method of applied math

23
Lecture 1 Sujin Khomrutai – 1 / 23 Method of Applied Math Lecture 7: Laplace Transform Sujin Khomrutai, Ph.D.

Upload: others

Post on 28-Feb-2022

11 views

Category:

Documents


0 download

TRANSCRIPT

Lecture 1 Sujin Khomrutai – 1 / 23

Method of Applied MathLecture 7: Laplace Transform

Sujin Khomrutai, Ph.D.

Shift in t

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 2 / 23

Definition. Let a be a positive constant. The function

f(t− a)H(t− a) =

{

0 t < a

f(t− a) t ≥ a

is called the shifting of f(t) by a.

EX. (t− 1)2H(t− 1)

et−3H(t− 3)

sin(2t− 2π)H(t− π) = sin(2(t− π))H(t− π)

Shift in t

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 3 / 23

Theorem. Let F (s) = L[f(t)] and a a positive constant. Then

L[f(t− a)H(t− a)] = e−asF (s).

Thus

L−1[e−asF (s)] = f(t− a)H(t− a).

Proof. By definition,

L[f(t− a)H(t− a)] =

0

e−stf(t− a)H(t− a)dt

=

a

e−stf(t− a)dt.

Shift in t

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 4 / 23

Use the change of variable x = t− a, the integral becomes

a

e−stf(t− a)dt =

0

e−s(x+a)f(x)dx = e−saF (s).

So

L[f(t− a)H(t− a)] = e−asF (s).

Example 1

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 5 / 23

EX. Find the Laplace transform for each of the following functions

1. f(t) = (t− 3)2H(t− 3)

2. g(t) =

{

0 0 < t < 1

et−1 t ≥ 1

3. h(t) =

{

0 0 < t < 4

2t− 8 t ≥ 4

Shift in t

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 6 / 23

Note. A function of the form

f(t) =

{

f1(t) 0 < t < a

f2(t) t ≥ a

is equal to

f(t) = f1(t)(1−H(t− a)) + f2(t)H(t− a)

= f1(t)− f1(t)H(t− a) + f2(t)H(t− a)

EX.

f(t) =

{

t− 5 0 < t < 2

cos t t ≥ 2= (t−5)(1−H(t−2))+(cos t)H(t−2)

Multiplication with Heaviside Function

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 7 / 23

Theorem.

L[f(t)H(t− a)] = e−asL[f(t + a)].

Proof. Let g(t) = f(t+ a). Then g(t− a) = f(t) hence

f(t)H(t− a) = g(t− a)H(t− a).

By the previous theorem,

L[f(t)H(t− a)] = L[g(t− a)H(t− a)] = e−asG(s)

Since G(s) = L[g(t)] = L[f(t + a)], the desired identity is true.

Example 2

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 8 / 23

EX. Find the Laplace transform for each of the following functions

1. f(t) = tH(t− 3)

2. g(t) = e−tH(t− 1)

3. h(t) =

{

1 0 < t < 7

cos t t ≥ 7

Example 3

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 9 / 23

EX. Find the inverse Laplace transform for each of the followingfunctions

1. F (s) =e−3s

s− 5

2. G(s) =e−5s

s2

3. (∗) P (s) =e−2s

s(s2 + 1)

Example 4

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 10 / 23

EX. Solve the IVP:

y′′ + 4y = f(t), y(0) = 1, y′(0) = 0.

where

f(t) =

{

0 if 0 < t < 4

3 if t ≥ 4

ANS.

y(t) = cos 2t+3

4(1− cos(2t− 8))H(t− 4)

Impulse functions

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 11 / 23

Definition Let a ≥ 0. The unit impulse function at a orDirac delta function at a is

δ(t− a) = limε→0

1

ε[H(t− a)−H(t− a− ε)].

Note. It can be proved that the following identity holds

0

f(t)δ(t− a) dt = f(a),

for any continuous function f .

Laplace Transform of δ(t− a)

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 12 / 23

Theorem For each a ≥ 0, we have

L [δ(t− a)] = e−as.

Thus

L−1[

e−as]

= δ(t− a).

In particular,

L[δ(t)] = 1, L−1[1] = δ(t).

Example 5

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 13 / 23

EX. Find the Laplace transform for each of the following functions

1. f(t) = 2δ(t)2. g(t) = δ(t− 1) + 3δ(t− 5)3. h(t) = 3δ(t− 4)− δ(t− 8)

Example 6

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 14 / 23

EX. Find the inverse Laplace transform for each of the followingfunctions

1. F (s) = 72. G(s) = 3e−4s

3. P (s) = 2− e−s + 3e−2s

Example 7

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 15 / 23

EX. Solve the IVP

y′′ + 9y = δ(t− 1), y(0) = y′(0) = 0

ANS.

y(t) =1

3sin(3t− 3)H(t− 1)

Question 1

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 16 / 23

Q. Find the Laplace transform of

1. f(t) = t2H(t− 3)

2. g(t) = 2δ(t)− 5δ(t− 9)

Question 2

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 17 / 23

Q. Find the inverse Laplace transform of

1. F (s) =e−9s

s2 + 1

2. G(s) =e2s + 5

e3s

Convolution

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 18 / 23

Q. Given two Laplace transforms

F (s) = L[f(t)], G(s) = L[g(t)],

does there exists a function/formula having the Laplace transform

F (s)G(s)?

Definition. The convolution of two function f(t), g(t) is thefunction, denoted f ∗ g, given by

(f ∗ g)(t) =

t

0

f(t− τ)g(τ)dτ.

Example 8

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 19 / 23

EX. Find the following convolutions

1. 1 ∗ 1

2. 1 ∗ et

3. t ∗ t

Convolution

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 20 / 23

Theorem.

L[(f ∗ g)(t)] = F (s)G(s)

so

L−1[F (s)G(s)] = (f ∗ g)(t) =

t

0

f(t− τ)g(τ)dτ.

Proof. We have

L[(f ∗ g)(t)] =

0

e−st

t

0

f(t− τ)g(τ)dτdt = F (s)G(s).

Example 9

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 21 / 23

EX. Find the Laplace transform for each of the following functions

1. f(t) = (t ∗ sin t)

2. g(t) =

t

0

(t− τ)eτdτ

3. h(t) =

t

0

et−τ cos 2τdτ

Example 10

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 22 / 23

EX. For each of the following functions, express the inverseLaplace transform in terms of the convolution

1. F (s) =s

(s2 + 4)(s2 + 1)

2. G(s) =1

s(s2 + 1)

3. P (s) =1

s4(s− 5)

Example 11

Prop 5: t-shifting

EX 1.

EX 2.

EX 3.

EX 4.Impulse and Diracdelta

Laplace δ(t − a)

EX 5.

EX 6.

EX 7.

Q 1.

Q 2.

Convol.

EX 8.

Thm. Conv

EX 9.

EX 10.

EX 11.

Lecture 1 Sujin Khomrutai – 23 / 23

EX. Using the convolution, find the solution formula for each ofthe following IVPs

1. y′′ − 5y′ + 6y = f(t), y(0) = y′(0) = 0

2. y′′ + 10y′ + 24y = f(t), y(0) = 1, y′(0) = 0

3. y′′ − 4y′ − 5y = f(t), y(0) = 2, y′(0) = 1