m1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

38
BEN AHMED MOHSEN Téléphone :(+216)97619191 Adresse électronique : [email protected] https://www.facebook.com/ISG.ISCAE.IHEC.ESC 1 M1/L3 (ÉCONOMÉTRIE) Série Corrigée N ° 1-ÉNONCÉS Modèles Économétriques à Une Équation-Régression Simple Exercice 1 : On considère les matrices = , = = 1) Calculer . et déduire . 2) Calculer . . 3) Calculer 4) Soit une matrice de dimension , = . Montrer que : a) est symétrique b) = 5) On considère des matrices carrées , , , , sont deux matrices non singulières, développer le produit matriciel suivant : = + + Exercice 2 : On considère : , , vecteurs colonne de le vecteur unitaire de : = , , , La matrice = une matrice de dimension , dont l’i ème ligne est : = un vecteur colonne de (les moyennes des lignes de la matrice ou les moyennes des colonnes de la matrice 1) Montrer que : a) = = b)

Upload: mohamedchaouche

Post on 14-Jun-2015

322 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

1

M1/L3 (ÉCONOMÉTRIE)

Série Corrigée N°1-ÉNONCÉS Modèles Économétriques à Une Équation-Régression Simple

Exercice 1 :

On considère les matrices 𝑨 = 𝟏𝟎 𝟒 𝟔𝟐 𝟖 𝟕

, 𝑩 = 𝟒 𝟐𝟑 𝟗𝟓 𝟒

𝒆𝒕 𝑪 = 𝟏 𝟗 𝟓𝟔 𝟏𝟎 𝟒𝟖 𝟏𝟓 𝟕

1) Calculer 𝑩. 𝑨 −𝟏 et déduire 𝑨′ . 𝑩′ −𝟏 2) Calculer 𝒕𝒓 𝑨. 𝑩 𝒆𝒕 𝒕𝒓 𝑩. 𝑨 3) Calculer 𝑪−𝟏 4) Soit 𝑫 une matrice de dimension 𝒏, 𝒑 𝒆𝒕 𝑬 = 𝑫′ . 𝑫

Montrer que : a) 𝑬 est symétrique b)

𝒕𝒓 𝑬 = 𝒅𝒊𝒋

𝒋𝒊

5) On considère des matrices carrées 𝑨, 𝑩, 𝑪, 𝑫, 𝑬 𝒆𝒕 𝑭 où 𝑬 𝒆𝒕 𝑭 sont deux matrices non singulières,

développer le produit matriciel suivant : 𝑿 = 𝑨𝑩 + 𝑪𝑫 ′ 𝑬𝑭 −𝟏 + 𝑮𝑯 ′

Exercice 2 :

On considère : 𝑿𝟏, 𝑿𝟐, … 𝑿𝒏 𝒏 vecteurs colonne de ℝ𝒌 𝒊 le vecteur unitaire de ℝ𝒌 : 𝒊 = 𝟏, 𝟏, … , 𝟏 ′

La matrice 𝑴𝟎 = 𝑰𝒏 −𝟏

𝒏𝒊𝒊′

𝑿 une matrice de dimension 𝒏, 𝒌 dont l’ième ligne est 𝑿𝒊′ : 𝑿 =

𝑿𝟏′

⋮𝑿𝒏

𝑿 un vecteur colonne de ℝ𝒌 (les moyennes des lignes de la matrice 𝑿′ ou les moyennes des colonnes de la matrice 𝑿

1) Montrer que : a)

𝑿′𝑿 = 𝑿𝒊𝑿𝒊′

𝒏

𝒊=𝟏

b)

Page 2: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

2

𝑿′ 𝒊 = 𝑿𝒊

𝒏

𝒊=𝟏

c)

𝑿 =𝟏

𝒏𝑿′ 𝒊

2)

𝑿𝒊 − 𝒂 𝑿𝒊 − 𝒂 ′

𝒏

𝒊=𝟏

= 𝑿′𝑴𝟎𝑿 + 𝒏 𝑿 − 𝒂 𝑿 − 𝒂 ′

Où 𝒂 est un vecteur de ℝ𝒌

Exercice 3 :

On considère une matrice 𝑿 de dimension 𝒏, 𝒌 ; le vecteur 𝜷 = 𝜷𝟏, 𝜷𝟐, … , 𝜷𝒌 ′ et les vecteurs aléatoires 𝒀 = 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒏 ′ et 𝓔 = 𝓔𝟏, 𝓔𝟐, … , 𝓔𝒏 ′ . On suppose que les 𝓔𝐢 sont iid de 𝓝 𝟎, 𝝈𝟐 et que 𝓔 = 𝒀 − 𝑿𝜷

1) Déterminer, en fonction de 𝑿 et 𝒀 le vecteur 𝜷 qui minimise 𝓔𝒊𝟐

𝒊 par rapport à 𝜷

(Indication : 𝓔𝒊𝟐

𝒊 = 𝓔′𝓔 ) 2) Démontrer que les matrices 𝑴 et 𝑷 sont symétriques idempotentes ; 𝑷 = 𝑿 𝑿′𝑿 −𝟏𝑿′ et

𝑴 = 𝑰 − 𝑷 3) Démontrer que 𝑴𝑷 = 𝟎

4) Déterminer en fonction de 𝑴 la variance de 𝓔 avec 𝓔 = 𝒀 − 𝑿𝜷

Exercice 4 :

Le tableau suivant fournit des données trimestrielles relatives à la rentabilité de l’indice boursier américain Don Jones 𝑹𝑫𝑱 = 𝑿 et la rentabilité de l’indice boursier européen Euro Stoxx 50 𝑹𝑬𝑺 = 𝒀 Relation entre RDJ et RES

𝒙𝒊 𝒚𝒊 𝒙𝒊𝟐 𝒙𝒊𝒚𝒊 𝒚𝒊

𝟐

1990.2 0,0463 0,0252 0,0024 0,0012 0,0006

1990.3 -0,0276 -0,0969 0,0008 0,0027 0,0094

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

2005.3 0,0150 0,0767 0,0062 0,0012 0,0059

Somme 1,3753 1,1155 0,1865 0,2162 0,3287

Source : Eurostat

Page 3: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

3

1) Estimer par la méthode du MCO les paramètres de la régression de RES par rapport à RDJ 2) Tester au risque 5% la significativité des paramètres du modèle 3) Calculer 𝑹𝟐 4) Interpréter ces résultats 5) Pour le quatrième trimestre 2005, la valeur prévisionnelle de RDJ et 0,0252 ; déterminer la valeur

prévisionnelle de RES pour cette période

Exercice 5 :

On considère les deux modèles : 𝑴𝟏: 𝒚𝒊 = 𝜷𝟏 + 𝜷𝟐𝒙𝒊 + 𝓔𝒊 ; 𝒊 = 𝟏, 𝟐, … , 𝒏 Et 𝑴𝟐: 𝒚𝒊 = 𝒃𝒙𝒊 + 𝓔𝒊 ; 𝒊 = 𝟏, 𝟐, … , 𝒏

1) Déterminer 𝒃 l’estimateur MCO de 𝒃 puis calculer 𝑬 𝒃 et 𝑽 𝒃

2) Comparer 𝑽 𝒃 et 𝑽 𝜷 𝟐 où 𝜷 𝟐 est l’estimateur MCO de 𝜷𝟐 puis interpréter

3) Démontrer que : 𝓔 𝒊𝒊 ≠ 𝟎 et déduire que pour le modèle 𝑴𝟐 ; 𝑹𝟐 n’est pas nécessairement dans l’intervalle 𝟎, 𝟏

Exercice 6 :

Le revenu 𝑹𝒕 et l’épargne nette 𝑬𝒕 ont été mesurés par trimestres pendant 3 ans pour une catégorie

socioprofessionnelle bien déterminée ; après correction des variations saisonnières, exprimées en

millions d’euros, les indicateurs suivants sont disponibles :

𝑹 =𝟏

𝟏𝟐 𝑹𝒕

𝟏𝟐

𝒕=𝟏

= 𝟏𝟗, 𝟕 ; 𝑹𝒕𝟐

𝟏𝟐

𝒕=𝟏

= 𝟒𝟖𝟐𝟕 ; 𝑬 =𝟏

𝟏𝟐 𝑬𝒕

𝟏𝟐

𝒕=𝟏

= 𝟔, 𝟏 ; 𝑬𝒕𝟐

𝟏𝟐

𝒕=𝟏

= 𝟒𝟓𝟔 ; 𝑬𝒕𝑹𝒕

𝟏𝟐

𝒕=𝟏

= 𝟏𝟒𝟖𝟎

On suppose que les variables 𝑬𝒕 et 𝑹𝒕 sont liées par le modèle 𝑬𝒕 = 𝒂 + 𝒃𝑹𝒕 + 𝒖𝒕 , les v.a 𝒖𝒕 étant de

loi 𝓝 𝟎, 𝝈𝟐 pour tout 𝒕 et indépendantes0

1) Calculer 𝒂 et 𝒃 , estimateurs des MCO de 𝒂 et 𝒃 ; donner un intervalle de confiance de niveau

0,95 pour 𝒂 et 𝒃

2) Etudier la validité du modèle

Page 4: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

4

3) On désire tester l’hypothèse qu’une augmentation absolue de 1% du revenu implique une

augmentation absolue de 1% de l’épargne. Ecrire cette hypothèse en fonction des coefficients de

la régression et résoudre le problème du test.

4) Même question avec une augmentation relative de1% du revenu.

Exercice 7 :

On possède deux échantillons 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 et 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒏 de deux variables 𝑿 et 𝒀 . Aucune des

deux variables n’étant privilégiée a priori, on considère la régression linéaire de 𝑿 sur 𝒀 (modèle A) et

celle de 𝒀 sur 𝑿 (modèle B) :

𝑨 𝒙𝒊 = 𝒂 + 𝒃𝒚𝒊 + 𝓔𝒊

𝑩 𝒚𝒊 = 𝜶 + 𝜷𝒙𝒊 + 𝒖𝒊

𝓔𝒊 Et 𝒖𝒊 ; 𝒊 = 𝟏, 𝟐, … , 𝒏 suivant respectivement les lois 𝓝 𝟎, 𝝈𝓔𝟐 et 𝓝 𝟎, 𝝈𝒖

𝟐 .

On désigne par 𝒏𝑺𝒙𝟐 , 𝒓𝒆𝒔𝒑. 𝒏𝑺𝒙

𝟐 la quantité

𝒙𝒊 − 𝑿 𝟐

𝒏

𝒊=𝟏

, 𝒓𝒆𝒔𝒑. 𝒚𝒊 − 𝒀 𝟐

𝒏

𝒊=𝟏

Et par 𝝆 le coefficient de corrélation linéaire entre 𝒙𝒊 et 𝒚𝒊 .

1) 𝒂 , 𝒃 , 𝜶 𝒆𝒕 𝜷 étant les estimateurs MCO de 𝒂 , 𝒃 , 𝜶 𝒆𝒕 𝜷

Montrer que 𝒃 𝜷 = 𝝆𝟐 et 𝜶 − 𝒀 𝒂 − 𝑿 = 𝝆𝟐𝑿𝒀

2) 𝑹𝑨𝟐 et 𝑹𝑩

𝟐 désignent les coefficients de détermination de 𝑨 et 𝑩 ; établir une relation entre 𝑹𝑨𝟐

et 𝑹𝑩𝟐

3) 𝑺𝓔𝟐 et 𝑺𝒖

𝟐 étant les estimateurs sans biais de 𝝈𝓔𝟐 et 𝝈𝒖

𝟐 , montrer que :

𝑺𝓔𝟐

𝑺𝒙𝟐

=𝑺𝒖

𝟐

𝑺𝒚𝟐

4) On appelle 𝒕𝑨 𝒓𝒆𝒔𝒑. 𝒕𝑩 la statistique de Student utilisée pour tester 𝑯𝟎: 𝒃 = 𝟎 𝒓𝒆𝒔𝒑. 𝜷 = 𝟎

Montrer que :

Page 5: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

5

𝒕𝑨𝟐 = 𝒏 − 𝟐

𝑹𝑨𝟐

𝟏 − 𝑹𝑨𝟐

Conclure.

Exercice 8 :

Le taux d’équipement des ménages en PlayStation 2 est une variable 𝒚𝒕 , 𝒕 représentant l’année

d’observation, 𝒕 = 𝟏à𝑻.

On postule pour 𝒚𝒕 un modèle de type logistique :

𝒚𝒕 =𝟏

𝟏 + 𝒂𝒆−𝒃𝒕+ 𝓔𝒕 , 𝒂 𝒆𝒕 𝒃 é𝒕𝒂𝒏𝒕 𝒅𝒆𝒖𝒙 𝒓é𝒆𝒍𝒔 𝒔𝒕𝒓𝒊𝒄𝒕𝒆𝒎𝒆𝒏𝒕 𝒑𝒐𝒔𝒊𝒕𝒊𝒇𝒔 .

1) Tracer le graphe de

𝒇 𝒕 =𝟏

𝟏 + 𝒂𝒆−𝒃𝒕 𝒆𝒏 𝒇𝒐𝒏𝒄𝒕𝒊𝒐𝒏 𝒅𝒆 𝒕

2) Déterminer les équations vérifiées par les estimateurs des moindres carrés 𝒂 𝒆𝒕 𝒃 de 𝒂 𝒆𝒕 𝒃

3) Par un changement de variable approprié, montrer que le modèle logistique peut être transformé

en un modèle linéaire que l’on précisera.

On fournit les données suivantes :

𝒕 1998 1999 2000 2001 2002 2003 2004

𝒚𝒕 (En %)

2,9 4,4 6,0 8,4 11,8 14,6 18,3

En déduire des estimations 𝒂′ 𝒆𝒕𝒃′ de 𝒂 𝒆𝒕 𝒃 ; estimer 𝑽 𝒃′ et en déduire un intervalle de confiance

de niveau 0,95 pour 𝒃.

4) Montrer que si, 𝒚𝒕 suit exactement un modèle logistique 𝒚𝒕 = 𝒇 𝒕 alors

𝒅𝒚𝒕

𝒅𝒕

𝟏

𝒚𝒕 𝟏 − 𝒚𝒕 𝒆𝒔𝒕 𝒖𝒏𝒆 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆

5) Déduire de la question précédente que pour tester le modèle logistique, on doit valider le

modèle :

𝒙𝒕 =𝜟𝒚𝒕

𝒚𝒕 𝟏 − 𝒚𝒕 =

𝒚𝒕+𝟏 − 𝒚𝒕

𝒚𝒕 𝟏 − 𝒚𝒕 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆

Page 6: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

6

Etudier, à partir des données, l’adéquation de 𝒚𝒕 à un modèle logistique. En déduire une prévision pour

le taux d’équipement en PlayStation 2 pour 2005

Exercice 9 :

L’analyse d’une série temporelle de 12 ans concernant la demande d’habillement 𝒚 en fonction du

revenu 𝒙 des ménages a conduit à :

𝑳𝒏 𝒚𝒕 =𝟎, 𝟔𝟓 𝟎,𝟏𝟏

+ 𝟏, 𝟏 𝟎,𝟎𝟕

𝑳𝒏 𝒙𝒕

Peut-on dire que l’élasticité de la demande d’habillement soit égale à l’unité ?

Exercice 10 :

Soit le modèle linéaire simple :

𝟏 𝑳𝒏 𝑫𝒊 = 𝒂 + 𝒃𝑳𝒏 𝑹𝒊 + 𝓔𝒊 ; 𝒊 = 𝟏, 𝟐, … , 𝒏

Où 𝑫𝒊 est la dépense alimentaire du ménage 𝒊, 𝑹𝒊 son revenu disponible. Les 𝓔𝒊 constituent des termes

aléatoires indépendants, identiquement distribués selon la loi normale d’espérance mathématique nulle

et de variance 𝝈𝟐. L’estimateur par les MCO du modèle 𝟏 , sur un échantillon de 20 ménages, a donné

les résultats suivants :

𝟐 𝑳𝒏 𝑫𝒊 = 𝟐, 𝟕𝟖 𝟐,𝟔𝟒

+ 𝟎, 𝟐𝟓 𝟎,𝟎𝟖𝟗

𝑳𝒏 𝑹𝒊 ; 𝒊 = 𝟏, 𝟐, … , 𝒏

Les chiffres entre parenthèses indiquent les écarts-types estimés des estimateurs de 𝒂 𝒆𝒕 𝒃 .

1) Donner une interprétation économique des paramètres 𝒂 𝒆𝒕 𝒃 .

2) Tester au seuil de 5% l’hypothèse nulle selon laquelle le paramètre 𝒃 est égal à l’unité

3) Tester au seuil de 5% l’hypothèse nulle selon laquelle 𝒃 < 1 . interpréter économiquement ce

test

4) Calculer le coefficient de détermination 𝑹𝟐

5) Tester la significativité globale du modèle

Page 7: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

7

Exercice 11 : (Extrait de l’examen- ISG SP2007)

Soit le modèle de régression simple : 𝑴𝟏: 𝒚𝒕 = 𝜷𝟏 + 𝜷𝟐𝒙𝒕 + 𝓔𝒕 ; 𝒕 = 𝟏, 𝟐, … , 𝑻

1) Sur la base d’un échantillon de 24 observations trimestrielles (de 2000 : 𝕀 à 2005𝕀𝕍), on a estimé

par les MCO le modèle 𝑴𝟏 . Les résultats d’estimation sont :

𝑴 𝟏: 𝒚 𝒕 = 𝟑𝟗, 𝟎𝟓 𝟑,𝟎𝟎

+ 𝟎, 𝟖𝟓 𝟒,𝟕𝟎

𝒙𝒕 ; 𝒕 = 𝟏, 𝟐, … , 𝑻

Les valeurs entre parenthèses sont les 𝒕 de Student

a) Tester au risque de 5% la significativité globale du modèle 𝑴𝟏 (on rappelle que pour les

modèles simples : 𝑭 =𝑺𝑪𝑬

𝑺𝑪𝑹 𝑻−𝟐 = 𝒕𝜷𝟐

𝟐 )

b) Tester au risque de 5% 𝑯𝟎 ∶ 𝜷𝟐 = 𝟏 𝑯𝟏 ∶ 𝜷𝟐 ≠ 𝟏

2) On donne 𝑿 = 𝟔𝟕 ; 𝑽 𝑿 = 𝟔𝟖𝟎 𝒆𝒕 𝑽 𝒀 = 𝟗𝟖𝟎

a) Estimer la variance des résidus 𝝈 𝟐

b) Déterminer les matrices 𝑿′𝑿 𝒆𝒕 𝑿′𝑿 −𝟏 associées au modèle 𝑴𝟏

c) Déterminer un intervalle de prévision au niveau 95% pour 𝒚𝟐𝟓𝒑

sachant que 𝒙𝟐𝟓 = 𝟗𝟖

Exercice 12 : (IHEC SP2010)

On considère un modèle simple 𝒚𝒊 = 𝜷𝟏 + 𝜷𝟐𝒙𝒊 + 𝓔𝒊 . A partir d’une étude économique portant sur 85

entreprise, un économètre a fournit les résultats suivants :

𝒚 𝒊 = 𝟏𝟑𝟐, 𝟖 𝟒,𝟑

+ 𝟏, 𝟏 𝟏𝟎,𝟐

𝒙𝒊

Les valeurs entre parenthèses représentent les 𝒕 Student. 𝑺𝑪𝑹 = 𝟔𝟐𝟑𝟒, 𝟑𝟐

1) Tester au risque de 5% si l’effet de 𝑿 sur 𝒀 est significativement différent de zéro

2)

a) Calculer la variance estimée des résidus

b) Calculer la variance estimée de 𝜷𝟐

Page 8: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

8

c) Déduire 𝑺𝑪𝑬

d) Construire le tableau d’analyse de la variance et montrer l’équivalence des résultats de la

première question au test de significativité globale basé sur la loi de Fisher

3) Le coefficient 𝜷𝟐 est-il significativement différent de -1 ?

Page 9: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

9

M1/L3 (ÉCONOMÉTRIE)

Série Corrigée N°1- CORRIGÉS Modèles Économétriques à Une Équation-Régression Simple

Corrigé 1:

1) 𝑩. 𝑨 = 𝟒 𝟐𝟑 𝟗𝟓 𝟒

𝟏𝟎 𝟒 𝟔𝟐 𝟖 𝟕

𝑩. 𝑨 = 𝟒𝟒 𝟑𝟐 𝟑𝟖𝟒𝟖 𝟖𝟒 𝟖𝟏𝟓𝟖 𝟓𝟐 𝟓𝟖

, or 𝟒𝟒 𝟑𝟐 𝟑𝟖𝟒𝟖 𝟖𝟒 𝟖𝟏𝟓𝟖 𝟓𝟐 𝟓𝟖

= 𝟎 d’où 𝑩. 𝑨 n’est pas inversible.

𝒅𝒆𝒕 𝑨′ . 𝑩′ = 𝒅𝒆𝒕 𝑩. 𝑨 ′ = 𝒅𝒆𝒕 𝑩. 𝑨 = 𝟎 Ainsi 𝑨′ . 𝑩′ n’est pas inversible.

2) 𝒕𝒓 𝑨. 𝑩 = 𝒕𝒓 𝑩. 𝑨 = 𝟏𝟖𝟔

3) 𝒅𝒆𝒕 𝑪 = −𝟑𝟎 ; 𝑪𝒐𝒎 𝑪 = 𝟏𝟎 −𝟏𝟎 𝟏𝟎𝟏𝟐 −𝟑𝟑 𝟓𝟕

−𝟏𝟒 𝟐𝟔 −𝟒𝟒 , par la suite

𝑪−𝟏 =𝟏

𝒅𝒆𝒕 𝑪 𝑪𝒐𝒎 𝑪 ′ = −

𝟏

𝟑𝟎

𝟏𝟎 𝟏𝟐 −𝟏𝟒−𝟏𝟎 −𝟑𝟑 𝟐𝟔𝟏𝟎 𝟓𝟕 −𝟒𝟒

4)

a) 𝑬′ = 𝑫′ . 𝑫 ′ = 𝑫′ . 𝑫 = 𝑬 d’où 𝑬 est une matrice symétrique

b)

𝑬 = 𝒆𝒓,𝒔 𝟏≤𝒓≤𝒑𝟏≤𝒔≤𝒑

, 𝒕𝒆𝒍𝒔 𝒒𝒖𝒆 𝒆𝒓,𝒔 = 𝒅𝒓′ 𝒅𝒔 = 𝒅𝒊,𝒓𝒅𝒊,𝒔

𝒏

𝒊=𝟏

𝒐𝒓 𝒕𝒓 𝑬 = 𝒆𝒋𝒋

𝒑

𝒋=𝟏

𝒆𝒕 𝒆𝒋𝒋 = 𝒅𝒊𝒋𝒅𝒊𝒋

𝒏

𝒊=𝟏

= 𝒅𝒊𝒋𝟐

𝒏

𝒊=𝟏

𝒅′𝒐ù 𝒕𝒓 𝑬 = 𝒅𝒊𝒋𝟐

𝒏

𝒊=𝟏

𝒑

𝒋=𝟏

5) 𝑿 = 𝑨𝑩 + 𝑪𝑫 ′ 𝑬𝑭 −𝟏 + 𝑮𝑯 ′

= 𝑨𝑩 + 𝑫′𝑪′ 𝑭−𝟏𝑬−𝟏 + 𝑮𝑯 ′

Page 10: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

10

𝑿 = 𝑨𝑩𝑭−𝟏𝑬−𝟏 + 𝑨𝑩𝑮𝑯 + 𝑫′𝑪′𝑭−𝟏𝑬−𝟏 + 𝑫′𝑪′𝑮𝑯 ′

𝒅′𝒐ù 𝑿 = 𝑬′ −𝟏𝑭′ −𝟏𝑩′𝑨′ + 𝑯′𝑮′𝑩′𝑨′ + 𝑬′ −𝟏𝑭′ −𝟏𝑪𝑫 + 𝑯′𝑮′𝑪𝑫

Corrigé 2:

1)

a)

𝑿′𝑿 = 𝑿𝟏 ⋯ 𝑿𝒏 𝑿𝟏

⋮𝑿𝒏

′ = 𝑿𝒊𝑿𝒊

𝒏

𝒊=𝟏

b)

𝑿′ 𝒊 = 𝑿𝟏 ⋯ 𝑿𝒏 𝟏⋮𝟏 = 𝑿𝒊

𝒏

𝒊=𝟏

c)

𝑿 =𝟏

𝒏 𝑿𝒊

𝒏

𝒊=𝟏

𝒄𝒆 𝒒𝒖𝒊 𝒊𝒎𝒑𝒍𝒊𝒒𝒖𝒆 𝒒𝒖𝒆 𝑿 =𝟏

𝒏𝑿′ 𝒊

2)

𝑿𝒊 − 𝒂 𝑿𝒊 − 𝒂 ′

𝒏

𝒊=𝟏

= 𝑿𝒊𝑿𝒊′

𝒏

𝒊=𝟏

− 𝑿𝒊

𝒏

𝒊=𝟏

𝒂′ − 𝒂 𝑿𝒊′

𝒏

𝒊=𝟏

+ 𝒏𝒂𝒂′

= 𝑿′𝑿 − 𝒏𝑿𝒂′ − 𝒏𝒂𝑿′

+ 𝒏𝒂𝒂′

= 𝑿′𝑿 −𝒏𝑿𝑿′

+ 𝒏𝑿𝑿′

𝟎

− 𝒏𝑿𝒂′ − 𝒏𝒂𝑿′

+ 𝒏𝒂𝒂′

= 𝑿′𝑰𝒏𝑿 − 𝒏𝑿𝑿′

+ 𝒏 𝑿𝑿′− 𝑿𝒂′ − 𝒂𝑿

′+ 𝒂𝒂′

= 𝑿′𝑰𝒏𝑿 − 𝒏 𝟏

𝒏𝑿′ 𝒊

𝟏

𝒏𝑿′ 𝒊

+ 𝒏 𝑿𝑿′− 𝑿𝒂′ − 𝒂𝑿

′+ 𝒂𝒂′

= 𝑿′𝑰𝒏𝑿 −𝟏

𝒏𝑿′ 𝒊𝒊′𝑿 + 𝒏 𝑿 𝑿

′− 𝒂′ − 𝒂 𝑿

′− 𝒂′

Page 11: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

11

= 𝑿′𝑰𝒏𝑿 −𝟏

𝒏𝑿′ 𝒊𝒊′𝑿 + 𝒏 𝑿 𝑿 − 𝒂

′− 𝒂 𝑿 − 𝒂

= 𝑿′ 𝑰𝒏 −𝟏

𝒏𝒊𝒊′ 𝑿 + 𝒏 𝑿 − 𝒂 𝑿 − 𝒂

𝒅′ 𝒐ù 𝑿𝒊 − 𝒂 𝑿𝒊 − 𝒂 ′

𝒏

𝒊=𝟏

= 𝑿′𝑴𝟎𝑿 + 𝒏 𝑿 − 𝒂 𝑿 − 𝒂 ′

Corrigé 3:

1)

𝓔𝒊𝟐

𝒏

𝒊=𝟏

= 𝓔′𝓔

= 𝒀 − 𝑿𝜷 ′ 𝒀 − 𝑿𝜷

= 𝒀′ − 𝜷′ 𝑿′ 𝒀 − 𝑿𝜷

= 𝒀′𝒀 − 𝒀′𝑿𝜷 − 𝜷′𝑿′𝒀 + 𝜷′ 𝑿′𝑿𝜷

𝜷′ 𝑿′𝒀 = 𝑿𝜷 ′𝒀 𝒆𝒕 𝑿 𝒅𝒆 𝒇𝒐𝒓𝒎𝒂𝒕 𝒏 × 𝒌

𝜷 𝒅𝒆 𝒇𝒐𝒓𝒎𝒂𝒕 𝒌 × 𝟏 ⟹ 𝑿𝜷 𝒅𝒆 𝒇𝒐𝒓𝒎𝒂𝒕 𝒏 × 𝟏

⟹ 𝑿𝜷 ′ 𝒅𝒆 𝒇𝒐𝒓𝒎𝒂𝒕 𝟏 × 𝒏

𝒐𝒓 𝒀 𝒅𝒆 𝒇𝒐𝒓𝒎𝒂𝒕 𝒏 × 𝟏 𝒄𝒆 𝒒𝒖𝒊 𝒅𝒐𝒏𝒏𝒆 𝑿𝜷 ′𝒀 𝒅𝒆 𝒇𝒐𝒓𝒎𝒂𝒕 𝟏 × 𝟏

𝒂𝒖𝒕𝒓𝒆𝒎𝒆𝒏𝒕 𝒅𝒊𝒕 𝑿𝜷 ′𝒀 𝒆𝒔𝒕 𝒖𝒏 𝒔𝒄𝒂𝒍𝒂𝒊𝒓𝒆

𝒂𝒊𝒏𝒔𝒊 𝑿𝜷 ′𝒀 = 𝑿𝜷 ′𝒀 ′ = 𝒀′𝑿𝜷

𝒆𝒏 𝒆𝒇𝒇𝒆𝒕 𝓔𝒊𝟐

𝒏

𝒊=𝟏

= 𝒀′𝒀 − 𝟐𝒀′𝑿𝜷 + 𝜷′ 𝑿′𝑿𝜷

𝑹𝒂𝒑𝒑𝒆𝒍 ∶𝝏𝑨𝑿

𝝏𝑿′= 𝑨 ;

𝝏𝑨𝑿

𝝏𝑿= 𝑨′ 𝒆𝒕

𝝏𝑿′𝑨𝑿

𝝏𝑿= 𝑨 + 𝑨′ 𝑿

𝝏 𝓔𝒊𝟐𝒏

𝒊=𝟏

𝝏𝜷=

𝝏 𝒀′𝒀

𝝏𝜷− 𝟐

𝝏 𝒀′𝑿 𝜷

𝝏𝜷+

𝝏 𝜷′ 𝑿′𝑿 𝜷

𝝏𝜷

Page 12: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

12

𝝏 𝓔𝒊𝟐𝒏

𝒊=𝟏

𝝏𝜷= 𝟎 − 𝟐 𝒀′𝑿 ′ + 𝑿′𝑿 + 𝑿′𝑿 ′ 𝜷

𝒑𝒂𝒓 𝒍𝒂 𝒔𝒖𝒊𝒕𝒆 ∶ 𝝏 𝓔𝒊

𝟐𝒏𝒊=𝟏

𝝏𝜷= −𝟐𝑿′𝒀 + 𝟐 𝑿′𝑿 𝜷

𝜷 Minimise 𝓔𝒊𝟐

𝒊 par rapport à 𝜷 implique que :

𝜷 𝒗é𝒓𝒊𝒇𝒊𝒆

𝝏 𝓔𝒊

𝟐𝒏𝒊=𝟏

𝝏𝜷= 𝟎

𝝏𝟐 𝓔𝒊𝟐𝒏

𝒊=𝟏

𝝏𝜷𝟐> 0

−𝟐𝑿′𝒀 + 𝟐 𝑿′𝑿 𝜷 = 𝟎 ⟹ 𝑿′𝑿 𝜷 = 𝑿′𝒀

𝒅′𝒐ù 𝜷 = 𝑿′𝑿 −𝟏 𝑿′𝒀

2) 𝑹𝒂𝒑𝒑𝒆𝒍 ∶ 𝑴 𝒆𝒔𝒕 𝒖𝒏𝒆 𝒎𝒂𝒕𝒓𝒊𝒄𝒆 𝒊𝒅𝒆𝒎𝒑𝒐𝒕𝒆𝒏𝒕𝒆 ⟺ 𝑴𝒏 = 𝑴

𝑷′𝑷 = 𝑿 𝑿′𝑿 −𝟏𝑿′ ′ 𝑿 𝑿′𝑿 −𝟏𝑿′

= 𝑿 𝑿′𝑿 −𝟏 𝑿′𝑿 𝑰𝒌

𝑿′𝑿 −𝟏𝑿′

𝑷′𝑷 = 𝑿 𝑿′𝑿 −𝟏𝑿′ = 𝑷 𝒅′𝒐ù 𝑷 𝒆𝒔𝒕 𝒖𝒏𝒆 𝒎𝒂𝒕𝒓𝒊𝒄𝒆 𝒔𝒚𝒎é𝒕𝒓𝒊𝒒𝒖𝒆 𝒊𝒅𝒆𝒎𝒑𝒐𝒕𝒆𝒏𝒕𝒆

𝑴′𝑴 = 𝑰𝒏 − 𝑷 ′ 𝑰𝒏 − 𝑷

= 𝑰𝒏 − 𝑷′ 𝑰𝒏 − 𝑷

= 𝑰𝒏 − 𝑷−𝑷′ + 𝑷′𝑷 𝟎

𝑴′𝑴 = 𝑰𝒏 − 𝑷 = 𝑴 𝒅′𝒐ù 𝑴 𝒆𝒔𝒕 𝒖𝒏𝒆 𝒎𝒂𝒕𝒓𝒊𝒄𝒆 𝒔𝒚𝒎é𝒕𝒓𝒊𝒒𝒖𝒆 𝒊𝒅𝒆𝒎𝒑𝒐𝒕𝒆𝒏𝒕𝒆

3) 𝑴𝑷 = 𝑰𝒏 − 𝑷 𝑷 = 𝑷 − 𝑷𝟐 = 𝑷 − 𝑷 = 𝟎

4) 𝑹𝒂𝒑𝒑𝒆𝒍 ∶ 𝑿 é𝒕𝒂𝒏𝒕 𝒖𝒏𝒆 𝒎𝒂𝒕𝒓𝒊𝒄𝒆 𝒂𝒍é𝒂𝒕𝒐𝒊𝒓𝒆 𝒆𝒕 𝑴 𝒖𝒏𝒆 𝒎𝒂𝒕𝒓𝒊𝒄𝒆 𝒏𝒐𝒏 𝒂𝒍é𝒂𝒕𝒐𝒊𝒓𝒆

𝑬 𝑴𝑿 = 𝑴𝑬 𝑿 𝒆𝒕 𝑽 𝑴𝑿 = 𝑴𝑽 𝑿 𝑴′

𝓔 = 𝒀 − 𝑿𝜷

= 𝒀 − 𝑿 𝑿′𝑿 −𝟏 𝑿′𝒀

Page 13: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

13

𝓔 = 𝒀 − 𝑿 𝑿′𝑿 −𝟏𝑿′ 𝑷

𝒀

= 𝒀 − 𝑷𝒀

= 𝑰𝒏 − 𝑷 𝒀

𝓔 = 𝑴𝒀

Ainsi 𝑽 𝓔 = 𝑽 𝑴𝒀 = 𝑴𝑽 𝒀 𝑴′

Or 𝑽 𝒀 = 𝑽 𝓔 + 𝑿𝜷 = 𝑽 𝓔 = 𝝈𝟐 𝒄𝒂𝒓 𝑿 𝒆𝒕 𝜷 𝒔𝒐𝒏𝒕 𝒏𝒐𝒏 𝒂𝒍é𝒂𝒕𝒐𝒊𝒓𝒆𝒔

Par la suite 𝑽 𝓔 = 𝑴𝝈𝟐𝑴′ = 𝝈𝟐𝑴𝑴′ = 𝝈𝟐𝑴

Corrigé 4:

1) 𝒚𝒊 = 𝜶 + 𝜷𝒙𝒊 + 𝒖𝒊 ; 𝒊 = 𝟏, 𝟐, … , 𝟏𝟖𝟐

𝜷 =𝑪𝒐𝒗 𝒙, 𝒚

𝑽 𝒙 =

𝒙𝒊𝒚𝒊 − 𝒏𝒙 𝒚 𝟏𝟖𝟐𝒊=𝟏

𝒙𝒊𝟐 − 𝒏𝒙 𝟐𝟏𝟖𝟐

𝒊=𝟏

= 𝒙𝒊𝒚𝒊

𝟏𝟖𝟐𝒊=𝟏 −

𝟏𝒏

𝒙𝒊𝟏𝟖𝟐𝒊=𝟏 𝒚𝒊

𝟏𝟖𝟐𝒊=𝟏

𝒙𝒊𝟐𝟏𝟖𝟐

𝒊=𝟏 −𝟏𝒏

𝒙𝒊𝟏𝟖𝟐𝒊=𝟏

𝟐= 𝟏, 𝟏𝟖

𝜶 = 𝒚 − 𝜷 𝒙 =𝟏

𝒏 𝒚𝒊

𝟏𝟖𝟐

𝒊=𝟏

− 𝜷 𝒙𝒊

𝟏𝟖𝟐

𝒊=𝟏

= −𝟎, 𝟎𝟎𝟐𝟖

2)

On se propose de tester 𝑯𝟎: 𝜶 = 𝟎 𝒄𝒐𝒏𝒕𝒓𝒆 𝑯𝟏: 𝜶 ≠ 𝟎 sous un seuil de signification de 𝜽 = 𝟓%

𝑻 =𝜶 − 𝜶

𝝈 𝜶 ↝ 𝝉 𝒏 − 𝟐 É𝒕𝒂𝒏𝒕 𝒍𝒂 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒒𝒖𝒆 𝒅𝒆 𝒅é𝒄𝒊𝒔𝒊𝒐𝒏

Avec

𝒙 =𝟏

𝒏 𝒙𝒊

𝒏

𝒊=𝟏

= 𝟕, 𝟓𝟔. 𝟏𝟎−𝟑 , 𝑽 𝒙 =𝟏

𝒏 𝒙𝒊

𝟐

𝒏

𝒊=𝟏

− 𝒙 𝟐 = 𝟎, 𝟗𝟕. 𝟏𝟎−𝟑

𝒚 =𝟏

𝒏 𝒚𝒊

𝒏

𝒊=𝟏

= 𝟔. 𝟏𝟑. 𝟏𝟎−𝟑 , 𝑽 𝒚 =𝟏

𝒏 𝒚𝒊

𝟐

𝒏

𝒊=𝟏

− 𝒚 𝟐 = 𝟏, 𝟕𝟔. 𝟏𝟎−𝟑

Page 14: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

14

𝑪𝒐𝒗 𝒙, 𝒚 =𝟏

𝒏 𝒙𝒊𝒚𝒊 − 𝒙 𝒚

𝒏

𝒊=𝟏

= 𝟏, 𝟒𝟐. 𝟏𝟎−𝟑

𝑺𝑪𝑻 = 𝒚𝒊 − 𝒚 𝟐

𝒏

𝒊=𝟏

= 𝒏𝑽 𝒚 = 𝟎, 𝟑𝟐

𝑺𝑪𝑬 = 𝒚 𝒊 − 𝒚 𝟐

𝒏

𝒊=𝟏

= 𝜷 𝟐 𝒙𝒊 − 𝒙 𝟐

𝒏

𝒊=𝟏

= 𝒏𝜷 𝟐𝑽 𝒙 = 𝟎, 𝟐𝟒𝟔

𝑺𝑪𝑹 = 𝒖 𝒊𝟐

𝒏

𝒊=𝟏

= 𝒚𝒊 − 𝒚 𝒊 𝟐

𝒏

𝒊=𝟏

= 𝒚𝒊 − 𝒚 𝟐

𝒏

𝒊=𝟏

− 𝒚 𝒊 − 𝒚 𝟐

𝒏

𝒊=𝟏

= 𝑺𝑪𝑻 − 𝑺𝑪𝑬 = 𝟎, 𝟎𝟕𝟒

𝝈 𝟐 =𝑺𝑪𝑹

𝒏 − 𝟐= 𝟎, 𝟒𝟏. 𝟏𝟎−𝟑 , 𝝈 𝜶

𝟐 =𝝈 𝟐 𝒙𝒊

𝟐𝒏𝒊=𝟏

𝒏 𝒙𝒊 − 𝒙 𝟐𝒏𝒊=𝟏

=𝝈 𝟐

𝒏𝟐

𝒙𝒊𝟐𝒏

𝒊=𝟏

𝑽 𝒙 = 𝟐, 𝟑𝟖. 𝟏𝟎−𝟔

Règle de décision :

𝑶𝒏 𝒓𝒆𝒋𝒆𝒕𝒕𝒆 𝑯𝟎 𝒔𝒊 𝑻𝟎 = 𝜶 − 𝟎

𝝈 𝜶 > 𝒕

𝟏−𝜽𝟐

𝒏 − 𝟐

𝒐𝒓 𝑻𝟎 = 𝟏, 𝟖𝟏𝟓 𝒆𝒕 𝒕𝟎,𝟗𝟕𝟓 𝟏𝟖𝟎 = 𝚽−𝟏 𝟎, 𝟗𝟕𝟓 = 𝟏, 𝟗𝟔 ⟹ 𝑻𝟎 ≯ 𝒕𝟏−

𝜽𝟐

𝒏 − 𝟐

On ne rejette pas 𝑯𝟎 et le paramètre 𝜶 est statistiquement non significatif

Nous testons maintenant l'hypothèse 𝑯𝟎: 𝜷 = 𝟎 𝒄𝒐𝒏𝒕𝒓𝒆 𝑯𝟏: 𝜷 ≠ 𝟎 au même seuil de

signification 𝜽 = 𝟓%

𝑻 =𝜷 − 𝜷

𝝈 𝜷 ↝ 𝝉 𝒏 − 𝟐 É𝒕𝒂𝒏𝒕 𝒍𝒂 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒒𝒖𝒆 𝒅𝒆 𝒅é𝒄𝒊𝒔𝒊𝒐𝒏

𝒂𝒗𝒆𝒄 𝝈 𝜷 𝟐 =

𝝈 𝟐

𝒙𝒊 − 𝒙 𝟐𝒏𝒊=𝟏

=𝝈 𝟐

𝒏𝑽 𝒙 = 𝟐, 𝟑𝟐. 𝟏𝟎−𝟑

Règle de décision :

𝑶𝒏 𝒓𝒆𝒋𝒆𝒕𝒕𝒆 𝑯𝟎 𝒔𝒊 𝑻𝟎 = 𝜷 − 𝟎

𝝈 𝜷 > 𝒕

𝟏−𝜽𝟐

𝒏 − 𝟐

𝒐𝒓 𝑻𝟎 = 𝟎, 𝟎𝟒𝟖 𝒆𝒕 𝒕𝟎,𝟗𝟕𝟓 𝟏𝟖𝟎 = 𝚽−𝟏 𝟎, 𝟗𝟕𝟓 = 𝟏, 𝟗𝟔 ⟹ 𝑻𝟎 ≯ 𝒕𝟏−

𝜽𝟐

𝒏 − 𝟐

De même le paramètre 𝜷 est statistiquement non significatif.

Page 15: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

15

3)

𝑹𝟐 =𝑺𝑪𝑬

𝑺𝑪𝑻= 𝟏 −

𝑺𝑪𝑹

𝑺𝑪𝑻= 𝟕𝟕%

4) Le modèle est statistiquement non significatif puisque les paramètres 𝜶 et 𝜷 sont

statistiquement non significatifs.

D’autre part 23% de la rentabilité de l’indice boursier européen Euro Stoxx 50 𝑹𝑬𝑺 = 𝒀 n’est pas

expliquée par la rentabilité de l’indice boursier américain Don Jones 𝑹𝑫𝑱 = 𝑿

5) En supposant que le modèle reste valable pour le quatrième trimestre 2005, on obtient :

𝒚 𝟐𝟎𝟎𝟓/𝟒𝒑

= 𝜶 + 𝜷 𝒙 𝟐𝟎𝟎𝟓/𝟒𝒑

= −𝟎, 𝟎𝟎𝟐𝟖 + 𝟏, 𝟏𝟖 × 𝟎, 𝟎𝟐𝟓𝟐 = 𝟎, 𝟎𝟐𝟕

Corrigé 5:

1) 𝑴𝟐: 𝒚𝒊 = 𝒃𝒙𝒊 + 𝓔𝒊 𝒆𝒕 𝑴 𝟐: 𝒚 𝒊 = 𝒃 𝒙𝒊 ; 𝒊 = 𝟏, 𝟐, … , 𝒏

Le résidu des MCO pour l’observation 𝒊 est défini par𝓔 𝒊 = 𝒚𝒊 − 𝒚 𝒊 = 𝒚𝒊 − 𝒃 𝒙𝒊, l’estimateur MCO 𝒃 est

obtenu par la minimisation du carré des résidus :

𝐦𝐢𝐧𝒃

𝓔 𝒊𝟐

𝒏

𝒊=𝟏

= 𝐦𝐢𝐧𝒃

𝒚𝒊 − 𝒃 𝒙𝒊 𝟐

𝒏

𝒊=𝟏

𝒃 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝒅𝒆

𝝏 𝓔 𝒊

𝟐𝒏𝒊=𝟏

𝝏𝒃 = 𝟎

𝝏𝟐 𝓔 𝒊𝟐𝒏

𝒊=𝟏

𝝏𝒃 𝟐> 0

𝝏 𝓔 𝒊𝟐𝒏

𝒊=𝟏

𝝏𝒃 = 𝟎 ⟺

𝝏 𝒚𝒊 − 𝒃 𝒙𝒊 𝟐𝒏

𝒊=𝟏

𝝏𝒃 = 𝟎

⟺ −𝟐 𝒙𝒊 𝒚𝒊 − 𝒃 𝒙𝒊

𝒏

𝒊=𝟏

= 𝟎

⟺ 𝒙𝒊𝒚𝒊

𝒏

𝒊=𝟏

− 𝒃 𝒙𝒊𝟐

𝒏

𝒊=𝟏

= 𝟎

Page 16: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

16

𝒂𝒊𝒏𝒔𝒊 𝒃 = 𝒙𝒊𝒚𝒊

𝒏𝒊=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

𝒅′𝒂𝒖𝒕𝒓𝒆𝒑𝒂𝒓𝒕 𝑶𝒏 𝒗é𝒓𝒊𝒇𝒊𝒆 𝒃𝒊𝒆𝒏 𝒒𝒖𝒆 𝝏𝟐 𝓔 𝒊

𝟐𝒏𝒊=𝟏

𝝏𝒃 𝟐= 𝟐 𝒙𝒊

𝟐

𝒏

𝒊=𝟏

> 0

𝑬 𝒃 = 𝑬 𝒙𝒊𝒚𝒊

𝒏𝒊=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

= 𝑬 𝒙𝒊𝒚𝒊

𝒏𝒊=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

Or sous les hypothèses des MCO : les variables explicatives 𝒙𝟏≤𝒊≤𝒏 sont non aléatoires, par la suite :

𝑬 𝒃

𝑬 𝒃 =𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

𝑬 𝒙𝒊𝒚𝒊

𝒏

𝒊=𝟏

=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

𝑬 𝒙𝒊𝒚𝒊

𝒏

𝒊=𝟏

=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

𝒙𝒊𝑬 𝒚𝒊

𝒏

𝒊=𝟏

Or 𝑬 𝒚𝒊 = 𝑬 𝒃𝒙𝒊 + 𝓔𝒊 = 𝒃𝒙𝒊 + 𝑬 𝓔𝒊 𝟎

= 𝒃𝒙𝒊 puisque toujours sous l’hypothèse de nullité des

moyennes des erreurs on a 𝑬 𝓔𝒊 = 𝟎 ∀𝒊 ∈ 𝟏, 𝟐, … , 𝒏 ce qui donne :

𝑬 𝒃 =𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

𝒃𝒙𝒊𝟐

𝒏

𝒊=𝟏

= 𝒃𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

𝒙𝒊𝟐

𝒏

𝒊=𝟏

= 𝒃

D’où 𝒃 est un estimateur non biaisé de 𝒃

𝑽 𝒃

𝑽 𝒃 = 𝑬 𝒃 − 𝑬 𝒃 𝟐

𝑽 𝒃 = 𝑬 𝒃 − 𝒃 𝟐

Calculons 𝒃 − 𝒃 :

Page 17: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

17

𝒃 − 𝒃 = 𝒙𝒊𝒚𝒊

𝒏𝒊=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

− 𝒃

= 𝒙𝒊 𝒃𝒙𝒊 + 𝓔𝒊

𝒏𝒊=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

− 𝒃

=𝒃 𝒙𝒊

𝟐𝒏𝒊=𝟏 + 𝒙𝒊𝓔𝒊

𝒏𝒊=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

− 𝒃

= 𝒃 + 𝒙𝒊𝓔𝒊

𝒏𝒊=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

− 𝒃

𝒂𝒊𝒏𝒔𝒊 , 𝒃 − 𝒃 = 𝒙𝒊𝓔𝒊

𝒏𝒊=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

𝒑𝒂𝒓 𝒍𝒂 𝒔𝒖𝒊𝒕𝒆 ∶

𝑽 𝒃 = 𝑬 𝒃 − 𝒃 𝟐

= 𝑬 𝒙𝒊𝓔𝒊

𝒏𝒊=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

𝟐

= 𝑬 𝒙𝒊𝓔𝒊

𝒏𝒊=𝟏 𝟐

𝒙𝒊𝟐𝒏

𝒊=𝟏 𝟐

=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏 𝟐 𝑬 𝒙𝒊𝓔𝒊

𝒏

𝒊=𝟏

𝟐

𝑹𝒂𝒑𝒑𝒆𝒍 ∶

𝒂𝒊

𝒏

𝒊=𝟏

𝟐

= 𝒂𝒊𝟐

𝒏

𝒊=𝟏

+ 𝟐 𝒂𝒊𝒂𝒋

𝒏

𝒋=𝒊+𝟏

𝒏−𝟏

𝒊=𝟏

; 𝒊 ≠ 𝒋

Application 1 : pour 𝒏 = 𝟐

𝒂𝒊

𝟐

𝒊=𝟏

𝟐

= 𝒂𝟏 + 𝒂𝟐 𝟐 = 𝒂𝟏

𝟐 + 𝒂𝟐𝟐 + 𝟐𝒂𝟏𝒂𝟐 = 𝒂𝒊

𝟐

𝟐

𝒊=𝟏

+ 𝟐 𝒂𝒊𝒂𝒋

𝟐

𝒋=𝟐

𝟏

𝒊=𝟏

Application 1 : pour 𝒏 = 𝟑

Page 18: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

18

𝒂𝒊

𝟑

𝒊=𝟏

𝟐

= 𝒂𝟏 + 𝒂𝟐 + 𝒂𝟑 𝟐 = 𝒂𝟏

𝟐 + 𝒂𝟐𝟐 + 𝒂𝟑

𝟐 + 𝟐𝒂𝟏𝒂𝟐 + 𝟐𝒂𝟏𝒂𝟑 + 𝟐𝒂𝟐𝒂𝟑

= 𝒂𝒊𝟐

𝟑

𝒊=𝟏

+ 𝟐 𝒂𝒊𝒂𝒋

𝟑

𝒋=𝟐

𝟐

𝒊=𝟏

Il en résulte :

𝑬 𝒙𝒊𝓔𝒊

𝒏

𝒊=𝟏

𝟐

= 𝑬 𝒙𝒊𝓔𝒊 𝟐

𝒏

𝒊=𝟏

+ 𝟐 𝒙𝒊𝓔𝒋

𝒏

𝒋=𝒊+𝟏

𝒏−𝟏

𝒊=𝟏

; 𝒊 ≠ 𝒋

= 𝑬 𝒙𝒊𝟐𝓔𝒊

𝟐

𝒏

𝒊=𝟏

+ 𝟐 𝑬 𝒙𝒊𝓔𝒋

𝒏

𝒋=𝒊+𝟏

𝒏−𝟏

𝒊=𝟏

; 𝒊 ≠ 𝒋

= 𝒙𝒊𝟐 𝑬 𝓔𝒊

𝟐 𝝈𝟐

𝒏

𝒊=𝟏

+ 𝟐 𝒙𝒊 𝑬 𝓔𝒋 𝟎

𝒏

𝒋=𝒊+𝟏

𝒏−𝟏

𝒊=𝟏

; 𝒊 ≠ 𝒋

D’après l’hypothèse de nullité des moyennes des erreurs 𝑬 𝓔𝒋 = 𝟎 ∀𝒋 ∈ 𝟐, 𝟑, … , 𝒏

Et L’hypothèse d’ homoscédasticité 𝑬 𝓔𝒊𝟐 = 𝑽 𝓔𝒋 = 𝝈𝟐 ; ∀𝒊 ∈ 𝟏, 𝟐, … , 𝒏 on obtient :

𝑬 𝒙𝒊𝓔𝒊

𝒏

𝒊=𝟏

𝟐

= 𝝈𝟐 𝒙𝒊𝟐

𝒏

𝒊=𝟏

𝒆𝒕 𝑽 𝒃 =𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏 𝟐 𝑬 𝒙𝒊𝓔𝒊

𝒏

𝒊=𝟏

𝟐

=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏 𝟐 𝝈𝟐 𝒙𝒊

𝟐

𝒏

𝒊=𝟏

𝑫′𝒐ù 𝑽 𝒃 =𝝈𝟐

𝒙𝒊𝟐𝒏

𝒊=𝟏

2)

𝑽 𝒃

𝑽 𝜷 − 𝟏 =

𝝈𝟐

𝒙𝒊𝟐𝒏

𝒊=𝟏

𝝈𝟐 𝒙𝒊 − 𝒙 𝟐𝒏𝒊=𝟏

− 𝟏 ⟺𝑽 𝒃

𝑽 𝜷 − 𝟏 =

𝒙𝒊 − 𝒙 𝟐𝒏𝒊=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

− 𝟏

⟺𝑽 𝒃

𝑽 𝜷 − 𝟏 =

𝒙𝒊𝟐𝒏

𝒊=𝟏 − 𝒏𝒙 𝟐

𝒙𝒊𝟐𝒏

𝒊=𝟏

− 𝟏

Page 19: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

19

⟺𝑽 𝒃

𝑽 𝜷 − 𝟏 =

𝒙𝒊𝟐𝒏

𝒊=𝟏 − 𝒏𝒙 𝟐 − 𝒙𝒊𝟐𝒏

𝒊=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

⟺𝑽 𝒃

𝑽 𝜷 − 𝟏 = −

𝒏𝒙 𝟐

𝒙𝒊𝟐𝒏

𝒊=𝟏

< 0

Ainsi 𝑽 𝒃 < 𝑉 𝜷 𝒆𝒕 𝒃 𝒔𝒆𝒓𝒂 𝒑𝒍𝒖𝒔 𝒆𝒇𝒇𝒊𝒄𝒂𝒄𝒆 𝒒𝒖𝒆 𝜷

3) Supposons par l’absurde que pour le modèle 𝑴𝟐, 𝒐𝒏 𝒂 𝓔 𝒊𝒊 = 𝟎

Or 𝓔 𝒊 = 𝒚𝒊 − 𝒚 𝒊 = 𝒚𝒊 − 𝒃 𝒙𝒊 par la suite

𝓔 𝒊

𝒏

𝒊=𝟏

= 𝟎 ⟺ 𝒚𝒊 − 𝒃 𝒙𝒊

𝒏

𝒊=𝟏

= 𝟎

⟺ 𝒚𝒊

𝒏

𝒊=𝟏

− 𝒃 𝒙𝒊

𝒏

𝒊=𝟏

= 𝟎

⟺ 𝒃 = 𝒚𝒊

𝒏𝒊=𝟏

𝒙𝒊𝒏𝒊=𝟏

≠ 𝒙𝒊𝒚𝒊

𝒏𝒊=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

; 𝒂𝒃𝒔𝒖𝒓𝒅𝒆 𝒅𝒐𝒏𝒄 𝐥’𝐡𝐲𝐩𝐨𝐭𝐡è𝐬𝐞 𝐞𝐬𝐭 𝐟𝐚𝐮𝐬𝐬𝐞

𝒅′𝒐ù 𝓔𝒊𝒊 ≠ 𝟎 Pour le modèle 𝑴𝟐

𝑫′𝒂𝒖𝒕𝒓𝒆𝒑𝒂𝒓𝒕 , 𝑺𝑪𝑻 = 𝒚𝒊 − 𝒚 𝟐

𝒏

𝒊=𝟏

= 𝒚𝒊 − 𝒚 𝒊 𝓔 𝒊

− 𝒚 − 𝒚 𝒊

𝟐𝒏

𝒊=𝟏

⟺ 𝑺𝑪𝑻 = 𝓔 𝒊 − 𝒚 − 𝒚 𝒊 𝟐

𝒏

𝒊=𝟏

⟺ 𝑺𝑪𝑻 = 𝓔 𝒊𝟐

𝒏

𝒊=𝟏 𝑺𝑪𝑹

+ 𝒚 − 𝒚 𝒊 𝟐

𝒏

𝒊=𝟏 𝑺𝑪𝑬

− 𝟐 𝓔 𝒊 𝒚 − 𝒚 𝒊

𝒏

𝒊=𝟏

⟺ 𝑺𝑪𝑻 = 𝑺𝑪𝑹 + 𝑺𝑪𝑬 − 𝟐𝒚 𝓔 𝒊

𝒏

𝒊=𝟏

+ 𝟐 𝓔 𝒊 𝒃 𝒙𝒊

𝒏

𝒊=𝟏

⟺ 𝑺𝑪𝑻 = 𝑺𝑪𝑹 + 𝑺𝑪𝑬 − 𝟐𝒚 𝓔 𝒊

𝒏

𝒊=𝟏

+ 𝟐𝒃 𝓔 𝒊𝒙𝒊

𝒏

𝒊=𝟏

Page 20: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

20

𝐂𝐚𝐥𝐜𝐮𝐥𝐨𝐧𝐬 ∶ 𝒃 𝓔 𝒊𝒙𝒊

𝒏

𝒊=𝟏

𝒃 𝓔 𝒊𝒙𝒊

𝒏

𝒊=𝟏

= 𝒙𝒊𝒚𝒊

𝒏𝒊=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

𝓔 𝒊𝒙𝒊

𝒏

𝒊=𝟏

= 𝒙𝒊𝒚𝒊

𝒏𝒊=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

𝒚𝒊 − 𝒃 𝒙𝒊 𝒙𝒊

𝒏

𝒊=𝟏

= 𝒙𝒊𝒚𝒊

𝒏𝒊=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

𝒙𝒊𝒚𝒊

𝒏

𝒊=𝟏

− 𝒃 𝒙𝒊𝟐

𝒏

𝒊=𝟏

= 𝒙𝒊𝒚𝒊

𝒏𝒊=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

𝒙𝒊𝒚𝒊

𝒏

𝒊=𝟏

− 𝒙𝒊𝒚𝒊

𝒏𝒊=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

𝒙𝒊𝟐

𝒏

𝒊=𝟏

= 𝒙𝒊𝒚𝒊

𝒏𝒊=𝟏

𝒙𝒊𝟐𝒏

𝒊=𝟏

𝒙𝒊𝒚𝒊

𝒏

𝒊=𝟏

− 𝒙𝒊𝒚𝒊

𝒏

𝒊=𝟏

𝒄𝒆 𝒒𝒖𝒊 𝒅𝒐𝒏𝒏𝒆 𝒃 𝓔 𝒊𝒙𝒊

𝒏

𝒊=𝟏

= 𝟎 𝒆𝒕 𝑺𝑪𝑻 = 𝑺𝑪𝑹 + 𝑺𝑪𝑬 − 𝟐𝒚 𝓔 𝒊

𝒏

𝒊=𝟏

𝒄𝒐𝒎𝒎𝒆 𝒐𝒏 𝒂 𝓔 𝒊

𝒏

𝒊=𝟏

≠ 𝟎 𝒆𝒏 𝒆𝒇𝒇𝒆𝒕 𝒐𝒏 𝒂 𝒑𝒂𝒔 𝒕𝒐𝒖𝒋𝒐𝒖𝒓𝒔 𝑺𝑪𝑻 = 𝑺𝑪𝑹 + 𝑺𝑪𝑬

𝑺𝑪𝑻 − 𝑺𝑪𝑬 = 𝑺𝑪𝑹 − 𝟐𝒚 𝓔 𝒊

𝒏

𝒊=𝟏

D’où :

𝒔𝒊 𝑺𝑪𝑻 − 𝑺𝑪𝑬 ≥ 𝟎 ⟹ 𝑹𝟐 =𝑺𝑪𝑬

𝑺𝑪𝑻≤ 𝟏

𝒆𝒕 𝒑𝒐𝒖𝒓 𝑺𝑪𝑻 − 𝑺𝑪𝑬 ≤ 𝟎 𝒐𝒏 𝒐𝒃𝒕𝒊𝒆𝒏𝒕 𝑹𝟐 =𝑺𝑪𝑬

𝑺𝑪𝑻≥ 𝟏

Conclusion : pour le modèle 𝑴𝟐 ; 𝑹𝟐 n’est pas nécessairement dans l’intervalle 𝟎, 𝟏

Page 21: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

21

Corrigé 6:

1) 𝑻 = 𝟏𝟐

𝒃 = 𝑬𝒕𝑹𝒕 − 𝑻𝑬𝑹𝑻

𝒕=𝟏

𝑹𝒕𝟐 − 𝑻𝑹

𝟐𝑻𝒕=𝟏

= 𝟎, 𝟐𝟐𝟑

𝒂 = 𝑬 − 𝒃 𝑹 = 𝟏, 𝟔𝟗𝟗

𝑺𝑪𝑻 = 𝑬𝒕𝟐

𝑻

𝒕=𝟏

− 𝑻𝑬𝟐

= 𝟗, 𝟒𝟖 𝒆𝒕 𝑺𝑪𝑬 = 𝑹𝒕𝟐

𝑻

𝒕=𝟏

− 𝑻𝑹𝟐

= 𝟖, 𝟒𝟓

𝝈 𝟐 =𝑺𝑪𝑹

𝑻 − 𝟐=

𝑺𝑪𝑻 − 𝑺𝑪𝑬

𝑻 − 𝟐=

𝑬𝒕𝟐𝑻

𝒕=𝟏 − 𝑻𝑬𝟐 − 𝒃 𝟐 𝑹𝒕

𝟐𝑻𝒕=𝟏 − 𝑻𝑹

𝟐

𝑻 − 𝟐= 𝟎, 𝟏𝟎𝟑

𝝈 𝒃 𝟐 =

𝝈 𝟐

𝑹𝒕𝟐𝑻

𝒕=𝟏 − 𝑻𝑹𝟐 = 𝟔, 𝟎𝟔. 𝟏𝟎−𝟒 ⟹ 𝝈 𝒃 = 𝟐, 𝟒𝟔. 𝟏𝟎−𝟐

𝝈 𝒂 𝟐 =

𝝈 𝟐 𝑹𝒕𝟐𝑻

𝒕=𝟏

𝑻 𝑹𝒕𝟐𝑻

𝒕=𝟏 − 𝑻𝑹𝟐

= 𝟎, 𝟐𝟒𝟒 ⟹ 𝝈 𝒂 = 𝟎, 𝟒𝟗𝟒

𝑻 =𝒃 − 𝒃

𝝈 𝒃 ↝ 𝝉 𝒏 − 𝟐

𝒔𝒆𝒓𝒂 𝒍𝒂 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒒𝒖𝒆 𝒅𝒆 𝒅é𝒄𝒊𝒔𝒊𝒐𝒏 𝒑𝒐𝒖𝒓 𝒄𝒐𝒏𝒔𝒕𝒓𝒖𝒊𝒓𝒆 𝒖𝒏 𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍𝒍𝒆 𝒅𝒆 𝒄𝒐𝒏𝒇𝒊𝒂𝒏𝒄𝒆 𝒑𝒐𝒖𝒓 𝒃

𝑰𝑪𝟏−𝜶 𝒃 = 𝒃 ± 𝝈 𝒃 𝒕𝟏−𝜶𝟐 𝒏 − 𝟐 𝒐ù 𝒕𝟏−

𝜶𝟐 𝒏 − 𝟐 = 𝒕𝟎,𝟗𝟕𝟓 𝟏𝟎 = 𝟐, 𝟐𝟐𝟖

⟹ 𝑰𝑪𝟎,𝟗𝟓 𝒃 = 𝟎, 𝟏𝟔𝟖; 𝟎, 𝟐𝟕𝟖

𝒅𝒆 𝒎ê𝒎𝒆 𝑻 =𝒂 − 𝒂

𝝈 𝒂 ↝ 𝝉 𝒏 − 𝟐

𝒔𝒆𝒓𝒂 𝒍𝒂 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒒𝒖𝒆 𝒅𝒆 𝒅é𝒄𝒊𝒔𝒊𝒐𝒏 𝒑𝒐𝒖𝒓 𝒄𝒐𝒏𝒔𝒕𝒓𝒖𝒊𝒓𝒆 𝒖𝒏 𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍𝒍𝒆 𝒅𝒆 𝒄𝒐𝒏𝒇𝒊𝒂𝒏𝒄𝒆 𝒑𝒐𝒖𝒓 𝒂

𝑰𝑪𝟏−𝜶 𝒂 = 𝒂 ± 𝝈 𝒂 𝒕𝟏−𝜶𝟐 𝒏 − 𝟐 𝒐ù 𝒕𝟏−

𝜶𝟐 𝒏 − 𝟐 = 𝒕𝟎,𝟗𝟕𝟓 𝟏𝟎 = 𝟐, 𝟐𝟐𝟖

⟹ 𝑰𝑪𝟎,𝟗𝟓 𝒂 = 𝟎, 𝟓𝟗𝟖; 𝟐, 𝟕𝟗𝟗

Page 22: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

22

2)

𝑹𝟐 =𝑺𝑪𝑬

𝑺𝑪𝑻= 𝟖𝟗, 𝟏𝟑% 𝒅′ 𝒐ù 𝒍𝒂 𝒗𝒂𝒍𝒊𝒅𝒊𝒕é 𝒅𝒖𝒎𝒐𝒅è𝒍𝒆

𝒅′𝒂𝒖𝒕𝒓𝒆𝒑𝒂𝒓𝒕 𝒃 = 𝟎 ∉ 𝑰𝑪𝟎,𝟗𝟕𝟓 𝒃 = 𝟎, 𝟏𝟔𝟖; 𝟎, 𝟐𝟕𝟖

𝒅′ 𝒐ù𝒍𝒆 𝒓𝒆𝒋𝒆𝒕 𝒅𝒆 𝒍′𝒉𝒚𝒑𝒐𝒕𝒉è𝒔𝒆 𝑯𝟎: 𝒃 = 𝟎 𝒂𝒗𝒆𝒄 𝒖𝒏 𝒓𝒊𝒔𝒒𝒖𝒆 𝒅𝒆 𝟏è𝐫𝐞 𝒆𝒔𝒑è𝒄𝒆 𝜶 = 𝟓%

3)

Test de l’hypothèse d’un report intégral d’une variation absolue du revenu 𝜟𝑹 sur celle de l’épargne 𝜟𝑬

𝜟𝑹 = 𝟏% ⟹ 𝑹𝒕′ − 𝑹𝒕 = 𝟏%

𝑯𝟎: 𝜟𝑹 = 𝜟𝑬 𝒄𝒐𝒏𝒕𝒓𝒆 𝑯𝟏: 𝜟𝑹 ≠ 𝜟𝑬

𝒐𝒓 𝜟𝑬 = 𝑬𝒕′ − 𝑬𝒕 = 𝒂 + 𝒃𝑹𝒕

′ + 𝒖𝒕′ − 𝒂 + 𝒃𝑹𝒕 + 𝒖𝒕 = 𝒃𝜟𝑹 + 𝜟𝒖

En négligeant les perturbations 𝜟𝒖 ≅ 𝟎 on obtient 𝜟𝑬 = 𝒃𝜟𝑹 ainsi tester l’hypothèse d’un report

intégral d’une variation absolue du revenu 𝜟𝑹 sur celle de l’épargne 𝜟𝑬 revient à tester

𝑯𝟎: 𝒃 = 𝟏 𝒄𝒐𝒏𝒕𝒓𝒆 𝑯𝟏: 𝒃 ≠ 𝟏 𝒂𝒗𝒆𝒄 𝒖𝒏 𝒓𝒊𝒔𝒒𝒖𝒆 𝒅𝒆 𝟏è𝐫𝐞 𝒆𝒔𝒑è𝒄𝒆 𝜶 = 𝟓%

𝑻 =𝒃 − 𝒃

𝝈 𝒃 ↝ 𝝉 𝒏 − 𝟐 𝒔𝒆𝒓𝒂 𝒍𝒂 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒒𝒖𝒆 𝒅𝒆 𝒅é𝒄𝒊𝒔𝒊𝒐𝒏

Règle de décision :

𝑶𝒏 𝒓𝒆𝒋𝒆𝒕𝒕𝒆 𝑯𝟎 𝒔𝒊 𝑻𝟎 = 𝒃 − 𝟏

𝝈 𝒃 > 𝒕𝟏−

𝜶𝟐 𝒏 − 𝟐

𝒐𝒓 𝑻𝟎 = 𝟎, 𝟐𝟐𝟑 − 𝟏

𝟐, 𝟒𝟔. 𝟏𝟎−𝟐 = 𝟑𝟏, 𝟓𝟖 𝒆𝒕 𝒕𝟏−

𝜶𝟐 𝒏 − 𝟐 = 𝒕𝟎,𝟗𝟕𝟓 𝟏𝟎 = 𝟐, 𝟐𝟐𝟖 ⟹ 𝑻𝟎 > 𝒕

𝟏−𝜽𝟐

𝒏 − 𝟐

Ce qui conduit au rejet de 𝑯𝟎autrement dit le rejet d’un transfert intégral d’une variation absolue du

revenu 𝜟𝑹 sur celle de l’épargne 𝜟𝑬

4) Test de l’hypothèse d’un report intégral d’une variation relative du revenu 𝜟𝑹𝑹𝒕

sur celle de

l’épargne 𝜟𝑬𝑬𝒕

𝜟𝑹

𝑹= 𝟏% ⟹

𝑹𝒕′ − 𝑹𝒕

𝑹𝒕

= 𝟏%

Page 23: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

23

𝑯𝟎 : 𝜟𝑹

𝑹𝒕

=𝜟𝑬

𝑬𝒕

𝒄𝒐𝒏𝒕𝒓𝒆 𝑯𝟏 : 𝜟𝑹

𝑹𝒕

≠𝜟𝑬

𝑬𝒕

𝒐𝒓 𝜟𝑬

𝑬𝒕

=𝑬𝒕

′ − 𝑬𝒕

𝑬𝒕

= 𝒂 + 𝒃𝑹𝒕

′ + 𝒖𝒕′ − 𝒂 + 𝒃𝑹𝒕 + 𝒖𝒕

𝒂 + 𝒃𝑹𝒕 + 𝒖𝒕

=𝒃𝜟𝑹 + 𝜟𝒖

𝒂 + 𝒃𝑹𝒕 + 𝒖𝒕=

𝒃𝜟𝑹

𝒂 + 𝒃𝑹𝒕 ; 𝑬𝒏 𝒏é𝒈𝒍𝒊𝒈𝒆𝒂𝒏𝒕 𝒓𝒆𝒔𝒑𝒆𝒄𝒕𝒊𝒗𝒆𝒎𝒆𝒏𝒕 𝜟𝒖 𝒆𝒕 𝒖𝒕

𝒑𝒂𝒓 𝒍𝒂 𝒔𝒖𝒊𝒕𝒆 𝜟𝑹

𝑹𝒕

=𝜟𝑬

𝑬𝒕

⟹𝜟𝑹

𝑹𝒕

=𝒃𝜟𝑹

𝒂 + 𝒃𝑹𝒕

⟹ 𝒂 = 𝟎

Ainsi tester le transfert intégral d’une variation relative du revenu 𝜟𝑹𝑹𝒕

sur celle de l’épargne 𝜟𝑬𝑬𝒕

Revient à tester𝑯𝟎: 𝒂 = 𝟎 𝒄𝒐𝒏𝒕𝒓𝒆 𝑯𝟏: 𝒂 ≠ 𝟎 𝒂𝒗𝒆𝒄 𝒖𝒏 𝒓𝒊𝒔𝒒𝒖𝒆 𝒅𝒆 𝟏è𝐫𝐞 𝒆𝒔𝒑è𝒄𝒆 𝜽 = 𝟓%

𝑻 =𝒂 − 𝒂

𝝈 𝒂 ↝ 𝝉 𝒏 − 𝟐 𝒔𝒆𝒓𝒂 𝒍𝒂 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒒𝒖𝒆 𝒅𝒆 𝒅é𝒄𝒊𝒔𝒊𝒐𝒏

Règle de décision :

𝑶𝒏 𝒓𝒆𝒋𝒆𝒕𝒕𝒆 𝑯𝟎 𝒔𝒊 𝑻𝟎 = 𝒂 − 𝟎

𝝈 𝒂 > 𝒕

𝟏−𝜽𝟐

𝒏 − 𝟐

𝒐𝒓 𝑻𝟎 = 𝟑, 𝟒𝟒 𝒆𝒕 𝒕𝟏−

𝜽𝟐

𝒏 − 𝟐 = 𝒕𝟎,𝟗𝟕𝟓 𝟏𝟎 = 𝟐, 𝟐𝟐𝟖 ⟹ 𝑻𝟎 > 𝒕𝟏−

𝜽𝟐

𝒏 − 𝟐

Ce qui conduit au rejet de 𝑯𝟎 autrement dit le rejet d’un transfert intégral d’une variation relative du

revenu sur celle de l’épargne

Corrigé 7:

1)

𝒂 = 𝑿 − 𝒃 𝒀 𝒂𝒗𝒆𝒄 𝒃 = 𝒙𝒊 − 𝑿 𝒚𝒊 − 𝒀 𝒏

𝒊=𝟏

𝒚𝒊 − 𝒀 𝟐𝒏

𝒊=𝟏

=𝑪𝒐𝒗 𝑿, 𝒀

𝑽 𝑿

𝒆𝒕 𝜶 = 𝒀 − 𝜷 𝑿 𝒂𝒗𝒆𝒄 𝜷 = 𝒚𝒊 − 𝒀 𝒙𝒊 − 𝑿 𝒏

𝒊=𝟏

𝒙𝒊 − 𝑿 𝟐𝒏

𝒊=𝟏

=𝑪𝒐𝒗 𝒀, 𝑿

𝑽 𝒀

𝒑𝒂𝒓 𝒍𝒂 𝒔𝒖𝒊𝒕𝒆 𝒃 𝜷 = 𝑪𝒐𝒗 𝑿, 𝒀 𝟐

𝑽 𝑿 𝑽 𝒀 = 𝝆𝟐

Page 24: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

24

𝒐ù 𝝆 =𝑪𝒐𝒗 𝑿, 𝒀

𝑽 𝑿 𝑽 𝒀 𝐜𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 𝐝𝐞 𝐜𝐨𝐫𝐫é𝐥𝐚𝐭𝐢𝐨𝐧 𝐥𝐢𝐧é𝐚𝐢𝐫𝐞 𝐞𝐧𝐭𝐫𝐞 𝒙𝒊 𝐞𝐭 𝒚𝒊 .

𝒅′𝒂𝒖𝒕𝒓𝒆 𝒑𝒂𝒓𝒕 𝜶 − 𝒀 𝒂 − 𝑿 = −𝜷 𝑿 −𝒃 𝒀 = 𝒃 𝜷 𝑿𝒀 = 𝝆𝟐𝑿𝒀

2)

𝑹𝑨𝟐 =

𝑺𝑪𝑬𝑨

𝑺𝑪𝑻𝑨=

𝒃 𝟐 𝒚𝒊 − 𝒀 𝟐𝒏

𝒊=𝟏

𝒙𝒊 − 𝒙 𝟐𝒏𝒊=𝟏

=𝒏𝒃 𝟐𝑽 𝒀

𝒏𝑽 𝑿 =

𝒃 𝟐𝑽 𝒀

𝑽 𝑿

𝒆𝒕 𝑹𝑩𝟐 =

𝑺𝑪𝑬𝑩

𝑺𝑪𝑻𝑩=

𝜷 𝟐 𝒙𝒊 − 𝑿 𝟐𝒏𝒊=𝟏

𝒚𝒊 − 𝒀 𝟐𝒏

𝒊=𝟏

=𝒏𝜷 𝟐𝑽 𝑿

𝒏𝑽 𝒀 =

𝜷 𝟐𝑽 𝑿

𝑽 𝒀

𝒄𝒆 𝒒𝒖𝒊 𝒅𝒐𝒏𝒏𝒆 𝑹𝑨𝟐𝑹𝑩

𝟐 = 𝒃 𝟐𝑽 𝒀

𝑽 𝑿

𝜷 𝟐𝑽 𝑿

𝑽 𝒀 = 𝒃 𝜷

𝟐= 𝝆𝟐 𝟐 𝒅′𝒐ù 𝝆𝟐 = 𝑹𝑨

𝟐 = 𝑹𝑩𝟐

3)

𝑺𝓔𝟐 =

𝑺𝑪𝑹𝑨

𝒏 − 𝟐 𝒆𝒕 𝑺𝒖

𝟐 =𝑺𝑪𝑹𝑩

𝒏 − 𝟐

𝒐𝒓 𝑹𝑨𝟐 = 𝟏 −

𝑺𝑪𝑹𝑨

𝑺𝑪𝑻𝑨= 𝟏 −

𝑺𝑪𝑹𝑨

𝒏𝑽 𝑿 ⟹ 𝑺𝑪𝑹𝑨 = 𝒏𝑽 𝑿 𝟏 − 𝑹𝑨

𝟐 ; 𝒅𝒆 𝒎ê𝒎𝒆 𝑺𝑪𝑹𝑩 = 𝒏𝑽 𝒀 𝟏 − 𝑹𝑩𝟐

𝒑𝒂𝒓 𝒍𝒂 𝒔𝒖𝒊𝒕𝒆 𝑺𝓔

𝟐

𝑺𝒖𝟐

=𝑺𝑪𝑹𝑨 𝒏 − 𝟐

𝑺𝑪𝑹𝑩 𝒏 − 𝟐 =

𝑺𝑪𝑹𝑨

𝑺𝑪𝑹𝑩

=𝒏𝑽 𝑿 𝟏 − 𝑹𝑨

𝟐

𝒏𝑽 𝒀 𝟏 − 𝑹𝑩𝟐

=𝑽 𝑿

𝑽 𝒀 =

𝑺𝑿𝟐

𝑺𝒀𝟐 𝒅′𝒐ù

𝑺𝓔𝟐

𝑺𝑿𝟐 =

𝑺𝒖𝟐

𝑺𝒀𝟐

4)

𝒕𝑨 =𝒃

𝝈 𝒃 ⟹ 𝒕𝑨

𝟐 =𝒃 𝟐

𝝈 𝒃 𝟐

𝒐𝒓 𝝈 𝒃 𝟐 =

𝑺𝓔𝟐

𝒏𝑽 𝒀 ⟹ 𝒕𝑨

𝟐 =𝒏𝒃 𝟐𝑽 𝒀

𝑺𝓔𝟐

⟹ 𝒕𝑨𝟐 =

𝒏𝒃 𝟐𝑽 𝒀

𝑺𝑪𝑹𝑨 𝒏 − 𝟐

⟹ 𝒕𝑨𝟐 =

𝒏 𝒏 − 𝟐 𝒃 𝟐𝑽 𝒀

𝑺𝑪𝑹𝑨

Page 25: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

25

⟹ 𝒕𝑨𝟐 =

𝒏 𝒏 − 𝟐 𝒃 𝟐𝑽 𝒀

𝒏𝑽 𝑿 𝟏 − 𝑹𝑨𝟐

⟹ 𝒕𝑨𝟐 =

𝒏 − 𝟐 𝒃 𝟐𝑽 𝒀

𝑽 𝑿 𝟏 − 𝑹𝑨𝟐

𝒐𝒓 𝑹𝑨𝟐 =

𝒃 𝟐𝑽 𝒀

𝑽 𝑿 𝒄𝒆 𝒒𝒖𝒊 𝒅𝒐𝒏𝒏𝒆 𝒕𝑨

𝟐 = 𝒏 − 𝟐 𝑹𝑨

𝟐

𝟏 − 𝑹𝑨𝟐

= 𝒏 − 𝟐 𝑹𝑩

𝟐

𝟏 − 𝑹𝑩𝟐

= 𝒕𝑩𝟐 =

𝒏 − 𝟐 𝝆𝟐

𝟏 − 𝝆𝟐

En effet la statistique de Student utilisée pour tester 𝑯𝟎: 𝒃 = 𝟎 et identique à celle qu’on utilise pour

tester 𝑯𝟎: 𝜷 = 𝟎

D’où tester 𝑯𝟎: 𝒃 = 𝟎 revient à tester 𝑯𝟎: 𝜷 = 𝟎

Corrigé 8:

1) 𝒇′ 𝒕 = 𝟏

𝟏+𝒂𝒆−𝒃𝒕

′=

𝒂𝒃𝒆−𝒃𝒕

𝟏+𝒂𝒆−𝒃𝒕 𝟐 > 0 ; 𝒇 𝟎 =

𝟏

𝟏+𝒂 𝒄𝒂𝒓 𝒂 > 0

𝒆𝒕 𝐥𝐢𝐦𝒕→+∞ 𝒇 𝒕 = 𝐥𝐢𝐦𝒕→+∞𝟏

𝟏+𝒂𝒆−𝒃𝒕= 𝟏 ⟹ 𝒚 = 𝟏 𝒂𝒔𝒚𝒎𝒑𝒕𝒐𝒕𝒆 à 𝓒𝒇 𝒂𝒖 𝓥 +∞

𝒇 𝒕

𝒚 = 𝟏

𝟏

𝟏+𝒂

𝒕

Page 26: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

26

2)

𝒚𝒕 =𝟏

𝟏 + 𝒂𝒆−𝒃𝒕+ 𝓔𝒕 ⟹ 𝒚 𝒕 =

𝟏

𝟏 + 𝒂 𝒆−𝒃 𝒕

𝑺 𝒂 , 𝒃 = 𝓔 𝒕𝟐

𝒕

= 𝒚𝒕 − 𝒚 𝒕 𝟐

𝒕

= 𝒚𝒕 − 𝒇 𝒕 𝟐

𝒕

MCO

𝟏 :𝝏𝑺 𝒂 , 𝒃

𝝏𝒂 = 𝟎

⟺ −𝟐 𝝏𝒇 𝒕

𝝏𝒂 𝒚𝒕 − 𝒇 𝒕

𝒕

= 𝟎 ; 𝒐𝒓 𝝏𝒇 𝒕

𝝏𝒂 = −

𝒆−𝒃 𝒕

𝟏 + 𝒂 𝒆−𝒃 𝒕 𝟐 𝒑𝒂𝒓 𝒍𝒂 𝒔𝒖𝒊𝒕𝒆

𝟏 ⟺ −𝒚𝒕𝒆

−𝒃 𝒕

𝟏 + 𝒂 𝒆−𝒃 𝒕 𝟐

𝒕

+ 𝒆−𝒃 𝒕

𝟏 + 𝒂 𝒆−𝒃 𝒕 𝟑

𝒕

= 𝟎

⟺ 𝒚𝒕𝒆

−𝒃 𝒕

𝟏 + 𝒂 𝒆−𝒃 𝒕 𝟐

𝒕

= 𝒆−𝒃 𝒕

𝟏 + 𝒂 𝒆−𝒃 𝒕 𝟑

𝒕

𝟐 :𝝏𝑺 𝒂 , 𝒃

𝝏𝒃 = 𝟎

⟺ −𝟐 𝝏𝒇 𝒕

𝝏𝒃 𝒚𝒕 − 𝒇 𝒕

𝒕

= 𝟎 ; 𝒐𝒓 𝝏𝒇 𝒕

𝝏𝒃 =

𝒂 𝒕𝒆−𝒃 𝒕

𝟏 + 𝒂 𝒆−𝒃 𝒕 𝟐 𝒑𝒂𝒓 𝒍𝒂 𝒔𝒖𝒊𝒕𝒆

𝟐 ⟺ 𝒂 𝒕𝒚𝒕𝒆

−𝒃 𝒕

𝟏 + 𝒂 𝒆−𝒃 𝒕 𝟐

𝒕

= 𝒕𝒆−𝒃 𝒕

𝟏 + 𝒂 𝒆−𝒃 𝒕 𝟑

𝒕

𝒂 , 𝒃 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒔 𝒅𝒆:

𝟏 𝒚𝒕𝒆

−𝒃 𝒕

𝟏 + 𝒂 𝒆−𝒃 𝒕 𝟐

𝒕

= 𝒆−𝒃 𝒕

𝟏 + 𝒂 𝒆−𝒃 𝒕 𝟑

𝒕

𝒆𝒕 𝟐 𝒂 𝒕𝒚𝒕𝒆

−𝒃 𝒕

𝟏 + 𝒂 𝒆−𝒃 𝒕 𝟐

𝒕

= 𝒕𝒆−𝒃 𝒕

𝟏 + 𝒂 𝒆−𝒃 𝒕 𝟑

𝒕

La résolution d’un tel système, non linéaire en 𝒂 𝒆𝒕 𝒃 ne peut être explicite et doit faire appel à un

algorithme numérique. Afin d’obtenir des solutions explicites d’où la nécessité de faire un changement

de variable approprié

Page 27: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

27

3)

𝒚 𝒕 =𝟏

𝟏 + 𝒂 𝒆−𝒃 𝒕⟺

𝟏

𝒚 𝒕− 𝟏 = 𝒂 𝒆−𝒃 𝒕

⟺𝟏 − 𝒚 𝒕

𝒚 𝒕

= 𝒂 𝒆−𝒃 𝒕

⟺ 𝑳𝒏 𝟏 − 𝒚 𝒕

𝒚 𝒕 = 𝑳𝒏 𝒂 − 𝒃 𝒕

𝑷𝒐𝒔𝒐𝒏𝒔 𝒛𝒕 = 𝑳𝒏 𝟏 − 𝒚𝒕

𝒚𝒕

, 𝜶 = 𝑳𝒏 𝒂 𝒆𝒕 𝜷 = −𝒃

𝑨𝒊𝒏𝒔𝒊 𝒍𝒆 𝒎𝒐𝒅è𝒍𝒆 𝒚𝒕 =𝟏

𝟏 + 𝒂𝒆−𝒃𝒕+ 𝓔𝒕 𝒅𝒆𝒗𝒊𝒆𝒏𝒕 𝒛𝒕 = 𝜶 + 𝜷𝒕 + 𝒖𝒕

𝜷 = 𝒕𝒛𝒕 − 𝑻𝒕𝒛𝑻

𝒕=𝟏

𝒕 − 𝒕 𝟐𝑻

𝒕=𝟏

𝒆𝒕 𝜶 = 𝒛 − 𝜷 𝒕

𝑵𝒐𝒕𝒐𝒏𝒔 𝒃 = −𝜷 𝒆𝒕 𝒂 = 𝒆𝜶

𝑶𝒓 𝑽 𝒃 = 𝝈𝒃 𝟐 = 𝝈𝜷

𝟐 =𝝈𝒖

𝟐

𝒕 − 𝒕 𝟐𝑻

𝒕=𝟏

𝒕 1 2 3 4 5 6 7

𝒚𝒕 2,9 4,4 6,0 8,4 11,8 14,6 18,3

𝒛𝒕 = 𝑳𝒏 𝟏 − 𝒚𝒕

𝒚𝒕 3,511 3,077 2,752 2,389 2,012 1,766 1,496

𝒕

𝑻

𝒕=𝟏

= 𝟐𝟖 , 𝒕𝟐

𝑻

𝒕=𝟏

= 𝟏𝟒𝟎 , 𝑧𝑡

𝑻

𝒕=𝟏

= 𝟏𝟕, 𝟎𝟎𝟑 , 𝒛𝒕𝟐

𝑻

𝒕=𝟏

= 𝟒𝟒, 𝟒𝟖 , 𝒕𝑧𝑡

𝑻

𝒕=𝟏

= 𝟓𝟖, 𝟔𝟎𝟓 , 𝒕 = 𝟒

, 𝒕 − 𝒕 𝟐

𝑻

𝒕=𝟏

= 𝟐𝟖 , 𝒛 = 𝟐, 𝟒𝟐𝟗 , 𝑧𝑡 − 𝒛 𝟐

𝑻

𝒕=𝟏

= 𝟑, 𝟏𝟖

𝜷 = 𝒕𝒛𝒕 − 𝑻𝒕𝒛𝑻

𝒕=𝟏

𝒕 − 𝒕 𝟐𝑻

𝒕=𝟏

= −𝟎, 𝟑𝟑𝟔 ⟹ 𝒃 = 𝟎, 𝟑𝟑𝟔

𝜶 = 𝒛 − 𝜷 𝒕 = 𝟑, 𝟕𝟕𝟑 ⟹ 𝒂 = 𝟒𝟑, 𝟓

Page 28: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

28

𝑺𝑪𝑻 = 𝑧𝑡 − 𝒛 𝟐

𝑻

𝒕=𝟏

= 𝟑, 𝟏𝟖 , 𝑺𝑪𝑬 = 𝜷 𝟐 𝒕 − 𝒕 𝟐

𝑻

𝒕=𝟏

= 𝟑, 𝟏𝟔 ⟹ 𝑺𝑪𝑹 = 𝟎, 𝟎𝟐

𝒖 𝒕𝟐

𝑻

𝒕=𝟏

= 𝝈 𝒖𝟐 =

𝑺𝑪𝑹

𝑻 − 𝟐= 𝟒. 𝟏𝟎−𝟑

𝝈 𝜷 𝟐 =

𝝈 𝒖𝟐

𝒕 − 𝒕 𝟐𝑻

𝒕=𝟏

= 𝟏, 𝟒𝟑. 𝟏𝟎−𝟒 ⟹ 𝝈 𝒃 = 𝝈 𝜷 = 𝟏, 𝟐. 𝟏𝟎−𝟐

𝑾 =𝒃 − 𝒃

𝝈 𝒃 ↝ 𝝉 𝑻 − 𝟐

𝒔𝒆𝒓𝒂 𝒍𝒂 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒒𝒖𝒆 𝒅𝒆 𝒅é𝒄𝒊𝒔𝒊𝒐𝒏 𝒑𝒐𝒖𝒓 𝒄𝒐𝒏𝒔𝒕𝒓𝒖𝒊𝒓𝒆 𝒖𝒏 𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍𝒍𝒆 𝒅𝒆 𝒄𝒐𝒏𝒇𝒊𝒂𝒏𝒄𝒆 𝒑𝒐𝒖𝒓 𝒃

𝑰𝑪𝟏−𝜽 𝒃 = 𝒃 ± 𝝈 𝒃 𝒕𝟏−

𝜽𝟐

𝑻 − 𝟐 𝒐ù 𝒕𝟏−

𝜽𝟐

𝑻 − 𝟐 = 𝒕𝟎,𝟗𝟕𝟓 𝟓 = 𝟐, 𝟓𝟕𝟏

⟹ 𝑰𝑪𝟎,𝟗𝟓 𝒃 = 𝟎, 𝟑𝟎𝟓; 𝟎, 𝟑𝟔𝟕

4)

𝒚𝒕 𝒔𝒖𝒊𝒕 𝒖𝒏 𝒎𝒐𝒅è𝒍𝒆 𝒍𝒐𝒈𝒊𝒔𝒕𝒊𝒒𝒖𝒆 ⟹ 𝒚𝒕 = 𝒇 𝒕

𝑶𝒏 𝒔𝒆 𝒑𝒓𝒐𝒑𝒐𝒔𝒆 𝒅𝒆 𝒗é𝒓𝒊𝒇𝒊𝒆𝒓 𝒒𝒖𝒆 𝒅𝒚𝒕

𝒅𝒕

𝟏

𝒚𝒕 𝟏 − 𝒚𝒕 𝒆𝒔𝒕 𝒖𝒏𝒆 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆

𝒐𝒓 𝒅𝒚𝒕

𝒅𝒕

𝟏

𝒚𝒕 𝟏 − 𝒚𝒕 = 𝒇′ 𝒕

𝟏

𝒇 𝒕 𝟏 − 𝒇 𝒕

𝒂𝒗𝒆𝒄 𝒇′ 𝒕 =𝒂𝒃𝒆−𝒃𝒕

𝟏 + 𝒂𝒆−𝒃𝒕 𝟐=

𝒂𝒃𝒆−𝒃𝒕

𝒇 𝒕 𝟐

𝒆𝒕 𝒇 𝒕 𝟏 − 𝒇 𝒕 = 𝒇 𝒕 − 𝒇 𝒕 𝟐 =𝟏

𝟏 + 𝒂𝒆−𝒃𝒕−

𝟏

𝟏 + 𝒂𝒆−𝒃𝒕 𝟐=

𝒂𝒆−𝒃𝒕

𝒇 𝒕 𝟐

𝒑𝒂𝒓 𝒍𝒂 𝒔𝒖𝒊𝒕𝒆 𝒅𝒚𝒕

𝒅𝒕

𝟏

𝒚𝒕 𝟏 − 𝒚𝒕 =

𝒂𝒃𝒆−𝒃𝒕

𝒇 𝒕 𝟐

𝒇 𝒕 𝟐

𝒂𝒆−𝒃𝒕 = 𝒃

𝑫′𝒐ù𝒔𝒊 𝒚𝒕 𝒔𝒖𝒊𝒕 𝒖𝒏 𝒎𝒐𝒅è𝒍𝒆 𝒍𝒐𝒈𝒊𝒔𝒕𝒊𝒒𝒖𝒆 ⟹ 𝒅𝒚𝒕

𝒅𝒕

𝟏

𝒚𝒕 𝟏 − 𝒚𝒕 𝒆𝒔𝒕 𝒖𝒏𝒆 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆

Page 29: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

29

5)

𝑬𝒏 𝒓𝒆𝒎𝒑𝒍𝒂ç𝒂𝒏𝒕 𝒅𝒚𝒕

𝒅𝒕 𝒑𝒂𝒓

𝜟𝒚𝒕

𝜟𝒕 𝒐𝒏 𝒆𝒏 𝒅é𝒅𝒖𝒊𝒕 𝒒𝒖𝒆 𝒔𝒊 𝒚𝒕 = 𝒇 𝒕 𝒂𝒍𝒐𝒓𝒔:

𝒅𝒚𝒕

𝒅𝒕

𝟏

𝒚𝒕 𝟏 − 𝒚𝒕 = 𝒃 ⟹

𝜟𝒚𝒕

𝜟𝒕

𝟏

𝒚𝒕 𝟏 − 𝒚𝒕 ≅ 𝒃 ⟹

𝒚𝒕+𝟏 − 𝒚𝒕

𝒕 + 𝟏 − 𝒕 𝟏

𝟏

𝒚𝒕 𝟏 − 𝒚𝒕 ≅ 𝒃 ⟹

𝒚𝒕+𝟏 − 𝒚𝒕

𝒚𝒕 𝟏 − 𝒚𝒕 ≅ 𝒃

⟹ 𝒙𝒕 =𝜟𝒚𝒕

𝒚𝒕 𝟏 − 𝒚𝒕 ≅ 𝒃(𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆)

Par la suite si, 𝒚𝒕 suit exactement un modèle logistique alors : 𝒙𝒕 = 𝒃 + 𝒗𝒕𝒐ù 𝑬 𝒗𝒕 = 𝟎 𝒆𝒕 𝑽 𝒗𝒕 = 𝝈𝒗𝟐

𝒕 1998 1999 2000 2001 2002 2003 2004 2005

𝒚𝒕 0,029 0,044 0,06 0,084 0,118 0,146 0,183 𝒚 𝟖𝒑

𝒙𝒕 =𝒚𝒕+𝟏 − 𝒚𝒕

𝒚𝒕 𝟏 − 𝒚𝒕 0,53 0,38 0,43 0,44 0,27 0,30 𝒙 𝟕

𝒑

Pour calculer 𝒙𝟕 =𝒚𝟖−𝒚𝟕

𝒚𝟕 𝟏−𝒚𝟕 on doit déterminer une prévision du taux d’équipement des ménages en

PlayStation 2 pour l’année 2005 en d’autres termes une prévision pour 𝒚𝟖 mais avant toute autre chose

on doit estimer et étudier la validité du modèle 𝒙𝒕 = 𝒃 + 𝒗𝒕 𝒑𝒐𝒖𝒓 𝒕 = 𝟏𝟗𝟗𝟖, … ; 𝑻 − 𝟏 = 𝟐𝟎𝟎𝟑

𝒙𝒕 = 𝒃 + 𝒗𝒕 ⟹ 𝒙 𝒕 = 𝒃

Pour estimer 𝒃 on va utiliser les MCO :

𝒗 𝒕𝟐

𝒕=𝟐𝟎𝟎𝟑

𝒕=𝟏𝟗𝟗𝟖

= 𝒙𝒕 − 𝒙 𝒕 2

𝒕=𝟐𝟎𝟎𝟑

𝒕=𝟏𝟗𝟗𝟖

= 𝒙𝒕 − 𝒃 2

𝒕=𝟐𝟎𝟎𝟑

𝒕=𝟏𝟗𝟗𝟖

𝝏 𝒙𝒕 − 𝒃 2

𝒕=𝟐𝟎𝟎𝟑𝒕=𝟏𝟗𝟗𝟖

𝝏𝒃 = 𝟎 ⟹ −𝟐 𝒙𝒕 − 𝒃

𝑻−𝟏

𝒕=𝟏𝟗𝟗𝟖

= 𝟎

⟹ 𝒙𝒕

𝒕=𝟐𝟎𝟎𝟑

𝒕=𝟏𝟗𝟗𝟖

− 𝒃 𝒕=𝟐𝟎𝟎𝟑

𝒕=𝟏𝟗𝟗𝟖

= 𝟎 ⟹ 𝒙𝒕

𝒕=𝟐𝟎𝟎𝟑

𝒕=𝟏𝟗𝟗𝟖

− 𝟔𝒃 = 𝟎

⟹ 𝒙𝒕

𝒕=𝟐𝟎𝟎𝟑

𝒕=𝟏𝟗𝟗𝟖

− 𝟔𝒃 = 𝟎

Page 30: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

30

⟹ 𝒃 = 𝒙 =𝟏

𝟔 𝒙𝒕

𝒕=𝟐𝟎𝟎𝟑

𝒕=𝟏𝟗𝟗𝟖

=𝟏

𝟔 𝒙𝒕

𝒕=𝟐𝟎𝟎𝟑

𝒕=𝟏𝟗𝟗𝟖

= 𝟎, 𝟑𝟗

𝑽 𝒙𝒕 = 𝑽 𝒃 + 𝒗𝒕 = 𝑽 𝒗𝒕 = 𝝈𝒗𝟐

𝑬𝒕 𝒄𝒐𝒎𝒎𝒆 𝒐𝒏 𝒂 𝟏

𝟔 − 𝟏 𝒙𝒕 − 𝒙 𝟐

𝒕=𝟐𝟎𝟎𝟑

𝒕=𝟏𝟗𝟗𝟖

𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒖𝒓 𝒔𝒂𝒏𝒔 𝒃𝒊𝒂𝒊𝒔 𝒅𝒆 𝑽 𝒙𝒕

𝒅𝒐𝒏𝒄 𝝈 𝒗𝟐 =

𝟏

𝟔 − 𝟏 𝒙𝒕 − 𝒙 𝟐

𝒕=𝟐𝟎𝟎𝟑

𝒕=𝟏𝟗𝟗𝟖

= 𝟎, 𝟎𝟏𝟏

𝒅′𝒂𝒖𝒕𝒓𝒆𝒑𝒂𝒓𝒕 𝑽 𝒃 = 𝑽 𝒙 =𝑽 𝒙𝒕

𝟔=

𝝈𝒗𝟐

𝟔⟹ 𝝈

𝒃 𝟐 =

𝝈 𝒗𝟐

𝟔= 𝟏, 𝟖𝟑. 𝟏𝟎−𝟑 ⟹ 𝝈

𝒃 = 𝟎, 𝟎𝟒𝟑

On se propose de tester 𝑯𝟎: 𝒃 = 𝟎 𝒄𝒐𝒏𝒕𝒓𝒆 𝑯𝟏: 𝒃 ≠ 𝟎 𝒂𝒗𝒆𝒄 𝒖𝒏 𝒓𝒊𝒔𝒒𝒖𝒆 𝒅𝒆 𝟏è𝐫𝐞 𝒆𝒔𝒑è𝒄𝒆 𝜶 = 𝟓%

𝑻 =𝒃 − 𝒃

𝝈 𝒃

↝ 𝝉 𝟔 − 𝟏 𝒔𝒆𝒓𝒂 𝒍𝒂 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒒𝒖𝒆 𝒅𝒆 𝒅é𝒄𝒊𝒔𝒊𝒐𝒏

𝑶𝒏 𝒓𝒆𝒋𝒆𝒕𝒕𝒆 𝑯𝟎 𝒔𝒊 𝑻𝟎 = 𝒃 − 𝟎

𝝈 𝒃

> 𝒕𝟏−𝜶𝟐 𝟔 − 𝟏

𝒐𝒓 𝑻𝟎 = 𝟗, 𝟎𝟕 𝒆𝒕 𝒕𝟏−𝜶𝟐 𝟔 − 𝟏 = 𝒕𝟎,𝟗𝟕𝟓 𝟓 = 𝟐, 𝟓𝟕𝟏 ⟹ 𝑻𝟎 > 𝒕𝟏−

𝜶𝟐 𝟔 − 𝟏

D’où la validité du modèle

Supposons que le modèle reste valable une année après, ce qui donne une prévision pour

𝒙 𝟕𝒑

= 𝒃 = 𝟎, 𝟑𝟗 𝒐𝒓 𝒙 𝟕𝒑

=𝒚 𝟖

𝒑− 𝒚𝟕

𝒚𝟕 𝟏 − 𝒚𝟕

D’où la prévision pour le taux d’équipement en PlayStation 2 pour 2005 :

𝒚 𝟖𝒑

= 𝒚𝟕 + 𝒙 𝟕𝒑𝒚𝟕 𝟏 − 𝒚𝟕 = 𝒚𝟕 + 𝒃 𝒚𝟕 𝟏 − 𝒚𝟕 = 𝟎, 𝟐𝟒𝟏

Page 31: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

31

Corrigé 9:

𝑴𝟏: 𝑳𝒏 𝒚𝒕 = 𝒂 + 𝒃 𝑳𝒏 𝒙𝒕 +𝒖𝒕 ; 𝒕 = 𝟏, … , 𝑻 = 𝟏𝟐 𝒏𝒐𝒕𝒐𝒏𝒔 𝒘𝒕 = 𝑳𝒏 𝒚𝒕 𝒆𝒕 𝒛𝒕 = 𝑳𝒏 𝒙𝒕

𝒐𝒏 𝒑𝒐𝒖𝒓𝒓𝒂 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒆𝒓𝑴𝟏𝒆𝒏 𝒎𝒐𝒅è𝒍𝒆 𝒍𝒊𝒏é𝒂𝒊𝒓𝒆 ∶ 𝒘𝒕 = 𝒂 + 𝒃 𝒛𝒕 +𝒖𝒕

𝑶𝒏 𝒅é𝒇𝒊𝒏𝒊𝒕 𝒍’é𝒍𝒂𝒔𝒕𝒊𝒄𝒊𝒕é 𝒅𝒆 𝒀𝒑𝒂𝒓 𝒓𝒂𝒑𝒑𝒐𝒓𝒕 à 𝑿 𝒑𝒂𝒓 ℇ =𝒅𝒀

𝒀

𝒅𝑿𝑿

𝒐𝒓

𝒅𝑳𝒏 𝒚𝒕

𝒅𝒚𝒕=

𝟏

𝒚𝒕

𝒅𝑳𝒏 𝒙𝒕

𝒅𝒙𝒕=

𝟏

𝒙𝒕

𝒅𝑳𝒏 𝒚𝒕 =𝒅𝒚𝒕

𝒚𝒕

𝒅𝑳𝒏 𝒙𝒕 =𝒅𝒙𝒕

𝒙𝒕

𝒐𝒓 𝒅𝑳𝒏 𝒚𝒕

𝒅𝑳𝒏 𝒙𝒕 =

𝒅𝒘𝒕

𝒅𝒛𝒕= 𝒃 𝒆𝒕

𝒅𝑳𝒏 𝒚𝒕

𝒅𝑳𝒏 𝒙𝒕 =

𝒅𝒚𝒕𝒚𝒕

𝒅𝒙𝒕𝒙𝒕

D’où le paramètre 𝒃 n’est autre que l’élasticité de la demande d’habillement 𝒚 par rapport au revenu

des ménages 𝒙

Donc il s’agit d’un test de type 𝑯𝟎: 𝒃 = 𝟏 𝒄𝒐𝒏𝒕𝒓𝒆 𝑯𝟏: 𝒃 ≠ 𝟏 𝒂𝒗𝒆𝒄 𝒖𝒏 𝒓𝒊𝒔𝒒𝒖𝒆 𝒅𝒆 𝟏è𝐫𝐞 𝒆𝒔𝒑è𝒄𝒆 𝜶 = 𝟓%

𝑻 =𝒃 − 𝒃

𝝈 𝒃 ↝ 𝝉 𝒏 − 𝟐 𝒔𝒆𝒓𝒂 𝒍𝒂 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒒𝒖𝒆 𝒅𝒆 𝒅é𝒄𝒊𝒔𝒊𝒐𝒏

𝑶𝒏 𝒓𝒆𝒋𝒆𝒕𝒕𝒆 𝑯𝟎 𝒔𝒊 𝑻𝟎 = 𝒃 − 𝟏

𝝈 𝒃 > 𝒕

𝟏−𝜶𝟐 𝒏 − 𝟐

𝒐𝒓 𝑻𝟎 = 𝟏, 𝟏 − 𝟏

𝟎, 𝟎𝟕 = 𝟏, 𝟒𝟐 𝒆𝒕 𝒕𝟏−

𝜶𝟐 𝒏 − 𝟐 = 𝒕𝟎,𝟗𝟕𝟓 𝟏𝟎 = 𝟐, 𝟐𝟐𝟖 ⟹ 𝑻𝟎 ≯ 𝒕𝟏−

𝜶𝟐 𝟔 − 𝟏

On ne rejette pas 𝑯𝟎: 𝒃 = 𝟏 et on peut accepter que l’élasticité de la demande d’habillement soit égale

à l’unité

Corrigé 10:

1) 𝒃 constitue l’élasticité des dépenses alimentaires des ménages par rapport aux revenus

disponibles.

Page 32: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

32

Le modèle 𝟏 s’exprime sous forme logarithmique ce qui fait que le paramètre 𝒂 ne possède pas de

contenu économique pertinent.

2) 𝑯𝟎: 𝒃 = 𝟏 𝒄𝒐𝒏𝒕𝒓𝒆 𝑯𝟏: 𝒃 ≠ 𝟏 𝒔𝒐𝒖𝒔 𝒖𝒏 𝒔𝒆𝒖𝒊𝒍 𝜶 = 𝟓%

𝑻 =𝒃 − 𝒃

𝝈 𝒃 ↝ 𝝉 𝒏 − 𝟐 𝒔𝒆𝒓𝒂 𝒍𝒂 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒒𝒖𝒆 𝒅𝒆 𝒅é𝒄𝒊𝒔𝒊𝒐𝒏

𝑶𝒏 𝒓𝒆𝒋𝒆𝒕𝒕𝒆 𝑯𝟎 𝒔𝒊 𝑻𝟎 = 𝒃 − 𝟏

𝝈 𝒃 > 𝒕𝟏−

𝜶𝟐 𝒏 − 𝟐

𝒐𝒓 𝑻𝟎 = 𝟎, 𝟐𝟓 − 𝟏

𝟎, 𝟎𝟖𝟗 = 𝟖, 𝟒𝟐𝟕 𝒆𝒕 𝒕𝟏−

𝜶𝟐 𝒏 − 𝟐 = 𝒕𝟎,𝟗𝟕𝟓 𝟏𝟖 = 𝟐, 𝟏𝟎𝟏 ⟹ 𝑻𝟎 > 𝒕𝟏−

𝜶𝟐 𝒏 − 𝟐

Donc on rejette 𝑯𝟎 par la suite le paramètre 𝒃 est statistiquement différent de 1

3) 𝑯𝟎: 𝒃 = 𝟏 𝒄𝒐𝒏𝒕𝒓𝒆 𝑯𝟏: 𝒃 < 1 𝑠𝑜𝑢𝑠 𝑢𝑛 𝑠𝑒𝑢𝑖𝑙 𝛼 = 5%

𝑻 =𝒃 − 𝒃

𝝈 𝒃 ↝ 𝝉 𝒏 − 𝟐 𝒔𝒆𝒓𝒂 𝒍𝒂 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒒𝒖𝒆 𝒅𝒆 𝒅é𝒄𝒊𝒔𝒊𝒐𝒏

𝑶𝒏 𝒓𝒆𝒋𝒆𝒕𝒕𝒆 𝑯𝟎 𝒔𝒊 𝑻𝟎 =𝒃 − 𝟏

𝝈 𝒃 < 𝒕𝜶 𝒏 − 𝟐 = −𝒕𝟏−𝜶 𝒏 − 𝟐

𝒐𝒓 𝑻𝟎 = −𝟖, 𝟒𝟐𝟕 𝒆𝒕 𝒕𝜶 𝒏 − 𝟐 = −𝒕𝟏−𝜶 𝒏 − 𝟐 = −𝒕𝟎,𝟗𝟓 𝟏𝟖 = −𝟏, 𝟕𝟑𝟒 ⟹ 𝑻𝟎 < 𝒕𝜶 𝒏 − 𝟐

On accepte l’hypothèse selon laquelle 𝒃 < 1

Il s’agit de biens de première nécessité ce qui explique une demande inélastique 𝒃 < 1 .

4)

𝒐𝒏 𝒂 𝒃 𝟐

𝝈 𝒃 𝟐 =

𝟎, 𝟐𝟓𝟐

𝟎, 𝟎𝟖𝟗𝟐= 𝟕, 𝟖𝟗

𝒐𝒓 𝒐𝒏 𝒂 𝒅é𝒎𝒐𝒏𝒕𝒓𝒆𝒓 𝒒𝒖𝒆 𝒃 𝟐

𝝈 𝒃 𝟐 =

𝒏 − 𝟐 𝑹𝟐

𝟏 − 𝑹𝟐 ; (𝒗𝒐𝒊𝒓 𝑬𝒙𝒆𝒓𝒄𝒊𝒄𝒆 𝟕)

𝒑𝒂𝒓 𝒍𝒂 𝒔𝒖𝒊𝒕𝒆 𝒃 𝟐

𝝈 𝒃 𝟐 𝟏 − 𝑹𝟐 = 𝒏 − 𝟐 𝑹𝟐 ⟺

𝒃 𝟐

𝝈 𝒃 𝟐 −

𝒃 𝟐

𝝈 𝒃 𝟐 𝑹𝟐 = 𝒏 − 𝟐 𝑹𝟐

⟺𝒃 𝟐

𝝈 𝒃 𝟐 = 𝒏 − 𝟐 +

𝒃 𝟐

𝝈 𝒃 𝟐 𝑹𝟐

Page 33: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

33

𝒅′𝒐ù 𝑹𝟐 =𝒃 𝟐 𝝈 𝒃

𝟐

𝒏 − 𝟐 +𝒃 𝟐

𝝈 𝒃 𝟐

=𝟕, 𝟖𝟗

𝟏𝟖 + 𝟕, 𝟖𝟗= 𝟑𝟎, 𝟒𝟖%

5) Test de significativité globale 𝑯𝟎: 𝒃 = 𝟎 𝒄𝒐𝒏𝒕𝒓𝒆 𝑯𝟏: 𝒃 ≠ 𝟎

𝑭 = 𝑹𝟐

𝟏 − 𝑹𝟐

𝒏 − 𝟐

𝟐 − 𝟏↝ 𝓕 𝟐 − 𝟏, 𝒏 − 𝟐 𝒔𝒆𝒓𝒂 𝒍𝒂 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒒𝒖𝒆 𝒅𝒆 𝒅é𝒄𝒊𝒔𝒊𝒐𝒏

𝒐𝒏 𝒓𝒆𝒋𝒆𝒕𝒕𝒆 𝑯𝟎 𝒔𝒊 𝑹𝟐 > 𝟐 − 𝟏 𝒇𝟏−𝜶 𝟐 − 𝟏, 𝒏 − 𝟐

𝒏 − 𝟐 + 𝟐 − 𝟏 𝒇𝟏−𝜶 𝟐 − 𝟏, 𝒏 − 𝟐

𝒐𝒓 𝒇𝟏−𝜶 𝟐 − 𝟏, 𝒏 − 𝟐 = 𝒇𝟎,𝟗𝟓 𝟏, 𝟏𝟖 = 𝟒, 𝟒𝟏

⟹ 𝟐 − 𝟏 𝒇𝟏−𝜶 𝟐 − 𝟏, 𝒏 − 𝟐

𝒏 − 𝟐 + 𝟐 − 𝟏 𝒇𝟏−𝜶 𝟐 − 𝟏, 𝒏 − 𝟐 =

𝟒, 𝟒𝟏

𝟏𝟖 + 𝟒, 𝟒𝟏= 𝟎, 𝟏𝟗𝟕

𝒆𝒕 𝒄𝒐𝒎𝒎𝒆 𝒐𝒏 𝒂 𝑹𝟐 = 𝟎, 𝟑𝟎𝟒𝟖 > 𝟐 − 𝟏 𝒇𝟏−𝜶 𝟐 − 𝟏, 𝒏 − 𝟐

𝒏 − 𝟐 + 𝟐 − 𝟏 𝒇𝟏−𝜶 𝟐 − 𝟏, 𝒏 − 𝟐

Donc on rejette 𝑯𝟎 en effet la régression est globalement significative

Corrigé 11: (Extrait de l’examen- ISG SP2007)

1)

a) Test de significativité globale 𝑯𝟎: 𝒃 = 𝟎 𝒄𝒐𝒏𝒕𝒓𝒆 𝑯𝟏: 𝒃 ≠ 𝟎

𝑭 =𝑺𝑪𝑬

𝟐 − 𝟏

𝑺𝑪𝑹𝑻 − 𝟐

= 𝑹𝟐

𝟏 − 𝑹𝟐

𝑻 − 𝟐

𝟐 − 𝟏= 𝒕𝜷𝟐

𝟐 ↝ 𝓕 𝟐 − 𝟏, 𝑻 − 𝟐 𝒔𝒆𝒓𝒂 𝒍𝒂 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒒𝒖𝒆 𝒅𝒆 𝒅é𝒄𝒊𝒔𝒊𝒐𝒏 ,

𝒂𝒗𝒆𝒄 𝒕𝜷𝟐

𝟐 𝒐𝒃𝒔

=𝜷 𝟐

𝟐

𝝈 𝜷 𝟐

𝟐 = 𝟒, 𝟕𝟎𝟐 = 𝟐𝟐, 𝟎𝟗 ⟹ 𝑹𝟐 =𝜷 𝟐

𝟐 𝝈 𝜷 𝟐

𝟐

𝑻 − 𝟐 +𝜷 𝟐

𝟐

𝝈 𝜷 𝟐

𝟐

=𝟐𝟐, 𝟎𝟗

𝟐𝟐 + 𝟐𝟐, 𝟎𝟗= 𝟎, 𝟓𝟎𝟏

𝒇𝟏−𝜶 𝟐 − 𝟏, 𝑻 − 𝟐 = 𝒇𝟎,𝟗𝟓 𝟏, 𝟐𝟐 = 𝟒, 𝟑𝟎

⟹ 𝟐 − 𝟏 𝒇𝟏−𝜶 𝟐 − 𝟏, 𝑻 − 𝟐

𝑻 − 𝟐 + 𝟐 − 𝟏 𝒇𝟏−𝜶 𝟐 − 𝟏, 𝑻 − 𝟐 =

𝟒, 𝟑𝟎

𝟐𝟐 + 𝟒, 𝟑𝟎= 𝟎, 𝟏𝟔𝟑

Page 34: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

34

𝑹𝟐 > 𝟐 − 𝟏 𝒇𝟏−𝜶 𝟐 − 𝟏, 𝑻 − 𝟐

𝑻 − 𝟐 + 𝟐 − 𝟏 𝒇𝟏−𝜶 𝟐 − 𝟏, 𝑻 − 𝟐

On rejette 𝑯𝟎 et le modèle est globalement significatif

b)

𝒐𝒏 𝒔𝒆 𝒑𝒓𝒐𝒑𝒐𝒔𝒆 𝒅𝒆 𝒕𝒆𝒔𝒕𝒆𝒓 𝑯𝟎 ∶ 𝜷𝟐 = 𝟏 𝒄𝒐𝒏𝒕𝒓𝒆 𝑯𝟏 ∶ 𝜷𝟐 ≠ 𝟏, 𝒂𝒗𝒆𝒄 𝒖𝒏 𝒓𝒊𝒔𝒒𝒖𝒆 𝒅𝒆 𝟓%

𝑻 = 𝜷 𝟐 − 𝜷𝟐

𝝈 𝜷 𝟐

↝ 𝝉 𝑻 − 𝟐 𝒔𝒆𝒓𝒂 𝒍𝒂 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒒𝒖𝒆 𝒅𝒆 𝒅é𝒄𝒊𝒔𝒊𝒐𝒏

𝑶𝒏 𝒓𝒆𝒋𝒆𝒕𝒕𝒆 𝑯𝟎 𝒔𝒊 𝑻𝟎 = 𝜷 𝟐 − 𝟏

𝝈 𝜷 𝟐

> 𝒕𝟏−𝜶𝟐 𝑻 − 𝟐

𝒐𝒓 𝜷 𝟐 = 𝟎, 𝟖𝟓 𝒆𝒕 𝜷 𝟐

𝝈 𝜷 𝟐

= 𝟒, 𝟕𝟎 ⟹ 𝝈 𝜷 𝟐= 𝟎, 𝟏𝟖𝟏, 𝒂𝒊𝒏𝒔𝒊 𝑻𝟎 =

𝜷 𝟐 − 𝟏

𝝈 𝜷 𝟐

= 𝟎, 𝟖𝟓 – 𝟏

𝟎, 𝟏𝟖𝟏 = 𝟎, 𝟖𝟐𝟗

𝒅′𝒂𝒖𝒕𝒓𝒆𝒑𝒂𝒓𝒕 𝒕𝟏−𝜶𝟐 𝑻 − 𝟐 = 𝒕𝟎,𝟗𝟕𝟓 𝟐𝟐 = 𝟐, 𝟎𝟕𝟒

𝒆𝒏 𝒆𝒇𝒇𝒆𝒕 𝑻𝟎 ≯ 𝒕𝟏−𝜶𝟐 𝑻 − 𝟐

Donc on ne rejette pas 𝑯𝟎 et la valeur 𝜷𝟐 = 𝟏 sera statistiquement significative

2)

a)

𝝈 𝟐 =𝑺𝑪𝑹

𝑻 − 𝟐=

𝑺𝑪𝑻 − 𝑺𝑪𝑬

𝑻 − 𝟐=

𝒚𝒕 − 𝒀 𝟐𝑻𝒕=𝟏 − 𝜷 𝟐

𝟐 𝒙𝒕 − 𝑿 𝟐𝑻𝒕=𝟏

𝑻 − 𝟐=

𝑻

𝑻 − 𝟐 𝑽 𝒀 − 𝜷 𝟐

𝟐𝑽 𝑿

⟹ 𝝈 𝟐 =𝟐𝟒

𝟐𝟐× 𝟗𝟖𝟎 − 𝟎, 𝟖𝟓𝟐 × 𝟔𝟖𝟎 = 𝟓𝟑𝟑, 𝟏𝟐𝟕

b) 𝑳′ é𝒄𝒓𝒊𝒕𝒖𝒓𝒆 𝒎𝒂𝒕𝒓𝒊𝒄𝒊𝒆𝒍𝒍𝒆 𝒅𝒖 𝒎𝒐𝒅è𝒍𝒆 𝑴𝟏: 𝒀 𝟐𝟒×𝟏

= 𝑿 𝟐𝟒×𝟐

. 𝜷 𝟐×𝟏

+ 𝓔 𝟐𝟒×𝟏

𝒙𝒕

𝑻

𝒕=𝟏

= 𝑻𝑿 = 𝟐𝟒 × 𝟔𝟕 = 𝟏𝟔𝟎𝟖 , 𝑽 𝑿 =𝟏

𝑻 𝒙𝒕

𝟐

𝑻

𝒕=𝟏

− 𝑿 𝟐

⟹ 𝒙𝒕𝟐

𝑻

𝒕=𝟏

= 𝑻 𝑽 𝑿 + 𝑿 𝟐 = 𝟐𝟒 × 𝟔𝟖𝟎 + 𝟔𝟕𝟐 = 𝟏𝟐𝟒𝟎𝟓𝟔

Page 35: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

35

𝑿′𝑿 = 𝟏 … 𝟏𝒙𝟏 … 𝒙𝑻

𝟏⋮𝟏

𝒙𝟏

⋮𝒙𝑻

=

𝑻 𝒙𝒕

𝑻

𝒕=𝟏

𝒙𝒕

𝑻

𝒕=𝟏

𝒙𝒕𝟐

𝑻

𝒕=𝟏

= 𝟐𝟒 𝟏𝟔𝟎𝟖

𝟏𝟔𝟎𝟖 𝟏𝟐𝟒𝟎𝟓𝟔

𝒅𝒆𝒕 𝑿′𝑿 = 𝟐𝟒 × 𝟏𝟐𝟒𝟎𝟓𝟔 − 𝟏𝟔𝟎𝟖𝟐 = 𝟑𝟗𝟏𝟔𝟖𝟎 𝒆𝒕 𝑪𝒐𝒎 𝑿′𝑿 = 𝟏𝟐𝟒𝟎𝟓𝟔 −𝟏𝟔𝟎𝟖 −𝟏𝟔𝟎𝟖 𝟐𝟒

𝑿′𝑿 −𝟏 =𝟏

𝟑𝟗𝟏𝟔𝟖𝟎 𝟏𝟐𝟒𝟎𝟓𝟔 −𝟏𝟔𝟎𝟖−𝟏𝟔𝟎𝟖 𝟐𝟒

c)

𝒚 𝒕 = 𝟑𝟗, 𝟎𝟓 + 𝟎, 𝟖𝟓𝒙𝒕 ; 𝒕 = 𝟏, 𝟐, … , 𝑻 ; En supposant que le modèle estimé durant les24trimestres reste

encore valide pour le premier trimestre de 2006 on obtient :

𝒚 𝑻+𝟏𝒑

= 𝒚 𝟐𝟓𝒑

= 𝟑𝟗, 𝟎𝟓 + 𝟎, 𝟖𝟓𝒙𝟐𝟓 = 𝟑𝟗, 𝟎𝟓 + 𝟎, 𝟖𝟓 × 𝟗𝟖 = 𝟏𝟐𝟐, 𝟑𝟓

𝒚 𝑻+𝟏𝒑

= 𝜷 𝟏 + 𝜷 𝟐𝒙𝑻+𝟏 𝒆𝒕 𝒚𝑻+𝟏 = 𝜷𝟏 + 𝜷𝟐𝒙𝑻+𝟏 + 𝓔𝑻+𝟏

⟹ 𝒚𝑻+𝟏 − 𝒚 𝑻+𝟏𝒑

= 𝓔𝑻+𝟏 − 𝜷 𝟏 − 𝜷𝟏 − 𝜷 𝟐 − 𝜷𝟐 𝒙𝑻+𝟏

𝑬 𝒚𝑻+𝟏 − 𝒚 𝑻+𝟏𝒑

= 𝑬 𝓔𝑻+𝟏 = 𝟎

𝑽 𝒚𝑻+𝟏 − 𝒚 𝑻+𝟏𝒑

= 𝑬 𝒚𝑻+𝟏 − 𝒚 𝑻+𝟏𝒑

𝟐 = 𝑬 𝓔𝑻+𝟏

𝟐 + 𝑬 𝜷 𝟏 − 𝜷𝟏 + 𝜷 𝟐 − 𝜷𝟐 𝒙𝑻+𝟏 𝟐

𝑷𝒖𝒊𝒔𝒒𝒖𝒆 𝜷 𝟏 𝒆𝒕 𝜷 𝟐 𝒏𝒆 𝒅é𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝒒𝒖𝒆 𝒅𝒆 𝓔𝟏, 𝓔𝟐, … , 𝓔𝑻 𝒆𝒕 𝒒𝒖𝒆 𝑬 𝓔𝒕𝓔𝑻+𝟏 = 𝟎 ∀ 𝒕 = 𝟏, 𝟐, … , 𝑻

𝒐𝒏 𝒂 𝒅𝒐𝒏𝒄 𝒃𝒊𝒆𝒏 𝑬 𝜷 𝟏𝓔𝑻+𝟏 = 𝑬 𝜷 𝟐𝓔𝑻+𝟏 = 𝟎

𝑬 𝓔𝑻+𝟏𝟐 = 𝝈𝟐

𝒆𝒕 𝑬 𝜷 𝟏 − 𝜷𝟏 + 𝜷 𝟐 − 𝜷𝟐 𝒙𝑻+𝟏 𝟐 = 𝑽 𝜷 𝟏 − 𝜷𝟏 + 𝜷 𝟐 − 𝜷𝟐 𝒙𝑻+𝟏

= 𝑽 𝜷 𝟏 + 𝒙𝑻+𝟏 𝜷 𝟐 − 𝜷𝟏 + 𝒙𝑻+𝟏𝜷𝟐

= 𝑽 𝜷 𝟏 + 𝒙𝑻+𝟏 𝜷 𝟐

= 𝑽 𝜷 𝟏 + 𝑽 𝒙𝑻+𝟏𝜷 𝟐 + 𝟐𝒙𝑻+𝟏𝑪𝒐𝒗 𝜷 𝟏, 𝜷 𝟐

= 𝝈𝟐 𝟏

𝒏+

𝑿 𝟐

𝒙𝒕 − 𝑿 𝟐𝑻𝒕=𝟏

+𝝈𝟐𝒙𝑻+𝟏

𝟐

𝒙𝒕 − 𝑿 𝟐𝑻𝒕=𝟏

−𝟐𝝈𝟐𝒙𝑻+𝟏𝑿

𝒙𝒕 − 𝑿 𝟐𝑻𝒕=𝟏

Page 36: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

36

= 𝝈𝟐 𝟏

𝒏+

𝑿 𝟐

𝒙𝒕 − 𝑿 𝟐𝑻𝒕=𝟏

+𝒙𝑻+𝟏

𝟐

𝒙𝒕 − 𝑿 𝟐𝑻𝒕=𝟏

−𝟐𝒙𝑻+𝟏𝑿

𝒙𝒕 − 𝑿 𝟐𝑻𝒕=𝟏

= 𝝈𝟐 𝟏

𝒏+

𝒙𝑻+𝟏 − 𝑿 𝟐

𝒙𝒕 − 𝑿 𝟐𝑻𝒕=𝟏

𝒑𝒂𝒓 𝒍𝒂 𝒔𝒖𝒊𝒕𝒆 𝑽 𝒚𝑻+𝟏 − 𝒚 𝑻+𝟏𝒑

= 𝝈𝟐 + 𝝈𝟐 𝟏

𝒏+

𝒙𝑻+𝟏 − 𝑿 𝟐

𝒙𝒕 − 𝑿 𝟐𝑻𝒕=𝟏

= 𝝈𝟐 𝟏 +𝟏

𝒏+

𝒙𝑻+𝟏 − 𝑿 𝟐

𝒙𝒕 − 𝑿 𝟐𝑻𝒕=𝟏

𝑻 =𝒚𝑻+𝟏 − 𝒚 𝑻+𝟏

𝒑

𝝈 𝟏 +𝟏𝒏

+ 𝒙𝑻+𝟏 − 𝑿 𝟐

𝒙𝒕 − 𝑿 𝟐𝑻𝒕=𝟏

↝ 𝝉 𝑻 − 𝟐

Sera la statistique de décision pour construire l’intervalle de prévision

𝑰𝑪𝟏−𝜶 = 𝒚 𝑻+𝟏𝒑

± 𝒕𝟏−

𝜶𝟐 𝑻 − 𝟐 𝝈 𝟏 +

𝟏

𝒏+

𝒙𝑻+𝟏 − 𝑿 𝟐

𝒙𝒕 − 𝑿 𝟐𝑻𝒕=𝟏

𝑰𝑪𝟗𝟓% = 𝟏𝟐𝟐, 𝟑𝟓 ± 𝟐, 𝟎𝟕𝟒 × 𝟐𝟑, 𝟎𝟗 × 𝟏 +𝟏

𝟐𝟒+

𝟗𝟖 − 𝟔𝟕 𝟐

𝟐𝟒 × 𝟔𝟖𝟎 = 𝟕𝟐, 𝟏𝟏𝟏; 𝟏𝟕𝟐, 𝟓𝟖𝟗

Corrigé 12: (IHEC SP2010)

1) 𝒐𝒏 𝒔𝒆 𝒑𝒓𝒐𝒑𝒐𝒔𝒆 𝒅𝒆 𝒕𝒆𝒔𝒕𝒆𝒓 𝑯𝟎 ∶ 𝜷𝟐 = 𝟎 𝒄𝒐𝒏𝒕𝒓𝒆 𝑯𝟏 ∶ 𝜷𝟐 ≠ 𝟎, 𝒂𝒗𝒆𝒄 𝒖𝒏 𝒓𝒊𝒔𝒒𝒖𝒆 𝒅𝒆 𝟓%

𝑻 = 𝜷 𝟐 − 𝜷𝟐

𝝈 𝜷 𝟐

↝ 𝝉 𝑻 − 𝟐 𝒔𝒆𝒓𝒂 𝒍𝒂 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒒𝒖𝒆 𝒅𝒆 𝒅é𝒄𝒊𝒔𝒊𝒐𝒏

𝑶𝒏 𝒓𝒆𝒋𝒆𝒕𝒕𝒆 𝑯𝟎 𝒔𝒊 𝑻𝟎 = 𝜷 𝟐 − 𝟏

𝝈 𝜷 𝟐

> 𝒕𝟏−𝜶𝟐 𝑻 − 𝟐

𝒐𝒓 𝑻𝟎 = 𝜷 𝟐

𝝈 𝜷 𝟐

= 𝟏𝟎, 𝟐 𝒆𝒕 𝒕𝟏−

𝜶𝟐 𝒏 − 𝟐 = 𝒕𝟎,𝟗𝟕𝟓 𝟖𝟑 = 𝚽−𝟏 𝟎, 𝟗𝟕𝟓 = 𝟏, 𝟗𝟔 ⟹ 𝑻𝟎 > 𝒕

𝟏−𝜶𝟐 𝑻 − 𝟐

Donc on rejette 𝑯𝟎 et la valeur 𝜷𝟐 sera statistiquement significative. D’où l’effet de X sur Y est

significativement différent de zéro

2)

Page 37: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

37

a)

𝝈 𝟐 =𝑺𝑪𝑹

𝒏 − 𝟐=

𝟔𝟐𝟑𝟒, 𝟑𝟐

𝟖𝟑= 𝟕𝟓, 𝟏𝟏

b)

𝑻𝟎 = 𝜷 𝟐

𝝈 𝜷 𝟐

⟺ 𝝈 𝜷 𝟐=

𝜷 𝟐

𝑻𝟎=

𝟏, 𝟏

𝟏𝟎, 𝟐= 𝟎, 𝟏𝟏

c)

𝑺𝑪𝑬 = 𝒚 𝒊 − 𝒚 𝟐

𝒏

𝒊=𝟏

= 𝜷 𝟐𝟐 𝒙𝒊 − 𝒙 𝟐

𝒏

𝒊=𝟏

𝒆𝒕 𝝈 𝜷 𝟐

𝟐 =𝝈 𝟐

𝒙𝒊 − 𝒙 𝟐𝒏𝒊=𝟏

⟹ 𝑺𝑪𝑬 = 𝜷 𝟐𝟐

𝝈 𝟐

𝝈 𝜷 𝟐

𝟐 = 𝟏, 𝟏𝟐 × 𝟕𝟓, 𝟏𝟏

𝟎, 𝟏𝟏𝟐 = 𝟕𝟓𝟏𝟏

Tableau d’Analyse de la Variance

Source de la variation Somme des Carrés Degré de liberté Carrés Moyens

Régression 𝑺𝑪𝑬 = 𝟕𝟓𝟏𝟏 𝟐 − 𝟏 = 𝟏

𝑺𝑪𝑬

𝟏= 𝟕𝟓𝟏𝟏

Résidus 𝑺𝑪𝑹 = 𝟔𝟐𝟑𝟒, 𝟑𝟐 𝒏 − 𝟐 = 𝟖𝟑

𝝈 𝟐 =𝑺𝑪𝑹

𝒏 − 𝟐= 𝟕𝟓, 𝟏𝟏

Total 𝑺𝑪𝑻 = 𝟏𝟑𝟕𝟒𝟓, 𝟑𝟐 𝒏 − 𝟏 = 𝟖𝟒

𝑺𝑪𝑻

𝒏 − 𝟏= 𝟏𝟔𝟑, 𝟔𝟑

Test de significativité globale 𝑯𝟎: 𝒃 = 𝟎 𝒄𝒐𝒏𝒕𝒓𝒆 𝑯𝟏: 𝒃 ≠ 𝟎

𝑭 =𝑺𝑪𝑬

𝟐 − 𝟏

𝑺𝑪𝑹𝒏 − 𝟐

=↝ 𝓕 𝟐 − 𝟏, 𝒏 − 𝟐 𝒔𝒆𝒓𝒂 𝒍𝒂 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒒𝒖𝒆 𝒅𝒆 𝒅é𝒄𝒊𝒔𝒊𝒐𝒏 ,

𝒐𝒏 𝒓𝒆𝒋𝒆𝒕𝒕𝒆 𝑯𝟎 𝒔𝒊 𝑭𝒐𝒃𝒔 > 𝒇𝟏−𝜶 𝟐 − 𝟏, 𝒏 − 𝟐

𝒐𝒓 𝑭𝒐𝒃𝒔 =𝟕𝟓𝟏𝟏

𝟕𝟓, 𝟏𝟏= 𝟏𝟎𝟎 > 𝒇𝟏−𝜶 𝟐 − 𝟏, 𝒏 − 𝟐 = 𝒇𝟎,𝟗𝟓 𝟏, 𝟖𝟑 ≅ 𝟑, 𝟖𝟒

On retrouve ainsi les résultats de 1) et le modèle est globalement significatif.

3) 𝒐𝒏 𝒔𝒆 𝒑𝒓𝒐𝒑𝒐𝒔𝒆 𝒅𝒆 𝒕𝒆𝒔𝒕𝒆𝒓 𝑯𝟎 ∶ 𝜷𝟐 = −𝟏 𝒄𝒐𝒏𝒕𝒓𝒆 𝑯𝟏 ∶ 𝜷𝟐 ≠ −𝟏, 𝒂𝒗𝒆𝒄 𝒖𝒏 𝒓𝒊𝒔𝒒𝒖𝒆 𝒅𝒆 𝟓%

Page 38: M1 l3-econom etrie-serie-corrigee-n-1-modeles-econometriques-a-un

BEN AHMED MOHSEN Téléphone :(+216)97619191

Adresse électronique : [email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

38

𝑻 = 𝜷 𝟐 − 𝜷𝟐

𝝈 𝜷 𝟐

↝ 𝝉 𝒏 − 𝟐 𝒔𝒆𝒓𝒂 𝒍𝒂 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒒𝒖𝒆 𝒅𝒆 𝒅é𝒄𝒊𝒔𝒊𝒐𝒏

𝑶𝒏 𝒓𝒆𝒋𝒆𝒕𝒕𝒆 𝑯𝟎 𝒔𝒊 𝑻𝟎 = 𝜷 𝟐 + 𝟏

𝝈 𝜷 𝟐

> 𝒕𝟏−𝜶𝟐 𝒏 − 𝟐

𝒐𝒓 𝑻𝟎 = 𝜷 𝟐 + 𝟏

𝝈 𝜷 𝟐

= 𝟏, 𝟏 + 𝟏

𝟎, 𝟏𝟏 = 𝟏𝟗, 𝟎𝟗 𝒆𝒕 𝒕𝟏−

𝜶𝟐 𝒏 − 𝟐 = 𝒕𝟎,𝟗𝟕𝟓 𝟖𝟑 = 𝚽−𝟏 𝟎, 𝟗𝟕𝟓 = 𝟏, 𝟗𝟔

𝒆𝒏 𝒆𝒇𝒇𝒆𝒕 𝑻𝟎 > 𝒕𝟏−𝜶𝟐 𝑻 − 𝟐

Donc on rejette 𝑯𝟎 et la valeur 𝜷𝟐 est significativement différent de -1

ASSISTANCE&FORMATION UNIVERSITAIRE EN:

ÉCONOMÉTRIE

TECHNIQUES DE SONDAGE

STATISTIQUES MATHÉMATIQUES (STAT II )

STATISTIQUES DESCRIPTIVES & PROBABILITÉS (STAT I )

ALGÈBRE (MATH II)

Mathématiques pour l'ingénieur

3 rue Bougainvilliers Avenue 20 Mars Le Bardo, Tunisie

CONTACT : 97619191 /[email protected]

https://www.facebook.com/ISG.ISCAE.IHEC.ESC

BEN AHMED MOHSEN