lesson 2 transmission lines fundamentals - …sdyang/courses/em/lesson02_slides.pdflesson 2...

32
Lesson 2 Transmission Lines Fundamentals 楊尚達 Shang-Da Yang Institute of Photonics Technologies Department of Electrical Engineering National Tsing Hua University, Taiwan

Upload: buinhan

Post on 29-Mar-2018

230 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Lesson 2Transmission Lines Fundamentals

楊尚達 Shang-Da YangInstitute of Photonics TechnologiesDepartment of Electrical EngineeringNational Tsing Hua University, Taiwan

Page 2: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Sec. 2-1Introduction

1. Why to discuss TX lines (distributed circuits)?

2. Criteria of using distributed circuits3. Background knowledge

Page 3: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Why to discuss transmission lines-1

Current electronic technology is based on lumped circuit theory (simple, powerful):

1. Lumped elements (R, C, L, dependent sources) are connected in series or shunt

2. Conducting wires play no role

Page 4: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Why to discuss transmission lines-2

In fact, elements and wires provide a framework over which electric charges can move and set up the (total) EM vector fields. The behavior of circuit is thus determined.

Page 5: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Why to discuss transmission lines-3

Distributed circuit (transmission lines) theory is somewhere in between:

1. Can describe some wave properties (wavelength, phase velocity, reflection, …), which are crucial in power transmission, high-speed IC, ….

2. Only deal with scalar quantities (v, i), require no complicated vector analysis

Page 6: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Criteria of using distributed circuits

sigd tt << sigd tt ≈

Finite speed of propagation ncv =

sigt sigt

Page 7: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Example 2-1: Power lines

( )tVtV AA ⋅⋅=′ 602cos)( 0 π

[ ])(602cos)( 0 dBB ttVtV −⋅⋅=′ π vltd =

Lumped circuit is inadequate when(rule of thumb), ⇒

Ttd 01.0>

sec 601

=T

km 50>l

Page 8: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Example 2-2: Interconnection of ICs

Lumped circuit is inadequate when(rule of thumb). Fast CMOS can have !

rise time

ps 1655.2 ≈< dr tt

1-cm silica interconnection

ps 67≈= vltd

ps 100≈rt

Logic 1

Logic 0

Page 9: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Background knowledge-1

Models of linear circuit elements:

iRv ⋅= vdtdCi ⋅= i

dtdLv ⋅=

Page 10: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Background knowledge-2

Kirchhoff’s laws :

0=∑k

ki

0=∑k

kv

Page 11: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Background knowledge-3

Phasors of sinusoidal functions:

( ) { }tjeVtVtv ωφω ⋅=+= Recos)( 0

( )φφφ sincos00 jVeVV j +==

{ }tjtj eVjedtdVtv

dtd ωω ω ⋅=

⎭⎬⎫

⎩⎨⎧ ⋅= ReRe)(

nn

n

jdtd )( ω→ Derivatives → Algebraic multiplication

Page 12: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Sec. 2-2Equivalent Circuit and Equations of Transmission Lines

1. Geometry of typical TX lines2. Equivalent circuit3. TX line equations4. Solutions

Page 13: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Geometry of typical transmission lines

Two long conductors, separated by some insulating material

across, along the conductors ),( 0 tzv ),( 0 tzi±

Page 14: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Equivalent circuit-1

Since the voltage, current can vary with z, ⇒ use of distributed circuit model, i.e. a TX line consists of infinitely many coupled lines of infinitesimal length Δz

Page 15: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Equivalent circuit-2

Currents on a short line set up magnetic field (Ampere’s law ), ⇒ magnetic fluxTime-varying current (flux), ⇒ voltage changes along the line (Faraday’s law) to counter the change of current (Lenz’s law), ⇒ series inductor

idtdLv ⋅=Δ

Page 16: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Equivalent circuit-3

The upper and lower conductors of the adjacent short lines are connected respectively, ⇒ shunt capacitor

vdtdCi ⋅=Δ

Page 17: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Equivalent circuit-4

Imperfect conducting materials, ⇒ voltage drop along the conducting line, ⇒ series resistorImperfect insulating materials, ⇒ leakage current between conductors, ⇒ shunt conductor

Page 18: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Equivalent circuit-5

Complete model: {R, L, G, C} as {resistance, inductance, conductance, capacitance} per unit length

Page 19: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Equivalent circuit-6

By the equivalent circuit, the behavior of vector EM fields can be described by scalar voltage and current.Values of R, L, G, C depend on the geometry and materials of the transmission line.

Page 20: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Transmission line equations-1

Assume R=0, G=0: by KVL

),()(),(),( tzit

zLtzvtzzv∂∂

Δ−=Δ+

( ) )()( tidtdzLtv LL ⋅Δ=

Page 21: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Transmission line equations-2

),()(),(),( tzit

zLtzvtzzv∂∂

Δ−=Δ+

,0Let →Δz

),(),( tzit

Ltzvz ∂

∂−=

∂∂ (2.1)

),()(),(),( tzit

zLtzvtzzv∂∂

Δ−=−Δ+⇒

),()(),(),( tzit

Lz

tzvtzzv∂∂

−=Δ

−Δ+⇒

1st-order PDE with 2 unknown functions v and i

Page 22: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Transmission line equations-3

By KCL:( ) )()( tv

dtdzCti CC ⋅Δ=

),()(),(),( tzzvt

zCtzzitzi Δ+∂∂

Δ+Δ+=

Page 23: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Transmission line equations-4

,0Let →Δz

),()(),(),( tzzvt

zCtzzitzi Δ+∂∂

Δ+Δ+=

),(),( tzvt

Ctziz ∂

∂−=

∂∂ (2.2)

),()(),(),( tzzvt

zCtzzitzi Δ+∂∂

Δ=Δ+−⇒

),()(),(),( tzzvt

Cz

tzzitziΔ+

∂∂

Δ+−⇒

1st-order PDE with 2 unknown functions v and i

Page 24: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Taking for both sides of eq. (2.2),

Transmission line equations-5

Taking for both sides of eq. (2.1),z∂∂

⇒∂∂

−=∂∂ ),,(),( tzi

tLtzv

z),(),(

2

2

2

tzitz

Ltzvz ∂∂

∂−=

∂∂

⇒∂∂

−=∂∂ ),,(),( tzv

tCtzi

z

t∂∂

),(),( 2

22

tzvt

Ctzitz ∂

∂−=

∂∂∂

Page 25: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Transmission line equations-6

Combine the two equations:

),(),( 2

2

2

2

tzvt

LCtzvz ∂

∂=

∂∂

),(),( 2

2

2

2

tzit

LCtziz ∂

∂=

∂∂

),(),( 2

2

2

2

tzvt

LCtzvz ∂

∂=

∂∂

2nd-order PDE with 1 unknown function v

(2.3)

(2.4)

Page 26: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Solutions to the transmission line equations-1

),(),( 2

2

2

2

tzvt

LCtzvz ∂

∂=

∂∂Compare

),(),( 2

22

2

2

txux

ctxut ∂

∂=

∂∂with

(TX line eq.)

(1-D wave eq.)

LCvp

1≡),( tzv ~ a wave propagating with velocity

Page 27: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Solutions to the transmission line equations-2

D’Alembart’s solution to wave equation:

any function of variable )(⋅fpvzt ±=τ

( )pvztf − ~ distortion-free wave traveling in the+z direction with velocity pv

Page 28: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Solutions to the transmission line equations-3

( )pvztf + ~ distortion-free wave traveling in the-z direction with velocity pv

( ) ( )pp vztfvztftzv ++−= −+),(

General solution to the voltage (superposition):

Can be totally different functionsdetermined by BCs and ICs.Their superposition may have “distortion”.

(2.6)

Page 29: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Comments

Phase velocity only depends on

the insulating materials,LC

vp1

=

though L, C also depend on the geometry of the lines

Page 30: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Solutions to the transmission line equations-4

( ) ( )pp vztfvztftzv ++−= −+),(Substitute voltage solution

into the 1st-order PDE: ),(),( tzit

Ltzvz ∂

∂−=

∂∂

( ) ( )tiL

ddf

vddf

vzv

pp ∂∂

−=+−=∂∂

⇒−+

ττ

ττ 11

( ) ( ) td

dfd

dfLv

tzv

Ltzi

p

∂⎥⎦

⎤⎢⎣

⎡−=∂

∂∂

−=⇒ ∫∫−+

ττ

ττ11),(

⇒=∂∂ ,1

Q( ) ( ) τ

ττ

ττ d

ddf

ddf

LCtzi ∫ ⎥

⎤⎢⎣

⎡−=

−+

),(

Page 31: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Solutions to the transmission line equations-5

( ) ( )[ ] ),(),(1),(0

tzitzivztfvztfZ

tzi pp−+−+ +=+−−=⇒

CLZ =0

( ) ( ) ),(),(),( tzvtzvvztfvztftzv pp−+−+ +=++−=

Characteristic impedance(not the resistance of the conductor or insulator)

( )( )

( )( )

( )( )tzi

tzvtzitzv

tzitzvZ

,,

,,

,,

0 ≠−== −

+

+

Physical meaning

Page 32: Lesson 2 Transmission Lines Fundamentals - …sdyang/Courses/EM/Lesson02_Slides.pdfLesson 2 Transmission Lines Fundamentals 楊尚達Shang-Da Yang Institute of Photonics Technologies

Example 2-3:

Infinitely long line, no reflected wave

TX line ~ a load of resistance CLZ =0

( )tzv ,−

00

0)0( VRZ

ZVtvs

ss +=== +