. .................................................................................16BI TP...............................................................................................................212.TP M V TP NG..............................................................................23BI TP...............................................................................................................303. NH X LIN TC .....................................................................................32BI TP...............................................................................................................37

    $4 KHNG GIAN MTRIC Y ...............................................................38BI TP...............................................................................................................505 KHNG GIAN COMPACT...........................................................................52BI TP...............................................................................................................676. KHNG GIAN LIN THNG .....................................................................69BI TP...............................................................................................................71

    C. LI GII V HNG DN.............................................................................72PHN A ...............................................................................................................72PHN B ...............................................................................................................73

    TI LIU THAM KHO........................................................................................87

    2

  • 8/2/2019 Khng gian metric

    3/88

    LI NI U

    Gio trnh ny c vit da trn bi ging cho sinh vin khoa Ton trngHSP Hu trong nhng nm va qua. Hc phn ny c mc ch trang b nhng

    kin thc cn bn v gii tch hin i m bt c sinh vin Ton no cng phinm c. Khc vi gii tch cin, trong ngi ta lm vic ch yu trntp IRk cc b k s thc, y cc khi nim cbn ca gii thch nh ln cn,gii hn lin tc c xt trong khng gian tng qut hn m phn t ca nc th l cc i tng tu min sao c th xc nh c khong cch giahai phn t. Ngoi mt cch bn cht v su sc nhng kin thc v gii thchcin hc trong nhng nm trc, cng nh chun b hc tt cc hc

    phn tip theo nh l thuyt o, tch phn, gii tch hmCc kh nhiu sch vit v khng gian mtric, tuy nhin ngi ta thng

    ch trnh by nhng kin thc dng cho mc ch ca cun sch nn chac mt gio trnh tng i hon chnh ring cho phn l thuyt ny. y, bnc s thy nhiu bi tp c a vo vi t cch rn luyn t duy v ng thicng c th xem nh bi b sung l thuyt. Phn ln cc bi tp u c li gintm tt hoc chi tit. iu ny c l s mang li li ch thit thc rt hn ch vcng c t sch gii bi tp gip cho sinh vin trong lc hc tp.

    hc tt hc phn ny, v nguyn tc sinh vin ch cn nm c nhngkin thc scp v l thuyt tp hp v nh x, php qui np v cc suy lun

    logic ton hc. Cn phi bit din t mt mnh bng nhiu mnh tngng vi n cng nh hiu v vn dng cch chng minh hay xy dng cc itng bng qui np hu hn. Tuy nhin c th hiu su sc v nht l lmc cc bi tp. y, ngn ng hnh hc c dng din t cc khi nimkhng gian mtric, nhng i lc c nhng vn vt ra khi trc gic v suylun ch quan thng thng. Do vi tng khi nim, ngi hc nht thit

    phi hiu thu c nh ngha, t mnh tm c nhng v d minh ha cho ccnh ngha . Nh Dieudonne ni:... trc quan hnh hc, cng vi s

    phng thch ng l mt ngi hng dn rt ng tin tng trong hon cnh

    tng qutCun sch c chia lm hai phn. Phn kin thc b sung nu li mt cch

    c h thng cc tnh cht ca tp s thcIR. Sinh vin tng cng ch n khinim infimum v suptemum ca mt tp s thc v cn s dng mt cch thnh

    3

  • 8/2/2019 Khng gian metric

    4/88

    tho, bin son. V khi nim lc lng tp hp, cn nm c trong trng hp noth mt tp l m c,

    Phn th hai l phn chnh ca chng trnh. C nhiu con ng trnhby cc khi nim. y chng ti chn cch tip cn vi ngn ng thngdng, mt mt ngi hc d nh, mt khc phn no gii thch l do a ra

    tn gi nh vy. Tuy nhin, nht thit phi c hiu theo ng nh ngha. Cckhi nim quan trng phi k n l hi t, m, ng, lin tc, y ,compact c trng phn ny l nng v suy lun hn tnh ton, hn na nhiuthut ng chng cht ln nhau lm ngi mi hc thy lng tng. V th sinhvin nn tm thm v d v hnh nh trc quan d nh. Sau khi nm c lthuyt, cc bn t mnh gii cc bi tp cn thn trc khi xem li gii. Cc bitp kh hn c nh du * dnh cho sinh vin kh, v phi c thi gian nghinngm nhiu hn.

    Tc gi xin cm n cc bn trong t Gii tch khoa Ton trng HSP Hu ng vin gp khi vit cun sch ny. Mong c nhn c nhng ph

    bnh ca cc ng nghip gn xa.

    Tc gi

    4

  • 8/2/2019 Khng gian metric

    5/88

    A. KIN THC B SUNG

    1 TP HP S THC

    Chng ta tip xc nhiu vi tp hp s thc t chng trnh ton bcph thng. C nhiu cch xy dng tp hp s thc, chng hn dng nht ctDedekind, cc dy cbn. ca tp hp s hu tQ. y vi mc ch l hthng li nhng kin thc cn thit cho gii tch, chng ti s chn mt s mnh cbn lm tin nh ngha tp hp s thc. Cc tnh cht cn li csuy t cc tin ny.

    1.1. nh ngha:

    Tp hp s thc, k hiu IR l mt tp cng vi cc php ton cng + vnhn . xc nh trn , tho mn cc tin sau:

    I. (IR, +) l mt nhm cng Abel, tc l vi mix, y, z thuc IR ta c:

    x + y = y + x

    x + (y + z) = (x + y) + z

    (0 IR) (x IR): x + 0 = 0 + x= x

    (x IR)((-x)IR): x + (-x) = 0

    II. (IR*,.) l mt nhm phn Abel, trong IR* = IR \{0}, ngha l vi mix,

    y, z thuc IR

    *

    , ta c:xy = yx

    x( yz) = (xy) z

    (( 1 IR*) : x1= 1x = x

    (x IR*)( x-1IR*): xx -1 = x-1x = 1(y cho gn, ta vit xy thay cho x.y)

    III. Php nhn c tnh cht phn phi i vi php cng:

    Vi mi x,y thuc IR ta c: x(y + z) = xy+ xzNh th IR cng vi cc php ton cng v nhn lp thnh mt trng

    IV. IR l mt trng c sp th t, ngha l trong IR c xc nh mt quanh th t tho:

    5

  • 8/2/2019 Khng gian metric

    6/88

    1.x y vy z ko theo x z2. x y vy z tng ngx = y3.Vi hai phn t tu x,y IRth hoc x y hoc y x4.x y ko theox + z y + z vi mi z IR5. 0 x v 0 y ko theo 0 xy

    Nu x y v x y th ta vit x < y hay y > x .V. Ta gi mt nht ct trong IR l mt cp (A,B) cc tp con ca IR sao cho A,

    B khc trng, AB = , IR = A B v vi mi aA, b B th a < b .

    Tin Dedekink. IR l mt trng c sp lin tc, ngha l: Vi minht ct (A,B) ca tp IRu xy ra: hoc c mt phn t ln nht trong A hocc mt phn t nh nht trong B v khng th va c phn t ln nht trong A,va c phn t nh nht trong B.

    Phn t ln nht trong A (hoc phn t nh nht trong B) gi l bin canht ct (A,B). Tp hp s thc cng gi l ng thng thc.

    1.2. Cc tnh cht cbn:

    1.2.1 Supremum v infimum :

    ChoMl mt tp con khc trng ca IR. SxIR c gi l mt cn trncaMnu vi miyM th y x, sxIRgi l cn di ca M nux y vimiy M. Tt nhin nu x l cn trn (tng ng, cn di) th vi mix1 > x (t.x1 < x) cng l cn trn (t. cn di) ca tp M.

    Cn trn b nht (nu c) ca tp Mc gi l supremum ca tp M, k

    hiu supM. Nh vy, = supMkhi v ch khii)x M: x ii) ( < ) (x M) : < x

    (iu kin ii) ni rng v l cn trn b nht nn nu ) (x M) :x

  • 8/2/2019 Khng gian metric

    7/88

    A ={x IR : (a M)x a};B ={y IR: (aM) a < y}.

    Khi A v M A; B v vi c> c th cB. Vi miz IRthhoc z A hocz B nn IR = A B. NuzAB th c a M sao choz a< z hayz < z, v l nn AB = . Hn na, nux A ,y B ta c x a < y vi

    a no thucMnnx < y. Theo nh ngha, (A,B) l mt nht ct ca IR. Gim l bin ca (A,B). Khi ta s c m = sup A. Thc vy, chng hn m A ththeo nh ngha s c a M m a v M A nn m = a. Cn nu m B tha M : a < m. Nu m< m th m B tc l m A, hn na mkhng phil phn t ln nht trong A nn c m A,a M m< ma < m. Phn cnli ca nh l chng minh tng t.

    Ch : Gi s M l mt tp con khc rng ca IR nhng khng c cn trnno c. Khi ta quy c sup M = + . Tng t, nu M khng c cn di, taquy c inf M = - .

    1.2.2 Ta gi cc sa IR, a > 0 l s dng, a < 0 l s m v t x nux 0; x= - x nux < 0 v gi xl gi tr tuyt i ca s thcx. Sa IRgi l gii hn ca dy s (xn)n IR v k hiu axn

    n=

    lim nu:

    (> 0)(n0)(n n0): x a <

    Dy (xn)n gi l n iu tng (t. gim) nuxn xn+1 (t.xn xn+1) vi min Nb chn trn (t. di) nu tp {xn} c cn trn (t.., di) hi t nu (xn)c gii hn.

    Nguyn l Weierstrass: Mi dy n iu tng (t..,gim) v b chn trn(t.., di) u hi t.Chng minh: Gi s (xn)n l mt dy n iu tng v b chn trn. Theo

    nguyn l supremum, tp {xn} c mt supremum . Vi > 0 cho trc, theo iukin ii) c s nguyn n0 sao cho < xn0. Mt khc, theo tnh n iu tngca dy (xn), ta c

  • 8/2/2019 Khng gian metric

    8/88

    N ZQ IR

    Nguyn l Archimde: Cho hai s thc a, b bt k vi a > 0. Khi tn ti nN sao cho b < na.

    Thc vy, do N khng b chn trn (tc l khng c cn trn) nn vi s

    thc a

    b

    s c nN b

    a < n hay b < na

    1.2.4. Cc tp

    (a, b) = {x IR : a < x < b } v[a,b] = {x IR : a x b}

    ln lt gi l khong (hay khong m) v on (hay khong ng). Mt dyon {[an, bn]} gi l tht li nu [an+1,bn+1] [an,bn] v 0)ab(lim nn

    n=

    Nguyn l Cantor: Mi dy on tht li c mt phn t duy nht chung

    cho tt c cc on y.Chng minh: Gi s ([an, bn])n l dy on tht li. Ta c:

    a1a2 an+1 bn+1bn b1vi mi n N. Theo nguyn l Weierstrass, dy (an)n tng, b chn trn (bi b1chng hn) nn hi t v s = sup {an}. Nh than vi mi n. Nu [ano, bno] vi mt n0 no th t hn bno < . t = - bno. Khi vi n ln th - a n< - bnotc l bno < an! v l. Vy [an,bn] vi mi n. Mt khc, nu c[an,bn] vi mi n th-

    bn an. Do 0 - 0)(lim =

    nnnab

    hay- = 0 ngha l =

    1.2.5. Dy (xn) c gi l b chn nu n va b chn trn va b chndi. iu ny tng ng vi:

    (a IR)(n N):xnaNguyn l Bolzano Weierstrass: Mi dy s thc b chn (xn)nu c

    mt dy con hi t.Chng minh: Theo gi thit, tn ti sa sao cho vi mi n N ta c a

    xna. Trong hai giai on [-a,0] v [0,a] phi c mt on cha v s cc phn

    txn (nu khng, ho ra (xn)n ch c hu hn cc s hng). Ta gi on ny l[a1,b1].Chia hai on ny bng im gia c1=

    a1+ b12

    . Trong hai on [a1,c1] v

    [c1,b1] cng c mt on cha v s cc xn, k hiu on ny l [a2,b2] v li

    chia i on ny bi im gia c2 =2

    22 ba + v.v... Tip tc qu trnh ta thu

    8

  • 8/2/2019 Khng gian metric

    9/88

    c mt dy on tht li [ak, bk] (v hin nhin [ak+1, bk+1] [ak, bk] v bk ak

    =k

    a

    20 khi k). Theo nguyn l Cantor, dy on ny c duy nht phn t

    chung . V mi on [a[kk

    k

    ba ,1

    =I ] k, bk] cha v s cc phn txn nn ta

    hy ly phn txn1 [a1, b1] ri xn2 [a2, b2] vi n2 > n1, xn3 [a3, b3], n3 >n2 khi (xnk)k l dy con ca dy (xn)n vxnkbk- ak0 (k), nghal dy (xnk) hi t v.

    1.2.6 Dy s thc (xn)nc gi l dy cbn (hay dy Cauchy) nu:(> 0)(n0)(n n0)(m n0) : xn xm<

    Nguyn l Cauchy: Mi dy s thc cbn th phi hi t:

    Chng minh: Trc ht ta chng minh rng nu (xn)n cbn th n phi bchn. Vi = 1, tn ti n0 vi mi n n0 ta c xn xno < 1 hayxno - 1xn

    xno + 1. t a = max {x1,,xno, xno+1}, khi y vi mi n th -a xn a. Do theo nguyn l Bolzano- Weierstrass, dy (xn)n c mt dy con hi t v

    . By givi > 0 cho trc s c nkn

    x

    0 sao cho vi m, n n0 thxn xm< /2 do(xn)n cbn. Mt khc nn cng tn ti sm

    knx 0 nu n m0 th | | n0 th

    xn xn +

    1

    b-a hay b - a > 1/n. Tng t, c s nguynpp nb. Gi q l s nguyn b

    nht tho mn q n, do q-1 < nb hayq-1

    n< b. Lc ny a .Ngi ta chng minh c rng, cho hai tp A, B bt k bao gicng xy

    ra mt v ch mt trong ba trng hp.

    1. Xy BA = (tc l A, B tng ng vi nhau)

    2 Xy BA < 3. Xy BA >

    2.2. Tp hp m c:

    2.2.1. nh ngha: Tp hp A c gi l tp hp m c nu A tngng vi tp s t nhin N. Ni cch khc, A m c nu v ch nu tn timt song nh tN ln A. Khi ta cng ni A c lc lng m c.

    Gi a: N A l song nh ni trn, ta c:N na (n) = an A

    Nh vy c th ni tp hp m c l mt tp m cc phn t ca n cthnh s thnh mt dy v hn.a1, a2, a3,,an,

    11

  • 8/2/2019 Khng gian metric

    12/88

    2.2.2. V d:1. Tp hp cc s t nhin chn, cc s t nhin lu l cc tp m c.

    Tht vy, theo mc trc, card {2,4,6} = cardN, cn E = { 1,3,5,...,2n +1,}tng ng vi N nhsong nh.

    N n 2n + 1 E

    2. Tp Z c s nguyn l m c. chng tiu , ta xt nh xf:NZ cho bi :

    n

    2 nu n chn

    n f(n) = 1- n

    2 nu n l

    D dng kim trafl song nh ta c c kt lun

    3. Tp cc s hu t Q l m c. Tht vy, mt s hu t c th vit

    c duy nht thnh mt phn s ti ginq

    p, q > 0. Ta hy tm gi tng |p| + q

    l hng ca s hu tq

    p. R rng tp hp tp hp cc phn s c hng cho

    trc l hu hn, v d: phn s c hng 1 l1

    0= 0, hng 2 l

    1

    1v

    1

    1, hng 3

    l

    1

    2,

    2

    1,

    1

    2,

    2

    1,... Hn na mi s hu tu c hng xc nh nn ta c th

    nh s hu t thnh dy theo th t tng dn ca hng, tc l bt u nh scc s hng 1 ri tip theo cc s hng 2, hng 3,Vy cc phn t ca Q c thsp xp thnh dy Qm c.

    Tip theo, chng ta thit lp cc nh l cbn ca tp m c.2.2.3. nh l: Mi tp v hn lun lun c cha mt tp con m c.Chng minh: Gi s M l tp v hn. Ly ra mt phn t bt ka1 M. Khi

    M \ {a1} v hn nn ly tip phn ta2 M\ {a1} ri a3 M {a1,a2} v.v Qu trnh ny c tip tc mi v ta thu c tp m c A = {a1, a2,} M

    2.2.4 nh l: Mi tp con ca mt tp m c th phi l tp hu hnhoc m c.

    Chng minh: Gi s A = {a1, a2,} l tp m c v B l mt tp conca A. Gi an1, an2,... L cc phn t ca A thuc tp hp B theo th t tng dntrong A. Nu trong cc sn1, n2,... c s ln nht th B l hu hn. Trng hp

    12

  • 8/2/2019 Khng gian metric

    13/88

    tri li, cc phn t ca B c sp thnh dy v hn an1, an2,... nn B mc.

    2.2.5. nh l: Hp mt h hu hn hay m c cc tp m c l mttp m c.

    Chng minh: Cho A1, A2, l dy cc tp m c. Ta c th gi thit cctp ny khng giao nhau v nu khc i, ta t B1 = A1, B2 = A2\ A1, B3 = A3\ (A1U A2),... Cc tp Bi ny hu hn hoc m c, khng giao nhau v

    . By gita sp xp cc phn t ca Ai

    ii

    i

    BA

    =

    ==

    11UU 1,A2,... thnh mt bng v hn

    nh sau:

    A1 : a11 a12 a13 ....

    A2 : a21 a22 a23 ....

    A3 : a31 a32 a33 ..... . . . ...

    Ta hy nh s tt c cc phn t ny theo ng cho t tri ln phatrn. Do mi ng cho c hu hn phn t nn c thnh s th t trnng cho th nht ri ng cho th hai, th ba,... nh sau:

    a11, a21, a12, a31, a22, a13,

    Vy tt c cc phn t ca tp c nh s thnh mt dy nn

    tp A m c.

    ii

    AA U

    =

    =1

    Nhn xt: Trong cch chng minh ta thy nu mt s hu hn hay mc cc tp Ai (khng phi tt c) c thay bng cc tp hu hn th kt lunca nh l khng thay i.

    2.2.6. nh l: Khi thm mt tp hp hu hn hay m c vo mt tpv hn M th lc lng ca n khng thay i.

    Chng minh: Gi s A l tp hu hn hay m c. K hiu N = M A.Theo nh l 2.2.3, tn ti mt tp m c B M. t M= M\B, ta c M =M B nn N = M B A. Theo nh l 2.2.5, B A l tp m c nn

    tn ti song nh f gia B v B A. Ta t:g : M = M B N = M (B A)

    x nux M

    g (x) =f(x) nuxB

    Nh th g l song nh t M ln N nn card M = Card N.

    13

  • 8/2/2019 Khng gian metric

    14/88

    Theo nh l ny ta thy khong (a,b) tng ng vi on [a,b]. Hn na(a,b) tng ng vi IR nn [a,b] cng tng ng vi IR.

    Nhn xt: T cc nh l 2.2.3 v 2.2.6 ta thy lc lng m c l lclng b nht trong cc lc lng ca tp v hn.

    2.2.7. nh l: Tp hp tt c cc dy hu hn c th thnh lp c vi

    tt c cc phn t ca mt tp hp m c l tp m c.Chng minh: Gi s A = {a1,a2,...} l mt tp m c. K hiu Sm l tp

    cc dy c ng m phn t ca A dng (ai1, ai2,...aim). t . Ta chng minh

    S m c. Trc ht S

    mm

    SS U

    =

    =1

    1 = A m c. Bng qui np, gi s Smm c,hy ly ak A v k hiu S

    km+1 l tp hp tt c cc dy c dng (ai1, ai2,,aim,

    ak). Gia Skm+1 v Sm c mt song nh cho bi (ai1, ai2,,aim,ak)

    (ai1,ai2,,aim). nn Skm+1 m c. Mt khc v Sm+1 = nn S

    k

    mk

    S 11

    +

    =U m+1 m

    c theo nh l 2.2.5. Cng tnh l ny, S l mt tp m c.

    2.2.8. H qu: Tp hp tt c cc a thc P(x) = a0 +a1x +...anxn (n bt k)

    ly gi tr trongIR vi cc h s hu t a0,a1,, an l m c.Chng minh: Mi a thc tng ng vi mt v ch mt dy hu hn cc h

    s hu t ca n. V tp Qm c nn theo nh l 2.2.7, tp tt c cc dyhu hn cc s hu t l m c nn tp cc a thc ny m c.

    2.3. Lc lng continum:

    Ta xt cc v d v thit lp cc nh l v cc tp hp m c. Vy c

    tp hp v hn no khng phi l tp m c hay khng? nh l sau y chota cu tr li khng nh.

    2.3.1. nh l. Tp hp cc s thc IR l tp v hn khng m c.Chng minh: Trong v dnh l 2.2.6 ta thy IR tng ng vi on

    [0,1]. Do ch cn chng minh [0,1] khng m c. Gi s tri li [0,1] lm c. Khi cc phn t ca n c nh s thnh dy x1,x2,..xn, Chiacho [0,1] thnh 3 on bng nhau v gi on khng cha x1 l 1. Li chia tip1 thnh 3 on bng nhau na v gi 2 l on khng cha x2, Tip tc qu

    trnh ny ta thu c dy on 1 2 ...vi n c di l |n| =

    1

    3n sao choxn n. y l dy on tht li nn theo nguyn l Cantor, tn ti

    . Do phi trng vi mtx[ 1,01

    =n

    n

    I ] no no . V n vi mi n nn

    xnono. iu ny mu thun vi cch xy dng cc on n. Vy on [0,1]khng phi l tp m c.

    14

  • 8/2/2019 Khng gian metric

    15/88

    Nhn xt:

    1. t a = {1

    n: n N). R rng A l tp m c v cha trong on [0,1].

    Do lc lng on [0,1] (hay IR)ln hn lc lng m c. Ngi ta gilc lng ny l lc lng continum hay lc lng c.

    2. Tp hp s thc bng hp ca s hu t v s v t. Do tp s hu tmc nn tp s v t khng m c v cng c lc lng l c.

    BI TP

    1.Hy thit lp mt song nh gia hai tp (0,1) v [0,1]2.Chng minh tp cc im gin on ca mt hm sn iu xc nh

    trn [a,b] l hu hn hoc m c.3. Gi s E l mt tp con ca tp s thc IR c tnh cht |x-y| > 1 vi mix, y

    E. Chng minh E l mt tp hu hn hoc m c.

    4. Gi s E l mt tp v hn. D l mt tp con hu hn hay m c caE sao cho E\D v hn. Chng minh E\D c cng lc lng vi E.5. Cho A v B l cc tp m c. Chng minh A B l tp m c.6*. K hiu E l tp hp tt c cc dy s (xn) trong xn = 0 hoc xn = 1.

    Chng minh E l tp hp khng m c. (Thc ra E c lc lng c)

    15

  • 8/2/2019 Khng gian metric

    16/88

    B. KHNG GIAN MTRIC

    1. KHI NIM MTRIC.

    Php ton c trng ca mn gii tch l php ton ly gii hn. din tkhi nim ny ta phi tm cch xc nh mc xa, gn gia cc itng. Cc mcs xa, gn c tha vo mt cch kh t nhin thngqua khis nim khong cch hay mtric c chnh xc ho bi cc nh nghasau y.

    1.1. nh ngha:

    Gi s X l mt tp tu khc trng cho trc, mt mtric ( hay khongcch) trn X l mt hm s d: X X IR tho mn 3 tin sau y:

    1) d(x, y) 0, vi mix, y X: d (x, y) = 0 khi v ch khi x = y.2) d(x, y) = d(y, x) vi mix, y X, (tnh i xng).3) d(x, z) d(x, y) + d(y, z),vi mix, y, z X (bt ng thc tam gic).Khi tp X vi mtric d cho gi l mt khng gian mtric v k hiu l

    (X,d). i khi n gin v nu mtric dc xc nh r rng, ta ch k hiuX.

    Bng ngn ng hnh hc, phn tx X gi l im ca khng gian X, sthc dng (hay bng 0) d(x,y) gi l khong cch gia 2 imx vy.1.2. Cc v d:

    1.2.1. Gi s M l tp hp con khc trng ca tp s thc IR. Ta hy td(x,y) = |x-y | vix,y M. Khi nhcc tnh cht quen thuc ca gi tr tuyti, ta kim tra d dng (M, d) l mt khng gian mtric.

    1.2.2. K hiu IRk = {(x1,...xk) : xi IR, i = k,1 } l tp hp cc b k s thc.Vix = (x1,,xk),y = (y1,...,yk) thuc IRk, ta t:

    d(x,y) = i =1

    k(xi - yi)2

    Khi cc tin 1)-2) r rng, ta ch cn kim tra tin 3) tc l chng

    minh:2

    1

    )zx( ik

    i

    i =

    2

    1

    )yx( ik

    i

    i =

    + 2

    1

    )zy( ik

    i

    i =

    t ai = xi y

    i, bi = yi z

    i khi ai+ bi = x

    i- z

    i

    Ta li c :

    16

  • 8/2/2019 Khng gian metric

    17/88

    d2(x,z) = i =1

    k(ai+bi)

    2 =

    i =1

    kai

    2=

    i =1

    kbi

    2 + 2

    i =1

    kai

    bi

    p dng bt ng thc Cauchy Schawrz cho s hng sau cng ta c:

    d2

    (x,z) i =1

    k

    ai2

    + i =1

    k

    bi2

    + 2 i =1

    k

    a2

    i

    i =1

    k

    b2

    i

    ( i =1

    ka

    2i +

    i =1

    kb

    2i )2

    T ly cn hai v v trli vi k hiu c, ta c:d(x, z) d(x, y) + d(y, z).

    Vy (IRk,d) l mt khng gian mtric v gi mtric ny l mtric thngthng trn IRk.

    Ch :1. Khi k= 1 ta trv v d 1.2.1 vi M = IR2. Khi xt IRk m khng ni r mtric no th ta qui c l xt IRk vi mtric

    thng thng.1.2.3. Gi s X l mt tp tu khc trng. Ta t

    0, nux = yd(x,y) =

    1, nux y

    vi mix, y X. Ta hy kim tra d l mt mtric trn X.

    Tin 1) v 2) c nghim ng. Tin 3 c dng:d(x, z) d(x, y) + d(y, z)i. Nux z th d(x,z) = 1 cn v sau 1ii)x = z th d(x,z) = 0 cn v sau 0Vy tin 3) cng tho mn nn (X,d) tr thnh mt khng gian mtric.

    Mtric d ny gi l mtric tm thng trn X.1.2.4. K hiu tp hp cc hm lin tc

    f: [a,b] IRl vi hm f,g thuc ta hy t[ b,aC ] ][ b,aC

    d(f,g) = [ ] )x(g)x(fmaxb,a Vf,gl cc hm lin tc trn [a,b] nn hmf - gcng vy. Do gi tr

    ln nht ca hm f - gt c trn khong ng [a,b] nn d(f,g) xc nh.Cc tin 1)-2) hin nhin. Tin 3) suy ra t

    x [a,b] : f(x)-h(x)f(x)-g(x)+g(x)+h(x)

    17

  • 8/2/2019 Khng gian metric

    18/88

    [ ] [ ]

    )x(h)x(gmax)x(g)x(fmaxb,ab,a

    +

    nn

    [ ] [ ] [ ])x(h)x(gmax)x(g)x(fmax)x(h)x(fmax

    b,ab,ab,a+

    hay d(f,h) d(f,g) + d(g,h) vi mif,g,h . Khng gian mtric ny thng

    c k hiu gn l .[ b,aC ]

    ]

    [ ]b,aC

    1.2.5 Cng trn tp hp ta t[ b,aC

    d(f,g) = b

    a

    dx)x(g)x(f

    Cc tin 2)-3) d dng kim tra. Ta c d(f,g) 0. Nu d(f,g) = 0 tc l

    b

    a

    dx)x(g)x(f = 0. Gi s f g khi y c x0[a,b] f(x)-g(x)> 0 vi

    mix[,] no cha trong [a,b]. Nh vy

    .0)()()()()( >=

    dxdxxgxfdxxgxfb

    a

    iu ny mu thun. Vyf = gKhng gian metric ny c k hiu l [ ].,

    LbaC

    Nhn xt: Qua cc v d trn, ta thy c th cho nhiu mtric khc nhau trncng mt tp X (tt nhin s nhn c cc khng gian mtric khc nhau). Tymc ch nghin cu, ngi ta s chn mtric no ph hp vi yu cu.

    1.3. Mt s tnh cht n ginGi s (X,d) l mt khng gian metric, ta c:

    1.3.1 Cho x1,...,xn l cc im ca X. Khi ta c bt ng thc tam gicmrng:

    d(x1,xn) d(x1,x2) +...+d(xn-1,xn)Tnh cht ny c suy t tin 3 v lp lun qui np.

    1.3.2. Vi mix,y,u,v thuc X ta c bt ng thc t gic:d(x,y) d(u,v) d(x,u) + d(y,v)

    Thc vy ta p dung 1.3.1 ta cd(x,y) d(x,u) + d(u,v) + d(v,y)

    hayd(x,y) - d(u,v) d(x,u) + d(y,v)

    Thay i vai tr ca x,y cho u,v ta li cd(u,v) - d(x,y) d(x,u) + d(y,v)

    18

  • 8/2/2019 Khng gian metric

    19/88

    Nh vy c c iu phi chng minh1.3.3. Cho A,B l hai tp con khc trng trong khng gian mtric X. t

    ),(inf),(,

    yxdBAdByAx

    =

    v gi s thc d(A,B) ny l khong cch gia hai tp A v B. Nu A = {a} tavit d(A,B) = d(a,B) v gi l khong cch tim an tp B. rng nu A

    B th d(A,B) = 0 nhng iu ngc li ni chung khng ng.Chox,yX, vi miz A ta c

    d(x,A)-d(y,B) d(x,y)Thc vy vix,yX ta c d(x,A) d(x,z) d(x,y) + d(y,z), zA. Do d(x,A) d(x,y) + ),(inf zyd

    Az

    hayd(x,A) - d(y,A) d(x,y)

    Tng t d(y,A) - d(x,A) d(x,y). T kt quc chng minh.

    1.4. Khng gian metric con v khng gian metric tch.1.4.1. nh ngha. Gi s (X,d) l mt khng gian metric v Y l mt tp conkhc trng ca X. Nu xt hm thu hp d ca hm d ln tp Y x Y : d\Y x Y th hinnhin d l mt metric trn Y. Ta gi d l mtric cm sinh bi dln Y. Vi mtriccm sinh ny, (Y,d) c gi l khng gian mtric con ca khng mtric (X, d).

    1.4.2 nh ngha: Gi s (X,dx) v (Y,dy) l hai khng gian mtric tu .Trn tch Descartes X Y = {(x,y) :x X,y Y} ta t d((x1, y1),(x2, y2)) = dX(x1,

    x2) + dY(y1, y2)

    D dng kim tra thy rng d l mt mtric trn tp X Y. Khi khng

    gian ( X Y,d) c gi l tch ca cc khng gian mtric X v Y.1.5. Shi t trong khng gian mtric:

    Cc khi nim hi v gii hn trong khng gian mtric X bt kc nhngha mt cch tng t trong tpIR vi vic thay |x-y| bng khong cch giahai phn t d(x,y). Mt dy trong khng gian mtric (X, d) l mt nh x.

    Ta cng dng k hiu quen thuc l dy (xn)n N. Gi s nk l mt dy tngthc s cc s nguyn dng. Khi dy (xnk)kc gi l mt dy con cady (xn).

    1.5.1. nh ngha: Gi s X l mt khng gian mtric v (xn)n l mt dytrong X. Ta ni dy (xn)n hi tnxX nu khong cch giaxn vx dn n 0khi n. Lc xc gi l gii hn ca dy xn v ta s k hiu

    xxn

    n=

    lim

    hayxn x, n . Din t li, ta c

    19

  • 8/2/2019 Khng gian metric

    20/88

    ( xxn

    n=

    lim ) )0),(lim( =

    xxd

    nn

    (> 0 n0n n0 : d(xn, x) < )

    1.5.2. Cc tnh cht.

    Cho (xn)n, (yn)n l cc dy trong khng gian mtric X. Ta ca. Nu dy (xn)n hi tnx X th mi d con (xnk)k ca dy (xn)n cng

    hi tnx.b. Gii hn ca mt dy hi t l duy nhtc. Nuxn x, yn y th d(xn, yn) d(x,y) khi n Chng minh:a. Gi s (nk)k l dy tng thc s cc s nguyn. Cho > 0 tn ti s

    nguyn n0 sao cho d(xn, x) < khi n n0. T vi mi nknk0n0 nn d(xnk,x) < ngha l dy conxnk x, k

    b. Gi s xn x vx

    n x

    . Khi t bt ng thc tam gic ta c:d(x, x) d(xn, x) + d(xn, x)

    Cho n th0 d(x, x) 0)',(lim),(lim =+

    xxdxxd n

    nn

    n

    Vy d(x, x) = 0 hayx = x.c. Theo bt ng thc t gic (1.3.2.) ta c:|d(xn,yn) d(x, y)| d(xn,x) + d(yn,y).Qua gii khi n ta nhn c kt qu.

    1.5.3. Cc v d:

    a. Hi t trong IRk. Trong IRkvi mtric thng thng, ta xt dy sau:(xn)n :xn= .),...,(

    1 knn xx

    Theo nh ngha dy (xn)n hi t vimx0 = khi v ch khi d(x),...,(1 k

    nn xx n, x0) 0 (n) hay

    0)(0)( 20

    2/1

    11

    20

    =

    iin

    kii

    n xxxx vi mi i = 1,...,k

    |xni xo

    i| 0, vi mi i = 1,...,k xn

    i xoi vi mi i = 1,...,k

    Vy s hi t ca mt dy trong IRk chnh l s hi t theo to (thnhphn) ca dy. c bit, vi k = 1 th y chnh l s hi t cu mt dy s thcthng thng.

    b. Hi t trong C[a,b]. Gi s (xn)n l mt dy (dy hm) trong C[a,b] hi t vx C[a,b]. Theo nh ngha, ta c:

    20

  • 8/2/2019 Khng gian metric

    21/88

    d(xn, x) =[ ]

    )(0)()(max,

    ntxtxnbat

    Din t li, ta c :(> 0)(n0)(n n0)(t[a,b]) : |(xn(t) x(t)| < Vy s hi t trong C[a,b] chnh l s hi tu ca mt dy hm trn tp

    [a,b] trong gii tch cin.c. Trong CL[a,b] s hi t ca dy (xn)nn x c ngha l:

    d(xn,x) = b

    a

    ndttxtx )()( 0 (n )

    S hi t ny gi l s hi t trung bnh ca dy hm (xn)Nhn xt: Theo nh l qua gii hn di du tch phn ca mt dy hm

    lin tc, ta thy rng nu xn(t) hi tu n x(t) th xn(t) hi t trung bnh nx(t) nhng iu ngc li ni chung khng ng. C th coi s gn nhau gia

    cc im trong tp C[a,b] theo mtric max cht ch hn mtric b

    a

    BI TP

    1.1. Kim tra cc tp v cc hm sau y lp thnh khng gian mtric.

    a. X = IRk, d(x,y) = iiki

    yx = ,...,1max

    b. X =IRk, d(x,y) = =

    k

    i

    ii yx1

    trong x = (x1,...,xk),y = (y1,...,yk) IRk

    c. X = M[a,b] ={ f : [a,b] IR, f l hm b chn trong [a,b]},d(f,g) =[ ]

    )()(sup,

    xgxfbax

    d. X = C[a,b]: tp cc hm lin tc trn [a,b] vi mi f,g X, d(f,g) =

    b

    a

    dxxgxf 2/12

    ))()((

    e. X= C[a,b] = tp cc hm s kh vi lin tc trn [a,b]d(f,g) =

    [ ])()()(')('max

    ,agafxgxf

    bax+

    1.2. K hiu c l tp hp tt c cc dy s thc hi t.Vi x = (xn)n,y =(yn)n thuc c, ta t:

    [ ]nn

    b,ax

    yxsup

    Chng minh d l mt mtric trn c.1.3. Gi s d(x,y) l mt mtric trn tp X. Chng minh cc hm sau y

    cng l nhng mtric trn X.

    21

  • 8/2/2019 Khng gian metric

    22/88

    a. d1(x,y) =),(1

    ),(

    yxd

    yxd

    +

    b. d2(x,y) = min(1, d(x,y))1.4. Cho X l mt khng gian mtric v (xn)n l mt dy trong X. Chng

    minhxn x0 khi v ch khi mi ln cnx0u cha tt c cc xn ngoi tr mt s

    hu hn xn. (Khi nim ln cn xem 2.1.1)1.5. Gi s(un)nl mt dy s thc, un 0 v un 0. Chng minh rng tnti v s n sao cho vi mi m n th un um

    1.6* Cho (xn) l mt dy trong khng gian mtric X. Chng minh rng nuba dy con (x2n), (x2n+1) v (x3n) u hi t dy th (xn) cng hi t.

    1.7. Trong khng gian C[0,1] kho st s hi t ca cc dy sau:a. xn(t) = t

    n

    b.xn(t) =sin nt

    n

    1.8. Cho X Y l tch ca hai khng gian mtric (x, dX), (Y, dY). Chngminh dy (xn,yn)n trong X Y hi tn (x,y) X Y khi v ch khi xn xtrong X v yn y trong Y.

    22

  • 8/2/2019 Khng gian metric

    23/88

    2.TP MV TPNG

    2.1. Cc nh ngha. Gi s X l mt khng gian mtric

    2.1.1. Ln cn. Cho a l mt im ca X.

    a. Ta gi hnh cu mtm a bn knh r> 0 trong X v k hiu B(a,r) l tp{x X : d (x,a) < r} cng cn gi l r- ln cn ca im a.

    b. Tp U X c gi l mt ln cn ca im a nu U c cha mt r- lncn no ca a. Tp tt c cc ln cn ca a k hiu l N(a). Ni cch khc.

    (U N(a)) (r> 0 : B(a,r) U)Theo nh ngha, cc r-ln cn ca a cng l ln cn ca a.

    2.2.1. V tr tng i ca mt im i vi mt tp:

    Cho A l mt con ca X v x l mt im ca X. C ba v tr tng i ca

    im x i vi A nh sau:a. C mt ln cn ca x cha trong A. Khi x c gi l im trong ca

    A (hnh 1).b. C mt ln cn ca x nm hon ton ngoi A tc l tn ti U U (x) sao

    cho U A = . Lc ny x c gi l im ngoi ca A.(R rng U Ac = X \ A nn x li trthnh im trong ca phn b Ac ca A).

    (hnh 2)

    Hnh v trang 24

    c. Bt c ln cn no ca x cng c cha nhng im ca A v nhng imca Ac, tc l vi mi U N(x): U A = v U Ac = . Khi x gi lim bin ca A. Theo nh ngha, lc x cng l im bin ca tp Ac. (hnh3)

    2.1.3. Tp mv tp ng:

    a. Tp m: Tp A X c gi l tp mnu A khng cha im bin noc.Cc mnh sau y tng ng vi nh ngha:i. (A m) (x A: X l im trong ca A)ii.(A m) (x A r >0 : B (x,r) A)iii.(A m) (x A, UN(x) : U A)

    23

  • 8/2/2019 Khng gian metric

    24/88

    Nhn xt:

    1. Theo mnh i) ta c tp X v l cc tp m2. Ta thng dng mnh ii) kim tra mt tp l m.

    b. Tp ng: Tp A X c gi l tp ng nu A cha tt c cc imbin ca n.

    T cc nh ngha trn ta suy ra c:a. (A ng) (Ac = X\ A l m)Tht vy, v tp cc im ca A v Ac trng nhau nn nu A cha tt c cc

    im bin c n th Ac khng cha im bin no v ngc li.b. Cc tp v X cng l cc tp ng. Tht vy, v theo a) cc tp Xc =

    v c = X l cc tp m.2.1.4. V d.1. Trong khng gian mtric tu mi hnh cu mu l tp m.Chng minh. Gi s B (a,r) l hnh cu m tm a bn knh r trong X. Khi

    vi mi x B(a,r) ta c d(x,a) < r. t = r - d(x,y) > 0. Xt nhnh cu mB(x,). Ta chng minh B(x,) B(a,r). Nu y B(x,) th d(x,y) < . Khi d(y,a) d(x,y) = d(x,a) < + d(x,a) = r

    Nn y B (a,r). Vy B(a,r) l tp m.2. K hiu B(a,r) l tp hp { x X: d(x,a) r} vi r l s dng kv gi

    n l hnhcu ng. Ta c B(a,r) l tp ng v bng l lun tng t v d 1 tathy X\ B(a,r) l tp m.

    3. Tp gm mt im trong bt k khng gian mtric no cng l tp ngv lun lun cha cc im bin ca n.

    4. Gi s a, b l hai s thc. Cc tp (a,b), (a,+ ) l m: cc tp [a,b], [a,+] l ng trong IR.

    Lu : Trong mt khng gian mtric tu X ta c:1. (A m) (Acng)2. C th c nhng tp khng mm cng khng ng.3. C nhng tp va m, va ng (chng hn, cc tp , X)

    2.2. Cc tnh cht ca tp mv tp ng.

    2.2.1. nh l. Trong mt khng gian mtric bt k X ta c:

    a. Hp mt h tu cc tp ml tp m.

    b. Giao mt h hu hn cc tp ml tp mChng minh:

    24

  • 8/2/2019 Khng gian metric

    25/88

    a. Gi s l mt h cc tp m. t A = .Iii)A( UIi

    iA

    Nu x A th tn ti

    i0 I io Aio. V Aio mnn c s dng r sao cho B(x,r) Aio. Khi B(x,r) .Vy A l tp m.U

    IiiA

    b. Nu Ai,,An l cc tp mta t A = . Vi xI

    n

    iiA

    1= A ta c x Ai vi

    mi i = 1,...,n. Mi Ai l tp mnn tn ti cc s dng ri sao cho B(x,ri) Ai.t r = min {r1,,rn} > 0, khi B(x,r) B(x,ri) Ai vi mi i = 1,...,n. Do

    B(x,r) hay A l tp m.In

    iiA

    1=

    2.2.2. nh l: Trong mt khng gian mtric bt k ta c:a) Hp mt h hu hn cc tp ng l tp ng

    b) Giao mt h tu cc tp ng l tp ngChng minha. Gi s F1, F2,,Fn l cc tp ng.Khi cc tp 1

    cF ,, cnF l m. Theo

    cng thc De Morgan, (1

    n

    i

    i

    F=

    U )c =

    1

    n

    i=I ciF . p dng nh l 2.2.1 ta suy c

    (1

    n

    i

    i

    F=

    U )c l tp mnn

    1

    n

    i

    i

    F=

    U = ((1

    n

    i

    i

    F=

    U )c )c l tp ng.

    b. Chng minh tng t a).Ch : Giao mt h v hn cc tp mni chung cha chc l mt tp m.

    Chng hn, ta xt h Gn= (-1

    n ,1

    n ) cc khong mtrong tp mtrong IR. Khi y

    ={0} li l tp khng m. Tng t, hp mt h bt k cc tp ng cha

    chc l tp ng. (Ly v d, chng hn xt h F1

    ni

    G

    =I

    n= = (-cnG , -1/n] [1/n; + ))

    2.3 imt, im dnh.

    2.3.1. nh ngha. Cho A l tp con ca X. Ta gi im xX l im tca tp A nu bt k ln cn no caxu c cha v sim ca tp A.

    2.3.2. V d.

    1. Trong IR cho tp A = { 1, 12

    , 13

    , 1n

    ,}. Khi y A c im t duy nht l

    im 0. Mi im thuc A u l im dnh ca n nhng khng phi l im tca A.

    2. Mi im ca tp B = (0,1] u l im t ca B.

    25

  • 8/2/2019 Khng gian metric

    26/88

    2.3.3.nh l. imx X l im t ca tp hp A khi v ch khi bt kln cn no caxu c cha mt im ca A khc vix.

    Chng minh. iu kin cn l hin nhin. Ta chng minh u kin . Gis bt k ln cn caxu c cha mt im khc vi x. Cho U l mt ln cnca x, ta chng minh trong U c cha v s cc phn t ca A. Theo nh ngha

    ca ln cn, tn ti s dng r1 sao cho B(x,r1) U. Gi x1 A B(x,r1), x1 x. Ly s dng r2 < d(x,r1). Xt hnh cu mB(x,r2). Chnx2 A B(x,r2),x2 x. Hin hinx2 x1. Bng qui np, ly s dng rn < d(x, xn1) v chn cxn A B(x, xn), xn x vi mi n N. Ta thy rng l vi n n

    thxn xn.Nh th trong U c cha v s phn txn ca A. Vy theo nh ngha,x l imt ca tp A.

    2.3.4. nh ngha. im x X c gi l im dnh ca tp A X nubt k ln cn no caxu c cha mt im ca A.

    2.3.5. Nhn xt.

    1. im t hoc im dnh ca tp hp A th khng nht thit phi thucA.

    2. Nu x l im t ca tp A th x l im dnh ca A. Ngc li nichung khng ng.

    3.x l im t ca A khi v ch khi tn ti mt dy (xn) ca A vixn xnkhi n n, hi t vx.

    Chng minh.

    iu kin : Gi sU l mt ln cn cax. Khi tn ti r > 0 : B(x,r) U. Doxnx nn vi r > 0trn tn ti n0 xnB(x,r) vi mi n n0 . V

    n n

    thxn xnnn trong Ucha v s cc im ca A.iu kin cn: Lp lun nh trong chng minh iu kin ca nh l

    2.3.2 bng cch chn rn 0 B(x,r) A = . Do Ac mtc l A ng.

    H qu sau y c dng thng xuyn kim tra mt tp hp l ng.

    26

  • 8/2/2019 Khng gian metric

    27/88

    2.3.7. H qu. Tp A ng khi v ch khi vi mi dy (xn) A mxn xthx phi thuc A.

    Chng minh. Suy trc tip tnh l 2.3.6 v nhn xt 3,4 mc 2.3.5.

    2.4. Phn trong v bao ng ca mt tp.

    2.4.1. Phn trong. Cho A l mt tp con ca X. Lun lun c mt tp mcha trong A, chng hn tp .

    a) nh ngha. Hp tt c cc tp mcha trong A c gi l phn trong

    ca A; k hiu l0

    A hay int A.

    Hin nhin0

    A A

    Nh th0

    A l tp mln nht cha trong A theo nh ngha nu G l tp

    mv G A th G 0

    A

    Tnh ngha ta c ngay:

    (A m) (A =0

    A)

    b. nh l: Phn trong0

    ca tp A l tp hp ca tt c cc im trongca A.

    Chng minh. Gi sx 0

    A . V0

    A mnn0

    A lmt ln cn cax do xl im trong ca A. Ngc li nu x l im trong ca A th c r < 0 hnh

    cu mB(x,r) A. Theo nhn xt sau nh ngha th B(x,r) 0

    A . Vy x0

    A .

    2.4.2. Bao ng. Nu A X th c t nht mt tp ng cha A (V d X A)

    a) nh ngha. Giao tt c cc tp ng cha A c gi l bao ng catp A. K hiu l A .

    Hin nhin A l tp ng b nht cha A.

    b) nh l. Bao ng ca tp A bng hp ca A v tp tt c cc imbin ca A.

    Chng minh: K hiu A l tp tt c cc im bin ca A A . Ta chng

    minh A = A A. Nhn xt rng vi mi tp ng F A th tng ng vimi tp mG = Fc Ac v ngc li. Do :

    I UIAdongF AmoG

    c

    AmoG ccGA

    === )(GF c

    Vy

    27

  • 8/2/2019 Khng gian metric

    28/88

    x A x U , GG m Ac

    x khng l im trong ca Ac

    x A hay x A.T: A = A A

    H qu.1. ( A ng) (A = A )2. A l tp hp tt c cc im dnh ca A.3. (x A)((xn) A : xnx)

    2.4.3. Cc v d.1. Gi sa, b l hai s thc. t A = (a,b] khi

    0A = (a,b), A = [a,b],

    0

    A =(a,b).2. Bao ng tp cc s hu t trong IR chnh l tp IR.

    3. Trong khng gian mtric bt k ta u c r)(a,B B

    (a,r).2.5. Tp hp tr mt khng gian kh ly.

    2.5.1. nh ngha. Gi s A,B l hai tp con trong khng gian mtric X.Nu B A th ta ni tp A tr mt trong tp B.

    2.5.2. Nht xt.1. Tnh ngha, ta thy (A tr mt trong B) (Vi mi x B, x l

    im dnh ca A). iu ny tng ng vi tn ti dy (xn) A,xn x.2. Nu A Bth BA . Do , nu A tr mt trong B; B tr mt trong

    C th A tr mt trong C.Tht vy, ta c C B v B A nn C B AA = 3. Nu A X v

    A = X th tp A c gi l tp tr mt khp ni (trong X)V d: Trong IR, tp s hu tQ tr mt khp ni.2.5.3. nh ngha. Mt khng gian mtric X c gi l kh ly nu tn ti

    mt tp hp hu hn hoc m c tr mt khp ni.C th chng tp (Q l tp s hu t) l m c v tr

    mt trong IR

    44 344 21

    lank

    k Q...QQ =

    k

    . Do IRk

    nh l mt v d v khng gian mtric kh ly.

    2.6. Tp mv ng trn ng thng thc.

    2.6.1. nh l. Mi tp mtrong IR bng hp mt s hu hn hay mc cc khong mkhng giao nhau.

    28

  • 8/2/2019 Khng gian metric

    29/88

    Chng minh. Gi s G l mt tp m trong IR . Vi x G tn ti r > 0:B(x,r) = (x- r, x+ r) G. K hiu x l hp tt c cc khong mcha trong Gv c cha x. Ta chng minh x l mt khong m.

    Tht vy, t p = infx, q = sup x (p,q c th bng (- , +). Vi mi y x th p < y < q v trc ht r rng ta c p y q.

    Nu y = p th c mt khong mchax v cha c p nn mu thun vi p= infx. Tng t y khng th bng q. Vy x( p,q). Ngc li nu y ( p,q),gi s p < y < x. Theo nh ngha ca infimum .

    y xt

    tn ti t : p < t y < x. Do c mt khong mchax v cha lun c t. Vth y thuc khong mny tc l y

    x

    x. Vy x = (p,q).

    qp

    By gita xt tt c cc khong xng vi cc im x G. Hin nhin G= . Nhn xt rng nu zUGx

    x

    x th x x (V z l khong m ln nht

    cha x). Cho nn vi 2 khong mx v y th hoc xy = hoc x = y(v nu c z xy th x = y = z ).

    Vy G bng hp ca nhng khong m ri nhau. Trong mi khong m ta chn 1 s hu t. V tp cc s hu tm c nn s cc khong mlpthnh G l hu hn hay m c. nh l c chng minh xong.

    Do mi tp ng l phn b ca tp mnn ta c:

    2.6.2. H qu. Mi tp ng trn IR l phn cn li sau khi rt khi IR mts hu hn hay m c cc khong mri nhau.

    Cc khong mny c gi l cc khong k ca tp ng .

    2.7. Tp mv tp ng trong khng gian:

    Gi s X l mt khng gian mtric, Y l khng gian con ca X v A l mttp con ca Y. rng, nu A l mt tp m (hay ng) trong Y l chachc A l m(hay ng) trong X. Tuy nhin ta c:

    2.7.1. nh l.iu kin cn v l tp A m trong khng gian mtriccon Y l tn ti tp mG v X sao cho A = G Y.

    Chng minh. K hiu BX(a,r), BY(a,r) ln lt l cc hnh cu mtrong Xv Y tng ng. Nu a Y th BY(a,r) = {y Y : d(a,y) < r} = Y B(a,r). Gis A l tp mtrong Y, khi vi mi x A tn ti rx > 0 sao cho BY(x,rx) Y.t G = x

    i A

    BU (x,rx), tc l G bng hp ca mt h cc tp m(trong X) nn n

    l tp mtrong X. Hn na,

    29

  • 8/2/2019 Khng gian metric

    30/88

    GY)r,x(BYY)r,x(B)r,x(BA xAx

    XxAx

    XxAx

    Y =

    ===

    UUU Ngc li,

    cho A = G Y vi G l tp mtrong X. NuxG A th do G mnn tn ti r> 0 sao cho BX(x,r) G. Thnh ra B Y(x,r) = BX(x,r) Y G Y = A hay A mtrong Y.

    2.7.2. nh l. iu kin cn v tp A ng trong Y l tn ti mttp ng F trong X sao cho A = Y F.

    Chng minh. Tp A ng trong Y khi v ch khi Y \ A l mtrong Y. Theonh l 2.7.1, tn ti tp mG trong X sao cho Y \ A= G A. Khi

    A= Y (X\G) = Y Fvi F = X\G l tp ngT cc nh l trn ta d dng suy ra h qu sau.2.7.3. H qu. mi tp con A Y m(t. ., ng) trong Y cng l m

    (t. ., ng) X, iu kin cn v l Y l tp m(t. ., ng) trong X.

    BI TP

    2.1. Gi s X l khng gian mtric, A X v x X.a) Chng minh rng x l m dnh ca A khi v ch khi d(x,A) = 0Suy ra:

    (A ng) (d(x,A) = 0 x A)

    b) Cho > 0 chng minh{x X : d (x,a) < } l tp m{x X : d (x,a) } l tp ng

    2.2. Cho F1, F2 l hai tp ng trong khng gian mtric X sao cho F1 F2=

    a. Chng minh tp G = {x X : d (x,F1) < d (x,F2)} l tp m, ng thiF1 G, G F2 = b. T a suy ra c cc tp mG1, G2 sao cho F1 G1, F2 G2 v G1 G2 =

    2.3*

    Mt tp A trong khng gian mtric X c gi l mt tp kiu G vtp mkiu F2.4. Gi s A, B l cc tp con ca khng gian mtric. Chng minh:a. int(int A) = intA, A = A .

    b. Nu a B th0

    0

    B

    30

  • 8/2/2019 Khng gian metric

    31/88

    c. int (a B) =0

    A . Int (AB )0

    B 0

    A 0

    B

    d. BA = A B , BA A B 2.5. Chng minh rng mi khng gian con ca khng gian mtric kh ly l

    kh ly.2.6. K hiu c0 l tp hp tt c cc dy s thc hi t v 0. Ta xem c0 nh

    l khng gian con ca khng gian c (bi tp 1.2). Chng minh c0 l khng giankh ly.

    2.7. Gi s X l khng gian mtric v Y l khng gian con ca X sao choY = U V vi U, V l cc tp m, khc trng trong Y v U V = . Chngminh tn ti cc tp mA, B trong X, A B = v U = A Y, V = B Y.

    31

  • 8/2/2019 Khng gian metric

    32/88

    3. NH X LIN TC

    3.1. nh ngha v cc tnh cht chung.

    Cho hai khng gian mtric (X,d1) v (Y,d

    2). Nu khng s nhm ln, ta

    dng k hiu d ch c d1 ln d2. Gi s f l mt nh x t X vo Y v x0 l mtim ca X.

    3.1.1. nh ngha.

    1. nh x fc gi l lin tc ti x0 nu mi > 0 cho trc, tn ti > 0sao cho d(f(x), f(x0)) < vi mi x X m d(x, x0) < .

    nh ngha ny thng gi l nh ngha v tnh lin tc bng ngn ng,.

    2. nh x fc gi l lin tc A X nu f lin tc ti mi im x A.

    Mt tiu chun tng ng vi nh ngha trn thng dng kho sttnh lin tc mt cch c hiu qu nh sau:

    3.1.2. nh l. (Tiu chun qua dy). nh x f lin tc ti x0 X khi vch khi mi dy (xn)n X, nuxn x 0 th dy f(xn) f(x0).

    Chng minh:iu kin cn: Gi s f lin tc ti x0 v (xn) l dy trong X sao choxn x 0.

    Ta hy chng minh f(xn) f(x 0) trong Y. Cho > 0, v f lin tc ti x0 nn c > 0.

    d(f(x),f(x0)) <

    khi d(x,x0) 0 trn, c n0 d(xn, x0) < khi n n0.Nhng lc th

    d(f(x),f(x0)) < Vy f(x) f(x0).

    iu kin : Gi s f khng lin tc ti x0. Khi tn ti > 0 sao chovi mi > 0 tn tix X : d(x,x0) < m d((f(x),f(xo)) . Ly ln lt bng 1,1

    2,, 1

    n, s c x1, x2,,xnthuc X tho mn d(xn,x0) >=

    000

    0 < d (x,x0) < d(f(x), l) < )3.1.4. nhl. Cho X, Y l hai khng gian mtric v f : X Y l mt nh

    x. Cc mnh sau y l tng ng.

    a) f lin tc trn X.b) vi mi tp ng F Y th f-1(F) l tp ng trong X.c) vi mi tp mG Y th f -1(G) mtrong X.d) )A(f)A(f vi mi tp A X

    Chng minh.

    a) d). Gi s y f( A). Khi tn ti x A y = f(x). Theo tnh chtca bao ng, tn ti dy (xn) A:xn x v v f lin tc nn f(A) f(xn) f(x)= y. Vy y ( )f A .

    d) b). Gi s F ng trong Y. t A = f-1

    (F). Khi y ta c f(A) F vth ( )f A F. Mt khc, rng nu E l tp con ca X ta lun lun c E f-1(f(E)). Do ly E = A , ta c.

    A f-1(f(A )) f-1 ( ( )f A ) =AVy A = A = f-1(F) l tp ng

    b) c). Nu G mtrong Y th Y/G = G c. T f -1(Y/G) = X\f-1(G) ngtrong X nn f-1(G) l m(trong X).

    c) a). Gi s x X v > 0 bt k. Do B(f(x 0),) m trong Y nn f-

    1(B(f(x0),) l tp m trong X cha x0. V th c s > 0 B(x0,) f-

    1

    (B(f(x0),)). iu ny c ngha l nu x X sao cho d(x,x0) < hayx B(x0,)nn f(x) B(f(x0,) hay d(f(x), f(x0)) < tc l f lin tc ti x0 theo nh ngha.Vy nh l c chng minh y .

    3.1.5. nh l. Gi s X, Y, Z l ba khng gian mtric, f : X Y lintc tix0, g : Y Z lin tc tiy 0 = f(x0). Khi nh x hp h = g o f : X Zlin tc tix0.

    33

  • 8/2/2019 Khng gian metric

    34/88

    Chng minh: Gi s (xn) X vxn x0. Do f lin tc ti x0 nn f(xn) f(x0)= y0 v lc y g lin tc tiy0= f(x0) suy ra g(f(xn)g(y0) = g(f(x0). Ni cch khc(g o f)(xn)(g o f)(x0).Vy h = g o f lin tc tix0.

    3.2. nh xng phi.

    3.2.1. Php ng phi. Cho X, Y l hai khng gian mtric. Gi s f :X Y l mt song nh sao cho f v f-1u l cc nh x lin tc th fc coil mt php ng phi t X ln Y. Hai khng gian mtric c gi l ng phivi nhau nu c php ng phi t khng gian ny ln khng gian kia.

    V d.1. Ly X = (a,b), Y = (0,1) l hai tp con ca tp s thc IR, khi X, Y

    ng phi vi nhau nhphp ng phi.

    f(x) =ab

    a

    ab

    x

    2. Cho X = IR, Y = (0,1) cng vi mtric thng thng th chng ng phi

    vi nhau nhphp ng phi.F(x) = 1

    actg x 1

    2.

    Nhn xt.1.Theo nh l 3.1.4, mt php ng phi bin mt tp m(t.., ng) trong

    khng gian ny thnh tp m(t.., ng) trong khng gian kia.2. C th chng minh d dng rng cc nh ngha v ln cn, im t, im

    chnh, bao ng, phn trong, tp tr mt, bt bin qua php ng phi, nghal cc tp A X cc im x X c tnh cht k trn th qua nh xng phi f,

    cc tp f(A), cc im f(x) cng c tnh cht . Cn nhng khi nim v hnhcu, khong cch, bn knh, khng phi bt bin qua php ng phi.

    3.2.2. Php ng c.

    Cho X, Y l hai khng gian mtric. Mt song nh f t X ln Y gi l mtphp ng c nu vi mix, x X ta c d(f(x), f(x)) = d(x,x). Hin nhin lc f -1 : YX cng l php ng c v ta gi X, Y l hai khng gian ng c vinhau.

    Nhn xt.1) Nu f l php ng c t X ln Y th r rng f l php ng phi gia X

    v Y.2) Cho X l mt khng gian mtric, Y l mt tp bt k. Gi s c mt song

    nh f : Y X . Khi nu t d *(y, y) = d(f(x), f(y) th d* l mt mtric trn Yv hn na X, Y l hai khng gian mtric ng c.

    34

  • 8/2/2019 Khng gian metric

    35/88

    3) Theo quan nim ca khng gian mtric, nu X v Y ng c th chngc ng nht vi nhau.

    3.2.3. Mtric tng ng.

    Cho d1,d2 l hai mtric trn cng mt tp X. Khi ta c hai khng gianmtric khc nhau (X,d1) v X,d2) c chung tp nn X.

    Hai mtric d1,d2c gi l tng ng tp nu nh xng nhtid: X X

    x a xl mt php ng phi t khng gian (X,d1) ln (X,d2)

    Nu tn ti cc s dng m, M sao chomd(x,y) d2(x,y) Md1(x,y)

    vi mi x, y Y th d1,d2c gi l hai mtric tng ng u.Nhn xt.1. Tnh ngha ta suy ra nu d1, d2 tng ng th chng s tng ng

    tp nhng iu c ngc li ni chung khng ng.2. Hai mtric tng ng tp th cc tp m(t..,ng) trong hai khnggian ny trng nhau. Tt nhin cc khi nim khc dn xut t tp m cngtrng nhau.

    Hai mtric tng ng u th thm na l cc tnh cht nh tnh linquan n khong cch cng s bt bin.

    3.3. Suy rng cc nh x lin tc.

    Gi s X, Y l cc khng gian mtric v f l nh x t X vo Y. Nu f lintc vi mi A X, thu hp ca f ln A, k hiu fA : A Y f A(x) = f(x) cng l

    nh x lin tc trn A. Ngc li cho h : A Y lin tc th vi iu kin no tnti nh x. F : X Y lin tc, duy nht v f A = h?

    Trc ht ta thit lp cc nh l suy ra tnh duy nht ca suy rng.

    nh l 3.3.1. Gi s f, g l hai nh x lin tc t X vo Y. Khi tp hpA = {x X : f(x) = g(x)}

    l tp ng trong AChng minh: Gi s x0 A . Khi tn ti ti dy (xn) A sao chox n x0.

    Theo tiu chun qua dy ta c f(xn) f(x 0)v g(xn) g(x0). V xnA nn f(xn)= g(xn) vi mi n N nn f(x0) = g(x0) do gii hn ca mi dy hi t l duynht. Vyxn A hay A = A , c ngha l A ng

    3.3.2.H qu. Gi s f, g l hai nh x lin tc t X vo Y. Nu f(x) = g(x)vi mixX

    Ta cX = A D = D A

    35

  • 8/2/2019 Khng gian metric

    36/88

    Vy D = X hay f(x) = g(x) vi mi xX

    3.3.3. nh l. cho X, Y l hai khng gian mtric, A l tp con tr mttrong X v f l nh x lin tc t A vo Y

    iu kin cn v tn ti nh x f : X Y lin tc, tho mn f A = fl tn ti vi mi x X . Khi nh x)z(flim

    Az

    f duy nht

    Chng minh. Trc ht ta din t li khi nim gii hn nh nh ngha3.1.3, nhdy, sau y.

    ( = l))z(flimAz

    ((zn) A : (zn a) (f(z n) l).

    iu kin cn. Gi s tn ti f lin tc v f A = f. Khi x X v (zn) A sao cho zn x th f (zn) f (x). Nhng v f(zn) = f (zn) nn f(zn) l =f (x) tc l gii hn tn ti vi mi xX.)z(flim

    Az

    iu kin . Vi mi x X t f (x) = . Nu x A hin nhin)z(flimAz

    f (x) = f(x) tc l f A = f. Ta chng minh f lin tc.Gi s x X v (xn)n l mt dy trong X hi tnx. Theo cch t, ta c

    f (xn) = . Do , theo iu din t li ni trn, vi mi n N tn tiz)z(flimAz

    n

    A sao cho d(zn, xn) 0 s tn ti

    n

    [ baC ,

    0 sao cho vi mi m, n n0 v vi mi t [a,b] ta c

    | xn(t) xm(t)| < (1)Cho m(1), ta c | xn(t) xn(t)| < khi n n0 v vi mi t [a,b].Vy xn(t) hi tu n x(t) trn [a,b], lin tc trn [a,b], tc l x(t) ,

    ng thi x[ ]b,aC

    n x. Do l khng gian y .[ b,aC

    4. Khng gian khng y [L

    baC ,

    Chng minh. Ta xt trng hp [a,b] = [0,1] v xt dy xn(t) nh sau: (hnh5)

    ++

    +

    =

    ntkhintn

    tn

    khi

    tkhi

    txn

    2

    1

    2

    1

    2

    121

    12

    1

    2

    10

    2

    1,01

    )(

    Vi m, n N, (m > n), ta c

    d(xn,xm) = = dttxtx mn1

    0

    )()( dttxtxn

    mn+

    2

    1

    2

    1

    2/1

    )()(

    V |xn(t) xn(t)| 2 nn d(xn,xm) 01 n

    khi m, n

    Vyxn(t) l mt dy cbn

    Tuy nhin ta chng minh rng dy xn(t) khng hi t trong ] . Tht vy

    x(t) l mt hm bt k trong . Xt hm s gin on trn [0,1] nh sau[L

    baC ,

    [ ]LC 1.0

    39

  • 8/2/2019 Khng gian metric

    40/88

    =

    1,2

    1,0

    2

    1,0,1

    )(

    t

    t

    ty

    Nh thx(t) y(t) nn phi c t0 21,0 chng hn y(t0) x(t0). Hn

    na, trn

    2

    1,0 c hai hmx(t) vy(t) cng lin tc nn l lun nh v d 1.2.5,

    ta c:

    0 sao cho d(xn,xm) 0 B(x,r) M. Vy bt k hnh cu no cha trong B(x,r) ucha trong M nn phi c giao vi M khc trng.

    4.3.3. nh ngha. Cho A l tp con ca khng gian mtric X. Tp A cgi l tp thuc phm tr I trong X nu tn ti dy cc tp tha M1,M2, sao

    cho A =1

    i

    i

    M

    =

    U .

    Nu A khng phi l tp thuc phm tr I th A gi l tp thuc phm tr II.

    4.3.4. nh l. (Baire) Gi s X l mt khng gian mtric y . Khi Xtp thuc phm tr II.

    Chng minh. Dng phn chng. Gi s X thuc phm I, khi tn ti dy

    tp tha An X sao cho X =1

    n

    n

    A

    =U . Do A1 tha nn c hnh cu ng B1 bn

    knh r1< 1 sao cho B1 A1 = . Cng vy, v A2 tha, tn ti hnh cu ng B2

    B1 bn knh r2 0 ( ni chung ph thuc vo x0 v ) sao cho d(f(x),f(xo)) < mi khid(x,x

    0) < . Nu s dng khng ph thuc vo mi imx

    0ta c khi nim

    lin tc u.

    4.4.1 nh ngha. nh x f : X Y c gi l lin tc u trn X nu vimi > 0 tn ti > 0 sao cho vi mix, x

    X m d(x,x) < th (d(f(x),f(x))

    0 cho trc tu , do flin tc u trn A nn tn ti s dng sao cho (d(f(z),f(z) < khi d(z,z) < vi miz, z A.

    Vzn x nn dy (zn)n l dy cbn : vi > 0 trn tn ti s nguyn n0 (zn,zm) < vi mi m, n n 0. Nhng khi d(f(zn),f(zm)) < . Nh th (f(zn))nl mt dy cbn trong Y. Hn na, Y y nn tn ti (f(zlim

    xn)) = l. Vy ta

    c c nh xf: X Y mrng lin tc duy nht ca nh x f.

    Cn li ta chng minh f lin tc u trn X. Li ng dng tnh lin tc u

    ca f trn A nh trc, gi sx0 vx0

    l hai im trong X vi d(x0,x0

    ) < . Xthai dy (zn) v (zn) trong A ln lt hi tnx0 vx0

    . Chn n0 ln ta thyrng nu n n 0 th

    d(zn,zn) d(zn,x0) + d(z

    n,x0)

    2

    +

    2

    = .

    Do vy:

    43

  • 8/2/2019 Khng gian metric

    44/88

    d( f (zn), f (zn)) = d(f(zn),f(zn

    )) < Cho n ta c d( f (x0), f (x0

    )) .Vy f lin tc u trn X.

    4.5.Nguyn l nh x co.

    4.5.1. nh ngha. Cho nh x f t tp X bt k vo chnh n. Phn t x

    X sao cho f(x) =xc gi l im bt ng ca nh x f.Vic tm im bt ng ca mt nh x l vn c nhiu ng dng trong

    gii tch, c bit trong l thuyt phng trnh (vi phn, tch phn) v mtim bt ng ca nh x f l mt nghim ca phng trnh f(x) =x.

    By gicho X l mt khng gian mtric v f l mt nh x t X vo X, fc gi l nh x co nu tn ti mt s[0,1] sao cho vi mix, y X ta c:

    d(f(x),f(y)) d(x,y).Tnh ngha ta thy ngay mi nh x co l lin tc u.

    4.5.2. nh l (nguyn l nh x co Banach). Gi s X l mt khng gianmtric y f : X X l mt nh x co. Khi f c mt im bt ng duynht.

    Chng minh. Ly mt im tu x0X. tx1= f(x0),x2= f(x1)= f(f(x0)),...,xn = f(xn-1) = f(f...f)(x0),...

    N lnTa chng t (xn) l mt dy cbn trong X.V f l nh x co ln nu n 1 th

    d(xn,xn+1) = d(f(xn-1),f(xn) d(xn-1,xn)= d(xn-2,f(xn-1))

    2d(xn-2,xn-1)) nd(x0,x1)Vi [0,1]Lc vi mi s nguyn n vp,t (*) ta c

    d(xn,xn+p) d(xn,xn+1) +... + d(xn+p,xn+p)

    (2+ n+1++

    n+p-1) d(x0,x1) 1

    n

    d(x0,x1)

    Khi n ln vp ty ta c d(xn,xn+p) 0 (n ) suy ra (x n)n l dy cbn trong khng gian y X nn tn ti gii hn x*= lim

    nxn .

    Cng t (*), ta cd(xn,x+1) d(xn, xn+1) nd(x0,x1).

    Cho n v nhrng cc hm d v f lin tc,ta c 0 d(xlim

    xn,f(xn)) = d(x

    *,d(x*) 0

    hay d(x*,f(x*)) = 0Vy f(x*) = x* tc l x*l im bt ng ca f.

    44

  • 8/2/2019 Khng gian metric

    45/88

    Nu cy X m f(y) =y thd(x*,y) = d(f(x*), f(x) d(x *,y

    *)hay (1-)d(x*,y*) 0

    Suy ra d(x*,y) = 0 tc l x*= y. Do im bt ng x* l duy nht

    4.5.3.V d.

    a.Chng minh phng trnh1

    2arctgx x + 3 = 0

    c mt nghim thc duy nht

    t f(x) = 12

    arctgx + 3 l hm t IR vo IR, f l nh x co v f(x) f(y) = (x-

    y)2

    1

    2(1 )+, vi nm gia x v y theo nh l lagrange, nn

    1( ) ( )

    2

    f x f y x y . Do f c mt im bt ng vi duy nht x*. Ni cch

    khc, phng trnh 12

    arctgx + 3 =x c nghim duy nht l x*.

    b) Xt phng trnh vi phn

    (1) dxdy

    = f(t,x) vi iu kin ban u

    (2)x(t0) = x0trong f(t,x) l hm lin tc trong tp mG IR2, (t0,x0) G v f l tho mniu kin Lipschitzx, ngha l c mt s dng ksao cho

    f(t,x1) f(t,x2) Kx1 - x2) (3)vi mi (t,x1),(t,x2) GTa chng minh nh l Picard: Trn mt on t t0 r no phng

    trnh (1) c mt nghim duy nht tho mn iu kin ban u (2).

    Phng trnh (1) vi iu kin (2) tng ng vi phng trnh tch phnsau y

    x(t) =x0 + (4)t

    t

    d))(x,(f

    0

    Do G l tp m cha (t0,x0) nn c hnh trn (hnh cu) tm (t0,x0) cha

    trong G. GiD = {(t,x)G :t t0 a, x x0 b}

    l mt hnh ch nht ng bt k ni tip trong hnh cu . V f(t,x) lin tctrn D nn ( , )f t x L vi mi (t,x) D vi L l s dng no . Ly 0 < r 0 tn tixn

    X d(xn,x

    *

    n) < 1

    n. Khi

    d(xn,xm) d(xn,xn*) + d(xn

    *,xm

    *) + d(xm*,xm)

    < 1n

    + 1m

    + d(xn*,xm

    *)

    Vy d(xn,xm) 0 (m, n) nn (xn) l dy cbn trong X tc l (xn) X.tx* l lp cha dy (xn) thx

    * X*, ta c:d(xn

    *,xn) d(xn

    *,xn) + d(xn,x

    *)1

    n+ d(xn,x

    *)

    V (xn,xn,...) x+

    n v (x1, x2,...) x*

    nnd(xn,x*) = d(x

    mlim n,xm)

    Vy

    d(xn*,x

    *) 1n

    + d(xm

    lim n,xm)

    Cho ta c d(xm n*,xn) 0 hayx

    *n x

    *

    48

  • 8/2/2019 Khng gian metric

    49/88

    Nh th X* l y 5. Tnh duy nht (sai khc mt php ng c) ca y ho X* ca X.Gi s X* l mt khng gian mtric y v c cc tnh chti) X X* (X ng c vi mt khng gian con ca X*)ii) X = X*

    Ta hy chng minh X*ng c vi X*Lyx* X* khi y tn ti (xn) X sao choxn X*. t : X* X*

    X* x*

    y l php ng c phi tm. Tht vy l ton nh v nu y* X* thy*

    = yn

    lim n, yn X nny* =(y*) vi y*= y

    nlim n,y

    * X*

    Mt khcd(x*,y*) = (x

    nlim n,yn) trong X

    *

    v d(x*,y*) = (xn

    lim n,yn) trong X*

    nnd(x*,y*) =d(x*,y*) = d((x*),(y*)

    Vy l n nh v t cc iu va chng minh trn ta suy ra l phpng c. nh l c chng minh y .

    4.6.3.V d.1. Tp hp Q cc s hu t l mt khng gian mtric vi khong cch:

    d(x,y) = x y ;x, yQPhng php xy dng tp s thc IR bng dy cbn cc s hu t chnh l

    y ho khng gian mtric Q nh trnh by trn. Tuy nhin trong IR tacn phi xy dng cc php ton + v . ng thi phi kim nghim li IR l mttrng lin tc.

    2. Gi s M l tp con ca khng gian mtric y X. Khng gian y ho ca khng gian con M chnh l M.

    3. Ta c l khng gian mtric khng y . Khng gian y ho

    ca n k hiu l L[L

    b,aC ]

    [a,b]l tp hp cc hm o c xc nh v kh tch theo

    ngha Lebesgue trn [a,b] (l thuyt tch phn Lebesgue s hc phn L thuyto v tch phn).

    49

  • 8/2/2019 Khng gian metric

    50/88

    BI TP

    4.1.Cho (X,dX) v (Y,dY) l hai khng gian mtric.Chng minh rng khnggian mtric tch X Y y khi v ch khi cc khng gian X v Y l nhng

    khng gian mtric y .4.2.K hiu m l tp hp tt c cc dy s thc b chn. Vix = (xn)m, y

    = (yn) mtd(x,y) = nn

    n

    yxsup

    Chng minh

    a) d l mt mtricb) Khng gian mtric (m,d) l y

    4.3.* Trong khng gian mtric C[0,1] hy xy dng mt dy cc tp ng, b

    chn Fn sao cho Fn Fn+1 nhng = I

    =1nnF

    4.4.* Cho X l khng gian mtric y , Yi l mt dy cc tp con mtr

    mt khp ni trong X. Chng minh tp hp cng l tp tr khp ni trong

    X.1

    i

    n

    Y

    =I

    4.5. K hiu s0 l tp hp tt c cc dy s thc (xn) sao choxn bng 0 tt c

    ngoi tr s hu hn n. Ta xem s0 l khng gian mtric con ca khng gian m.Chng minh s0 l khng gian mtric khng y .

    4.6.Chng minh rng hm lin tc f : IR IR xc nh bi

    f(x) =2

    + x arctgx

    khng c im bt ng mt d n tho mn bt ng thc( ) ( )f x f y x y <

    Vi mi x, y IR, x y

    4.7.*

    Cho F l h cc hm lin tc trn IR c tnh cht( )( 0)( ) : ( )x xx R M f f f x M >

    Chng minh rng tn ti mt tp mkhc trng U IR v mt s dng Msao cho

    ( )f x M

    50

  • 8/2/2019 Khng gian metric

    51/88

    Vi mi f F v x U4.8. Cho f: IR IR l mt hm s lin tc u. Chng minh tn ti cc s

    , 0 sao cho vi mi x IR, ta c:( )f x x +

    4.9*.Trn tp s thc IR ta t

    d1(x,y) = | arctgx- arctgy|v

    d2(x,y) = | ex - ey|

    Chng minha) d1, d2 l cc mtric trn IR

    b) (IR, d1),(IR, d2) l cc khng gian mtric khng y c) y ho cc khng gian(IR, d1),(IR, d2) l g?

    51

  • 8/2/2019 Khng gian metric

    52/88

    5 KHNG GIAN COMPACT

    Trong gii tch cin, khi lm vic vi cc tp con ca IR ta c bit ch n khong ng [a,b], a, b IR. Khong ng ny c cc tnh cht tt sau

    Mi dy (xn) [a,b] bao gicng c mt dy con hi t trong [a,b]Hm s lin tc trn [a,b] th lin tc u trn on Hm s lin tc trn [a,b] th t c gi tr ln nht v gi tr b nht trn

    on ny.Tng qut ho s kin ny cho khng gian mtric, ngi ta a ra khi

    nim quan trng l tp compact v khng gian compact.

    5.1.Tp hp b chn v hon ton b chn.

    5.1.1. nh ngha. Cho X l khng gian mtric v A X.

    t (A) = d(x,y) (A) = + nu tp hp {d(x,y),x, yA} khng c

    cn trn) v gi (A) l ng knh ca tp AAyx ,

    sup

    Nu (A) < + th A gi l tp b chn, cn (A) = + th A gi l khngb chn.

    Ta c mt s tnh cht n gin saua) Tp hp A l b chn nu v ch nu A c cha trong mt hnh cu no

    Tht vy, gi s(A) = d(x,y) = r< + . LyxAyx ,

    sup 0 ty thuc A, lc

    vi mi y A, ta c d(x0,y) rhay A B(x0,r) vi r > r. Ngc li, A B(x0,r) th x,y A c

    d(x,y) d(x,x0) + d(y,y0) 2rDo (A) 2r< + nn A b chn

    b. Hp mt s hu hn cc tp b chn l tp b chn.

    5.1.2. nh ngha. Tp A X gi l hon ton b chn (hay cn gi l tincompact) nu vi mi r> 0, A c cha trong hp mt s hu hn hnh cu c

    bn knh r. Lc ta cng ni tp A c ph bi mt s hu hn hnh cu bnknh r.

    Mnh 1. Mt tp hon ton b chn th b chn

    52

  • 8/2/2019 Khng gian metric

    53/88

    Chng minh. Thc vy, cho A hon ton b chn nn vi r= 1, ta c hu hn

    hnh cu A1

    ( ,1)n

    i

    i

    B x=

    U . Ly x A s c i x B(ai,1)

    Lc d(x,a1) d(x,ai) + d(ai,a1)

    d(x,ai) + =

    n

    ii n)a,a(d

    11

    Vy A nm trong B(a1,n). Ngc li, ni chung khng ng. Tuy nhintrong IRn ta c.

    Mnh 2: Gi s A l mt chn trong IRn (vi mtric thng thng), khi A hon ton b chn.

    Chng minh. Gi B(x0,d) l hnh cu cha A. Ta ly mt hnh lp phngcnh bng 2dsong song vi cc trc to v ngoi tip hnh cu ny. Cho r> 0ta chia hnh lp phng ny thnh cc hnh lp phng nh bi cc mt phng

    song song vi mt hnh lp phng ln v cch nhau mt on rn

    . S cc

    hnh lp phng nh ny l hu hn. Hin nhin A c cha trong hp hu hncc hnh cu bn knh r, ngoi tip cc hnh lp phng nh. Vy A hon ton

    b chn.

    Ch rng ),( raB B(a,r) v nu r > r th B(a,r) B(a,r) do trongcc nh ngha v tp b chn v hon ton b chn, ta c th s dng tu cchnh cu mhoc ng

    Mnh 3. Nu A X l hon ton b chn th bao ng A ca A cng lmt tp hp hon ton b chn

    Chng minh. Gi srl s dng cho trc. Nu A hon ton b chn th

    c hu hn hnh cu ng B(ai,r) (i = 1, )n sao cho . Nhng do

    l mt tp ng nn

    Un

    ii raBA

    1

    ),(=

    Un

    ii raBA

    1

    ),('=

    A ngha lUn

    ii raB

    1

    ),('=

    A cng hon ton

    b chn.

    5.2.Tp hp compact v khng gian compact:

    5.2.1.nh ngha. Cho X l khng gian mtric v A X. Tp A c gi lcompact nu dy (x

    n) A lun lun tn ti mt dy con (x nk) (x n) hi t mtim x A

    Nu bn thn X l compact th khng gian X c gi l khng giancompact

    53

  • 8/2/2019 Khng gian metric

    54/88

    Gi s A X m bao ng A l compact th A c gi l tp compacttng i. iu ny tng ng vi:

    Mi dy tu (xn) A s c mt dy con hi tn mt im trong X(khng i hi thuc A).

    Tht vy, iu kin cn r. Ngc li nu (xn)n l dy trong A vi mi x

    N ta chnyn A sao cho d(xn,yn) < 1n . Theo gi thit tn ti dy con (ynk) (yn)hi t vy0 X. V (ynk) A nny0A .

    Lc

    d(xnk,y0) d(xnk,ynk) + d(ynk,y0) 0sao cho khng th phc A bng mt s hu hn hnh cu bn knh . Lyx1 A. Hnh cu B(x1,) khng phc A nn c x2A sao cho d(x2,x1) .Cc hnh cu B(x1,), B(x2,) cng khng phc A nn c x3 A sao chod(x3,x1) v d(x3,x2) . Tip tc cch ny bng quy np, ta xy dng cdy (xn) A vi d(x n,xm) vi mi n m. Bt c dy con no ca dy (xn) ukhng phi l dy cbn (v khong cch gia hai phn t ca dy con ny )nn khng th hi t. iu ny mu thun vi nh ngha compact. Vy ta chng minh nu A compact th A ng v hon ton b chn.

    2) By gigi s X y , A ng v hon ton b chn trong X. Ly mtdy (xn) bt k trong A. V A c ph bng mt s hu hn cc hnh cu bnknh bng 1 nn mt trong cc hnh cu , k hiu B1 cha v s cc phn t

    54

  • 8/2/2019 Khng gian metric

    55/88

    ca dy (xn). Gi dy con ca dy (xn) trch ra t v s phn t l ( ). Tp A

    cng phc bng mt s hu hn hnh cu bn knh

    1nx

    1

    2nn c mt cu k hiu

    B2 c v s cc (x1n) v dy con ca ( ) cha trong B

    1nx 2 l ( ). Tip tc qu

    trnh ny ta thu c mt dy cc dy (x

    2nx

    n), ( ),( ),...m cc dy sau l dy

    con ca dy i trc ng thi dy con ( ) cha trong hnh cu B

    1nx

    2nx

    knx k c bn knh

    1

    k. Ly mt phn t xn1 trong ( ). V ( ) v hn nn chn c n

    1nx

    2nx n2 trong cc

    ( ) sao cho n2nx 2 > n1 v ri chn xn3 trong ( ) vi n3nx 3 > n1 Nh th ta c

    c dy con (xnk) (xn). y l dy cbn v vi k,l N bt k, gi s k l th

    ( ) ( ) nn xknx1nx nk, xnl cng thuc hnh cu Bl. Do d(xnk, xnl)

    2

    l 0 khi k,

    l . V X y , dy (x

    nk) hi tn x0 X. Hn na do A ng nn x0 A.

    Vy A compact.5.2.4 nh l. Nu X l mt khng gian compact th X y v kh ly.Chng minh.

    a) Gi s (xn) l dy cbn trong X. V X compact nn c dy con (xnk) (xn),xnk x0 X. Nhng khi chnh dy (xn) cng hi t vx0nn X l khnggian y .

    b) Vi mi n N, tp A c ph bng mt s hu hn hnh cu B(xnj,1

    n),

    j = 1,...,mn :

    X = B(xn1

    nm

    j=U j, 1n ) (*)

    t A = {xnj : j = 1,...,mn, n = 1, 2,...} l tp hp tt c cc tm cc hnh cu

    ny. A l tp m c. Mt khc x X vi > 0 bt k ta ly n ln 1n

    0 c thc tm cho A mt -li hu hn N (tc l tp N c hu hn im).

    b) H qu. Trong khng gian mtric y X, tp ng A X l compactnu vi mi > 0 ta c th tm cho n mt -li compact.

    Chng minh. Cho > 0. Theo gi thit, tn ti2

    -li compact B v cho A

    v do B compact nn tn ti2

    -li hu hn N cho B. Khi N chnh l -li

    cho A v vi x A tn ti bB d(x,b) 0 tn tix,x A vi d(x,x) < nhng d(f(x), f(x)) . Cho ln lt

    cc gi tr

    1

    n, n = 1, 2, ta thu c hai dy (xn)

    v (xn) trong A c tnh cht

    d(xn,x

    n) < 1/n v d(f(x), f(x)) . V A compact, dy (x) c dy con ( )

    x

    'nkx

    0 A. T bt ng thc:

    )k()x,x(dn

    )x,x(d)x,x(d)x,x(d 'nkk

    'nk

    'nk

    ''nk

    ''nk +

  • 8/2/2019 Khng gian metric

    60/88

    Qn(x) = cn(1 x2)n 0, n = 1,2,... (1)

    trong cn l cc s dng sao cho1

    1 Qn(x) dx = 1, n =1, 2, (2)

    Ta hy nh gi cc i lng cn. Ta c:

    1

    1 (1 x

    2)n dx = 2 (1 x1

    0

    2)n dx 2

    1

    0

    x

    (1 x2)n dx

    2

    1

    0

    x

    (1nx2)

    ndx =

    n3

    4>

    1

    n(3)

    Do cn < n ( , ta dng bt ng thc Bernoulli: (1 x2)n 1- nx2.)

    T (3) vi bt k > 0 ta cQn(x) = cn(1 x

    2)n n (1-x2)n n (1- 2)n (4)vi mix thox 1. Do Qn(x) hi tu v 0 trn tp [-1,-] [,1] (< 1).

    Tip theo, t

    Pn(x) =1

    1 f(x + t)Qn(t)dt,x [0,1].

    i bin sx + t =y, ta c

    Pn(x) = f(x + t) Q1 x

    x

    n(t)dt =

    1

    0

    f(y)Qn(y - x)dy

    1

    0

    f(y) Qn(y-x)dy =1

    0

    f(y) (1-x)2)ndy

    Khai trin biu thc (1 - (y - x)2)n v sp xp theo lu tha tin ca x v dngtnh cht tuyn tnh ca tch phn ta c c Pn(x) l mt a thc i vix. Cnli hy chng minh Pn(x) hi tu v f(x)

    Cho > 0, chn 0 < < 1

    2

    )x(f)y(f khi x - y 0 cho trc. Theo nh l WeierstrassI, tn ti a thc g(x) = a0 + a1x +...+ anxn sao cho

    d(f,g) =[ ] 210

    )x(g)x(fmax *

    ,

    Chn cc s hu tb0, b1,..., bn gn a0, a1,...,an sao cho

    0

    n

    i= i ib a 2

    ,v t

    g*(x) = b0 + b1x ++ bnxn

    Khi vi mix [0,1] ta c*

    0 0 1 1( ) ( ) ( ) ) ( )n

    n ng x g x a b a b x a b x = + +

    200

  • 8/2/2019 Khng gian metric

    62/88

    Ch . Cc kt qu ca nh l Weierstrass I v cc H qu 5.5.2, 5.5.3 vncn ng trong khng gian C[0,1] vi a < b, a, b IR. Tht vy, khng gian C[a,b]ng c vi C[0,1] qua php ng c.

    C[a,b] f

    f* C[0,1] , f*(t) = f )

    ab

    at(

    v mi a thc bin thnh mt a thc qua php bin i nn cc tnh cht caC[0,1]c bo ton trong C[a,b].

    5.5.4.nh l Weierstrass II. Vi mi hm s f(x) lin t trn IR tun hontheo chu k 2 v vi mi s dng s tn ti mt a thc lng gic.

    sn(x) = 02

    a +1

    n

    k= (akcoskx + bksinh kx)

    Sao cho vi mi x IR ta c( ) ( )nf x s x <

    Chng minh. Xt cc hm s

    2

    )x(f)x(f)x(

    +=

    ( ) ( )( )

    2

    f x f xx

    = sin x

    y l cc hm s chn, lin tc, tun ho theo chu k 2. Chox bin thintrn on [0,] v tx = arccost, ta thy rng, cc hm s:

    (t) = (arccost), (t) = (arccosst)lin tc trong on [-1,1]. Dng nh l Weierstrass I, tn ti cc a thc g(t),h(t) xc nh trn [-1,1] sao cho vi mi t [-1,1] ta c

    (t) g(t) < /4(t) h(t) < /4

    V v (x), (x), cosx l nhng hm s chn, tun hon theo chu k 2.Nn cc bt ng thc sau cng cng ng vix IR.

    Theo cch t trn, ta cf(x)sinx = (x)sin x + (x) nn( ) sin ( osx) sinx - h(cosx)f x x g c

    ( ) ( osx) s inx + (x) - h (cosx) / 2x g c <

    Nu gi u(x) =g(cosx)sinx + h(cosx) th u(x) l mt a thc lng gic v

    ta c ( ) s inx - u(x) / 2f x <

    Bng cch tng t vi hm s f(2

    - x), ta cng c

    22

    /)x(vxsin)x(f

  • 8/2/2019 Khng gian metric

    63/88

    Vi v(x) cng l mt a thc lng gic. Thay2

    -x bix, ta c

    22

    /)x(vxcos)x(f

  • 8/2/2019 Khng gian metric

    64/88

    X = .Uk

    1ixii )r,B(x

    =

    t n0 = max{n(x1),,n(xk). Khi vi n n0 vi x X ta s tm c i,(i = 1,,k sao cho x B(xi,rxi). Nh th

    g(x) fn(x) g(x) fn0(x) g(x) fn(xi)(x) Vy nh l c chng minh

    5.6.nh l Ascoli Azelas

    Vic kho st tnh compact ca cc tp khng gian mtric tu ni chungl kh. Tuy nhin trong khng gian C[a,b] ta c tiu chun kh c th. Trc htta cn cc khi nim sau. Gi s A l mt tp con ca C[a,b].

    1. Tp A gi l b chn ti x0[a,b] nu c K > 0 sao cho vi mi f A,f(x0) K. Tp A gi l b chn ti tng im trn [a,b] nu A b chn ti miim x [a,b] .

    2. Tp A gi l ng lin tc ti x0 [a,b] nu vi mi > 0 tn ti > 0sao cho vi mi y [a,b], f A, y y0 0 saocho vi x, y [a,b], fA, nu x - y

  • 8/2/2019 Khng gian metric

    65/88

  • 8/2/2019 Khng gian metric

    66/88

    ( )i if x K vi mi f A

    t K = max{K1,...,Kn} khi vi mi f A, khong cch t im(f(x1),,f(xn)) n im 0 = (0,,0) trong IR

    n l

    Kn)x(fn

    i

    i =1

    2

    iu ny c ngha l tp (a) b chn trong IRn nn n phi hon ton b

    chn. Do tn ti hu hn im j = ( , j = 1,,m sao cho (a)

    c ph bng hu hn hnh cu tm

    ),...,( jmj 1

    j v bn knh6

    r. Ta gi thit (a) v cc

    hnh cu B(j ,6

    r) c giao khc trng v nu tri li ta b hnh cu i. Vi mi

    hnh cu B(i,6

    r) IRn ta hy chn mt hm fi A sao cho (fi) B(i ,

    6

    r). Gi

    f1,...,f

    ml cc hm s va chn ny. By givi f

    A ta c

    jiii

    jiiiii )x(f)x(f)x(f)x(f +

    n) nn d(xn,xm) 0 (m,n). Gi

    s dy ny hi tnx0 = (x01, x0

    k,0,) s0. iu ny v l v nu n > k

    d(xn,x0) =

    iin

    Ni

    xxsup 0 d(xn,x0) = 20 1

    1

    )k(xxsup iin

    ki +=

    > 0 khi n. Vy

    s0khng y

    81

  • 8/2/2019 Khng gian metric

    82/88

    4.6 Do phng trnh arctgx =2

    khng c nghim trong IR

    4.7. t An,f= {x IR : |f(x)|n}. Do f lin tc nn An,f l tp ng. Khi

    An = cng l tp ng. Mt khc x IR theo gi thit Mx > 0 : f F :

    |f(x)| Mxn vi mt sn no nnx An. Vy IR tc l IR = .

    Khng gian IRy nn thuc phm tr II, vy tn ti n0 N

    IFf

    f,nA

    I

    =1nnA I

    =1nnA

    0

    A . Hn

    na, An0 ng nn ta c00

    00 nnAA =

    Gi U l mt hnh cu mcha trong An0. Khi x U x An0f F :|f(x)| n0 = M

    4.8. f lin tc u trn IR nn vi = 1 tn ti > 0 sao cho vi mix, x IR|x x||f(x) f(x)| < (1)By gicho x IR, gi sx > 0 s tn ti snNx [(n - 1), n] nn ta c th vit

    |f(x)||f(x) f(n 1)| + | f(n 1)) f((n 2))| + +| f() f(0)| + |f(0)|

    Theo (1) ta c|f(x)| n + |f(0)|

    hay

    |f(x)| )(fn 0+

    (x + )

    + |f(0)|

    =

    + |f(0)| + = x +

    Khi x < 0 ta cng l lun tng t vi x [-n, -(n 1)], vi n N. Vytrong hai trng hp ta c

    |f(x)| |x| + 4.9. a) c gi t kim tra d1, d2 l cc mtric trn IR

    b) Xt tp X =

    2,

    2vi mtric thng thng trn IR : d(x,y) = |x y|.

    Khi nh x f : IR X cho bi f(x) = arctgx l mt php ng c t (IR ,d1) ln(X,d1) v ta c

    x,y X : d1(x,y) = |arctgx arctgy| = d(f(x),f(y))

    82

  • 8/2/2019 Khng gian metric

    83/88

    Mt khc

    2,

    2l khng gian khng y . (chng hn, dy xn =

    n

    1

    2

    cbn trong X nhng khng hi t trong X) nn (IR,d1) cng khng y

    . Chng minh tng t i vi d2 ta c (IR,d2) ng c vi Y = (0,) vi

    mtric thng thng, trong ta cng thy ngay Y khng y .

    c) y ha ca X l

    2,

    2. Do y cng l y ha ca (IR,d1)

    (sai khc mt php ng c). Tng ty ha ca (IR,d2) l [0, )

    5.1 Gi s A1,,Ak l cc tp con compact ca X. t A = . Nu (xn)n

    l mt dy trong A th s c t nht mt tp Ai0 cha v hn cc (xn) v gi dycon lp t v hn (xn) ny l . Nhng do Ai0 compact nn dy ( ) c dy

    con ( )l hi t trong Ai0. Hn na ( )l cng l dy con ca (xn) hi t trongA. Vy A compact.

    Uk

    iiA

    1=

    knA

    knx

    nlkx nlkx

    5.2 Nu (xn,yn)n l mt dy bt k trong X Y, th (xn), (yn) ln lt l ccdy trong X v Y. V X compact nn dy (xn) c dy con . Dy

    ( ) Y compact nn cng c dy con y0 trong Y. Khi ( , ) l

    dy con ca (xn,yn) hi t v (x0,y0) X Y nn X Y l khng gian compact.

    Xxxkn

    0

    kny

    klny

    nlkx

    nlky

    5.3 Gi s d(K,F) = d(x,y) = 0. khi c cc dy (xn) K, (yn) F

    sao cho d(xn,yn) 0. K l compact nn c dy con ( ) ca xn sao cho.T

    Fy,Kx

    inf

    knx

    Kxxkn

    0d( ,x0) d( , ) + d( ,x0) 0 (k)

    kny

    knx

    kny

    knx

    nn x0. Mt khc do F ng nnx0 F ngha l K F x0. iu ny mu

    thun vi gi thit. Vy d(K,F) > 0.kn

    y

    5.4 Cho > 0 bt k. Do f lin tc u nn > 0 nux,y X d(x,y) < th d(f(x),f(y)) < . t B ={x1,,xk} l mt -li hu hn cho tp A. Lc f(B) = {f(x

    1),,f(x

    k)} l mt - li hu hn cho f(A), v nuy f(A) s tn ti

    xA y = f(x). Hn na gi sxi0B d(x,xi0) < th c ngay d(f(xi0),f(x)) 0 : B(x,rx) G.

    (B(x,r/2))xX l mt ph m ca X nn tn ti ph con hu hn X =

    . t r=

    UI

    G

    U )/r,x(B xii 2 021

    >=

    )/r(minix

    k,i. Xt B(x,r) vix bt k thuc X. Lc

    i = 1,,k : x B(2

    ixi

    r,x ). Nu y B(x,r) th d(y,xi) d(y,x) + d(x,xi) < r+

    2ix

    r nn B(x,r) B(xi, ) G .

    ixr

    ixr

    5.7 Ly dy (xn) trong m (hoc c), c dngx1 = (1,0,,0,)x2 = (0,1,0,,0,)

    x1 = (0,0,, ,0,))(

    1n

    Dy ny thuc vo hnh cu ng B(0,1) trong m (hoc c), vi 0 =(0,,0). Tuy nhin d(xn,xm) = 1, m,n, m n nn khng th c dy con nocbn c, tc l khng rt ra c dy con hi t.

    5.10 t g(x) = d(x,f(x)), x X. Khi g(x) l hm lin tc xc nh trnkhng gian compact X nn t c gi tr b nht l : d(x, f(x)) 0 (dod(x,f(x)) lun 0). Nh vy cx0X d(x0,f(x0) = . Nux0 f(x0) tc l >0 th t g(f(x0)) = d(f(x0), f(f(y0))) < d(x0,f(x0)) = mu thun vi l gi tr bnht ca g(x). Do f(x0) = x0. Vyx0 l im bt ng ca f.

    Nu y0 X ,y0 x0 f(y0) =y0th td(x0,y0) = d(f(x0), f(y0)) < d(x0,y0)

    dn n v l. Vy ch c im bt ng duy nht

    5.9 Gi sa,b X . ta1= f(a), a2 = f(a1),, an = f(an-1) (1)b1 = f(b), b2 = f(b1),, bn = f(bn-1) (2)

    Do X compact nn dy (an) c dy con ( ) hi t. Dy ( ) tngng cng c

    dy con ( ) hi t. Ni cch khc, t hai dy (1), (2) ta rt ra c hai dy con tngng l ( ) v ( ) cng hi t. Nh th vi > 0 tn ti n0n > n0 th

    nka

    nkb

    mnkb

    nla

    nlb

    d( , ) < 0n

    la nla

    Lc ta c

    84

  • 8/2/2019 Khng gian metric

    85/88

    d(a,ap) d(a,ap+1) )a,a(d)a,a(dnnnn lllpl 000

    =+ <

    v d(b,bp) d(b,bp+1) )b,b(d)b,b(dnnnn lllpl 000

    =+ <

    vi p = ln -0n

    l

    iu ny c ngha l f(X) tr mt trong X ng thi

    d(f(a),f(b)) d(a1,b1) d(ap,bp) d(ap,a)+ d(a,b) + d(b,bp) < 2 + d(a,b)

    vi mi > 0 nn d(f(a),f(b)) = d(a,b). Ty suy ra f lin tc v n nh. Hn na, doX compact nn f(X) compact. V vy f(X) = )(Xf = X hay f ton nh. Nh th f : X

    X l php ng c.5.10 Do f nn theo nh l Weierstrass I, tn ti dy a thc gm(x) = a0m +

    a1mx + + anmx

    [ 10,C ]n hi tu v f trn on [0,1]. Khi ta c f(x)gm(x) hi tu v

    f2(x) trn on [0,1]. Mt khc

    dx))x(fxa...)x(xfa)x(fa(dx)x(g)x(fn

    nmmmm +++= 11

    0

    1

    00

    ==

    1

    010dx)x(fxa i

    n

    iim

    theo gi thitp dngnh l qua gii hn di du tch phn, ta c

    0

    1

    0

    1

    0

    2

    == dx)x(g)x(flimdx)x(f mn

    Vy nn f01

    0

    2 =dx)x(f 2(x) = 0 hay f(x) = 0

    5.11 a) 1tsin vi mi t [0,1] v [1,2] nn {x(t)} b chn tng im (vu). Hn na, t

    222

    )'tt(sin

    )'tt(cos'tsintsin

    +=

    'tt'tt'tt 222 vi mi [1,2]. Nh vy {x(t)} ng lin

    tc (u). Theo nh l 5.6.2 th tp {x(t)} compact.b) Khng compact (xem bi tp 1.7)6.1 Gi s A B khng lin thng. Lc cc tp mkhc trng M, N trong A

    B sao cho M N = v A B = M N. Ly x BA . Khi x M N.

    85

  • 8/2/2019 Khng gian metric

    86/88

  • 8/2/2019 Khng gian metric

    87/88

    TI LIU THAM KHO

    [1] Dieudonn, Csgii tch hin i, T.1 (bn dch ting Vit), NXB i hc v

    Trung hc chuyn nghip, H ni 1973.

    [2] Cnmgrp, Phmin, Csl thuyt hm v gii tch hm, T.1,(bn dchting Vit), NXB Gio dc, H ni 1971.

    [3] Hong Ty, Gii tch hini, T.1, NXB Gio dc, H ni 1978.

    [4] Kirillov, A. Gvichiani, Thormes et Problmes danalyse fonctionelle, Mir,Moscou 1982.

    [5] Phan c Chnh, Gii tch hm, T.1, NXB i hc v Trung hc chuynnghip, H ni 1978.

    [6] B. A. Tpe, . . capec, T. C. Coa, aa ypa-e

    yaaa, 1984.

    [7] Yu. S. OTran, Bi tp l thuyt hm s bin s thc, (bn dch tingVit), NXB i hc v Trung hc chuyn nghip, H ni 1977.

    87

  • 8/2/2019 Khng gian metric

    88/88

    Chu trch nhim ni dung:

    Ts. Nguyn vn ha

    Bin tp:T cng ngh thng tin

    Phng kho th - m bo cht lng gio dc