lecture 15 stateestimation

Upload: kashyap-dubey

Post on 06-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Lecture 15 StateEstimation

    1/45

    Lecture 15

    Power system state estimation

    Kun Zhu2013-05-02

  • 8/17/2019 Lecture 15 StateEstimation

    2/45

    Outline

    • 

    State estimation

    -  What

    -  Why

    • Weighted Leaset Square (WLS) algorithms

    - Mathmatics

    - Concepts

    • Operation challenges

  • 8/17/2019 Lecture 15 StateEstimation

    3/45

    Course road map

  • 8/17/2019 Lecture 15 StateEstimation

    4/45

    What is state estimation? 

  • 8/17/2019 Lecture 15 StateEstimation

    5/45

    How could the operator know thesystem?

    62 MW

    6 MW

  • 8/17/2019 Lecture 15 StateEstimation

    6/45

    The truth is out here!

    Courtesy of ABB Ventryx

  • 8/17/2019 Lecture 15 StateEstimation

    7/45

    Power system states: x

    •  The power system states are those parameters that can beused to determine all other parameters of the power system

    • 

    Node voltage phasor

    -  Voltage magnitude V k-

     

    Phase angle !k•  Transformer turn ratios

    -  Turn ratio magnitude t kn-  Phase shift angle "kn

    • 

    Complex power flow

    -  Active power flow  P kn , Pn

    k-  Reactive power flow Qkn , Qnk

  • 8/17/2019 Lecture 15 StateEstimation

    8/45

    Analog measurements

    • 

    Voltage magnitude

    • Current flow magnitude & injection

    • Active & reactive power

    -  Branches & groups of branches

    -  Injection at buses

    In switches

    -  In zero impedance branches

    -  In branches of unknown impedance

    • Transformers

    -  Magnitude of turns ratio

    Phase shift angle of transformer• Synchronized phasors from

    Phasor Measurement Unit

  • 8/17/2019 Lecture 15 StateEstimation

    9/45

    Network topology processing

    Bus breaker model  Bus branch model 

  • 8/17/2019 Lecture 15 StateEstimation

    10/45

    Power system measurements: z 

    z=ztrue+e 

    z=ztrue+e 

    z=ztrue+e 

    ztrue: power system truthztrue=h(x)

    e: measurement errore=esystematic+erandom

  • 8/17/2019 Lecture 15 StateEstimation

    11/45

    Measurement model

    • How to determine the states (x) given a set ofmeasurements (z)?

     z  j  = h j (  x  ) + e j

    known unknown unknown 

    where

    -  x  is the true state vector [V 1 ,V 2 ,…V k , !1 , !2 ,… !k ]

    - z  j is the jth measurement- h j relates the jth measurement to states

    - e j  is the measurement error

  • 8/17/2019 Lecture 15 StateEstimation

    12/45

    State estimation process 

  • 8/17/2019 Lecture 15 StateEstimation

    13/45

    Why do we need state estimation?

  • 8/17/2019 Lecture 15 StateEstimation

    14/45

    Measurements correctness

    • Imperfections in-  Current & Voltage transformer

    Transducers

    •  A/D conversions

    • 

    Tuning-

     

    RTU/IED Data storage

    -  Rounding in calculations

    -  Communication links

    • Result in uncertainties in the measurements 

  • 8/17/2019 Lecture 15 StateEstimation

    15/45

    Measurement timeliness

    • Due to imperfections in SCADA system themeasurements will be collected at different pointsin time, time skew.

    • If several measurements are missing how long towait for them?

    • Fortunately, not a problem during quansi-steadystate.

    • 

    State estimation is used for off-line applications

    Pab 

    Pbc 

    Pcb  Pdc 

  • 8/17/2019 Lecture 15 StateEstimation

    16/45

    How can the states be estimated? 

  • 8/17/2019 Lecture 15 StateEstimation

    17/45

    Approaches

    • 

    Minimum variance method-  Minimize the sum of the squares of the weighted

    deviations of the state calculated based onmeasurements from the true state

    • Maximum likelihood method

    Maximizing the probability that the estimate equalsto the true state vector  x  

    • Weighted least square method (WLS)

    -  Minimize the sum of the weighted squares of theestimated measurements from the true state

    2

    1

    ( ( ))( )

    ii

    m

    i i

    i

     z h x J x

     R=

    !="

  • 8/17/2019 Lecture 15 StateEstimation

    18/45

    Least square (Wiki)

    • "Least squares" means that the overall solutionminimizes the sum of the squares of the errors madein the results of every single equation.

    • The method of least squares is a standard approach

    to the approximate solution of over determinedsystem, i.e., sets of equations in which there are moreequations than unknowns.

    • The most important application is in data fitting.

    • Carl Friedrich Gauss is credited with developing the

    fundamentals of the basis for least-squares analysis in1795.

  • 8/17/2019 Lecture 15 StateEstimation

    19/45

    WLS state estimation

    • Fred Schweppe introduced state estimation to powersystems in 1968.

    •  He defined the state estimator as “a data processingalgorithm for converting redundant meter readings

    and other available information into an estimate of thestate of an electric power system”.

    • Today, state estimation is an essential part in almostevery energy management system throughout theworld.

    Felix F. Wu, “Power system state estimation: a survey”,International Journal of Electrical Power & EnergySystems, Volume 12, Issue 2, April 1990, Pages 8

  • 8/17/2019 Lecture 15 StateEstimation

    20/45

    WLS state estimation model

     z  j  = h j (  x  ) + e jknown unknown unknown 

  • 8/17/2019 Lecture 15 StateEstimation

    21/45

    Error characteristics

    • The errors in the measurements is the sum ofseveral stochastic variables

    -  CT/VT, Transducer, RTU, Communication…

    • The errors is assumed as a Gaussian Distribution

    with known deviations

    -  Expected value E[e j ] =0

    -  Known deviation #  j • The errors are also assumed to be independent

    - E [eie j ] =0 

  • 8/17/2019 Lecture 15 StateEstimation

    22/45

    WLS objective function

    )]([)]([))((

    )(   1

    12

    2

     xh z  R xh z  xh z 

     x J   T 

    m

    i   i

    i !!=!

    =

    !

    =

    "#  

      wherei=1,2,…m

    Solution to above is iterative using newton methods 

     R = diag{!  12,!  2

    2,!  3

    2,...!  m

    2} =Cov(e) = E [e !e

    T ]

  • 8/17/2019 Lecture 15 StateEstimation

    23/45

    Newton iteration

    • At the minimum, the first-order optimality conditionswill have to be satisfied 

    0)]([)()()(   1 =!="

    "=

    !  xh z  R x H  x x J  x g    T 

    ])(

    [)( x

     xh x H 

    !

    != is the measurement Jacobian matrix 

  • 8/17/2019 Lecture 15 StateEstimation

    24/45

    0.....))(()()(   =+!+=   k k k   x x xG x g  x g 

    Newton iteration cont’d 

    • Expanding the g(x) into its Taylor series around statevector

    k  x

    )()(

    )(

    )(

      1   k k T k 

     x H  R x H  x

     x g 

     xG

      !=

    "

    "=

    where 

  • 8/17/2019 Lecture 15 StateEstimation

    25/45

    Newton iteration cont’d 

    • Neglecting the higher order terms leads to an iterativesolutions scheme know as the Gauss-Newton methodas : 

    )()]([  11   k k k k 

     x g  xG x x   !"=  "+

    k is the iteration index,is the solution vector at iteration k  k  x

  • 8/17/2019 Lecture 15 StateEstimation

    26/45

    Newton iteration IV 

    • Convergence

    • If not, update

    Go back to the previous step

    ! "#   )max(   k  x

    1

    1

    +=

    !+=+

    k k 

     x x x  k k k 

  • 8/17/2019 Lecture 15 StateEstimation

    27/45

    Why the measurements areweighted?

    ),,,(

    ),,,(

     ji jiij

     ji jiij

    vv f  Q

    vv f   P 

    ! ! 

    ! ! 

    =

    =

    voltage mag

    complex power flow

  • 8/17/2019 Lecture 15 StateEstimation

    28/45

    Weight 

    • Weight is introduced to emphasize the trustedmeasurement while de-emphasize the lesstrusted ones.

    • 

    WLS

    2

    1

    i

    iW 

    !  

    =

  • 8/17/2019 Lecture 15 StateEstimation

    29/45

    Observability

    • Based on system topologyand location ofmeasurements parts of the

    power system may beunobservable.

    • Unobservable parts of the

    system can be madeobservable via data

    exchange (CIM), pseudo

    measurements, etc…

  • 8/17/2019 Lecture 15 StateEstimation

    30/45

    Observability example

    Pij    =   f  (vi,v j ,! i,!  j  )

    Qij    =   f  (vi,v j ,! i,!  j  )

    voltage mag

    complex power flow

  • 8/17/2019 Lecture 15 StateEstimation

    31/45

    Observability criterion

    Necessary but not sufficient condition

    m: Number of measurements

    n: Number of states

    Is the system’s oservability guranteed in this

    case?

    nm !

  • 8/17/2019 Lecture 15 StateEstimation

    32/45

    Observability example II

    ),,,(),,,(

     ji jiij

     ji jiij

    vv f  Qvv f   P 

    ! ! 

    ! ! 

    =

    =

    voltage mag

    complex power flow

     

  • 8/17/2019 Lecture 15 StateEstimation

    33/45

    n of m measurements has to be independent

    ),,,(

    ),,,(

     ji jiij

     ji jiij

    vv f  Q

    vv f   P 

    ! ! 

    ! ! 

    =

    =

    voltage mag

    complex power flow

  • 8/17/2019 Lecture 15 StateEstimation

    34/45

    Summary of assumptions

    • Quansi-steady system

    -  No large variations of states over time

    -  State estimator will be suspended when largedisturbance happens.

    • Errors in measurements are

    -  Gaussian in nature with known deviation

    -  Independent

    • 

    Strong assumption-  Power system topology model is correct

  • 8/17/2019 Lecture 15 StateEstimation

    35/45

    Refinements

    • Refinements of method for State Estimation hasbeen the objective of much research.

    • Reduce the numerical calculation complexity in

    order to speed up the execution.- 3000 bus node in 1-2 seconds

    • Improve estimation robustness

    - less affected by erroneous input

  • 8/17/2019 Lecture 15 StateEstimation

    36/45

    Bad Data Detection 

  • 8/17/2019 Lecture 15 StateEstimation

    37/45

    Data quality

    • Analog measurement error

    • Parameter error

    • Topological error

    - Discrete measurement error

    - Model error

  • 8/17/2019 Lecture 15 StateEstimation

    38/45

    Bad Data Detection (Analog)

    • Putting the measurements up to a set oflogical test (Kirchhoff's laws) before they areinput into the State Estimator

    • Calculating J(x) and comparing with a pre-determined limit. If the value exceeds the limit,we can assume there is “something” wrong in themeasurements (Chi-square)

  • 8/17/2019 Lecture 15 StateEstimation

    39/45

    Bad Data Detection (Analog)

    • Once the system state has been identified, i.e. wehave an estimate of  x

    • We can use the estimate to calculate

    • If there is any residual in this calculation that “stands-out” this is an indication that particularmeasurement is incorrect

    )ˆ( xh z r iii   !

    =

  • 8/17/2019 Lecture 15 StateEstimation

    40/45

    Largest normalized residual 

    • The normalized residual follows the standardnormal distribution

    i

    i N 

    i

     xh z r 

    !  

    )ˆ("

    =

  • 8/17/2019 Lecture 15 StateEstimation

    41/45

    Limitations 

    • The critical measurements have zero residuals,hereby they can not be detected

    !

    !!!!!

    "

    #

    $

    $$$$$

    %

    &

    =

    t t t t t 

    0000

    ....

    .0...

    00000

    Sz  z  K  z  z r 

     Kz  z  R H  H  H  H  z   T T 

    ii

    =!=!=

    ==

    !

    )1(ˆ

    )(ˆ   1

  • 8/17/2019 Lecture 15 StateEstimation

    42/45

    Critical measurement example

    ),,,(),,,(

     ji jiij

     ji jiij

    vv f  Qvv f   P 

    ! ! 

    ! ! 

    =

    =

    voltage mag

    complex power flow

  • 8/17/2019 Lecture 15 StateEstimation

    43/45

    Parameter and structural processing 

    • 

    Similar theory can be applied

    iiiiii   e p f   z e xh z    +=!+=   )()(

  • 8/17/2019 Lecture 15 StateEstimation

    44/45

    State estimation functions

    1.  Bad data processing and elimination givenredundant measurements

    2. Topology processing:

    create bus/branch model (similar to Y matrix)

    3. Observebility analysis:

    all the states in the observable islands haveunique solutions

    4. Parameter and structural processing

  • 8/17/2019 Lecture 15 StateEstimation

    45/45

    Challenges

    •  Perception of the process is from themeasurements whose quality is, to largeextent, out of our control

    • 

    The quality of estimates relies on the inputwhose uncertainty is highly dependent on theICT infrastructure

    •  Power system model can contain errors