light sterile neutrinos: fact or fiction?

35
Light sterile neutrinos: fact or fiction? Patrick Huber Center for Neutrino Physics – Virginia Tech IBS conference Dark World KAIST Munji Campus, Daejon, Korea October 30 – November 3, 2017 P. Huber – VT CNP – p. 1

Upload: others

Post on 21-May-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Light sterile neutrinos: fact or fiction?

Light sterile neutrinos:

fact or fiction?

Patrick Huber

Center for Neutrino Physics – Virginia Tech

IBS conference Dark World

KAIST Munji Campus, Daejon, Korea

October 30 – November 3, 2017

P. Huber – VT CNP – p. 1

Page 2: Light sterile neutrinos: fact or fiction?

Evidence in favor

• LSND ν̄µ → ν̄e

• MiniBooNE ν̄µ → ν̄e and νµ → νe

• T2K νe → νe• Gallium νe → νe• Reactors νe → νe

P. Huber – VT CNP – p. 2

Page 3: Light sterile neutrinos: fact or fiction?

Disappearance and appearance

νµ → νe requires that the sterile neutrino mixes withboth νe and νµ

⇒ there must be effects in both νe → νe and νµ → νµ

Up to factors of 2, the energy averaged probabilitiesobey

Pµe . (1− Pµµ)(1− Pee)

P. Huber – VT CNP – p. 3

Page 4: Light sterile neutrinos: fact or fiction?

LSND and MiniBooNE

P (ν̄µ → ν̄e) ≃ 0.003

P. Huber – VT CNP – p. 4

Page 5: Light sterile neutrinos: fact or fiction?

Fermilab SBN

Reco. Energy (GeV)0.5 1 1.5 2 2.5 3

Eve

nts

/ GeV

0

500

1000

1500

2000

2500 ICARUS-T600, 600m = 0.0014)eµθ 22, sin 2 = 1.6 eV2m∆Signal: (

Statistical Uncertainty OnlyNominal, 6.6e20 POT

eν → µ

eν → +K

eν → 0K

γNC Single

CCµνDirt

Cosmics

Figure courtesy D. Schmitz and C. Adams

Signal to noise not so different from LSND. . . will anear detector of completely different design help?

P. Huber – VT CNP – p. 5

Page 6: Light sterile neutrinos: fact or fiction?

JSNS2

Pion decay at restat JSNS, Gd-dopedscintillator.

JSNS2, 2017

Direct test of the LSND result → should have beeddone 20 years ago!

see talk by Soo-Bong Kim

P. Huber – VT CNP – p. 6

Page 7: Light sterile neutrinos: fact or fiction?

Gallium anomaly

25% deficit of νe from radioactive sources at shortdistances

• Effect depends on nuclear matrix element

• R is a calibration constant

P. Huber – VT CNP – p. 7

Page 8: Light sterile neutrinos: fact or fiction?

Nuclear matrix elements

P. Huber – VT CNP – p. 8

Page 9: Light sterile neutrinos: fact or fiction?

The reactor anomaly

Distance (m)10

210

310

0.6

0.8

1.0

1.2

Previous data

Daya Bay

World Average

Exp. Unc.σ1-

Flux Unc.σ1-

Data

/ P

red

ictio

n

Previous average

R = 0.943 +- 0.008 (exp.)

Daya Bay’s reactor flux

previous short baseline

Daya Bay R = 0.947 ± 0.022

Daya Bay, 2014

Mueller et al., 2011, 2012 – where are all theneutrinos gone?

P. Huber – VT CNP – p. 9

Page 10: Light sterile neutrinos: fact or fiction?

Contributors to the anomaly

6% deficit of ν̄e from nuclear reactors at shortdistances

• 3% increase in reactor neutrino fluxes

• decrease in neutron lifetime

• inclusion of long-lived isotopes (non-equilibriumcorrection)

The effects is therefore only partially due to the fluxes,but the error budget is clearly dominated by the fluxes.

P. Huber – VT CNP – p. 10

Page 11: Light sterile neutrinos: fact or fiction?

Neutron lifetime

range used in past reactor analyses

PDG 2012

æ

æ

æà

à

à

à

à

à

ìì

lifetime data from Wietfieldt & Greene, Rev. Mod. Phys. 83 H2011L 1173

Mention

etal.

1985 1990 1995 2000 2005 2010 2015860

870

880

890

900

910

-2

-1

0

1

2

3

year

neut

ron

lifet

ime@sD

IBD

cros

sse

ctio

nch

ange@%D

P. Huber – VT CNP – p. 11

Page 12: Light sterile neutrinos: fact or fiction?

Neutrinos from fission

N=50 N=82

Z=50

235U

239Pu

stable

fission yield

8E-5 0.004 0.008

P. Huber – VT CNP – p. 12

Page 13: Light sterile neutrinos: fact or fiction?

β-branches

P. Huber – VT CNP – p. 13

Page 14: Light sterile neutrinos: fact or fiction?

β-spectrum from fission

235U foil inside the HighFlux Reactor at ILL

Electron spectroscopywith a magnetic spec-trometer

Same method used for239Pu and 241Pu

For 238U recent measure-ment by Haag et al., 2013

Schreckenbach, et al. 1985.P. Huber – VT CNP – p. 14

Page 15: Light sterile neutrinos: fact or fiction?

Virtual branches

æ æ æ æ æ

7.0 7.2 7.4 7.6 7.8 8.0 8.210-6

10-5

10-4

10-3

10-2

Ee @MeVD

coun

tspe

rbi

n

E0=9.16MeV, Η=0.115

æ

æ

æ

æ

æ

7.0 7.2 7.4 7.6 7.8 8.0 8.210-6

10-5

10-4

10-3

10-2

Ee @MeVDco

unts

per

bin

E0=8.09MeV, Η=0.204

æ

æ

æ

æ

æ

7.0 7.2 7.4 7.6 7.8 8.0 8.210-6

10-5

10-4

10-3

10-2

Ee @MeVD

coun

tspe

rbi

n

E0=7.82MeV, Η=0.122

1 – fit an allowed β-spectrum with free normalization η and

endpoint energy E0 the last s data points

2 – delete the last s data points

3 – subtract the fitted spectrum from the data

4 – goto 1

Invert each virtual branch using energy conservation into a

neutrino spectrum and add them all. e.g. Vogel, 2007P. Huber – VT CNP – p. 15

Page 16: Light sterile neutrinos: fact or fiction?

Reactor antineutrino fluxes

ILL inversionsimple Β-shape

our result1101.2663

2 3 4 5 6 7 8-0.05

0.00

0.05

0.10

0.15

EΝ @MeVD

HΦ-Φ

ILLL�Φ

ILL

Shift with respect to ILL results, due to

a) different effective nuclear charge distributionb) branch-by-branch application of shape corrections

P. Huber – VT CNP – p. 16

Page 17: Light sterile neutrinos: fact or fiction?

Forbidden decays

ΡpHrL

ΡnHrL

ΨHrL

EΒ=10MeV

A=140

l=0

l=1

l=2

0 5 10 15 20

r @fmD

e,ν̄ final state can forma singlet or triplet spinstate J=0 or J=1

Allowed:s-wave emission (l = 0)

Forbidden:p-wave emission (l = 1)or l > 1

Significant dependence on nuclear structure inforbidden decays→ large uncertainties!

P. Huber – VT CNP – p. 17

Page 18: Light sterile neutrinos: fact or fiction?

Same for allBased on JEFF fission yields and using ENSDFspin-parity assignments

P. Huber – VT CNP – p. 18

Page 19: Light sterile neutrinos: fact or fiction?

Look at past dataa Experiment fa

235fa

238fa

239fa

241R

expa,SH

σexpa

[%] σcora

[%] La [m]

1 Bugey-4 0.538 0.078 0.328 0.056 0.932 1.4 1.4 15

2 Rovno91 0.606 0.074 0.277 0.043 0.930 2.8 1.8 18

3 Rovno88-1I 0.607 0.074 0.277 0.042 0.907 6.4 3.8 18

4 Rovno88-2I 0.603 0.076 0.276 0.045 0.938 6.4 3.8 18

5 Rovno88-1S 0.606 0.074 0.277 0.043 0.962 7.3 3.8 18

6 Rovno88-2S 0.557 0.076 0.313 0.054 0.949 7.3 3.8 25

7 Rovno88-3S 0.606 0.074 0.274 0.046 0.928 6.8 3.8 18

8 Bugey-3-15 0.538 0.078 0.328 0.056 0.936 4.2 4.1 15

9 Bugey-3-40 0.538 0.078 0.328 0.056 0.942 4.3 4.1 40

10 Bugey-3-95 0.538 0.078 0.328 0.056 0.867 15.2 4.1 95

11 Gosgen-38 0.619 0.067 0.272 0.042 0.955 5.4 3.8 37.9

12 Gosgen-46 0.584 0.068 0.298 0.050 0.981 5.4 3.8 45.9

13 Gosgen-65 0.543 0.070 0.329 0.058 0.915 6.7 3.8 64.7

14 ILL 1 0 0 0 0.792 9.1 8.0 8.76

15 Krasnoyarsk87-33 1 0 0 0 0.925 5.0 4.8 32.8

16 Krasnoyarsk87-92 1 0 0 0 0.942 20.4 4.8 92.3

17 Krasnoyarsk94-57 1 0 0 0 0.936 4.2 2.5 57

18 Krasnoyarsk99-34 1 0 0 0 0.946 3.0 2.5 34

19 SRP-18 1 0 0 0 0.941 2.8 0.0 18.2

20 SRP-24 1 0 0 0 1.006 2.9 0.0 23.8

21 Nucifer 0.926 0.061 0.008 0.005 1.014 10.7 0.0 7.2

22 Chooz 0.496 0.087 0.351 0.066 0.996 3.2 0.0 ≈ 1000

23 Palo Verde 0.600 0.070 0.270 0.060 0.997 5.4 0.0 ≈ 800

24 Daya Bay 0.561 0.076 0.307 0.056 0.946 2.0 0.0 ≈ 550

25 RENO 0.569 0.073 0.301 0.056 0.946 2.1 0.0 ≈ 410

26 Double Chooz 0.511 0.087 0.340 0.062 0.935 1.4 0.0 ≈ 415

Giunti, 2016P. Huber – VT CNP – p. 19

Page 20: Light sterile neutrinos: fact or fiction?

What does this tell us?

Giunti, 2016

Is U235 odd?Are the error bars for U235 just smaller?

P. Huber – VT CNP – p. 20

Page 21: Light sterile neutrinos: fact or fiction?

Latest result of Daya Bay

Daya Bay, 2017

Only an issue ifthe predictionof Pu239 in theHuber+Muellermodel is correct.Hayes et al., 2017

P. Huber – VT CNP – p. 21

Page 22: Light sterile neutrinos: fact or fiction?

The 5 MeV bump

Seen by all three reactor experiments

Tracks reactor power

Seems independent of burn-upP. Huber – VT CNP – p. 22

Page 23: Light sterile neutrinos: fact or fiction?

Recent neutrino measurements

In Daya Bay, RENO and Double Chooz, the distanceis such that all sterile oscillations are averaged away –no confusion between nuclear physics and newphysics

The statistics in the Daya Bay near detectors is around1 million events

In combination, this should provide a good test of ourability to compute reactor fluxes

P. Huber – VT CNP – p. 23

Page 24: Light sterile neutrinos: fact or fiction?

NEOSE

vents

/day/1

00 k

eV

20

40

60 Data signal (ON-OFF)

Data background (OFF)

H-M (flux uncertainty)

err)σH-M + excess fit (1

Full uncertainty

Prompt Energy [MeV]2 3 4 5 6 7

Ratio to P

redic

tion

0.9

1

1.1

5 MeV excessNEOS Preliminary

Y. Oh, ICHEP 2016

24m from a large core(power reactor), con-firms bump

P. Huber – VT CNP – p. 24

Page 25: Light sterile neutrinos: fact or fiction?

NEOS vs Daya Bay

� �

� �

���� � �

� ���

��

����

���

��

���

��

����

���

��

���

��

��

��

��

� �

� �

���� � �

� ���

��

����

���

��

���

��

����

���

��

���

��

��

��

��

1 2 3 4 5 6 70.95

1.00

1.05

1.10

1.15

Eprompt [MeV]

R

1 2 3 4 5 6 7

0.95

1.00

1.05

Eprompt [MeV]R

NE

OS/R

Daya

Bay

Huber, 2017

There is more U235 in NEOS, since core is fresh ⇒

3− 4 σ evidence against Pu as sole source of bump,but equal bump size is still allowed at better than 2 σ.

P. Huber – VT CNP – p. 25

Page 26: Light sterile neutrinos: fact or fiction?

NEOS and sterile neutrinos

adapted from NEOS, 2016

NEOS reports a limit,but their best fit oc-curs at sin2 2θ = 0.05and ∆m2 = 1.73 eV2

with a χ2 value6.5 belowthe no-oscillation hy-pothesis.

DANSS has a similar result.

P. Huber – VT CNP – p. 26

Page 27: Light sterile neutrinos: fact or fiction?

DANSS and NEOS

Dentler et al. 2017

This is a spectral effect independent of rate and shapepredictions!

P. Huber – VT CNP – p. 27

Page 28: Light sterile neutrinos: fact or fiction?

Reactor fit

Dentler et al. 2017

Closed 2σ contourseven without usinga flux prediction.

P. Huber – VT CNP – p. 28

Page 29: Light sterile neutrinos: fact or fiction?

Global fit

sin22ϑeµ

∆m

412 [e

V2]

10−4

10−3

10−2

10−1

1

10

+

+

PrGlo17

App

Dis

(a)sin

22ϑee

∆m

412 [e

V2]

10−2

10−1

1

10−1

1

10

+

PrGlo17

νe Dis

Dis

(b)sin

22ϑµµ

∆m

412 [e

V2]

10−2

10−1

1

10−1

1

10

+

PrGlo17

νµ Dis

Dis

(c)

Gariazzo et al., 2017

P. Huber – VT CNP – p. 29

Page 30: Light sterile neutrinos: fact or fiction?

Finding a sterile neutrino

All pieces of evidence have in common that they areless than 5σ effects and they may be all due to theextraordinary difficulty of performing neutrinoexperiments, if not:

• N sterile neutrinos are the simplest explanation

• Tension with null results in disappearanceremains

Due to their special nature as SM gauge singletssterile neutrinos are strong candidates for being aportal to a hidden sector – significant experimentalactivity.

P. Huber – VT CNP – p. 30

Page 31: Light sterile neutrinos: fact or fiction?

MiniBooNE reloaded?

(−)νe →

(−)νe

sin22ϑee

∆m

412

[e

V2]

10−2

10−1

1

10−1

1

10

+

KATRIN − 2σ

CeSOX (95% CL)

BEST (95% CL)

IsoDAR@KamLAND (5yr, 3σ)

IsoDAR@C−ADS (5yr, 3σ)

DANSS (1yr, 95% CL)

NEOS (0.5yr, 95% CL)

Neutrino−4 (1yr, 95% CL)

PROSPECT phase 1 (3yr, 3σ)

PROSPECT phase 2 (3yr, 3σ)

SoLiD phase 1 (1yr, 95% CL)

SoLiD phase 2 (3yr, 3σ)

STEREO (1yr, 95% CL)

(−)νµ →

(−)νe

sin22ϑeµ

∆m

412 [e

V2]

10−4

10−3

10−2

10−1

1

10

+

3+1 PrGLO

SBN (3yr, 3σ)nuPRISM (3σ)

JSNS2 (3σ)

(−)νµ →

(−)νµ

sin22ϑµµ

∆m

412

[e

V2]

10−2

10−1

1

10−1

1

10

+

3+1 PrGLO

SBN (3yr, 3σ)KPipe (3yr, 3σ)

Giunti, Neutrino 2016

. . . and that assumes all is going according to plan!P. Huber – VT CNP – p. 31

Page 32: Light sterile neutrinos: fact or fiction?

Summary

Tension in global fits

• Maybe more complicated than sterile neutrino

• And/or not all data is right

• Lots of nuclear physics uncertainties

With NEOS and DANSS we have a positive indicationfrom reactors independent of flux predictions.

In combination, light sterile neutrinos are one of thebest cases for New Physics, anywhere!

P. Huber – VT CNP – p. 32

Page 33: Light sterile neutrinos: fact or fiction?

Questions?

P. Huber – VT CNP – p. 33

Page 34: Light sterile neutrinos: fact or fiction?

NuFact 2018

We invite you to NuFact 2018, August 2018, atVirginia Tech, Blacksburg, VA.

P. Huber – VT CNP – p. 34

Page 35: Light sterile neutrinos: fact or fiction?

The Department of Physics at Virginia Tech invitesapplications for a tenure-track faculty position inParticle Physics Phenomenology with a focus onneutrinos and dark matter.

Email: [email protected]: +1 (540) 231 8727URL: http://listings.jobs.vt.edu/postings/79786

P. Huber – VT CNP – p. 35