mekanika klasik

13
Mekanika klasik Dari Wikipedia bahasa Indonesia, ensiklopedia bebas Belum Diperiksa Mekanika klasik adalah bagian dari ilmu fisika mengenai gaya yang bekerja pada benda. Sering dinamakan "mekanika Newton" dari Newton dan hukum gerak Newton . Mekanika klasik dibagi menjadi sub bagian lagi, yaitu statika (mempelajari benda diam), kinematika (mempelajari benda bergerak), dan dinamika (mempelajari benda yang terpengaruh gaya). Lihat juga mekanika . Mekanika klasik menghasilkan hasil yang sangat akurat dalam kehidupan sehari-hari. Dia diikuti oleh relativitas khusus untuk sistem yang bergerak dengan kecepatan sangat tinggi, mendekati kecepatan cahaya, mekanika kuantum untuk sistem yang sangat kecil, dan medan teori kuantum untuk sistem yang memiliki kedua sifat di atas. Namun, mekanika klasik masih sangat berguna, karena ia lebih sederhana dan mudah diterapkan dari teori lainnya, dan dia juga memiliki perkiraan yang valid dan luas terapannya. Mekanika klasik dapat digunakan untuk menjelaskan gerakan benda sebesar manusia (seperti gasing dan bisbol ), juga benda-benda astronomi (seperti planet dan galaksi , dan beberapa benda mikroskopis (seperti molekul organik). Mekanika klasik menggambarkan dinamika partikel atau sistem partikel. Dinamika partikel demikian, ditunjukkan oleh hukum- hukum Newton tentang gerak, terutama oleh hukum kedua Newton. Hukum ini menyatakan, "Sebuah benda yang memperoleh pengaruh gaya atau interaksi akan bergerak sedemikian rupa sehingga laju perubahan waktu dari momentum sama dengan gaya tersebut". Hukum-hukum gerak Newton baru memiliki arti fisis, jika hukum- hukum tersebut diacukan terhadap suatu kerangka acuan tertentu, yakni kerangka acuan inersia (suatu kerangka acuan yang bergerak serba sama - tak mengalami percepatan). Prinsip Relativitas Newtonian menyatakan, "Jika hukum-hukum Newton berlaku dalam suatu kerangka acuan maka hukum-hukum tersebut juga berlaku dalam kerangka acuan lain yang bergerak serba sama relatif terhadap kerangka acuan pertama".

Upload: puranita-riski-fauziah

Post on 01-Dec-2015

89 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mekanika klasik

Mekanika klasikDari Wikipedia bahasa Indonesia, ensiklopedia bebas

Belum Diperiksa

Mekanika klasik adalah bagian dari ilmu fisika mengenai gaya yang bekerja pada benda. Sering dinamakan "mekanika Newton" dari Newton dan hukum gerak Newton. Mekanika klasik dibagi menjadi sub bagian lagi, yaitu statika (mempelajari benda diam), kinematika (mempelajari benda bergerak), dan dinamika (mempelajari benda yang terpengaruh gaya). Lihat juga mekanika.

Mekanika klasik menghasilkan hasil yang sangat akurat dalam kehidupan sehari-hari. Dia diikuti oleh relativitas khusus untuk sistem yang bergerak dengan kecepatan sangat tinggi, mendekati kecepatan cahaya, mekanika kuantum untuk sistem yang sangat kecil, dan medan teori kuantum untuk sistem yang memiliki kedua sifat di atas. Namun, mekanika klasik masih sangat berguna, karena ia lebih sederhana dan mudah diterapkan dari teori lainnya, dan dia juga memiliki perkiraan yang valid dan luas terapannya. Mekanika klasik dapat digunakan untuk menjelaskan gerakan benda sebesar manusia (seperti gasing dan bisbol), juga benda-benda astronomi (seperti planet dan galaksi, dan beberapa benda mikroskopis (seperti molekul organik).

Mekanika klasik menggambarkan dinamika partikel atau sistem partikel. Dinamika partikel demikian, ditunjukkan oleh hukum-hukum Newton tentang gerak, terutama oleh hukum kedua Newton. Hukum ini menyatakan, "Sebuah benda yang memperoleh pengaruh gaya atau interaksi akan bergerak sedemikian rupa sehingga laju perubahan waktu dari momentum sama dengan gaya tersebut".

Hukum-hukum gerak Newton baru memiliki arti fisis, jika hukum-hukum tersebut diacukan terhadap suatu kerangka acuan tertentu, yakni kerangka acuan inersia (suatu kerangka acuan yang bergerak serba sama - tak mengalami percepatan). Prinsip Relativitas Newtonian menyatakan, "Jika hukum-hukum Newton berlaku dalam suatu kerangka acuan maka hukum-hukum tersebut juga berlaku dalam kerangka acuan lain yang bergerak serba sama relatif terhadap kerangka acuan pertama".

Konsep partikel bebas diperkenalkan ketika suatu partikel bebas dari pengaruh gaya atau interaksi dari luar sistem fisis yang ditinjau (idealisasi fakta fisis yang sebenarnya). Gerak partikel terhadap suatu kerangka acuan inersia tak gayut (independen) posisi titik asal sistem koordinat dan tak gayut arah gerak sistem koordinat tersebut dalam ruang. Dikatakan, dalam kerangka acuan inersia, ruang bersifat homogen dan isotropik. Jika partikel bebas bergerak dengan kecepatan konstan dalam suatu sistem koordinat selama interval waktu tertentu tidak mengalami perubahan kecepatan, konsekuensinya adalah waktu bersifat homogen.

Daftar isi

 [sembunyikan]  1 Prinsip Hamilton 2 Persamaan Lagrange

3 Mengapa perlu formulasi Lagrangian?

Page 2: Mekanika klasik

4 Mekanika Klasik dan Fisika Modern

5 Lihat pula

[sunting] Prinsip Hamilton

Analisa gerakan proyektil merupakan salah satu bagian dari mekanika klasik.

Jika ditinjau gerak partikel yang terkendala pada suatu permukaan bidang, maka diperlukan adanya gaya tertentu yakni gaya konstrain yang berperan mempertahankan kontak antara partikel dengan permukaan bidang. Namun sayang, tak selamanya gaya konstrain yang beraksi terhadap partikel dapat diketahui. Pendekatan Newtonian memerlukan informasi gaya total yang beraksi pada partikel. Gaya total ini merupakan keseluruhan gaya yang beraksi pada partikel, termasuk juga gaya konstrain. Oleh karena itu, jika dalam kondisi khusus terdapat gaya yang tak dapat diketahui, maka pendekatan Newtonian tak berlaku. Sehingga diperlukan pendekatan baru dengan meninjau kuantitas fisis lain yang merupakan karakteristik partikel, misal energi totalnya. Pendekatan ini dilakukan dengan menggunakan prinsip Hamilton, dimana persamaan Lagrange yakni persamaan umum dinamika partikel dapat diturunkan dari prinsip tersebut.

Prinsip Hamilton mengatakan, "Dari seluruh lintasan yang mungkin bagi sistem dinamis untuk berpindah dari satu titik ke titik lain dalam interval waktu spesifik (konsisten dengan sembarang konstrain), lintasan nyata yang diikuti sistem dinamis adalah lintasan yang meminimumkan integral waktu selisih antara energi kinetik dengan energi potensial.".

[sunting] Persamaan Lagrange

Persamaan gerak partikel yang dinyatakan oleh persamaan Lagrange dapat diperoleh dengan meninjau energi kinetik dan energi potensial partikel tanpa perlu meninjau gaya yang beraksi pada partikel. Energi kinetik partikel dalam koordinat kartesian adalah fungsi dari kecepatan, energi potensial partikel yang bergerak dalam medan gaya konservatif adalah fungsi dari posisi.

Jika didefinisikan Lagrangian sebagai selisih antara energi kinetik dan energi potensial. Dari prinsip Hamilton, dengan mensyaratkan kondisi nilai stasioner maka dapat diturunkan persamaan Lagrange. Persamaan Lagrange merupakan persamaan gerak partikel sebagai

Page 3: Mekanika klasik

fungsi dari koordinat umum, kecepatan umum, dan mungkin waktu. Kegayutan Lagrangian terhadap waktu merupakan konsekuensi dari kegayutan konstrain terhadap waktu atau dikarenakan persamaan transformasi yang menghubungkan koordinat kartesian dan koordinat umum mengandung fungsi waktu. Pada dasarnya, persamaan Lagrange ekivalen dengan persamaan gerak Newton, jika koordinat yang digunakan adalah koordinat kartesian.

[sunting] Mengapa perlu formulasi Lagrangian?

Dalam mekanika Newtonian, konsep gaya diperlukan sebagai kuantitas fisis yang berperan dalam aksi terhadap partikel. Dalam dinamika Lagrangian, kuantitas fisis yang ditinjau adalah energi kinetik dan energi potensial partikel. Keuntungannya, karena energi adalah besaran skalar, maka energi bersifat invarian terhadap transformasi koordinat.

Dalam kondisi tertentu, tidaklah mungkin atau sulit menyatakan seluruh gaya yang beraksi terhadap partikel, maka pendekatan Newtonian menjadi rumit pula atau bahkan tak mungkin dilakukan. Oleh karena itu, pada perkembangan berikutnya dari mekanika, prinsip Hamilton berperan penting karena ia hanya meninjau energi partikel saja [1].

[sunting] Mekanika Klasik dan Fisika Modern

Meskipun mekanika klasik hampir cocok dengan teori "klasik" lainnya seperti elektrodinamika dan termodinamika klasik, ada beberapa ketidaksamaan ditemukan di akhir abad 19 yang hanya bisa diselesaikan dengan fisika modern. Khususnya, elektrodinamika klasik tanpa relativitas memperkirakan bahwa kecepatan cahaya adalah relatif konstan dengan Luminiferous aether, perkiraan yang sulit diselesaikan dengan mekanik klasik dan yang menuju kepada pengembangan relativitas khusus. Ketika digabungkan dengan termodinamika klasik, mekanika klasik menuju ke paradoks Gibbs yang menjelaskan entropi bukan kuantitas yang jelas dan ke penghancuran ultraviolet yang memperkirakan benda hitam mengeluarkan energi yang sangat besar. Usaha untuk menyelesaikan permasalahan ini menuju ke pengembangan mekanika kuantum.

Mekanika fluidaDari Wikipedia bahasa Indonesia, ensiklopedia bebas

Belum Diperiksa

Efek Bernoulli dalam mekanika fluida

Page 4: Mekanika klasik

Mekanika fluida adalah subdisiplin dari mekanika kontinum yang mempelajari fluida (yang dapat berupa cairan dan gas). Mekanika fluida dapat dibagi menjadi fluida statik dan fluida dinamik. Fluida statis mempelajari fluida pada keadaan diam sementara fluida dinamis mempelajari fluida yang bergerak.

Daftar isi

[sembunyikan]

1 Hubungan dengan mekanika kontinum 2 Asumsi Dasar

o 2.1 Hipotesis kontinum

3 Persamaan Navier-Stokes

o 3.1 Bentuk umum persamaan

4 Fluida Newtonian vs. non-Newtonian

o 4.1 Persamaan pada fluida Newtonian

[sunting] Hubungan dengan mekanika kontinum

Mekanika fluida biasanya dianggap subdisiplin dari mekanika kontinum, seperti yang diilustrasikan pada tabel berikut.

Mekanika kontinum: studi fisika dari material kontinu

Mekanika solid: studi fisika dari material kontinu dengan bentuk tertentu.

Elastisitas: menjelaskan material yang kembali ke bentuk awal setelah diberi tegangan.

Plastisitas: menjelaskan material yang secara permanen terdeformasi setelah diberi tegangan dengan besar tertentu.

Reologi: studi material yang memiliki karakteristik solid dan fluida.

Mekanika fluida: studi fisika dari material kontinu yang bentuknya mengikuti bentuk wadahnya.

Fluida non-Newtonian

Fluida Newtonian

Dalam pandangan secara mekanis, sebuah fluida adalah suatu substansi yang tidak mampu menahan tekanan tangensial. Hal ini menyebabkan fluida pada keadaan diamnya berbentuk mengikuti bentuk wadahnya.

[sunting] Asumsi Dasar

Page 5: Mekanika klasik

Seperti halnya model matematika pada umumnya, mekanika fluida membuat beberapa asumsi dasar berkaitan dengan studi yang dilakukan. Asumsi-asumsi ini kemudian diterjemahkan ke dalam persamaan-persamaan matematis yang harus dipenuhi bila asumsi-asumsi yang telah dibuat berlaku.

Mekanika fluida mengasumsikan bahwa semua fluida mengikuti:

Hukum kekekalan massa Hukum kekekalan momentum

Hipotesis kontinum, yang dijelaskan di bagian selanjutnya.

Kadang, akan lebih bermanfaat (dan realistis) bila diasumsikan suatu fluida bersifat inkompresibel. Maksudnya adalah densitas dari fluida tidak berubah ketika diberi tekanan. Cairan kadang-kadang dapat dimodelkan sebagai fluida inkompresibel sementara semua gas tidak bisa.

Selain itu, kadang-kadang viskositas dari suatu fluida dapat diasumsikan bernilai nol (fluida tidak viskos). Terkadang gas juga dapat diasumsikan bersifat tidak viskos. Jika suatu fluida bersifat viskos dan alirannya ditampung dalam suatu cara (seperti dalam pipa), maka aliran pada batas sistemnya mempunyai kecepatan nol. Untuk fluida yang viskos, jika batas sistemnya tidak berpori, maka gaya geser antara fluida dengan batas sistem akan memberikan resultan kecepatan nol pada batas fluida.

[sunting] Hipotesis kontinum

Fluida disusun oleh molekul-molekul yang bertabrakan satu sama lain. Namun demikian, asumsi kontinum menganggap fluida bersifat kontinu. Dengan kata lain, properti seperti densitas, tekanan, temperatur, dan kecepatan dianggap terdefinisi pada titik-titik yang sangat kecil yang mendefinisikan REV (‘’Reference Element of Volume’’) pada orde geometris jarak antara molekul-molekul yang berlawanan di fluida. Properti tiap titik diasumsikan berbeda dan dirata-ratakan dalam REV. Dengan cara ini, kenyataan bahwa fluida terdiri dari molekul diskrit diabaikan.

Hipotesis kontinum pada dasarnya hanyalah pendekatan. Sebagai akibatnya, asumsi hipotesis kontinum dapat memberikan hasil dengan tingkat akurasi yang tidak diinginkan. Namun demikian, bila kondisi benar, hipotesis kontinum menghasilkan hasil yang sangat akurat.

Masalah akurasi ini biasa dipecahkan menggunakan mekanika statistik. Untuk menentukan perlu menggunakan dinamika fluida konvensial atau mekanika statistik, angka Knudsen permasalahan harus dievaluasi. Angka Knudsen didefinisikan sebagai rasio dari rata-rata panjang jalur bebas molekular terhadap suatu skala panjang fisik representatif tertentu. Skala panjang ini dapat berupa radius suatu benda dalam suatu fluida. Secara sederhana, angka Knudsen adalah berapa kali panjang diameter suatu partikel akan bergerak sebelum menabrak partikel lain.

[sunting] Persamaan Navier-Stokes

Persamaan Navier-Stokes (dinamakan dari Claude-Louis Navier dan George Gabriel Stokes) adalah serangkaian persamaan yang menjelaskan pergerakan dari suatu fluida seperti

Page 6: Mekanika klasik

cairan dan gas. Persamaan-persamaan ini menyatakan bahwa perubahan dalam momentum (percepatan) partikel-partikel fluida bergantung hanya kepada gaya viskos internal (mirip dengan gaya friksi) dan gaya viskos tekanan eksternal yang bekerja pada fluida. Oleh karena itu, persamaan Navier-Stokes menjelaskan kesetimbangan gaya-gaya yang bekerja pada fluida.

Persamaan Navier-Stokes memiliki bentuk persamaan diferensial yang menerangkan pergerakan dari suatu fluida. Persaman seperti ini menggambarkan hubungan laju perubahan suatu variabel terhadap variabel lain. Sebagai contoh, persamaan Navier-Stokes untuk suatu fluida ideal dengan viskositas bernilai nol akan menghasilkan hubungan yang proposional antara percepatan (laju perubahan kecepatan) dan derivatif tekanan internal.

Untuk mendapatkan hasil dari suatu permasalahan fisika menggunakan persamaan Navier-Stokes, perlu digunakan ilmu kalkulus. Secara praktis, hanya kasus-kasus aliran sederhana yang dapat dipecahkan dengan cara ini. Kasus-kasus ini biasanya melibatkan aliran non-turbulen dan tunak (aliran yang tidak berubah terhadap waktu) yang memiliki nilai bilangan Reynold kecil.

Untuk kasus-kasus yang kompleks, seperti sistem udara global seperti El Niño atau daya angkat udara pada sayap, penyelesaian persamaan Navier-Stokes hingga saat ini hanya mampu diperoleh dengan bantuan komputer. Kasus-kasus mekanika fluida yang membutuhkan penyelesaian berbantuan komputer dipelajari dalam bidang ilmu tersendiri yaitu mekanika fluida komputasional

[sunting] Bentuk umum persamaan

Bentuk umum persamaan Navier-Stokes untuk kekekalan momentum adalah :

di mana

ρ adalah densitas fluida,

adalah derivatif substantif (dikenal juga dengan istilah derivatif dari material) adalah vektor kecepatan, f adalah vektor gaya benda, dan

adalah tensor yang menyatakan gaya-gaya permukaan yang bekerja pada partikel fluida.

adalah tensor yang simetris kecuali bila fluida tersusun dari derajat kebebasan yang berputar seperti vorteks. Secara umum, (dalam tiga dimensi) memiliki bentuk persamaan:

Page 7: Mekanika klasik

di mana

σ adalah tegangan normal, dan τ adalah tegangan tangensial (tegangan geser).

Persamaan di atas sebenarnya merupakan sekumpulan tiga persamaan, satu persamaan untuk tiap dimensi. Dengan persamaan ini saja, masih belum memadai untuk menghasilkan hasil penyelesaian masalah. Persamaan yang dapat diselesaikan diperoleh dengan menambahkan persamaan kekekalan massa dan batas-batas kondisi ke dalam persamaan di atas.

[sunting] Fluida Newtonian vs. non-Newtonian

Sebuah Fluida Newtonian (dinamakan dari Isaac Newton) didefinisikan sebagai fluida yang tegangan gesernya berbanding lurus secara linier dengan gradien kecepatan pada arah tegak lurus dengan bidang geser. Definisi ini memiliki arti bahwa fluida newtonian akan mengalir terus tanpa dipengaruhi gaya-gaya yang bekerja pada fluida. Sebagai contoh, air adalah fluida Newtonian karena air memiliki properti fluida sekalipun pada keadaan diaduk.

Sebaliknya, bila fluida non-Newtonian diaduk, akan tersisa suatu "lubang". Lubang ini akan terisi seiring dengan berjalannya waktu. Sifat seperti ini dapat teramati pada material-material seperti puding. Peristiwa lain yang terjadi saat fluida non-Newtonian diaduk adalah penurunan viskositas yang menyebabkan fluida tampak "lebih tipis" (dapat dilihat pada cat). Ada banyak tipe fluida non-Newtonian yang kesemuanya memiliki properti tertentu yang berubah pada keadaan tertentu.

[sunting] Persamaan pada fluida Newtonian

Konstanta yang menghubungkan tegangan geser dan gradien kecepatan secara linier dikenal dengan istilah viskositas. Persamaan yang menggambarkan perlakuan fluida Newtonian adalah:

di mana

τ adalah tegangan geser yang dihasilkan oleh fluida

μ adalah viskositas fluida-sebuah konstanta proporsionalitas

adalah gradien kecepatan yang tegak lurus dengan arah geseran

Page 8: Mekanika klasik

Viskositas pada fluida Newtonian secara definisi hanya bergantung pada temperatur dan tekanan dan tidak bergantung pada gaya-gaya yang bekerja pada fluida. Jika fluida bersifat inkompresibel dan viskositas bernilai tetap di seluruh bagian fluida, persamaan yang menggambarkan tegangan geser (dalam koordinat kartesian) adalah

di mana

τij adalah tegangan geser pada bidang ith dengan arah jth

vi adalah kecepatan pada arah ith

xj adalah koordinat berarah jth

Jika suatu fluida tidak memenuhi hubungan ini, fluida ini disebut fluida non-Newtonian.

Hukum Gesekan

Hukum gesekan Lihat rincian versi

Isi 1. Gesekan 2. Halaman Komentar

Gesekan

Permukaan yang halus ditentukan oleh sifat bahwa ketika mereka berada di kontak, permukaan selalu tegak lurus terhadap bidang singgung umum mereka. Ini bisa, bagaimanapun, akan diverifikasi eksperimental bahwa tidak ada permukaan yang sangat halus dan bahwa setiap kali ada kecenderungan untuk dua tubuh yang berada dalam kontak untuk bergerak relatif terhadap satu sama lain, kekuatan yang dikenal sebagai gaya gesekan cenderung untuk mencegah gerakan relatif. Pembahasan matematika dari gaya gesekan tergantung pada asumsi-asumsi tertentu yang diwujudkan dalam hukum disebut gesekan dan ditemukan berada dalam perjanjian dekat dengan percobaan.

Hukum 1 Ketika dua benda berada dalam kontak arah pasukan Friction pada salah satu dari mereka pada titik itu kontak, berlawanan dengan arah di mana titik kontak cenderung bergerak relatif terhadap yang lain.

Hukum 2 Jika tubuh berada dalam kesetimbangan, kekuatan Gesekan hanya cukup untuk mencegah gesekan dan oleh karena itu dapat ditentukan dengan menerapkan kondisi keseimbangan dari semua gaya yang bekerja pada tubuh.

Page 9: Mekanika klasik

Jumlah Gesekan yang dapat diberikan antara dua permukaan terbatas dan jika gaya yang bekerja pada tubuh dibuat cukup besar, gerakan akan terjadi. Oleh karena itu, kita mendefinisikan sebagai gesekan membatasi gesekan yang diberikan saat ekuilibrium pada titik yang rusak oleh satu badan geser yang lain. Besarnya gesekan membatasi diberikan oleh tiga undang-undang berikut.

Hukum 3 Rasio gesekan membatasi reaksi normal antara dua permukaan tergantung pada zat yang permukaan terdiri dan bukan pada besarnya reaksi normal.

Rasio ini biasanya dilambangkan dengan . Jadi jika reaksi normal adalah R, gesekan pembatas Untuk materi yang diberikan dipoles dengan standar yang sama ditemukan akan konstan dan independen dari R.

disebut Koefisien gesekan

UU 4 Jumlah gesekan membatasi adalah independen dari daerah kontak antara dua permukaan dan bentuk permukaan, asalkan reaksi normal tidak berubah.

Hukum 5 Ketika gerakan terjadi gesekan arah berlawanan dengan arah gerak relatif dan independen kecepatan. Besarnya gaya gesekan adalah dalam rasio konstan untuk reaksi normal tetapi rasio ini mungkin sedikit kurang daripada ketika tubuh hanya pada titik yang bergerak.

Harus ditekankan bahwa hukum di atas adalah eksperimental dan diterima sebagai dasar untuk pengobatan matematika gesekan. Teori modern menunjukkan bahwa gaya gesekan pada kenyataannya karena non - kekakuan badan. Ketika satu tubuh bersandar pada yang lain, selalu ada daerah kontak, yang jauh lebih kecil dari luas nyata dan juga tergantung pada tekanan normal antara tubuh. Gesekan dianggap karena bahan fusi (yang terdiri tubuh) di atas daerah kontak. Oleh karena itu gesekan akan sebanding dengan daerah kontak dan oleh karena itu sebanding dengan tekanan normal seperti yang diasumsikan dalam hukum di atas.

CATATAN

Bagian tentang Teori Mesin - Mekanisme termasuk bagian mengenai Gesekan kedua pada permukaan datar dan di dalam Bearing. Contoh bekerja digunakan untuk menunjukkan efek dari Angkatan Friksional di Mekanisme.