laporan praktikum ilmu faal.doc

9
LAPORAN PRAKTIKUM ILMU FAAL-1 (NPrF-01) MODUL NEUROSAINS PERAN NEUROTRANSMITER PADA KOMPONEN LENGKUNG REFLEKS Selasa, 19 Januari 2007 Oleh Kelompok 13: Narisa Dewi Maulany 0606103836 Natasya Austenita Pribadi 0606103905 Nathalia Hermanto 0606104095 Nessya Dwi Setyorini 0606104006 Nila Akbariyyah 0606065900 Novalia Sutjiady 0606065913 Novi Kurnia 0606065926 Novinda Herwirasti 0606103981 Nuriza Karuniawan 0606028703 Pembimbing: dr. Etty Thamrin

Upload: melissa-trixiana

Post on 01-Jan-2016

47 views

Category:

Documents


11 download

DESCRIPTION

faal

TRANSCRIPT

Page 1: LAPORAN PRAKTIKUM ILMU FAAL.doc

LAPORAN PRAKTIKUM ILMU FAAL-1 (NPrF-01)

MODUL NEUROSAINS

PERAN NEUROTRANSMITER PADA KOMPONEN LENGKUNG REFLEKS

Selasa, 19 Januari 2007

 

 

 

Oleh Kelompok 13:

Narisa Dewi Maulany             0606103836

Natasya Austenita Pribadi      0606103905

Nathalia Hermanto                  0606104095

Nessya Dwi Setyorini             0606104006

Nila Akbariyyah                      0606065900

Novalia Sutjiady                     0606065913

Novi Kurnia                            0606065926

Novinda Herwirasti                0606103981

Nuriza Karuniawan                 0606028703

 

Pembimbing: dr. Etty Thamrin

 

 

FAKULTAS KEDOKTERAN UNIVERSITAS INDONESIA

 

Page 2: LAPORAN PRAKTIKUM ILMU FAAL.doc

Judul

Peran Neurotransmiter Pada Komponen Lengkung Saraf (NPrF-01)

 

Tujuan

Memahami peran neurotransmiter pada penghantaran impuls dari saraf ke efektor.

 

Prinsip kerja

1.      Mengobservasi hasil perangsangan tak langsung (pada saraf) pada sediaan otot saraf katak.

2.      Mengobservasi dan mengnalisis efek kurare sebagai inhibitor kompetitif pada asetilkolin, terhadap hasil perangsangan tak langsung pada sediaan otot saraf.

3.      Mengobservasi dan menganalisis peran kalsium dalam pelepasan neurotransmitter asetilkolin.

 

Dasar Teori

Transmisi Impuls Neuromuskular

Setiap serabut saraf  bermielin £\ yang masuk ke otot rangka membentuk banyak cabang. Kemudian sebuah cabang akan berakhir pada otot rangka di tempat yang disebut taut neuromuskular (neuromuscular junction) atau motor end plate yang terdiri atas:

-          satu ujung saraf (nerve terminal) sel presinaps

-          celah sinaps (synaptic cleft).

-          bagian pasca sinaps pada membran otot, yang disebut ¡§motor end plate¡¨

 

Sebagian serabut-serabut otot hanya dipersarafi oleh satu motor end plate. Saat mencapai serabut otot saraf kehilangan selubung mielinnya dan pecah membentuk cabang-cabang halus dimana masing-masing saraf berakhir sebagai akson yang terbuka dan membentuk struktur neural pada motor end plate. Pada motor end plate permukaan sedikit meninggi serta membentuk unsur otot atau sering disebut sole plate. Hal ini terjadi akibat

Page 3: LAPORAN PRAKTIKUM ILMU FAAL.doc

akumulasi setempat sarkolema serta terdapat banyak inti dan mitokondria. Pada lipatan junction (junction fold) di motor end plate terdapat reseptor Ach yang berdekatan pada ujung saraf.

 

 

Gambar 1: neuromuscular junction

 

 

Gambar 2: neuromuscular junction pada katak

 

Suatu impuls pada saat mencapai membran prasinaps neuromuscular junction, membuka kanal voltage-gated Ca 2+ yang memungkinkan ion-ion Ca2+ masuk ke dalam terminal akson yang kemudian memulai proses transduksi sinyal.

 

Kejadian yang muncul pada neuromuscular junction:

1.      sintesis asetilkolin (ACh) terjadi pada sitosol ujung saraf oleh asetilkolintransferase.

Asetil-KoA + Kolin Asetilkolin +KoA

2.      ACh dimasukkan ke dalam vesikel sinaps dan disimpan disana.

3.      Pembebasan ACh dari vesikel ke celah sinaps melalui proses eksositosis, yaitu terjadinya fusi vesikel pada membran presinaps, distimulus oleh ion Ca2+ (yang  mengalir masuk ke ujung akson lewat kanal ion karena adanya induksi depolarisasi membran).

4.      ACh yang dibebaskan akan berdifusi melalui celah sinaps ke reseptor yang terdapat pada lipatan junction. Bila terdapat dua molekul ACh yang terikat pada satu reseptor, maka kanal ion akan membuka selama 1 ms, yang menyebabkan terjadi flux kation melalui membran berupa masuknya ion Na+ dan keluarnya ion K+, sehingga terbentuk potensial aksi pada end plate. Terjadinya depolarisasi sel otot berikutnya dari potensial aksi yang terbentuk sebelumnya, yang kemudian disalurkan sepanjang serat otot akan menyebabkan kontraksi otot.

5.      Bila kanal menutup, ACh akan berdisosiasi dan kemudian dihidrolisis oleh enzim asetilkolinesterase (AChE), yang banyak terdapat di lamina basalis membran otot.

Page 4: LAPORAN PRAKTIKUM ILMU FAAL.doc

6.      Kolin akan diresiklus kembali ke ujung saraf (nerve terminal) melalui suatu proses transpor aktif untuk digunakan pada sintesis ACh berikutnya.

Curare

Page 5: LAPORAN PRAKTIKUM ILMU FAAL.doc

Ads by GoogleEffective Chinese Herbs - Effective Chinese Patent Medicines For Chronic Diseases - www.china-herbs.com

Ads by Google

Curare is a name used to identify a variety of highly toxic (poisonous) extracts from some types of woody vines that grow in South America. European scientists began studying curare in the late sixteenth century after explorers learned that Indians living along the Amazon and Orinoco Rivers in South America had been using it for centuries to make poison-tipped hunting arrows. The poison in the arrows killed animals by paralyzing (numbing) their muscles. When the muscles used for breathing became paralyzed, the animals died of suffocation. These deadly arrows were sometimes used against the European explorers and soldiers. Natives called the poisonous plant ourari (or "woorari"), which became "curare" to the Europeans.

In 1735 a scientific expedition sponsored by the French Academy of Sciences was sent to the area of South America that is now Ecuador. Heading the expedition was the Frenchman Charles Marie de la Condamine, who spent part of ten years in South America scientifically exploring the region. La Condamine collected samples of curare and took them back to France.

During the nineteenth century, doctors tried to use curare as a muscle relaxant in the treatment of rabies, tetanus (an infectious disease that usually enters the body through a wound), and epilepsy (a chronic, or lasting, disease of the nervous system characterized by convulsions), but these trials were unsuccessful because available curare extracts were not of equal quality and potency (strength). In the 1870s curare was used to keep conscious animals from moving during experimental surgery. This practice angered many people in Great Britain and led to the passage of anti-vivisection laws (laws against using animals for scientific experimentation).

The first breakthrough leading to successful medical use of curare came in 1935, when Harold King isolated its active principle, which he called tubocurarine. A chemically pure alkaloid (an organic base of a plant, containing nitrogen and usually oxygen) of curare was introduced in 1942 by Thomas Cullen. This purified alkaloid is called d-tubocurarine. Curare contains two alkaloids: curine, which paralyzes the muscle fibers of the heart, and curarine, which paralyzes the motor nerve endings in voluntary muscles.

That same year, a country doctor and part-time anesthetist named Harold Griffith of Montreal, Quebec, tested the use of curare in surgery. He used it as a muscle relaxant that let him use lower, safer doses of anesthesia. Over the next ten years, many doctors began using curare to relax their patients' muscles during abdominal surgery or during tracheal intubation (the inserting of a tube into the trachea to allow a patient to breathe).

Page 6: LAPORAN PRAKTIKUM ILMU FAAL.doc

Artificial Curare

Because the effects of natural curare were still unpredictable, Swiss-Italian pharmacologist Daniele Bovet (1907-1992; winner of the 1957 Nobel Prize in medicine) of the Pasteur Institute in Paris, France, set out to make a synthetic (artificially produced) uniform curare. He succeeded in 1947 with the medicine gallamine, and then went on to make more than 400 compounds that had the same effects as curare. One of these compounds, succinylcholine, became a widely used and effective curare substitute that could be given in precise dosages with predictable effects. Succinylcholine allows complete muscle relaxation during surgery without deep anesthesia.

While d-tubocurarine and similar compounds totally paralyze the muscles, they do not affect the central nervous system. A patient who receives an injection (shot) of this drug into a muscle quickly begins to feel dizzy and warm. The muscles of the jaw, neck, and head are the first to become weak and relaxed. The person can hear low tones better because small muscles in the middle ear relax. Then the arms and legs begin to feel heavy and difficult to move. Breathing becomes harder, and the patient experiences "shortness of breath," even with artificial respiration. He cannot swallow and feels like he is choking because saliva accumulates in the throat. Soon it is impossible to move at all. During this time the patient is fully conscious of everything around him and can sense pain. For this reason anesthesia is still needed during medical procedures, though in smaller amounts.

The effects of curare do not last long, and a person or animal who has been poisoned by this substance can fully recover if given artificial respiration until the poison wears off. The action of d-tubocurarine or its related compounds like succinylcholine begins to wear off after about 20 minutes if a single moderate dose is injected into a vein, the usual method of giving the drug. During surgery the patient may have to be given additional small doses of d-tubocurarine. The drug has little or no effect if taken by mouth, unless swallowed in very large doses.

Curare-like drugs are sometimes used to relax muscles when doctors are correcting dislocations or setting bone fractures, and in the control of muscle spasms during convulsions like those seen with tetanus, epilepsy, drug overdose, and following the bite of the black widow spider. These drugs are also used during tracheal intubation, and to help make examinations of the larynx, bronchial tubes, and esophagus easier.

Read more: Curare - used, first, body, produced, plant, Artificial Curare http://www.discoveriesinmedicine.com/Com-En/Curare.html#ixzz1Hp07OpiO