metal-semiconductor contactsnanotr16/notes/slodha.pdf · metal-semiconductor contacts • fermi...

69
Metal-Semiconductor Contacts Saurabh Lodha Dept. of Electrical Engineering, IIT Bombay Feb 25, 2016 School on Nanoscale Electronic Transport and Magnetism: Fundamentals to Applications HRI, Allahabad

Upload: votu

Post on 12-Sep-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Metal-Semiconductor Contacts

Saurabh Lodha !

Dept. of Electrical Engineering, IIT Bombay !

Feb 25, 2016 School on Nanoscale Electronic Transport and

Magnetism: Fundamentals to Applications HRI, Allahabad

Page 2: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Outline

• Metal-semiconductor contacts – Energy band alignment – Fermi-level pinning – Current transport and barrier height extraction – Measurement of Rc and ρc !

• Contact resistance in emerging materials – Germanium – MoS2

25/02/2016 2

Page 3: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Outline

• Metal-semiconductor contacts – Energy band alignment – Fermi-level pinning – Current transport and barrier height extraction – Measurement of Rc and ρc !

• Contact resistance in emerging materials – Germanium – MoS2

25/02/2016 3

Page 4: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Metal-semiconductor Band Alignment

• In equilibrium Fermi-levels align • Depletion-mode contact

25/02/2016 4

Page 5: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Try this yourself

• What kind of a contact is this?

25/02/2016 5

?

Page 6: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Schottky-Mott Rule

• φB reflects the mismatch in energy position of majority carrier band edge of the semiconductor and the metal Fermi level at the interface25/02/2016

6

d=0, metal and s.c. in contact

Page 7: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Deviation from Ideal (Schottky-Mott)

!• Experimental vs measured SBH on Si • A.M. Cowley et al., "Surface States and Barrier Height of

Metal-Semiconductor Systems," J. Appl. Phys 36, 3212 (1965)

25/02/2016 7

Page 8: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Interface States: Fermi-level Pinning

• Interface states!dipole!interfacial layer of atomic dimensions

• φCNL energy level below which all states must be filled to ensure charge neutrality, measured from VBM

• S depends on Ds and δi25/02/2016 8

Charge at the interface due to electronic states in the bandgap

Pinning factor

Density of surface states, Cowley and Sze

0=++ SSSCM QQQ

Page 9: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Origin of Interface States: Model 1- Unified Defect Model by Spicer

• Surface states created by dangling bonds of covalent semiconductor • Fermi level pins at defect levels for sub/few monolayer metal coverage • W.E. Spicer et al., "Unified Defect Model and Beyond," J. Vac. Sci.

Tech. 17, 1019 (1980).25/02/2016 9

Page 10: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Origin of Interface States: Model 2- Metal Induced Gap States by Heine

Heine (V. Heine, "Theory of Surface States," Phys. Rev. 138, A1689 (1965))

• Interface states ! tails of the metal wave functions  • Length of the tail ~ a few lattice constants, depends on

complex energy band structure of semiconductor • Deviation from local charge neutrality results in "metallic"

screening by MIGS ! Fermi-level pinning !J. Tersoff (J. Tersoff, "Schottky Barrier Heights and the

Continuum of Gap States," Phys. Rev. Lett. 52, 465, (1984)) • Gap states come from valence band and conduction band

states • Charge neutrality requires filling of valence band like states

and empty conduction band states • Cross-over point ! Branch point ! MIGS DOS is minimum

and EF is pinned here

25/02/2016 10

Page 11: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Current transport in Contacts

25/02/2016 11

Page 12: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Contact Resistance and Resistivity

• Specific contact resistivity is a key parameter to describe contact performance

25/02/2016 12

Bulk resistivity

Specific Contact Resistivity

Page 13: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Thermionic Emission: Schottky Contact

• Specific contact resistivity independent of doping

25/02/2016 13

Page 14: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Field Emission (Tunneling): Ohmic contact

25/02/2016 14

Page 15: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Contact resistivity on Si

25/02/2016 15

Page 16: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

How do you measure φB?

• I-V measurement in a low doped Schottky diode25/02/2016 16

J0

Page 17: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

How do you measure φB?

• Reverse bias C-V curves give φB and doping Nd

25/02/2016 17

Page 18: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

How do we measure Rc and ρc?

• If current density was uniform then ρc is contact resistance/A

• In practice ! J is non uniform due to current crowding • Need a more accurate model 25/02/2016 18

Page 19: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Model for Contact Resistance

• vm(x,y,z) ! Metal potential • v(x,y,z) ! Semiconductor potential • Poisson and carrier continuity eqns • Effect of minority carriers is neglected

– Neglecting the semiconductor depletion width – Only need to solve the majority carrier continuity eqn in the

semiconductor region under the contact • Assume majority carrier density is the same as the

active doping density • Metal conductivity >> semiconductor conductivity ! vm

is constant along entire interface ! Only need to solve for v(x,y,z)

25/02/2016 19

Page 20: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

3D Model- Equations

25/02/2016 20

Difference in Fermi potentials of majority carriers

Finite resistance seen by infinitesimal current crossing the interface for infinitesimal applied V

Page 21: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

2D Model

25/02/2016 21

z

x

y

semiconductor

metal

Sheet Resistance of the semiconductor

x=0 x=lI

Conductivity weighted average potential

Assumptions

Transverse gradient and Laplacian operators

Page 22: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

2D Model

25/02/2016 22

Helmholtz equation, Under the contact

Laplace equation, Not under the contact

Integrating along z

Close to 1 for shallow junctions

Assuming vm to be constant and 0

Page 23: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

2D Simplified to a 1D Model

• Neglecting y-axis variation !

!

• V=Vi at x=0 and dV/dx=0 at x=l

25/02/2016 23

z

x

y

semiconductormetal

x=0 x=lI

⎟⎟⎠

⎞⎜⎜⎝

⎛=

t

ts

itot

lllR

WVI

coth

1

Page 24: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

0D Model

• Rc approaches ρcA as l becomes less than lt • Potential across the semiconductor is uniform • Current entering the contact is uniform • Macroscopic definition

25/02/2016 24

x

y

semiconductor

metal

x=0 x=l < ltI

Page 25: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

1D Transmission line model

• Rc is dependent on contact size, structure layout besides semiconductor doping and ρc

• ρc is a fundamental quantity governed by the interface

25/02/2016 25

1D Transmission Line Model (Distributed ρc and Rs)

Page 26: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

1D Transmission line model

• Current density drops exponentially from leading edge to trailing edge of the contact

• lt is the characteristic length over which current drops by 63%

25/02/2016 26

Page 27: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

1D Transmission line model

25/02/2016 27

For d<<lt, or large ltAs if you have uniform current density through the entire contact

For l2=0

Similarly for d>>lt

⎟⎟⎠

⎞⎜⎜⎝

⎛=

t

ts

i

lllR

WVIcoth

11

Recall,

Rc=

t

cf wlR ρ

≈ As if you have uniform current density through an effective area of wlt

Page 28: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

1D Transmission Line Model

• Rc plateau determined by Lt value for given ρc

25/02/2016 28

t

cf ZlR ρ

≈ZL

R cf

ρ≈

Page 29: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Measurement of Rc and ρc

• Transmission line tap resistor25/02/2016 29

Page 30: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Measurement of Rc and ρc

• Value of Rf (Rc) is small compared to Rs • Measurement of Rt needs to be accurate25/02/2016 30

Page 31: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

TLM Method

• For L>>LT x-intercept gives LT value

25/02/2016 31

Page 32: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Cross-bridge Kelvin Resistor

• Assumes uniform current density through the entire contact area

25/02/2016 32

Page 33: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Limitations of 1D Model

• 2D current flow is not accounted for • Overestimation of ρc -> does not scale with area • Need accurate 2D/3D current flow simulations

25/02/2016 33

Page 34: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Outline

• Metal-semiconductor contacts – Energy band alignment – Fermi-level pinning – Current transport and barrier height extraction – Measurement of Rc and ρc !

• Contact resistance in emerging materials – Germanium – MoS2

25/02/2016 34

Page 35: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

CMOS Evolution

• Engineering innovation has sustained Moore’s law – Strain – Hi-K/Metal Gate – FinFET/Trigate

35

Classical Dennard Scaling

Strain Engineering

Hi-K / MG Gate stack

Trigate / FinFET

1974-2000 2000-2007 2007-2012 2016-?

90 nm 45 nm 22/14 nm

25/02/2016

Page 36: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

What’s next for Moore’s law?

!• Mobility enhancement

using alternate channel materials, strain, wafer orientation

Id=µCox/Leff (Vg-Vt)α

36

High Mobility/Injection Velocity

Lubow et al., APL 96 122105 (2010)

Intel Developer Forum, Sept. 2011

❑ Ge is a single material CMOS solution ❑ Integral part of Si foundries25/02/2016

Page 37: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

What’s next for Moore’s law?

– Scaled FinFETs !

– GAA FETs !– Tunnel FETs !– Ultra thin (2D) materials:

MoS2, WSe2

Id=µCox/Leff (Vg-Vt)α

37

LG

Hsi

Gate

Source

Drain

Wsi

Improved Electrostatics/Sub-Vt Slope

Lower Leff at same Vt, or lower Vt at same Leff

SiO2

Back Gate

MoS2

Source Drain

0.7 nm

25/02/2016

P-I-N TFET

Page 38: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Series Resistance in Future Transistors

• Contribution of contact resistance to overall parasitic series resistance is increasing with scaling

25/02/2016 38

Page 39: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Rcontact Scaling

39

• Lcontact scales faster than Lgate !• Aggressive reduction of

Contact-to-S/D specific contact resistance (ρc) needed

39

Lgate

Spacer

Lcontact

2011 2012 2013 2014 20150.0

1.0x10-8

2.0x10-8

3.0x10-8

4.0x10-8

5.0x10-8

6.0x10-8

7.0x10-8

8.0x10-8

9.0x10-8 2011 2012 2013 2014 2015

ρ c O

hm.cm

2

year

ITRS 2011

2011 2012 2013 2014 20155

10

15

20

25

30

5

10

15

20

25

30

Lga

te (n

m)

L co

ntac

t (nm

)

year

Contact length Physical gate length (nm)

ITRS 2011

25/02/2016

Page 40: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Metal-semiconductor contacts

• Fermi level pinning is the “lack of barrier height modulation with metal work function” due to – Either large density of “intrinsic” states: e.g. point

defects on semiconductor surface – Or “extrinsic” Metal-Induced-Gap-States (MIGS)

ECNL

φB

Ec

Ev

Metal Semiconductor

)()1()( CNLCsMB EESS −−+−=Φ χφ

)4

exp(*

surf

Bc N

mqh

επρ

Φ∝

4025/02/2016

Page 41: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Ge Transistor Contacts

• N+ Silicon S/D – N-type barrier height is high (NiSi,

NiPtSi)

!• N+ Si:C S/D (higher mobility)

– N-type barrier height is high (NiSi, NiPtSi)

– Effective doping is less vs Si !

!• N+ Ge S/D (higher mobility)

– N-type barrier height is high • Fermi level pinning near VB

– Low dopant activation (~5e19 cm-3)

41Toriumi et al., APL, 2007

Si Si:C Ge1E19

1E20

1E21

Max

imum

pos

sible

dopi

ng (c

m-3)

25/02/2016

Page 42: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Solution: MIS Contacts (Metal-Interfacial Layer-Semiconductor)

42

S: pinning factor • S=1 Ideal

surface, No pinning

• S=0 complete pinning

S ↑

εIL↑ EgIL ↑thickness t of IL ↑

ρc ↓

ΔEc↓thickness t of IL ↓

Jenny Hu et al. MRS Bulletin 2011

ρc: Specific contact resistivity • ρc

depends on φB,eff

• ρc depends on ΔEc

ΔEc

25/02/2016

Page 43: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

MIS vs Silicide

dd

MIS S/D

Source Metal

Drain Metal

Gate

dh

Drain Metal

Gate

Source Metald

Fully Silicided S/D

hHorizontal Cut

Contact Area AMIS = wd+2hd Asilicide = wh

w

w

w

w

MIS gives area advantage over fully silicided S/D

• MIS contacts scale better than Silicide • Contact area and current crowding penalty for

silicide

5 6 8 10 12 150

100

200

300

400

Tota

l Con

tact

Resis

tanc

e (o

hms)

Fin Width (nm)

Fin Extension Resistance Silicide Contact Resistance MIS Contact Resistance

MIS Silicide

ρc=1e-9 Ω.cm2

4325/02/2016

• P. Parahamans et al., p. 83-84, VLSI Symposium 2012

Page 44: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

ZnO as an IL

4425/02/2016

Page 45: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

FERMI LEVEL PINNING ELECTROSTATICS

Interlayer (IL) Comparison

• ZnO gives lowest ρc for thick films

45

• S. Gupta et al., Journal of Applied Physics (2013)

25/02/2016

Page 46: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Effect of Doping ZnO

46

• ρc decreases with increasing doping

• At high doping, ρc independent of thickness

• S. Gupta et al., Journal of Applied Physics (2013)

25/02/2016

Page 47: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Device Fabrication

47

N-Ge Substrate Pre-Clean

PVD ZnO, Ti/Au Diode formation

PDA in N2 forming high doped ZnO

Back Al metallization

Ti

n-GeZnO

TEM of n-Ge/ZnO/Ti interface

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.50123456

F(R

)hv

a.u

hv(ev)

Tauc Plot of the deposited ZnO film

Band Gap =3.1eV

Tauc plot of the deposited ZnO film. Measured Eg ~3.1eVDiodes C-TLM

Lithography on n+ epi-Ge

PVD ZnO

Ti/Au

Liftoff PDA in N2 Forming high doped ZnO

25/02/2016

Page 48: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

J-V Characteristics

48

• As expected significant increase in on and off currents for n-Ge !

• NiGe/n-Ge and Ti/n-Ge control devices are pinned near VB !• ALD ZnO also shows a similar response as PVD ZnO !

25/02/2016

Page 49: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Contact Resistance (C-TLM)

• ZnO shows reduction in ρc for Ge (2.5x) and Si:C (1.3x) • Benefit reduces with increasing substrate doping

– ∆ρSi < ∆ρSi:C < ∆ρGe, NSi >NSi:C > NGe 49

Top Metal Contacts

Epi, insitu doped Si/Ge/Si:C

P-Si

t

Epi Layer Doping (cm

t (nm)

N+ Silicon

~3e20 40

N+ Si:C ~1e20 40

N+ Ge ~2E19 120

~2.5X

~1.3X

Ge Si Si:C

Control With ZnO

Control With ZnO

Control With ZnO

3.3E-7 1.4E-7 3.7E-8 3.7E-8 5.4E-8 4.3E-8

25/02/2016

Page 50: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Summary: Contact resistance vs Ge doping

• ZnO helps lower doping requirement for contacts to n-Ge – 1e20 cm-3 S/D doping with ZnO IL should reach ITRS spec (2014)

50

• P. Paramahans et al., Appl. Phys. Lett. 101, 182105 (2012) • P. Parahamans et al., p. 83-84, VLSI Symposium 2012

25/02/2016

Page 51: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

MoS2: Key Features

➢ Unique properties of Graphene have led to interest in 2D materials ➢ Linear dispersion relationship ! µ= 106 cm2/V.s at 2K

❑ Graphene

[1] K. Novoselov et al., Review of mod. Phy. (2009). [2] A. Kis et al., Nat. Nanotech. (2011)

➢ Semi-metallic (zero bandgap) nature makes it unsuitable for logic applications

➢ Layered with strong in-plane bonding and weak out-of-plane interactions ➢ Enables exfoliation of monolayer ➢ Large intrinsic band gap e.g. 1.8 eV in monolayer and 1.29 eV in multilayer ➢ Monolayer! Direct band gapGood for optoelectronic application ➢ Thermal stability up to 1100 C

❑ MoS2

Van der waals Forces

➢ Monolayer ! 6.5 Å

25/02/2016 51

Page 52: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Transition Metal Dichalcogenides (TMDs)

➢ Group 4–7 TMDs are layered, whereas group 8–10 TMDs are non-layered structures.

➢ About 40 different layered TMD compounds exist

M. Chhowalla et al., Nature chemistry 10, 1038 (2013) 25/02/2016 52

Page 53: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

How good can a monolayer MoS2 transistor be?

➢ ION/IOFF ! >1010

➢DIBL∼10 mV/V, SS ! 60 mV/decade➢ Lg = 15 nm ➢ HfO2 Tox 2.5 nm

Y. Yoon et al., Nanoletters, 11.3773, 2011.

25/02/2016 53

Page 54: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Back Gate

Device Fabrication

Source

280 nm SiO2

Reactive ion etching Surface treatment

MoS2 exfoliation

PMMA Resist coating

Source/Drain EBL Patterning

SiO2

➢ S E M i m a g e o f monolayer MoS2 device➢ Transistor

process flow

➢TLM structure process flow to estimate contact resistance (Rc)

P+ Si as Back gate

MoS2

Lift off

Back Gate

SiO2

MoS2

MoS2

MetallizationPMMA

PMMA

L~ 5 µmW

~ 3 µ

m

1L,

MoS

2SiO2

Au PdPdAu

3 µm

1 µm

Source DrainAu/Pd Au/Pd

Elec

trode

s

Elec

trod

es

Elec

trod

es

Elec

trod

es

Elec

trod

es

25/02/2016 54

Page 55: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Characterization of MoS2 layers

1.40 nm

Bi Layer MoS2

20 µm

SiO2

Multi

Lay

er M

oS2

360 380 400 420558

564

570 A1GE1

2G

ΔΚ=21.6 cm-1

Inte

nsity

(a.u

)

Raman shift (cm-1)

168 164 160

S2p

B.E (eV)

Intensity (C/s)1400

1600

1800

2000

235 230 2251500

2000

2500

3000

Mo

3d5

Mo

3d3

Inte

nsi

ty (

C/s

)

B.E (eV)

➢ O p t i c a l m i c r o g r a p h showing Bilayer MoS2➢ AFM data for Bi layer MoS2 flake

➢ R a m a n spectrum of Bi layer MoS2 flake

➢ XPS spectra of MoS2 flake25/02/2016 55

Page 56: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

❑ Large contact resistance at metal-MoS2 interface

!!!!!

❑ Different approaches to reduce the contact resistance

High Contact Resistance

0 10 20 30 40

50

100

150

200

Pd Au

VBG (V)

Rc (

.mm

)

30

35

40

45

Rc (Ω.m

m)

 

 

Ref. no. Charge transfer

Φ Δ µ (cm

Stability

[1] Potassium NA NA 25 No[2] PEI NA NA NA No

This work

TiOmetal)

40 meV, constant Φ

13X ↓ Up to 11X↑

Yes

N-type doping of MoS2

[1] H. Fang et al., Nano lett. 13, 1991 (2013), [2] N. Pour et al., DRC., 101 (2013)

➢ Contact resistance limited by sheet charge density

Ref. D. Jena et al., Nat. mat., (2014).

56

↓RC

Doping Interfacial layer

ФB lower Fermi-level unpinning

ФB thinner25/02/2016

Page 57: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

-8

-6

-4

-2

0

CNL

MoS2

Energ

y (eV

)Vaccuum level

TiO2

TiO

2 as an interfacial layer

❑ Why is TiO2 a good interfacial layer candidate? ➢ Small or no conduction band offset ! low tunneling R ➢ Large bandgap ! Fermi-level unpinning ➢ Ultra-thin IL ! low tunneling R

❑ Energy band alignment of MoS2 and TiO2 suggests possibility of charge transfer from TiO2 to MoS2

A. Agrawal et al., Sym. on VLSI Tech., (2013).

5725/02/2016

Page 58: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Device fabrication: Process flow

❑ Transistor process flow

SiO2

Back Gate

MoS2Source DrainTiO2 TiO2

Metal Metal 280 nm SiO2

Reactive ion etching Surface treatment

MoS2 exfoliation

Source/Drain EBL Patterning

ALD TiO2

P+ Si as Back gate

Metallization and Lift Off

➢ Optical micrograph of back gated transistor

➢ Scanning electron microscope image showing devices with different channel length 5825/02/2016

Page 59: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

❑ Resistor network model for metal-semiconductor contacts

Contact resistance using TLM❑ Reduction in contact (Rc) and transfer length (LT)

59

Reduction in LT for contact-TiO2

25/02/2016

Page 60: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Barrier height extraction❑ Reduction in effective SBH with TiO2 IL for Au, Pd, Ni and Ti

60

-40 -20 0 20 400.00

0.06

0.12

0.18

Au TiO2-Au

VGS (V)

ΦAu

(eV)

0.00

0.02

0.04 ΦB

Au

0.12 eV

ΦTi

O 2-Au (

eV)

ΦBTiO2-Au

0.028 eV

Thermionic Thermionic

TunnelingTunneling

WBWB

Undoped Doped

❑ Constant effective SBH with TiO2 IL indicates increase in doping instead of φB reduction

25/02/2016

Page 61: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Electrical characteristics

❑ SEM images of TLM devices with and without TiO2

61

➢ Metal-MoS2 ! High resistance, large SBH ➢ Metal-TiO2-MoS2 ! Low resistance, small

SBH ➢ Metal-TiO2-MoS2 -Metal ! Asymmetric I-V

confirms significant difference in barrier heights !

WB WB

S D

no-TiO2

Contact-TiO2

25/02/2016

Page 62: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Transistor Characteristics ❑ Improvement in on-current and field effect mobility with TiO

2 IL for different metals

❑ Larger change with Pd

6225/02/2016

Page 63: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Physical proof of charge transfer

➢ XPS spectra shows Mo-3d, and S-2p core level shifts to higher binding energy from MoS2 to TiO2–MoS2

10 5 0 -50

2M

4M

6M

8M

Cou

nts

(a.u

.)

Binding Energy(eV)

MoS2

TiO2-MoS2

12.0 11.6 11.2 10.8

11.9

MoS2 TiO2-MoS2

11.6

 

➢ UPS measurements of TiO2–MoS2 and MoS2 ➢ Reduction in work-function (0.3 eV) with TiO2

25/02/2016 63

Page 64: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Contact vs. Channel TiO2

25/02/2016 64

❑ Larger benefit from reduction in contact resistance vs mobility enhancement from dielectric screening !

Page 65: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Conclusion

❑ N-type doping by charge transfer mechanism !!!!

! ❑Improvement in ION/IOFF with TiO2 and constant ΦB irrespective of metal work-function !

10 5 0 -50

2M

4M

6M

8M

Cou

nts

(a.u

.)Binding Energy(eV)

MoS2

TiO2-MoS2

12.0 11.6 11.2 10.8

11.9

MoS2 TiO2-MoS2

11.6

-8

-6

-4

-2

0

CNL

MoS2

Ene

rgy

(eV

)

Vaccuum level

TiO2

4.2 4.5 4.8 5.1 5.4

0.1

0.2

0.3

0.4 MoS2

MoS2-TiO2

Linear fit of Φ Linear fit of Φ

ΦB (

eV)

Work function (eV)

Pd

Au

Ti

Ni

-40 -20 0 20 400

10µ

20µ

30µ

40µ

I DS

(A/µ

m)

I DS

(A/µ

m)

VGS (V)

TiO2-Pd Pd

10f1p100p10n1µ100µ

(a)

~7X

25/02/2016 65

N. Kaushik et al., Device Research Conference (2015), ACS Applied Materials and Interfaces (2015).

MoS2

TiO2

MetalMetal

Page 66: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Summary

• Metal-semiconductor contacts are a part of every semiconductor device – Low contact resistance is critical for high

performance !

• Diodes (φB) and TLM (ρc) structures are used for extracting contact parameters

!• Fermi-level pinning, low doping activation are

leading causes of high resistance • Emerging materials need novel solutions to

reduce contact resistance6625/02/2016

Page 67: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Thank you!

25/02/2016 67

Page 68: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Backup

25/02/2016 68

Page 69: Metal-Semiconductor Contactsnanotr16/notes/SLodha.pdf · Metal-semiconductor contacts • Fermi level pinning is the “lack of barrier height modulation with metal work function”

Measurement of Rc and ρc

25/02/2016 69