large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 amo seminar,...

22
2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬) Large-scale laser spectral compression and its applications Institute of Photonics Technologies National Tsing Hua University, Taiwan March 26, 2012 Ultrafast Photonics Lab 2

Upload: others

Post on 16-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

1

AMO Seminar, Department of Physics, National Tsing Hua University

Chen-Bin Huang (黃承彬)

Large-scale laser spectral compression and its applications

Institute of Photonics Technologies

National Tsing Hua University, Taiwan

March 26, 2012

Ultrafast Photonics Lab

2

Page 2: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

2

Ultrashort optical pulse

Electric field

Carrier

Envelope function a(t)

( ) Re{ ) }xp( e oj ta tE t

0.8

1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

2( ) ( )I t a t

I(t) t

3

Ultrafast optics

Full-width half-maximum pulse duration t < 1ps

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-1

pst

Optical pulse shaping

We can shape the optical waveform however you like

-200 -100 0 100 200Time (ps)

0 3 0 3

0

1Measurement

Calculation

Inte

ns

ity (

a.u

.)

4

-100 -50

0.1

0.2

0.3

Time (ps) 0 50Time (ps)

0.1

0.2

0.3

Jiang*, Huang*, Leaird, Weiner, Nat. Photon. 1, 463 (2007)Chuang and Huang*, Opt. Express 18, 24003 (2010)

Page 3: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

3

Outline

Ultrafast 3rd-order nonlinear optics

Self-phase modulation

Optical solitonsp

Raman scattering

Self-steepening

Supercontinuum generation

Spectral compression

5

Summary

Nonlinear wave propagation equation

The inclusion of nonlinear polarization

22

0 2( )

DE E E

t

22 22

0 (1) 02 2 2NL

T

PE EE

z t t

0 (1) (1) LNL ND E P P D P

6

Scalar treatment

20 0 0 (1) 0 (1) 0 0( 2 2 ) ( 2 )NL NLD n n n n n E n n E

0 02NL NLnP n E

Page 4: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

4

Nonlinear propagation equation in waveguide

Basic formulation

222

1 20

2 2

ja a aj a a a

z t t

2

20 0

20 eff

nn

c A

optical Kerr term

NonLinear Schrödinger Equation

Lossless

Generalized NLSE

0 eff

222

2 20

0' 2

ja aj a a

z T

7

2 22 32

2 32 30

1

2 2 6 R

a a aA j a a jA j a a T a

z T T T T

( ) ( )

dispersion

SPM Raman

Self-steepening

Self-phase modulation (SPM)

No dispersion 2aj a a

z

2( , ) (0, ) exp[ (0, ) ]a z t a t j a t z Gives broadened spectrum

instantaneous frequency:

0.8

1

ectr

a

2( )( , ) ( )z t a z

t t

instantaneous frequency:

I(t)

t

8

-5 0 50

0.2

0.4

0.6

(THz)

Opt

ical

spe

in

st

t

max

max

Page 5: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

5

Optical solitons

For anomalous dispersive materials: 2 < 0

Dimensionless NLSE

Solution: solitons

22

2

1

2

a aj a a

Complete balance between dispersion and SPM

Pulse energy

22

0 0

( , ) sech( )exp[ ]2c

j zta z t P

T T

22U

9

gy

Soliton order

2

0

UT

02

2

peakT PN

Adiabatic soliton temporal compression

Dispersion control

Energy conservation

2

0

2U

T

0 2

0 2

(0) (0)

( ) ( )

T

T z z

Gives broadened spectrum

0

Gives broadened spectrum

10

-60 0 60-40

-30

-20

-10

0

(ps)

SH

G (

dB

) 298 fs

Page 6: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

6

Higher-order solitons

N=2peakj P

N

jNP

2

2)122(

0T3500

Gives broadened spectrum

L=z0/2 1220

jN

TTj

-3 -2 -1 0 1 2 30

500

1500

2500

3500

t (ps)

Pow

er (

W)

107

11

-1 -0.5 0 0.5 1x 104

0

0.5

1

1.5

2

2.5 x 107

Frequency (GHz)

Pow

er (

W)

Higher-order solitons

N=3

L=z0/4 L=z0/212000

Gives broadened spectrum

-3 -2 -1 0 1 2 30

1000

2000

3000

4000

5000

t (ps)

Pow

er

(W)

6x 10

7

-3 -2 -1 0 1 2 30

2000

4000

6000

8000

10000

12000

t (ps)

Pow

er (

W)

6x 107

12

-1 -0.5 0 0.5 1

x 104

0

1

2

3

4

5

6

Frequency (GHz)

Pow

er

(W)

-1 -0.5 0 0.5 1x 10

4

0

1

2

3

4

5

6x 10

Frequency (GHz)

Pow

er (

W)

Page 7: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

7

Raman response

Delayed nonlinear phase delayed instantaneous frequency

Red-shift of the pulse power spectrum

Time-domain view

Gives broadened spectrum

13A. M. Weiner, Ultrafast Optics (Wiley, 2009)

Fourier-transform properties

Raman response real F(-)=F*()

A single-sided function

Im{F()} < 0 for > 0

Frequency-domain view

Im{ ( )}F

200

300ReIm

Im{F()} > 0 for < 0

0 8

1

F()

Im{ ( )}s pF

14-0.5 0 0.5 1

-200

-100

0

100

0 10 20 30 40 500

0.2

0.4

0.6

0.8

f(t)

Page 8: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

8

Self-steepening

Gives rise to intensity-dependent group velocity

Dispersionless, only electronic response

a j 2

0

1 0'

a jj a a

z t

2

0

30

'

a aa

z t

Gives broadened spectrum

0.6

0.8

1)

15

)'(v

ztfa 2

0

3 av

-4 -3 -2 -1 0 1 2 3 40

0.2

0.4

t/T0

I(t)

Soliton fission

Nth-order solitons will break into N fundamental solitons

Raman: soliton self-frequency shift (SSFS)

Self-steepening Gives broadened spectrum

Anomalousdispersion

red

Shorter,red-shifted

pulse

Gives broadened spectrum

16Dudley et.al, Nat. Phys. 3, 597 (2007)

redslower

Page 9: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

9

Ultrafast 3rd-order nonlinear optics

Supercontinuum generation Supercontinuum generation

Spectral compression

Summary

17

SC: Definition

What is SC?

Coherent light source having large bandwidth

Broadened input spectrum by nonlinear optical processes

Applications

Metrology, spectroscopy, sensing, ultrashort pulse……

18

Page 10: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

10

SC: History

Historical evolution

19www.bath.ac.uk/physics/groups/ppmg/research_pcf_scg.html

birth ofoptical frequency comb

tightly linked

SC: Major Nonlinear Processes

SPM

t

ALinst

2||

FWM

4321

2

SRS

ASSp 2

Elasticprocesses Inelastic

ProcessAlong with

SSFS+ SS

20

pI S

ISp 2

kM+kWG+kNL=0 p

AS

S

p

Page 11: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

11

Microstructured Fibers

Photonic Crystal Fibers(PCF)

Guided by photonic band-gapConfined within air

Effective indexConfined within material

Photonic Band-gap Fibers(PBF)

Microstructured Fibers(MF)

21Russel, Science 299, 358 (2003)

Variable MF Properties

Small effective modal area

Large nonlinearities!

Endlessly single-mode

Cladding index engineering

2 222.405eff co clV n n

Lattice pitch, not core diameter!

1500nm400nm 800nm

22G. Genty, Ph.D. Dissertation, (Helsinki University of Technology,2004).

Page 12: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

12

Variable MF Properties

Zero-dispersion wavelength (ZD) Core size

Dispersion relation Air-hole diameter Lattice

23Reeves et. al., Nature 424, 511 (2003) G. Genty, Ph.D. Dissertation

Comparison of MF Properties

Fiber\Properties SMF DSF DCF HNLF MF

Attenuation (dB/km) 0.2 0.2 0.45 0.7 80-240( )

Modal area (um2) 85 50 19 12 3

(1/W/km) 1.8 2.7 5 15 50

24

Much lower power is required to generate SC

Ability to tune L and NL properties

Page 13: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

13

First SC Generated using MF

Ranka, Windeler and Stentz (2000)

MF

PM

p = 790 nm

SMF

25Ranka et. al., Opt. Lett. 25, 25 (2000)

ZD=767nm

p

ZD = 767 nmt = 100 fsPp = 8 kWPav = 64 mWL = 75 cm

SC Generation in MF

Defining pumping modes

Anomalous

Normal Normal pumping

ersi

on (

ps/n

m/k

m)

0

-100

Anomalous pumping

Higher-orderS lit

26Wavelength

Dis

pe -200

-300

ZD

Solitons

Page 14: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

14

Anomalous pumping flow chart

Higher-order soliton formation

Soliton fission

Linear radiation wave (RW)

Stimulated Raman scattering (SSFS)

Later broadening

FWM + SRS for anomalous dispersion regime

SPM for normal dispersion regime

27wavelengthZD

p

Higher-order soliton: anomalous pumping

Effect of pump power

Wider, flatter

tP k

1.5kW

1.3 kW

N=40T

p = 850 nmZD = 806 nmt = 200 fs

L = 6 m

665.12

tPN peak

N=2

N=31220

jN

TTj

RW

28Ortigosa-Blanch et. al., JOSA-B 19, 2567 (2002)

SSFS

Page 15: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

15

Ultrafast 3rd-order nonlinear optics

Supercontinuum generation

Spectral compression

Brief history

Our approach

Numerical and experimental results

29

Summary

Nonlinear processes spectral broadening

Self-phase modulation

Supercontinuum generation

Higher-order solitons: SPM, dispersion, FWM, SSFS, soliton fission

A. M. Weiner, Ultrafast Optics (Wiley, 2009)

30J. K. Ranka et.al., Opt. Lett. 25, 25 (2000)

Page 16: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

16

Applications

Highly spectrally bright coherent sources

Optical metrology, linear/nonlinear spectroscopy

ps pulse trains

Narrow-band, CARS

Different compared to spectral filtering

Energy re-distribution

Ideally loss-less

31

Spectral narrowing/compression

Earliest experimental observation

R. H. Stolen and C. Lin, Phys. Rev. A 17, 1448 (1978)

Physical insight explained

S. A. Planas et.al, Opt. Lett. 18, 699 (1993).

M. Oberthaler and R. A. Höpfel, Appl. Phys. Lett. 63, 1017

(1993).

SPM

( )inst

t

t

Instantaneous frequency

Pulse chirp, SPM and dispersion

32

Down-chirped pulse spectral compression

Page 17: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

17

Prior works

Various fiber types and input chirp conditions

Compression ratio

PublicationsFiber type (sign of 2)

Input chirp

Compression ratio

Shen et.al, JLT 17, 452 (1999) SMF (-) + 2

Washburn et.al, OL 25, 445 (2000) SMF (+) - 3.5

Limpert et.al, APB 74, 191 (2002) Yb-doped (+) - 16

Andresen et.al, OL 30, 2025 (2005) PCF (~0) - 21

33

Sidorov-Biryukov et.al., OE 16, 2502 (2008) HNPCF (-) X 7

Fedotov et.al., OL 34, 662 (2009) HNPCF (-) X 6.5

Nishizawa et.al., OE 18, 11700 (2010) CPF (-) X 25.9

Andresen et.al., OL 36, 707 (2011) HNPCF (+) - 5

solitonschirp-free, below soliton Ppeak

Soliton effect for spectral compression

Comb-profile fiber

19 segments of SMF and DSF

Large compression ratio of 25.9

Excellent side-lobe suppression

34N. Nishizawa et.al., Opt. Express 18, 11700 (2010)

Page 18: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

18

Adiabatic soliton temporal compression

Dispersion-decreasing fiber

Fundamental soliton

60 times pulse compression

outout in

in

D

D

35C.-B. Huang et.al., Opt. Express 16, 2520 (2008) K. R. Tamura et.al., Opt. Lett. 26, 762 (2001)

Our idea

Simply run the adiabatic soliton temporal compression in reverse!

Adiabatic soliton spectral compression

Simple idea, never realized!

DDF dispersion-increasing fiber (DIF)

Short pulse (wide spectrum) in, broad pulse (narrow spectrum) out

36

Page 19: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

19

Split-step Fourier method

Input pulse envelope

Spectral envelope

222

22

ja aj a a

z t

0a t( , )

F.T.

0A ( ) Spectral envelope

Dispersed spectral envelope

Dispersed pulse envelope

0A ( , )

220

2D

zA z A j

( , ) ( , )exp[ ]

I.F.T.

a z t( )

37

Dispersed pulse envelope

Dispersed, SPM pulse envelope

Now do iterations all the way to the output

Da z t( , )

2

D SPM D Da z t a z t j a z t z , ( , ) ( , )exp[ ( , ) ]

Adiabatic soliton spectral compression

Dispersion-increasing fiber

Ideal compression ratio = Dout/Din=22.5

5

10x 10

4

1 km in lengthDin=0.60 ps/nm/km

Dout= 13.5 ps/nm/kmLoss: 0.4 dB/km= 3.5 (W km)-1

TR=3 fsCompression ratio=4.5

205 fs input pulseBW: 13 nm

38

1540

1550

1560

1570

1580

0

0.2

0.4

0.6

0.8

1

0

Wavelength (nm)z (km)

NLSEby SSF

Page 20: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

20

Large spectral compression ratio

Positively chirped 305 fs input pulse

Explanation

Stability

20

Time-domain

4x 10

5

Spectral-domain Compressionratio= 12.5

39

-50

0

50

0

0.2

0.4

0.6

0.8

1

0

10

Time (ps)z (km)

1540

1550

1560

1570

1580

0

0.2

0.4

0.6

0.8

1

0

2

Wavelength (nm)z (km)

Experiment: setup

1 km in lengthDin=0.60 ps/nm/km

Dout= 13.5 ps/nm/kmLoss: 0.4 dB/km= 3.5 (W km)-1

MLFL

EDFA

DIF

DCF2

DCF1

90% Intensitycross-correlator

10%

PM5%

95%OSA

TR=3 fs

40

0

1

Delay (ps)-0.8 -0.4 0 0.4 0.8

350 fs

Wavelength (nm)1540 1560 1580

0

1

13 nm

Page 21: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

21

Experiment: results

Spectral compressionratio=15.5

41

Intensitycross-correlation

Experiment: wavelength tuning

Control of input power

Soliton order N: 1~1.4

aliz

ed s

pec

tra

42

No

rma

Page 22: Large-scale laser spectral compression and its …...2012/03/26  · 2012/4/6 1 AMO Seminar, Department of Physics, National Tsing Hua University Chen-Bin Huang (黃承彬)Large-scale

2012/4/6

22

Summary

Adiabatic soliton propagation in a dispersion-increasing fiber is a

simple means in achieving spectral compression

Positively chirped pulse provides better spectral compression ratio Positively chirped pulse provides better spectral compression ratio

if dispersion ramp is too large

Experiments for the first time: 350 fs chirped pulse in a 1-km DIF

Spectral compression ratio of 15.5

Temporal broadening

43

30 nm of wavelength tuning ability

H.-P. Chuang and C.-B. Huang, Opt. Lett. 36, 2848 (2011)