lecture 4: stratospheric transport - gfd-dennou2010/11/16  · lecture 4: stratospheric transport...

55
Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport rates: Age (iii) Stratospheric trace gases: Global structure and tracer-tracer relationships FDEPS 2010 Alan Plumb, MIT Nov 2010

Upload: others

Post on 25-Apr-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

Lecture 4:

Stratospheric Transport

(i) Quantifying transport rates: Effective diffusivity

(ii) Quantifying transport rates: Age

(iii) Stratospheric trace gases:Global structure and tracer-tracer relationships

FDEPS 2010

Alan Plumb, MIT

Nov 2010

Page 2: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

stirring diabatic motion

gfdsemi
タイプライターテキスト
Plumb et al (2007)
Page 3: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

(i) Quantifying transport rates:

Effective diffusivity

Page 4: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

A(Q,t)

“Effective diffusivity”

[Nakamura, J Atmos Sci, 1996]

∂q

∂t+ u ⋅ ∇q = κ∇2q

X = ∮X dl|∇q |

/ ∮ dl|∇q |

∂q

∂t=

∂Q

∂t A

u ⋅ ∇q = 0

κ∇2q = ∂A∂Q

−1∂∂Q

κ ∂A∂Q

|∇q |2

∂Q

∂t= 1

a2 cos φe

∂∂φe

Keff cos φe∂Q

∂φe

K eff = κLe

2

4π2a2 cos2φe

= κLe

2

L2φe

L eQ = ∮|∇q | dl ∮ dl|∇q |

diffusion equation

effective diffusivity

equiivalent length

Page 5: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

A(Q,t)

“Effective diffusivity”

[Nakamura, J Atmos Sci, 1996]

∂q

∂t+ u ⋅ ∇q = κ∇2q

X = ∮X dl|∇q |

/ ∮ dl|∇q |

∂q

∂t=

∂Q

∂t A

u ⋅ ∇q = 0

κ∇2q = ∂A∂Q

−1∂∂Q

κ ∂A∂Q

|∇q |2

∂Q

∂t= 1

a2 cos φe

∂∂φe

Keff cos φe∂Q

∂φe

K eff = κLe

2

4π2a2 cos2φe

= κLe

2

L2φe

L eQ = ∮|∇q | dl ∮ dl|∇q |

diffusion equation

effective diffusivity

equiivalent length

Page 6: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

color: Keff

contours: zonal wind

[Haynes & Shuckburgh, J Atmos Sci,2002]

Page 7: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

vortexmidlatitude

“surf zone”

tropics

gfdsemi
タイプライターテキスト
Plumb et al (2007)
Page 8: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport
gfdsemi
タイプライターテキスト
Haynes & Shuckburgh, J Atmos Sci, 2002
Page 9: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

vortex

gfdsemi
タイプライターテキスト
Haynes & Shuckburgh, J Atmos Sci, 2002
Page 10: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

vortex

midlatitude “surf zone”

gfdsemi
タイプライターテキスト
Haynes & Shuckburgh, J Atmos Sci, 2002
Page 11: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

vortex

midlatitude “surf zone”tropics

gfdsemi
タイプライターテキスト
Haynes & Shuckburgh, J Atmos Sci, 2002
Page 12: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

vortex

midlatitude “surf zone”tropics

summer

gfdsemi
タイプライターテキスト
Haynes & Shuckburgh, J Atmos Sci, 2002
Page 13: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

In “surf zone”,

Keff ∼ 3 × 106m2s−1

mixing time across L = 3000km:

τmix ∼ L2

Keff∼

3 × 1062

3 × 106∼ 3 × 106 s ∼ 35 days

Time scale for residual advection across surf zone (v̄∗ ∼ 0. 1ms−1):

τadv ∼ Lv̄∗

∼ 3 × 107s ∼ 1 year

τmix ≪ τadv

Stirring and mixing is the dominant poleward transport process

Transport rates

Page 14: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

tropopause

gfdsemi
タイプライターテキスト
Plumb et al (2007)
Page 15: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport
gfdsemi
タイプライターテキスト
Plumb et al (2007)
Page 16: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

tropopause

entrainment across edges into surf zone (and some detrainment)

gfdsemi
タイプライターテキスト
Plumb et al (2007)
Page 17: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

(ii) Quantifying transport rates: Age

a stratospheric clock

Page 18: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

tropopause

Γ(λ,γ,z)

Γ=0

conserved tracer:∂q

∂t+ u ⋅ ∇q − κ∇ 2q =

∂q

∂t+ Tq = 0

age: ∂Γ∂t

+ TΓ = 1

gfdsemi
タイプライターテキスト
Plumb et al (2007)
Page 19: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

linearly growing tracer q0t = Q0 + Λt

→ in equilibrium qϕ,z, t = Qϕ,z + Λt

∂q

∂t+ Tq = Λ + TQ = 0

→ Qϕ,z = −T−1Λ ; Qϕ0,z0 = Q0

→ Q − Q0 = − ΛΓ

→ qϕ,z, t = Q0 + Λt − Γ

= q0t − Γ

SP Equator NP

100 10 1 0.1

hP

a

4

4.5

3

Modeled age (annual mean; yrs)

∂Γ∂t

+ TΓ = 1

steady equilibrium: TΓ = 1 → Γϕ, z = T−11 ; Γ0 = 0

Theoretical (ideal) age:

Age from observed tracers:

Page 20: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

Age from observed tracers:

Andrews et al,

J.Geophys Res, 2001

Surface values

balloon measurements

Lines are smoothed surface values

delayed by 4, 4.5, 5 years

linearly growing tracer q0t = Q0 + Λt

→ in equilibrium qϕ,z, t = Qϕ,z + Λt

∂q

∂t+ Tq = Λ + TQ = 0

→ Qϕ,z = −T−1Λ ; Qϕ0,z0 = Q0

→ Q − Q0 = − ΛΓ

→ qϕ,z, t = Q0 + Λt − Γ

= q0t − Γ

Page 21: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

CO2 – derived age (yr)

z

[Engel et al, Nature Geoscience,

2008]

Page 22: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

Global flux of age

∂Γ∂t

+ TΓ = ∂Γ∂t

+ 1ρ ∇ ⋅ F Γ = 1

in equilibrium 1ρ ∇ ⋅ F Γ = 1

Integrate over volume above surface θ = Θ :

→ ∫∫∫θ>Θ

∇ ⋅ FΓ dV = ∫∫∫θ>Θ0

ρ dV = MΘ

∫∫∫θ>Θ

∇ ⋅ FΓ dV = ∫∫θ=Θ

FΓ ⋅ n dA

→ ∫∫θ=Θ

FΓ ⋅ n dA = MΘ

→ so we know the net flux of age through any surface ifwe know the mass above that surface (which we do if weknow p along the surface)

θ

YOUNG

OLD

Z

WINTER

POLESUMMER

POLE

Page 23: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

→ ∫∫θ=Θ

FΓ ⋅ n dA = MΘ

FΓ = ρwdΓ

→ ∫∫θ=Θ

FΓ ⋅ n dA = ∫∫θ=Θ

ρwdΓdA

= ∫∫up

ρwdΓdA + ∫∫down

ρwdΓdA

= −M ⟨Γ⟩down− ⟨Γ⟩up

If diabatic diffusion is negligible (Kzz weak in stratosphere),flux through θ surface is purely advective:

M = ∫∫up

ρwddA = − ∫∫down

ρwddA

⟨Γ⟩down= − 1

M∫∫

down

ρwdΓdA ; ⟨Γ⟩up= 1M

∫∫up

ρwdΓdA

where

overturning mass flux

ΔΓΘ = ⟨Γ⟩down

− ⟨Γ⟩up

=MΘMΘ

YOUNG

OLD

Z

WINTER

POLESUMMER

POLE

Page 24: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

[Garcia & Randel, J Atmos Sci, 2008]

Age trends from WACCM

age (

yr)

Page 25: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

[Engel et al, Nature Geoscience, 2008]

Page 26: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

(iii) Stratospheric trace gases:

Global structure and tracer-tracer relationships

Page 27: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

HALOE data

[Russell et al, J Geophys Res, 1993]

CH4

tropospheric source stratospheric sink

HF

stratospheric source tropospheric sink

Page 28: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

Similar isopleth shapes,

despite different locations of

sources and sinks

CH4 : HF comparison

(HALOE data)

gfdsemi
タイプライターテキスト
Plumb Haynes & Shuckburgh, J Atmos Sci,2002et al (2007)
Page 29: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

In situ data

(SOLVE experiment 2000)

Ertel PV, 480K

Compact tracer-tracer relationships

gfdsemi
タイプライターテキスト
Plumb et al (2002)
Page 30: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

[Plumb, Rev Geophys, 2007]

In situ balloon data (LACE, Elkins/Moore)

CFC-11 : N2O

Different relationships in different regions

Page 31: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

In situ balloon data (LACE, Elkins/Moore)

CFC-11 : N2O

[Plumb, Rev Geophys, 2007]

vortex

middle latitudes

tropics

Different relationships in different regions

Page 32: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

Space-based data (ATMOS)

CH4 : N2O

Michelsen et al, J Geophys Res, 1998]

Different relationships in different regions

Page 33: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

Space-based data (ATMOS)

CH4 : N2O

Michelsen et al, J Geophys Res, 1998]

Different relationships in different regions

vortex

middle latitudes

tropics

Page 34: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

[Plumb, Rev Geophys, 2007]

Space-based data (ATMOS)

CH4 : N2O

Michelsen et al, J Geophys Res, 1998]

In situ balloon data (LACE, Elkins/Moore)

CFC-11 : N2O

Different relationships in different regions

Page 35: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

0 100 200 3000

50

100

150

200

250S Hem

0 100 200 300N2O (ppb)

0

50

100

150

200

250

CF

C-1

1 (

pp

t)

Tropics

0 100 200 300N2O (ppb)

0

50

100

150

200

250global

P(N2O,CFC-11) 22 Jan 2000

0 100 200 3000

50

100

150

200

250

CF

C-1

1 (

pp

t)

N Hem

from chemical transport model

[Plumb et al., J Geophys Res, 2002]

vortex midlatitudes

tropics

Page 36: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

Theory: τmix ≪ τadv

∂χ∂t

+ u ⋅ ∇χ − κ∇ 2χ = S

∂χ∂t

+ ud ⋅ ∇χ + θ̇∂χ∂θ

+Hχ = Stracer mixing ratio sources and sinks

[Plumb, Rev Geophys, 2007]

Page 37: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

Theory: τmix ≪ τadv

∂χ∂t

+ u ⋅ ∇χ − κ∇ 2χ = S

∂χ∂t

+ ud ⋅ ∇χ + θ̇∂χ∂θ

+Hχ = S

slow diabatic transport rapid isentropic stirring / mixing

gfdsemi
タイプライターテキスト
Plumb (2007)
Page 38: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

Theory: τmix ≪ τadv

∂χ∂t

+ u ⋅ ∇χ − κ∇ 2χ = S

∂χ∂t

+ ud ⋅ ∇χ + θ̇∂χ∂θ

+Hχ = S

∂σ∂t

+ ∇ ⋅ σud +∂∂θ σθ̇ = 0

σ = −g −1 ∂p

∂θ is density in θ − coordinates

gfdsemi
タイプライターテキスト
Plumb (2007)
Page 39: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

Theory: τmix ≪ τadv

∂χ∂t

+ u ⋅ ∇χ − κ∇ 2χ = S

∂χ∂t

+ ud ⋅ ∇χ + θ̇∂χ∂θ

+Hχ = S

Properties ofH :

● only acts on isentropic gradients: Hfθ, t = 0

● it is linear:Hχ + φ = Hχ +Hφ and Hfθ, tχ = fθ, tHχ● redistribution operator (does not create or destroy tracer)

∫∫σHχ dA = boundary fluxes

● it is uniquely invertible; solution to

Hχ = X

subject to zero net boundary flux, has solution

χ = H−1X

(solvability condition:

X̄ = ∫∫σ dA−1

∫∫σX dA = 0

gfdsemi
タイプライターテキスト
Plumb (2007)
Page 40: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

Theory: τmix ≪ τadv

Tmixing ≪ Tdiabatic,T t ≪ Tchem

∂χ∂t

+ ud ⋅ ∇χ + θ̇∂χ∂θ +Hχ = S

θ̇ = θ̇0 + θ̇1 ,

∂∂t

= ∂∂t

+ ∂∂τ

S = 2S0

χ = χ0 + χ1 + 2χ2 +. . . . . . . . . . . . .

Page 41: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

∂χ∂t

+ ud ⋅ ∇χ + θ̇∂χ∂θ +Hχ = S

At leading order ε0,

Hχ 0 = 0

→ χ 0 = χ0θ, t

→ complete isentropic homogenization

χ0n

= χ0nθ, t → Ωχ0

1,χ0

2, t = 0 , triviallyfχ0

1, χ0

2, t = 0

Page 42: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

∂χ∂t

+ ud ⋅ ∇χ + θ̇∂χ∂θ +Hχ = S

At order ε1,

Hχ1 = S −∂χ0

∂t− ud ⋅ ∇χ0 − θ̇

∂χ0

∂θ

solvability condition

∂χ0

∂t+ θ̇

∂χ0

∂θ = S̄ + 1τe

χT − χ0 ,

where τe = ∫∫σ dA / ∮σV dl

entrainment velocitytime for entrained air to fill surf zone

mixing ratio of entrained tropical air

advection by average vertical motion

Page 43: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

∂χ∂t

+ ud ⋅ ∇χ + θ̇∂χ∂θ +Hχ = S

Hχ1 = S −∂χ0

∂t− ud ⋅ ∇χ0 − θ̇

∂χ0

∂θ

distribution of entrained air

χ1 = H−1S ′ − θ̇′∂χ0

∂θ + τeφσV S̄ − θ̇

∂χ0

∂θ− ∂χ0

∂t

if χ0 steady, and S̄ negligible,

χ1n

= −ζ∂χ 0

n

∂θ, where

ζ = H−1θ̇′ − θ̇τeφσV

ζλ,ϕ, t is the vertical displacement of tracer isoplethsit is purely kinematic: same for all tracers

At order ε1,

Page 44: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

χ1n

= −ζ∂χ0

n

∂θ , where

ζ = H−1θ̇′ − θ̇τeφσV

→ all (long-lived) tracrs have the same isopleth shapes→ “equilibrium slopes” [Ehhalt et al. 1983;

Mahlman et al, 1986; Holton 1986]

In tracer-tracer space:

The O departure from the canonical curve fχ01

,χ02

, t = 0 is

Δ = χ11

,χ12

⋅∂χ0

2

∂θ,−

∂χ01

∂θ∂χ0

1

∂θ

2

+∂χ0

1

∂θ

2 −1/2

= − ζ∂χ0

1

∂θ + ζ∂χ0

2

∂θ ⋅∂χ0

2

∂θ , −∂χ0

1

∂θ∂χ 0

1

∂θ

2

+∂χ0

1

∂θ

2 −1/2

= 0

→ the O correction lies along the canonical curve, so

fχ1 ,χ2, t = 0

remains valid at this order: non-trivial compact relationships

χ(1)

χ(2)

χ f

χ1

f (χ

, t

) =0

(1)

(2)

gfdsemi
タイプライターテキスト
Plumb (2007)
Page 45: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

T

E

χ (1)

χ

e

t

TROPICS EXTRATROPICS

θ

latitude

e t

tracer spacephysical space

Creation of tropical relationships

2 tropospheric source gases, destroyed in tropical stratosphere

tracer 2 has shorter lifetime than tracer 1 � tracer-tracer relation in

tropics is curved as shown (T)

t e

Increasing

altitude

χ

χ(1)

χ(2)

z,θ

TROPICS

Page 46: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

T

E

χ (1)

χ

e

t

TROPICS EXTRATROPICS

θ

latitude

e t

tracer spacephysical space

Creation of tropical relationships

2 tropospheric source gases, destroyed in tropical stratosphere

tracer 2 has shorter lifetime than tracer 1 � tracer-tracer relation in

tropics is curved as shown (T)

t e

Increasing

altitude

χ(1)

χ(2)

T

Increasing

altitude

Page 47: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

T

E

χ (1)

χ

e

t

TROPICS EXTRATROPICS

θ

latitude

e t

tracer spacephysical space

Creation of midlatitude relationships

t e

χ(1)

χ(2)

T

t

e

midlatitude air at e is

a mixture of tropical air from higher

altitudes

M

tropical air entrained and

mixed into midlatitudes

Page 48: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

T

E

χ (1)

χ

e

t

TROPICS EXTRATROPICS

θ

latitude

e t

tracer spacephysical space

Creation of midlatitude relationships

tropical air entrained and

mixed into midlatitudes

midlatitude air at e is

a mixture of tropical air from higher

altitudes

midlatitude curve lies on concave side of tropical curve

t e

χ(1)

χ(2)

T

t

e

M

Page 49: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

TE

χ (1)

χ

TROPICS EXTRATROPICS

θ

latitude

tracer spacephysical space

VORTEX

V

Creation of vortex relationshipsmidlatitude air entrained

and mixed into vortex

vortex curve lies on concave side of midlatitude curve

χ(1)

χ(2)

T

M

V

vortex air is a mixture of

midlatitude air from higher altitudes

Page 50: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

0 100 200 3000

50

100

150

200

250S Hem

0 100 200 300N2O (ppb)

0

50

100

150

200

250

CF

C-1

1 (

pp

t)

Tropics

0 100 200 300N2O (ppb)

0

50

100

150

200

250global

P(N2O,CFC-11) 22 Jan 2000

0 100 200 3000

50

100

150

200

250

CF

C-1

1 (

pp

t)

N Hem

from chemical transport model

[Plumb et al., J Geophys Res, 2002]

T

M

V

Page 51: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

[Plumb, Rev Geophys, 2007]

Space-based data (ATMOS)

CH4 : N2O

Michelsen et al, J Geophys Res, 1998]

In situ balloon data (LACE, Elkins/Moore)

CFC-11 : N2O

Different relationships in different regions

V

TM

M

T

V

Page 52: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

HALOE data

[Russell et al, J Geophys Res, 1993]

CH4

tropospheric source stratospheric sink

HF

stratospheric source tropospheric sink

Page 53: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

HALOE data

[Russell et al, J Geophys Res, 1993]

CH4

tropospheric source stratospheric sink

HF

stratospheric source tropospheric sink

TR

OP

ICS

MID

LA

TIT

UD

ES

VO

RT

EX

TR

OP

ICS

MID

LA

TIT

UD

ES

VO

RT

EX

Page 54: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

References● Andrews et al, 2001: Mean ages of stratospheric air derived from in

situ observations of CO2, CH4, and N2O, J.Geophys Res, 106, 32295-32314

● Engel et al, 2008: Age of stratospheric air unchanged within uncertainties over the past 30 years,

● N. Geosci., 14, 28-31● Garcia and Randel, 2008: Acceleration of the Brewer?Dobson

Circulation due to Increases in Greenhouse Gases, J. Atmos. Sci., 65, 2731-2739.

● Haynes and Shuckburgh, 2002: Effective diffusivity as a diagnostic of atmospherictransport 1. Stratosphere, J. Atmos. Sci., 105, 22777-22794.

● Michelsen et al, 1998: Correlations of stratospheric abundances of NOy, 03, NO, and CH 4 derived from ATMOS measurements, J. Geophys. Res., 03, 28347-28359.

Page 55: Lecture 4: Stratospheric Transport - GFD-DENNOU2010/11/16  · Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport

References● Russell et al,1993: THE HALOGEN OCCULTATION EXPERIMENT, J.

Geophys. Res., 98, 10777-10797● Plumb et al., 2002: Global tracer modeling during SOLVE: High-

latitude descent and mixing, J. Geophys. Res., 108, 14 pp.● Plumb, R. A., 2007: Tracer interrelationships in the stratosphere, Rev.

Geophys., 45, 33 pp.● NCEP,

http://www.ncep.noaa.gov/