lecture 8 - department of computer sciencemisha/spring17a/09.pdfpoisson problem min | โˆ’ |2 compute...

13
Lecture 8 Introduction to Geometry Processing Spring 2017 Johns Hopkins University

Upload: others

Post on 28-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Lecture 8

    Introduction to Geometry Processing

    Spring 2017

    Johns Hopkins University

  • ๐ต๐‘–

    ๐ต๐‘—

    ๐›ผ

    ๐›ฝ

    ๐‘ก๐ด

    ๐‘ก๐ต

    ๐ต๐‘–

    ๐ต๐‘—

    เถฑ๐‘‡

    ๐ต๐‘–๐ต๐‘— =๐‘ก๐ด + ๐‘ก๐ต

    12

    เถฑ๐‘‡

    ๐›ป๐ต๐‘– , ๐›ป๐ต๐‘— = โˆ’cot ๐›ผ + cot(๐›ฝ)

    2

  • เถฑ๐‘‡

    ๐ต๐‘–2 =

    ๐‘ก๐‘˜โˆˆ๐‘(๐‘–)

    |๐‘ก๐‘˜|

    6

    เถฑ๐‘‡

    ๐›ป๐ต๐‘– , ๐›ป๐ต๐‘– =

    ๐›ผ๐‘˜โˆˆ๐œ•๐‘(๐‘–)

    cot ๐›ผ๐‘˜2

    ๐‘ก1๐‘ก2

    ๐‘ก3๐‘ก4

    ๐‘ก5

    ๐›ผ1

    ๐›ผ2

    ๐›ผ3๐›ผ4

    ๐›ผ5๐›ผ6

    ๐›ผ7๐›ผ8

    ๐›ผ9

    ๐›ผ10

    ๐ต๐‘–

  • Right triangle parametrization

    ๐‘ˆ โŠ‚ ๐‘…2

    ๐‘ก โŠ‚ ๐‘…3

    ๐‘ฃ0

    ๐‘ฃ1

    ๐‘ฃ2

    (0,0) (1,0)

    (0,1)

    ๐œ‘๐‘ก

    ๐œ‘๐‘ก 0,0 = ๐‘ฃ0

    ๐œ‘๐‘ก 1,0 = ๐‘ฃ1

    ๐œ‘๐‘ก 0,1 = ๐‘ฃ2

    ๐œ‘๐‘ก: ๐‘ˆ โŠ‚ ๐‘…2 โ†’ ๐‘ก โŠ‚ ๐‘…3

    Exercise:

    (1) Given ๐‘ž = ๐‘ž๐‘ฅ, ๐‘ž๐‘ฆ โˆˆ ๐‘ˆ compute ๐œ‘๐‘ก ๐‘ž .

    (2) Given ๐‘ = ๐‘๐‘ฅ, ๐‘๐‘ฆ , ๐‘๐‘ง โˆˆ ๐‘ก compute ๐œ‘๐‘กโˆ’1 ๐‘ .

    (3) Given ๐‘ฃ = ๐‘ฃ๐‘ฅ, ๐‘ฃ๐‘ฆ โˆˆ ๐‘‡๐‘ˆ compute ๐‘‘๐œ‘๐‘ก ๐‘ฃ .

    (4) Given ๐‘ค = ๐‘ค๐‘ฅ, ๐‘ค๐‘ฆ , ๐‘ค๐‘ง โˆˆ ๐‘‡๐‘ก compute ๐‘‘๐œ‘๐‘กโˆ’1 ๐‘ค .

    ๐‘‘๐œ‘๐‘ก: ๐‘‡๐‘ˆ โŠ‚ ๐‘…2 โ†’ ๐‘‡๐‘ก โŠ‚ ๐‘…3

    ๐‘‘๐œ‘๐‘ก10

    = ๐‘ฃ1 โˆ’ ๐‘ฃ0

    ๐‘‘๐œ‘๐‘ก01

    = ๐‘ฃ2 โˆ’ ๐‘ฃ0

  • Right triangle parametrization

    ๐‘ˆ โŠ‚ ๐‘…2

    ๐‘ก โŠ‚ ๐‘…3

    ๐‘ฃ0

    ๐‘ฃ1

    ๐‘ฃ2

    (0,0) (1,0)

    (0,1)

    ๐œ‘๐‘ก

    ๐œ‘๐‘ก 0,0 = ๐‘ฃ0

    ๐œ‘๐‘ก 1,0 = ๐‘ฃ1

    ๐œ‘๐‘ก 0,1 = ๐‘ฃ2

    ๐œ‘๐‘ก: ๐‘ˆ โŠ‚ ๐‘…2 โ†’ ๐‘ก โŠ‚ ๐‘…3

    Definition: The metric tensor on the right unit triangle induced by the triangle embedding is given by,

    ๐‘‘๐œ‘๐‘ก: ๐‘‡๐‘ˆ โŠ‚ ๐‘…2 โ†’ ๐‘‡๐‘ก โŠ‚ ๐‘…3

    ๐‘‘๐œ‘๐‘ก10

    = ๐‘ฃ1 โˆ’ ๐‘ฃ0

    ๐‘‘๐œ‘๐‘ก01

    = ๐‘ฃ2 โˆ’ ๐‘ฃ0

    ๐‘”๐‘ก = ๐‘‘๐œ‘๐‘กโŠค๐‘‘๐œ‘๐‘ก

  • Right triangle parametrization

    ๐‘ˆ โŠ‚ ๐‘…2

    ๐‘ก โŠ‚ ๐‘…3

    ๐‘ฃ0

    ๐‘ฃ1

    ๐‘ฃ2

    (0,0) (1,0)

    (0,1)

    ๐œ‘๐‘ก

    Some properties of ๐‘”๐‘ก = ๐‘‘๐œ‘๐‘กโŠค๐‘‘๐œ‘๐‘ก :

    โ€ข ๐‘ก =1

    2det ๐‘”๐‘ก

    โ€ข ๐‘ฃ1 โˆ’ ๐‘ฃ02 =

    10

    ,10 ๐‘”๐‘ก

    =10

    โŠค

    ๐‘”๐‘ก10

    โ€ข ๐‘ฃ2 โˆ’ ๐‘ฃ02 =

    01

    ,01 ๐‘”๐‘ก

    =01

    โŠค

    ๐‘”๐‘ก01

    โ€ข ๐‘ฃ2 โˆ’ ๐‘ฃ12 =

    โˆ’11

    ,โˆ’11 ๐‘”๐‘ก

    =โˆ’11

    โŠค

    ๐‘”๐‘กโˆ’11

  • Right triangle parametrization

    ๐‘ฃ0

    ๐‘ฃ1

    ๐‘ฃ2

    (0,0) (1,0)

    (0,1)

    ๐œ‘๐‘ก

    Exercise:

    Prove,

    โ€ข ๐›ป๐ต๐‘ฃ๐‘– โ‰” ๐‘‘๐œ‘๐‘กโˆ’1 ๐›ป๐ต๐‘ฃ๐‘– = ๐‘”๐‘ก

    โˆ’1๐‘’๐‘–

    โ€ข ๐›ป๐ต๐‘ฃ๐‘– , ๐›ป๐ต๐‘ฃ๐‘— = ๐›ป๐ต๐‘ฃ๐‘– , ๐›ป๐ต๐‘ฃ๐‘— ๐‘”๐‘ก = ๐‘’๐‘–โŠค๐‘”๐‘ก

    โˆ’1๐‘’๐‘—

    ๐›ป๐ต๐‘ฃ0

    ๐›ป๐ต๐‘ฃ1

    ๐›ป๐ต๐‘ฃ2

    ๐‘’0 =โˆ’1โˆ’1

    ๐‘’1 =10

    ๐‘’2 =10

  • Right triangle parametrization

    ๐‘ˆ โŠ‚ ๐‘…2

    ๐‘ก โŠ‚ ๐‘…3

    ๐‘ฃ0

    ๐‘ฃ1

    ๐‘ฃ2

    (0,0) (1,0)

    (0,1)

    ๐œ‘๐‘ก

    เถฑ๐‘ก

    โŒฉ๐›ป๐ต๐‘ฃ๐‘– , ๐›ป๐ต๐‘ฃ๐‘— โŒช = ๐‘’๐‘–โŠค๐‘”๐‘ก

    โˆ’1๐‘’๐‘—det ๐‘”๐‘ก2

    เถฑ๐‘ก

    ๐ต๐‘ฃ๐‘– ๐ต๐‘ฃ๐‘— =det ๐‘”๐‘ก24

    เถฑ๐‘ก

    ๐ต๐‘ฃ๐‘– ๐ต๐‘ฃ๐‘– =det ๐‘”๐‘ก12

  • ๐‘€๐‘–๐‘— = เถฑ๐‘‡

    ๐ต๐‘–๐ต๐‘— โ†’ Mass matrix

    ๐‘†๐‘–๐‘— = เถฑ๐‘‡

    ๐›ป๐ต๐‘– , ๐›ป๐ต๐‘— โ†’ Stiffness matrix

    Exersice:

    Let 1, be the vector of ones.

    (a) Prove 1โŠค๐‘€1 = ฯƒ๐‘กโˆˆ๐‘‡ ๐‘ก .

    (b) Prove ๐‘†1 = 0(c) Whats the null space of ๐‘†?

  • Filtering

    min๐‘“

    |๐‘“ โˆ’ ๐‘”| 2 + ๐›ผ ๐›ป๐‘“ โˆ’ ๐›ฝ๐›ป๐‘”2

    Given, ๐‘” = ฯƒ๐‘– ๐‘”๐‘–๐ต๐‘–, find ๐‘“ = ฯƒ๐‘– ๐‘“๐‘–๐ต๐‘–, that minimize:

    ๐‘“ โˆ’ ๐‘”2: = เถฑ

    ๐‘‡

    (๐‘“ โˆ’ ๐‘”)2 = ๐‘“ โˆ’ ๐‘” โŠค๐‘€ ๐‘“ โˆ’ ๐‘”

    ๐›ป๐‘“ โˆ’ ๐›ฝ๐›ป๐‘”2: = เถฑ

    ๐‘‡

    ๐›ป๐‘“ โˆ’ ๐›ฝ๐›ป๐‘”, ๐›ป๐‘“ โˆ’ ๐›ฝ๐›ป๐‘” = ( ๐‘“ โˆ’ ๐›ฝ[๐‘”])โŠค๐‘†( ๐‘“ โˆ’ ๐›ฝ[๐‘”])

    min[๐‘“]

    ๐‘“ โŠค ๐‘€ + ๐›ผ๐‘† ๐‘“ โˆ’ ๐‘“ โŠค(๐‘€ + ๐›ผ๐›ฝ๐‘†)[๐‘”]

    ๐‘“ = ๐‘€ + ๐›ผ๐‘† โˆ’1(๐‘€ + ๐›ผ๐›ฝ๐‘†)[๐‘”]

  • Example

    ๐›ผ = 0, ๐›ฝ = 0 ๐›ผ = 10โˆ’4, ๐›ฝ = 0 ๐›ผ = 10โˆ’4, ๐›ฝ = 2

  • Poisson Problem

    min๐‘“

    |๐›ป๐‘“ โˆ’ ๐‘ฃ| 2

    Compute the closest gradient field to a vector field ๐‘ฃ:

    Q. How many degrees of freedom has ๐‘ฃ?

    ๐‘: ๐‘…2๐‘‡ โ†’ ๐‘…2๐‘‡ =

    ๐‘”1โˆ’1 det ๐‘”1

    2โ‹ฏ 0

    โ‹ฎ โ‹ฑ โ‹ฎ

    0 โ‹ฏ๐‘”๐‘โˆ’1 det ๐‘”๐‘

    2

    ๐บ: ๐‘…๐‘‰ โ†’ ๐‘…2๐‘‡ , ๐บ๐‘–โˆˆ๐‘‰,๐‘กโˆˆ๐‘‡ = แ‰Š๐‘”๐‘กโˆ’1๐‘’๐‘(๐‘–)0

    If ๐‘– is the ๐‘(๐‘–)-corner of ๐‘ก

    Otherwise

    Vector product matrixGradient matrix

    ๐›ป๐‘“ = ๐บ[๐‘“] ๐‘ข, ๐‘ฃ = ๐‘ข ๐‘[๐‘ฃ]

    Prove: ๐‘† = ๐บโŠค๐‘ ๐บ

    Prove: min๐‘“

    |๐›ป๐‘“ โˆ’ ๐‘ฃ| 2, is given by ๐‘† ๐›ป๐‘“ = (๐บโŠค๐‘[๐‘ฃ]). How many solution does this equation have?

  • Application: Approximate Geodesic Distances

    Algorithm:Input: ๐‘– โ† Vertex index Output: ๐‘‘ โ† approximate geodesic distance to ๐‘ฃ๐‘–.

    1. Solve for

    min๐‘“

    |๐‘“ โˆ’ ๐›ฟ๐‘–|2 + ๐›ผ ๐›ป๐‘“

    2

    2. For each triangle let ๐‘ฃ๐‘ก =๐›ป๐‘“|๐‘ก

    ||๐›ป๐‘“|๐‘ก||

    3. Solve for

    min๐‘‘

    ๐›ป๐‘‘ โˆ’ ๐‘ฃ2

    4. Offset ๐‘‘ by a constant to have ๐‘‘ ๐‘– = 0.