lecture 2

44
RECAP Small oscillations in Bound System Periodic motion Simple Harmonic Motion (Description, Examples of SHM) Example Problem 4.15 Example Problem 10.1

Upload: anand

Post on 02-Dec-2015

216 views

Category:

Documents


1 download

DESCRIPTION

sss

TRANSCRIPT

Page 1: Lecture 2

RECAP

• Small oscillations in Bound System

• Periodic motion • Simple Harmonic Motion (Description, Examples of SHM) • Example Problem 4.15

• Example Problem 10.1

Page 2: Lecture 2

Total energy (potential +kinetic) is a constant for an undamped oscillator

22 mv2

1kx

2

1KUE

Energy of an oscillator

Page 3: Lecture 2

Total Energy

tkAtAmE 22222 sin2

1cos

2

1

tAmtAmE 222222 sin2

1cos

2

1

222

2

1

2

1kAAmE Expected

Page 4: Lecture 2
Page 5: Lecture 2

Work with harmonic oscillator : Time average values of sin(wt) and sin2(wt) over one cycle of oscillation

0 1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

Sin

()

(radian)

0sin t

Area above the axis equals the area below the axis

Page 6: Lecture 2

0 1 2 3 4 5 60.0

0.2

0.4

0.6

0.8

1.0

(radian)

Sin

2(

)

2

1sin2 t

Mathematically

2

1)(sin

2sin

2

0

22

dttt

By symmetry

0cos t 2

1cos2 t

Page 7: Lecture 2

Question : What is the time averaged value of P.E. or K.E. over one period?

Page 8: Lecture 2

222

4

1sin

2

1. kAtkAEK

222

4

1cos

2

1. kAtkAEP

Similarly

.... EPEK

Page 9: Lecture 2

Next Topic

Page 10: Lecture 2

• Complex Numbers • Damped harmonic oscillator Equation of motion and solution Lightly damped Heavily damped Critically damped • Energy of the Damped Oscillator • Quality factor

Page 11: Lecture 2

Complex numbers are represented by z = x + iy

x is the real part and y is the imaginary part

Graphical representation of complex numbers

y

x

A

A cos

A sin

Imaginary axis

Real axis

z = x + iy = A (cos + i sin )

Page 12: Lecture 2

z = x + iy = A (cos + i sin )

z = A ei

y

x

A

xy - complex plane

vector of length A makes an angle with the real axis

Geometrically what is the meaning?

Page 13: Lecture 2

φ)tAcos(ωx 0

What is the use of complex numbers in harmonic oscillator?

Sol. of a SHM

φ)t(ω sinAωx 00

φ)tcos(ωAωx 0

2

0

To simplify the calculations

Page 14: Lecture 2

φ)tAcos(ωx 0

How to represent in complex form ?

φ)t sin(ωAy 0

Consider the imaginary component

φ)t sin(ωA i φ)t(ω cos A Z 00

φ)t(ω i 0e A Z

Calculation becomes simpler

Real part represents the equ. of SHM

Page 15: Lecture 2

φ)t(ω i 0e A Z

φ)t(ω i

00eiω A Z

φ)t(ω sinAωx 00 Real part

φ)t(ω i 2

00eω A Z

φ)tcos(ωAωx 0

2

0 Real part

Page 16: Lecture 2

Harmonic Oscillator : System is displaced from Equilibrium position (Experiences a restoring force)

Damping : Any effect that tends to reduce the amplitude of oscillations

Mechanics : Friction is one such damping effect

Page 17: Lecture 2

Damped harmonic oscillator

Consider the effect of friction on the harmonic oscillator Special form of friction force : Viscous force Forces arise : Object moves through a fluid

bvf

b depends on Shape of the mass Medium through which it is moving

Page 18: Lecture 2

Assuming a frictional force

Total force on the mass = Fspring+ f

m

bvkxF

0

0

2

0

xxx

xm

kx

m

bx

xbkxxm

m

b

m

k2

0

Page 19: Lecture 2

In complex form

02

0 xωxγx

How to solve ?

Companion equation

02

0 yωyγy

02

0 zωzγz

Page 20: Lecture 2

Solution will be of the form αtezz 0

Substituting the solution into the original equation:

02

0

2

0 )ωαγ(αez αt

02

0 zωzγz

Page 21: Lecture 2

2

0

2

ω4

γ

2

γα

Most general solution will be

B

A21 ezezz

zA and zB are constants 1 and 2 are the two roots

02

0

2

0 )ωαγ(αez αt

Page 22: Lecture 2

2

0

2

2142

ωγγ

α ,

B

A ezezz 21

Three possibilities

Page 23: Lecture 2

2

o

2

ω4

γ

2

o

2

ω4

γ

2

o

2

ω4

γ

Case (i)

Case (ii)

Case (iii)

Lightly damped and Oscillatory damped SHM

Heavily damped system

Critically damped system

Page 24: Lecture 2

2

o

2

ω4

γ Case (i)

Light Damping or Under Damping

22

4o

is imaginary

1

22

o iω2

γ

4

γωi

2

γα

2

0

2

2142

ωγγ

α ,

Page 25: Lecture 2

General solution :

2

121 ezezz

1

22

o iω2

γ

4

γωi

2

γα

tiω

2

tiω

1

γt/2 11 ezezez

Page 26: Lecture 2

tiω

2

tiω

1

γt/2 11 ezezez

Solution to the differential equation :

tCsinωtBcosωex 11

γt/2

Real part of the solution is

φtωA(t)cosφtωcosAex 112

γt

or

Solution is oscillatory, but with a reduced frequency and time varying (exponentially decaying) amplitude

Page 27: Lecture 2

4

γωω

22

o1

2

o

2

ω4

γ

01 ωω

φtωA(t)φtωAexγt

112 coscos

Page 28: Lecture 2

2

o

2

ω4

γ Case (ii)

Heavy Damping or Over Damping

2

o

2

ω4

γ is real

2

2

o

γ

4ω1

2

γ

2

γα

Both roots are negative

2

0

2

ω4

γ

2

γα

Page 29: Lecture 2

Represents non-oscillatory behavior

Actual displacement : Initial conditions

tαtα 21 BeAex

Real part of the solution is

tαtαezezz 21

21

Solution is

Page 30: Lecture 2

2

o

2

ω4

γ Case (iii) Critical Damping

tγ/2Cex

2

γα

Sol. is

2

0

2

ω4

γ

2

γα

Page 31: Lecture 2

tγ/2Cex

Sol. for 2nd order differential eqn. should have two independent constants which are to be fixed by the initial conditions

Sol. is

Solution is incomplete. Why?

Solution will be of the form

teBtAx )2/(

Page 32: Lecture 2
Page 33: Lecture 2

Energy considerations

Why the amplitude must decrease with time?

From work-energy theorem

tUtKtE

fW Work done by friction

frictionW0EtE

Page 34: Lecture 2

)(

)0(

tx

x

f fdxW

Work done by friction

t

fvdt0

t

dtbv0

2

0Frictional force dissipates energy

E(t) decreases with time

Page 35: Lecture 2

We can find how E(t) versus time

2

2

1..

dt

dxmEK

tAext

12 cos

)cos(2

)sin( 1

1

1

2

1

ttAevdt

dx t

Page 36: Lecture 2

)cos(2

)sin( 1

1

1

2

1

ttAevdt

dx t

)sin( 1

2

1

tAevdt

dx t

can be neglected

12ω

γ

1

2

o

2

ω4

γ 01 ωω

Page 37: Lecture 2

Therefore

)(sin2

1

2

11

222

1

2 teAmmvtK t

)(cos2

1

2

11

222 tekAkxtU t

)(cos)(sin2

11

2

1

22

1

2

tktmeA

tUtKtE

t

Page 38: Lecture 2

Light damping condition Again using

mk /2

0

2

1

tekAtE 2

2

1

)(cos)(sin2

11

2

1

22

1

2

tktmeA

tUtKtE

t

Page 39: Lecture 2

At t = 0 2

02

1kAE

In general teEtE 0

0 1 2 3 4 5 6 7

0

1

2

3

4

5E

time(s)

tekAtE 2

2

1

Page 40: Lecture 2

teEtE 0

00 368.0 E

e

EE

When 1

Max Energy

Characteristic time

b

m

1

Time constant (τ) : The decay is characterized by the time required for the energy to drop to 1/e times its initial value :

Page 41: Lecture 2

Quality factor

The damping can be specified by a dimensionless parameter Q

radianperdissipatedenergy

oscillatortheinstoredenergyQ

Rate of change of energy γEeγEdt

dE γt

0

Energy dissipated in a time T is γETTdt

dE

E(t)

Page 42: Lecture 2

Time to oscillate thru 2 radians 1

2

Time to oscillate thru one radian 1

1

Energy dissipated per radian is

γE

γ

ω

γ

ω

ω

γE

EQ 01

1

Q≫1 : Lightly damped

Q≪1 : Heavily damped

Page 43: Lecture 2

A3 220.00 157.

A#3/Bb

3 233.08 148.

B3 246.94 140.

C4 261.63 132.

C#4/Db

4 277.18 124.

D4 293.66 117.

D#4/Eb

4 311.13 111.

E4 329.63 105.

F4 349.23 98.8

F#4/Gb

4 369.99 93.2

G4 392.00 88.0

G#4/Ab

4 415.30 83.1

A4 440.00

Middle C

Note Freq(Hz) Musical note

A

A musician’s tuning fork rings at A above middle C, 440 Hz. A sound level meter indicates that the sound intensity decreases by a factor of 5 in 4 s. What is the Q of the tuning fork?

Example 10.2

Page 44: Lecture 2

54

0

0

0 eE

eE54 e 14.0

4

5ln

5ln4

s

700

4.0

44021

Q

Sound Intensity α Energy of oscillation

γt

0eEtE