kunal datta and prof. hossein hashemi ming hsieh department … · 2018-07-26 · kunal datta and...

1
Kunal Datta and Prof. Hossein Hashemi Ming Hsieh Department of Electrical Engineering Contact: Kunal Datta (213)-587-1109, [email protected] 220 fF 10 400 fF 96 pH V IN 48 pH 200 fF 80 pH 10 pF 2 x 16 m 40 pH 75 52 pH 150 fF 10 400 fF 96 pH V b_Core V OUT 260 260 42 fF V CC_Driver 86 pH 10 pF 6 x 16 m V CC_Core 44 pH 1.7mm 1mm Performance at Peak P out Performance Metric Simulated Performance Measured Performance Technology Node IBM 130nm SiGe BiCMOS IBM 130nm SiGe BiCMOS Center Frequency / BW -1dB 39 GHz / 3.5 GHz 39 GHz / 4 GHz Output Power 19.2 dBm (84 mW) 19.6 dBm (91 mW) Power Gain 8 dB 8.9 dB Drain Efficiency (η) 25.5% 16.1% PAE MAX 21.4% 14% 1.3mm 0.8mm 200 fF 140fF V C L 1 C 12 V out L 2 500fF 10K 58pH 51pH 10046pH 60fF 6x12um 6x16um V CC_Core V Bias 10 pF Avalanche Compensated Bias Circuit 140 fF 10 250 fF 96 pH 48 pH 80 pH 10 pF 2 x 16 m 62 pH 75 V CC_Driver V IN Performance Metric Simulated Performance Technology Node IBM 130nm SiGe BiCMOS Center Frequency / BW -1dB 45 GHz / 4 GHz Output Power 22.15 dBm (165 mW) Power Gain 11.5 dB Drain Efficiency (η) 31.5% PAE MAX 29% 140 fF 10 250 fF 96 pH 48 pH 80 pH 10 pF 2 x 16 m 62 pH 75 VCC_Drive r VIN VCC_Core Vout 500fF 1K 58pH 1K 140fF 46pH 60fF 6x12um 6x16um 6x12um 60fF 100500fF VBias_Cor e Avalanche Compensated Bias Circuit 1.3mm 0.8mm Performance Metric Simulated Performance Technology Node IBM 130nm SiGe BiCMOS Center Frequency / BW -1dB 45 GHz / 4 GHz Output Power 23.4dBm (220 mW) Power Gain 12.7dB Drain Efficiency (η) 25% PAE MAX 24% Control Bits (n) Unit Module Output Power (P out ) Total Power Combining Loss (0.5dB per combiner) Total Output Power (P out_Total ) P out_Total Resolution (2 n ) System PAE (25% PAE per unit module) 2 25.0dBm (316mW) 1.0dB 30dBm 4 19.8% 3 22.5dBm (176mW) 1.5dB 30dBm 8 17.6% 4 20.0 dBm (100mW) 2.0dB 30dBm 16 15.6% 5 17.5 dBm (56mW) 2.5dB 30dBm 32 14% Port 1 Port 2 Port 3 120μm 80μm 920μm 80μm M2 50μm 8.5μm AM Wilkinson Power Combiner RF in RF out Unit Module VCC Unit Module VCC Unit Module VCC Unit Module VCC Technological Constraints Topological Constraints P out PAE Linear Saturated Desired Class A Class D,E,F ClassB Class C Linearity PAE Linear PA Saturated PA Desired Performance Breakdown voltage of transistors scale down with increasing f T & f max . V breakdown < 6 V (in 130nm SiGe process), hinders watt-level power generation. Efficiency decreases with frequency due to -20 dB/dec roll off in power gain. Higher ohmic loss in passives at higher frequency (due to lower skin depth) degrades efficiency. Peak efficiency in linear PAs degrade with power back-off. Maintaining high efficiency with power back off is essential for modulating signals with high Peak to Average Power Ratio (PAPR) (as in OFDM). Saturated/switching PAs can give higher efficiency but at the cost of linearity. a(n) Modulator + Rect-to-Polar (n) Calibration and Control Sensing Reciever AM-AM, AM-PM, Phase Error, Delay, Sensing Receiver Calibration Miscellaneous Controls Data In AM-PM Pre- distortion AM-AM Pre- distortion LUTs Digital Baseband Serial Port Interface Crystal XTAL Oscillator Digital ΔΣ Modulator I/Q VCO Digital to Phase Converter (DPC) PLL Binary-to- Therm Saturated PA Array + Combiner Digital Envelope Combiner (DEC) Phase Skew Calibration FDEC FDPC I-Q & Phase Calibration Ref Q Synthesizer Digital ΔΣ Modulator N n m 1 2 N VDD VDD VDD Phase Distribution Clock Gen I RF Out Saturated/switching class PAs in individual power modules for high efficiency. Amplitude modulation using low-loss switching supplies. Phase modulation using phase-shifters. ∆Σ modulators for minimizing in-band quantization noise. Digital polar architecture ensures high PAE at both peak and average power. Active Device ON Active Devices OFF V CC V out V C L 1 i L i Device i load R Load X L L 2 C 2 V B +V SIG V CC V ou t V C L 1 i sw R Load X L L 2 C 2 r on V C t V B +V SIG V in V CC V out V C L 1 i C R Load L 2 C 2 C sub t V C X L V B +V SIG V in t V in V C V out I Device High V CC (for higher P out ) causes avalanche induced base instability. Interconnect parasitic degrade f MAX of the device and lower performance. Passive networks must be properly chosen to have high enough self resonating frequency. Passive structures and interconnect are modeled using electromagnetic simulators. Small signal and large signal stability are analyzed using periodic steady state simulations. Avalanche phenomenon can be alleviated by using series stacking of transistors to increase stability margin without compromising power and PAE performance. V CC V out V C L 1 C 12 i L i Device i C i load R Load X L L 2 C 2 C 11 V mid C C R DC2 R DC1 V B +V SIG V Bias t V be1 V be2 V mid V C t V out I C V b2 V b1 Active Devices ON V CC V out V C L 1 i sw R Load X L L 2 C 2 V mid C π2 C C R DC2 R DC1 r on r on t t V Bias V B +V SIG t V b1 V b2 V b2 V b1 V CC V out V C L 1 C 12 i C R Load X L L 2 C 2 C 11 V mid C π2 C C R DC2 R DC1 V mid t V C V mid t V b2 V Bias V B +V SIG V b1 t V b1 V b2 Active Devices OFF Series stacking of devices ensure higher voltage swing across the same load resulting in higher output power Measurement of stacked devices. Large signal characterization and modeling of SiGe HBTs. Designing other blocks of the digital polar transmitter. Large signal nonlinear stability analysis. Deriving efficiency limit of active devices in power amplifier implementation. Analyzing trade-off of performance vs stability in mm-wave power amplifiers. Watt-Level Efficient Linear Power Amplifier in Sillicon Technology BiCMOS Frequency 45 GHz Peak Power 36 dBm Power Added Efficiency (PAE) at peak power 65% RF Bandwidth 3.5 GHz Data rate (64 QAM) 0.520 Gbps Bandwidth 100 MHz Error Vector Magnitude (EVM) < 2% ACPR @ 1*BW ch < –55 dBc High Data Rate Wireless Communication Active Radars Active mm-Wave Imaging 23GHz 29GHz 35GHz 59GHz 64GHz 71GHz 76GHz 81GHz 86GHz 92GHz 95GHz 110GHz 122GHz Automotive Radar Radio Navigation Military ISM Fixed Wireless Fixed Wireless Fixed Wireless Radio Astronomy ISM Automotive Radar mm-Wave Spectrum Allocation H 2 O O 2 O 2 Absorption Spectra

Upload: others

Post on 02-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Kunal Datta and Prof. Hossein Hashemi Ming Hsieh Department … · 2018-07-26 · Kunal Datta and Prof. Hossein Hashemi Ming Hsieh Department of Electrical Engineering Contact: Kunal

Kunal Datta and Prof. Hossein HashemiMing Hsieh Department of Electrical Engineering

Contact: Kunal Datta (213)-587-1109, [email protected]

220 fF

10 Ω

400 fF

96 pH

VIN

48 pH 200 fF

80 pH

10 pF

2 x 16 m40 pH

75 Ω

52 pH

150 fF

10 Ω

400 fF

96 pH

Vb_Core VOUT

260 Ω

260 Ω

42 fF

VCC_Driver

86 pH

10 pF

6 x 16 m

VCC_Core

44 pH

1.7mm

1mm

Performance at Peak Pout

Performance Metric Simulated Performance Measured Performance

Technology Node IBM 130nm SiGe BiCMOS IBM 130nm SiGe BiCMOS

Center Frequency / BW-1dB 39 GHz / 3.5 GHz 39 GHz / 4 GHz

Output Power 19.2 dBm (84 mW) 19.6 dBm (91 mW)

Power Gain 8 dB 8.9 dB

Drain Efficiency (η) 25.5% 16.1%

PAEMAX 21.4% 14%

1.3mm

0.8m

m

200 fF

140fF

VC

L1

C12

Vout

L2

500fF10K

58pH

51pH

100Ω

46pH

60fF6x12um

6x16um

VCC_Core

VBias

10 pF

Avalanche Compensated Bias Circuit

140 fF

10 Ω

250 fF

96 pH

48 pH

80 pH

10 pF

2 x 16 m62 pH

75 Ω

VCC_Driver

VIN

Performance Metric Simulated Performance

Technology Node IBM 130nm SiGe BiCMOS

Center Frequency / BW-1dB 45 GHz / 4 GHz

Output Power 22.15 dBm (165 mW)

Power Gain 11.5 dB

Drain Efficiency (η) 31.5%

PAEMAX 29%

140 fF

10 Ω

250 fF

96 pH

48 pH

80 pH

10 pF

2 x 16 m62 pH

75 Ω

VCC_Drive

r

VIN

VCC_Core

Vout

500fF

1K

58pH

1K

140fF

46pH

60fF6x12um

6x16um

6x12um60fF

100Ω

500fF

VBias_Cor

e

Avalanche Compensated Bias Circuit

1.3mm

0.8m

m

Performance Metric Simulated Performance

Technology Node IBM 130nm SiGe BiCMOS

Center Frequency / BW-1dB 45 GHz / 4 GHz

Output Power 23.4dBm (220 mW)

Power Gain 12.7dB

Drain Efficiency (η) 25%

PAEMAX 24%

t

Control Bits (n)

Unit Module Output Power

(Pout)

Total PowerCombining Loss (0.5dB

per combiner)

Total Output Power

(Pout_Total)

Pout_Total

Resolution (2n)

System PAE (25% PAE per unit module)

225.0dBm (316mW)

1.0dB 30dBm 4 19.8%

322.5dBm (176mW)

1.5dB 30dBm 8 17.6%

420.0 dBm(100mW)

2.0dB 30dBm 16 15.6%

517.5 dBm(56mW)

2.5dB 30dBm 32 14%

Port 1

Port 2

Port 3

120μm

80μm

920μ

m

80μm

M2

50μm

8.5μm

AM

Wilkinson Power Combiner

RFin RFout

Unit Module

VCC

Unit Module

VCC

Unit Module

VCC

Unit Module

VCC

Technological Constraints

Topological Constraints

Pout

PA

E

Linear

Saturated

Desired

Class A

Class D,E,F

ClassBClass C

Linearity

PA

E

Linear PA

Saturated PA Desired Performance

Breakdown voltage of transistors scale down with increasing fT & fmax. Vbreakdown < 6 V (in 130nm SiGe process), hinders watt-level power

generation.

Efficiency decreases with frequency due to -20 dB/dec roll off in power gain.

Higher ohmic loss in passives at higher frequency (due to lower skin depth)degrades efficiency.

Peak efficiency in linear PAs degrade with power back-off.

Maintaining high efficiency with power back off is essential for modulatingsignals with high Peak to Average Power Ratio (PAPR) (as in OFDM).

Saturated/switching PAs can give higher efficiency but at the cost of linearity.

a(n)

Modulator+

Rect-to-Polar

(n)

Calibration and Control

Sensing RecieverAM-AM, AM-PM, Phase Error, Delay, Sensing Receiver Calibration

Miscellaneous Controls

Data In

AM-PM Pre-distortion

AM-AM Pre-distortion

LUTs

Digital Baseband

Serial Port Interface

Crystal

XTAL Oscillator

Digital ΔΣ Modulator

I/Q VCO

Digital to Phase Converter (DPC)

PLL

Binary-to-Therm

Saturated PA Array + Combiner

Digital Envelope Combiner (DEC)

Phase Skew Calibration

FDEC

FDPC

I-Q & Phase Calibration

Ref

Q

Synthesizer

Digital ΔΣ Modulator

Nn

m1

2

N

VDD

VDD

VDD

Phase Distribution

Clock Gen I

RF Out

Saturated/switching class PAs in individual power modules for high efficiency.Amplitude modulation using low-loss switching supplies. Phase modulation using phase-shifters. ∆Σ modulators for minimizing in-band quantization noise. Digital polar architecture ensures high PAE at both peak and average power.

Active Device ON

Active Devices OFF

VCC

VoutVC

L1iL

iDevice iload

RLoad

XL

L2 C2

VB+VSIG

VCC

Vou

tVC

L1

isw

RLoad

XL

L2 C2

ron

VC

tVB+VSIG

Vin

VCC

VoutVC

L1

iCRLoad

L2 C2

Csub

t

VC

XL

VB+VSIG

Vin

t

Vin

VC

Vout

IDevice

High VCC (for higher Pout) causes avalancheinduced base instability.

Interconnect parasitic degrade fMAX of the deviceand lower performance.

Passive networks must be properly chosen tohave high enough self resonating frequency.

Passive structures and interconnect are modeledusing electromagnetic simulators.

Small signal and large signal stability areanalyzed using periodic steady state simulations.

Avalanche phenomenon can be alleviated byusing series stacking of transistors to increasestability margin without compromising powerand PAE performance.

VCC

VoutVC

L1

C12

iL

iDevice

iCiload

RLoad

XL

L2 C2

C11

Vmid

CC RDC2

RDC1

VB+VSIG

VBias

t

Vbe1

Vbe2

Vmid

VC

t

Vout

IC

Vb2

Vb1

Active Devices ON

VCC

Vout

VC

L1

isw

RLoad

XL

L2 C2

Vmid

Cπ2

CC RDC2

RDC1

ron

ron

t

t

VBias

VB+VSIG

t

Vb1

Vb2

Vb2

Vb1

VCC

VoutVC

L1

C12

iC RLoad

XL

L2 C2

C11

Vmid

Cπ2

CCRDC2

RDC1

Vmid

t

VC

Vmid

t

Vb2

VBias

VB+VSIG

Vb1

t

Vb1

Vb2

Active Devices OFFSeries stacking of devices ensure

higher voltage swing across the same load resulting in higher output power

Measurement of stacked devices.

Large signal characterization andmodeling of SiGe HBTs.

Designing other blocks of the digitalpolar transmitter.

Large signal nonlinear stabilityanalysis.

Deriving efficiency limit of activedevices in power amplifierimplementation.

Analyzing trade-off of performancevs stability in mm-wave poweramplifiers.

Watt-Level Efficient Linear Power Amplifier in Sillicon

Technology BiCMOS

Frequency 45 GHz

Peak Power 36 dBm

Power Added Efficiency (PAE)at peak power

65%

RF Bandwidth 3.5 GHz

Data rate (64 QAM) 0.520 Gbps

Bandwidth 100 MHz

Error Vector Magnitude (EVM) < 2%

ACPR @ 1*BWch < –55 dBc

High Data Rate Wireless CommunicationActive RadarsActive mm-Wave Imaging

23GHz 29GHz 35GHz 59GHz 64GHz 71GHz 76GHz 81GHz 86GHz 92GHz 95GHz 110GHz 122GHz

Automotive Radar

Radio Navigation

MilitaryISM

Fixed Wireless

Fixed Wireless

Fixed Wireless

Radio Astronomy

ISM

Automotive Radar

mm-Wave Spectrum Allocation

H2O

O2

O2

Absorption Spectra