m. y. shalaginov , s. bogdanov , a. v. kildishev€¦ · bogdanov, shalaginov, et al, nano letters...

12
M. Y. Shalaginov 1,2 , S. Bogdanov 2 , A. V. Kildishev 2 1 Department of Materials Science Engineering Massachusetts Institute of Technology, Cambridge, MA 2 School of Electrical & Computer Engineering, Purdue Quantum Center, Birck Nanotechnology Center Purdue University, West Lafayette, IN

Upload: others

Post on 07-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: M. Y. Shalaginov , S. Bogdanov , A. V. Kildishev€¦ · Bogdanov, Shalaginov, et al, Nano Letters 2018 Shalaginov, Bogdanov, et al, in preparation. 9 Simulations: low Purcell factor

M. Y. Shalaginov1,2, S. Bogdanov2, A. V. Kildishev2

1Department of Materials Science Engineering

Massachusetts Institute of Technology, Cambridge, MA

2School of Electrical & Computer Engineering, Purdue Quantum Center, Birck Nanotechnology Center

Purdue University, West Lafayette, IN

Page 2: M. Y. Shalaginov , S. Bogdanov , A. V. Kildishev€¦ · Bogdanov, Shalaginov, et al, Nano Letters 2018 Shalaginov, Bogdanov, et al, in preparation. 9 Simulations: low Purcell factor

1

Plasmonics for controlling quantum emitters

more details: Bozhevolnyi, Khurgin, Optica 2016

Q ~ 1-100

V/V0 ~ 10-5-10-6

1. Emission rate enhancement 100 times higher than in dielectric cavities

2. Match broad emission spectra of room-temperature emitters

3. Made of conductive materials, which can also guide electrical signals

NV emission spectrum

Page 3: M. Y. Shalaginov , S. Bogdanov , A. V. Kildishev€¦ · Bogdanov, Shalaginov, et al, Nano Letters 2018 Shalaginov, Bogdanov, et al, in preparation. 9 Simulations: low Purcell factor

2

Single NV centers produce 30 million photons per second at room temperature

Bogdanov, Shalaginov, et al, Nano Letters 2018

Page 4: M. Y. Shalaginov , S. Bogdanov , A. V. Kildishev€¦ · Bogdanov, Shalaginov, et al, Nano Letters 2018 Shalaginov, Bogdanov, et al, in preparation. 9 Simulations: low Purcell factor

3

On-chip spin-plasmon-MW interface for ultra-compact magnetometry

Shalaginov, Bogdanov, et al, in manuscript preparation

Page 5: M. Y. Shalaginov , S. Bogdanov , A. V. Kildishev€¦ · Bogdanov, Shalaginov, et al, Nano Letters 2018 Shalaginov, Bogdanov, et al, in preparation. 9 Simulations: low Purcell factor

4

Electromagnetic waves simulations in frequency domain

Outputs• Total released power (decay rate)

• Radiation pattern/collection efficiency

Inputs• Geometry: antenna, diamond

• Materials: diamond, silver (from ellipsometry measurements), polymers

• Settings: full-field, wavelength, dipole source, PML boundariesLayout for collecting signal

from an NV coupled to nanopatch antenna (NPA)

Page 6: M. Y. Shalaginov , S. Bogdanov , A. V. Kildishev€¦ · Bogdanov, Shalaginov, et al, Nano Letters 2018 Shalaginov, Bogdanov, et al, in preparation. 9 Simulations: low Purcell factor

5

Waves & Optics Module: power flow integrals

2 nm

p

6 nm

nanodiamond

total power

15 nm 1.5 mm

far-field termscollected power

Page 7: M. Y. Shalaginov , S. Bogdanov , A. V. Kildishev€¦ · Bogdanov, Shalaginov, et al, Nano Letters 2018 Shalaginov, Bogdanov, et al, in preparation. 9 Simulations: low Purcell factor

6

Results of electro-magnetic simulations

NV nanodiamond on glass (G) - referenceNV nanodiamond with NP antenna (NPA)

NV-NPA NV-G

total decay rate, ns-1 0.39-1 84.5-1

collection efficiency, % 45 85

rate enhancement (Purcell factor) - 220; collection efficiency – 45%

Page 8: M. Y. Shalaginov , S. Bogdanov , A. V. Kildishev€¦ · Bogdanov, Shalaginov, et al, Nano Letters 2018 Shalaginov, Bogdanov, et al, in preparation. 9 Simulations: low Purcell factor

7

Comparison with experimental results

back-focal plane measurements 0.1 1 10 100

0

2

4

6

8

NVs in NPAs

2

Co

un

t

Lifetime (ns)

70 times

NVs on glass

emission lifetime statistics

sim: 220 times

sim

exp

exp: 70 times

• Simulations provide an upperbound on emission rate enhancement and qualitative agreement with the radiation pattern.

• Possible origins of discrepancies: misaligned dipole orientation, spectral mismatch & nonunity quantum yield

Page 9: M. Y. Shalaginov , S. Bogdanov , A. V. Kildishev€¦ · Bogdanov, Shalaginov, et al, Nano Letters 2018 Shalaginov, Bogdanov, et al, in preparation. 9 Simulations: low Purcell factor

8

Summary

• Plasmonics is an attractive platform for room-temperature quantum nanophotonics

• COMSOL simulations can be used for upper-limit estimations of rate enhancement & collection/coupling efficiencies

This work was partially supported by the AFOSR-MURI grant (FA9550-10-1-0264), ONR DURIP grant (N00014-16-1-2767) and NSF-MRSEC grant (DMR-1120923).

NV – nanopatch antenna

NV – v-groove waveguide

Bogdanov, Shalaginov, et al, Nano Letters 2018

Shalaginov, Bogdanov, et al, in preparation

Page 10: M. Y. Shalaginov , S. Bogdanov , A. V. Kildishev€¦ · Bogdanov, Shalaginov, et al, Nano Letters 2018 Shalaginov, Bogdanov, et al, in preparation. 9 Simulations: low Purcell factor

9

Simulations: low Purcell factor and high coupling efficiency

b 38%

17 ns

200 nm

E-field of VG fundamental mode at l 665nm

3D domain of numerical simulations

VG

NV

Page 11: M. Y. Shalaginov , S. Bogdanov , A. V. Kildishev€¦ · Bogdanov, Shalaginov, et al, Nano Letters 2018 Shalaginov, Bogdanov, et al, in preparation. 9 Simulations: low Purcell factor

10

500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

inte

nsi

ty [

a. u

.]

wavelength [nm]

0 100 200 300 40010-4

10-3

10-2

10-1

100

inte

nsi

ty [

a. u

.]

time [ns]

Nanodiamond in a vgroove: photophysical properties

500nm

0.0 0.5 1.0 1.5 2.0 2.50

1

2

3

4

5

NV

E f

luo

resc

en

ce [

Mcp

s]

pump power [mW]

SEM scan of ND inside fabricated VG

emission decay

saturation curveemission

spectrum

16ns

Page 12: M. Y. Shalaginov , S. Bogdanov , A. V. Kildishev€¦ · Bogdanov, Shalaginov, et al, Nano Letters 2018 Shalaginov, Bogdanov, et al, in preparation. 9 Simulations: low Purcell factor

11