mikrodalga antenler

105
YILDIZ TEKNİK Ü NİVERSİTESİ ELEKTRİK ELEKTRONİK FAK Ü LTESİ ELEKTRONİK VE HABERLEŞME M Ü HENDİSLİĞİ B Ö L Ü M Ü HABERLEŞME TEORİSİ MİKRODALGA ANTENLER Dersi Veren Ö ğretim Ü yesi : Yrd.Do ç .Dr. N. Ö zlem Ü NVERDİ Ender KARAN - 07014075 Deniz Bektaş – 07014095 Merve Gülle – 06014015 A.Hüseyin Atalık - 06014094 1

Upload: tricky26

Post on 26-Jun-2015

2.587 views

Category:

Documents


13 download

TRANSCRIPT

Page 1: Mikrodalga Antenler

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

HABERLEŞME TEORİSİMİKRODALGA ANTENLER

Dersi Veren Öğretim Üyesi : Yrd.Doç.Dr. N.Özlem ÜNVERDİ Ender KARAN - 07014075Deniz Bektaş – 07014095Merve Gülle – 06014015

A.Hüseyin Atalık - 06014094

1

Page 2: Mikrodalga Antenler

2

PARABOLİK ANTENLER

Ender KARAN

PARABOLİK ANTENLER

Page 3: Mikrodalga Antenler

4

Parabolik anten nedir?

Parabolik anten radyo,televizyon,daha haberleşmesi ve radarlar için kullanılan yüksek kazançlı reflektör antendir.elektromanyetik spektrumun yüksek frekans bölgelerinde çalışabilirler.

????

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 4: Mikrodalga Antenler

5

Parabolik anten nedir?Parabolik anten radyo,televizyon,daha haberleşmesi ve radarlar için kullanılan yüksek kazançlı reflektör antendir.elektromanyetik spektrumun yüksek frekans bölgelerinde çalışabilirler.

Page 5: Mikrodalga Antenler

6

Parabolik anten nedir?Parabolik anten radyo,televizyon,daha haberleşmesi ve radarlar için kullanılan yüksek kazançlı reflektör antendir.elektromanyetik spektrumun yüksek frekans bölgelerinde çalışabilirler.

Oldukça kısa dalga boyları bu frekanslarda istenilen doğrultuda alıcı ve verici olarak yanıtın gözlenmesine olanak sağlarlar.

doğrudan uydu yayının avantajı sayesinde,parabolik antenler şehirlerde,kırsallarda heryerde gözlenen bir öge oldular.

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 6: Mikrodalga Antenler

7

Parabolik anten nerede kullanIlIr?

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 7: Mikrodalga Antenler

8

Parabolik anten nerede kullanIlIr?çok geniş karasal bağlantıları gerçekleştirmede

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 8: Mikrodalga Antenler

9

Parabolik anten nerede kullanIlIr?çok geniş karasal bağlantıları gerçekleştirmede

baz istasyonlarının haberleşmesinde

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 9: Mikrodalga Antenler

10

Parabolik anten nerede kullanIlIr?çok geniş karasal bağlantıları gerçekleştirmede

baz istasyonlarının haberleşmesinde

radar sistemlerinde de kullanma amaçlarına göre tercih edilebilir.

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 10: Mikrodalga Antenler

11

Parabolik anten nerede kullanIlIr?

çok geniş karasal bağlantıları gerçekleştirmede

baz istasyonlarının haberleşmesinde

radar sistemlerinde de kullanma amaçlarına göre tercih edilebilir.

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 11: Mikrodalga Antenler

12

Parabolik anten tarİhİ?İlk parabolik anten Heinrich Hertz tarafından 1888 yılında üretilmiştir.odak uzaklığı 0.12 metre,1.2 metre genişliğinde de açıklığı vardı ve 450 MHZ de kullanılıyordu.yansıtıcı çinkodan üretilmiş ve tahta çerçeveyle desteklenmişti,böyle 2 antenle biri alıcı diğeri verici olarak kullanılmıştır.Hertz böylece elektromanyetik dalgaların varlığını 21 yıl önce tahmin eden Maxwell’i de ispatlamiş oldu.

Zaman içinde gelişmelere tanık olan dünyada 2. Dünya savaşı sırasınca İngiliz ve Amerikan bilim adamları radar teknolojisini geliştirmişler ve hedefleri görme imkanına erişirken çeşitli anten türlerinin gelişmini sağlamişlar ve parabolik antenlerde bu radar tek. İçin kullanılmişlardır

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 12: Mikrodalga Antenler

13

Aşağıdaki resimde parabolik anten ana hatlarıyla verilmiştir.Odak noktasında bulunan bir kaynaktan parabolik antene ışınlar gönderilir.bu kaynak “feed” yada “besleme” olarak adlandırılır.

Parabolik anten

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 13: Mikrodalga Antenler

14

• Bir parabolidin kesiti olan, genellikle bir metal konstrüksiyon, yada çoğu kez kafes ağla kaplı bir metal çerçeve bu parçaya yansıtıcı (reflector) denilir. Metal kafesteki elek boyutu λ/10 dan küçük olmalıdır. Bu yansıtıcı, elektromanyetik dalgalar için bir ayna gibi çalışır.

Page 14: Mikrodalga Antenler

15

• Yansıtıcı yüzeyine gelen tüm ışınlar optik kanunlarına (geometriye) uygun olarak anten eksenine paralel biçimde yansıtılırlar. Besleme kaynağından küresel biçimde yayılarak yansıtıcıya varan bu ışınlar, yansıtıcı tarafından 180° faz farkıyla yansıtılırlar ve bütün ışınların paralel yayıldığı düz bir dalga cephesi oluştururlar. Böylece ışınlar parabol eksenine dik herhangi bir düzleme kadar

yollarını değiştirmeden yayılırlar.

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 15: Mikrodalga Antenler

16

Parabolik anten kazancı?

Ga (dBi) = 10 log10 h [ 4 p Aa / l2 ]

• Ga: anten kazancı• h = aralık verimliği(%50-55)• Aa = Anten yüzey alanı• λ=Dalga boyu

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 16: Mikrodalga Antenler

17

2 ft(0.6m)

4 ft(1.2m)

6 ft(1.8m)

8 ft(2.4m)

10 ft(3.0m)

12 ft(3.7m)

15 ft(4.5m)

2 GHz 19.5 25.5 29.1 31.6 33.5 35.1 37

4 GHz 25.5 31.6 35.1 37.6 39.5 41.1 43.1

6 GHz 29.1 35.1 38.6 41.1 43.1 44.6 46.6

8 GHz 31.6 37.6 41.1 43.6 45.5 47.1 49.1

11 GHz 34.3 40.4 43.9 46.4 48.3 49.9 51.8

15 GHz 37 43.1 46.6 49.1 51 52.6 N A

18 GHz 38.6 44.6 48.2 50.7 N A N A N A

22 GHz 40.4 46.4 49.9 N A N A N A N A

38 GHz 45.1 51.1 N A N A N A N A N A

Anten çapı Fr

ekan

sParabolik anten kazancı ( dbi )

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 17: Mikrodalga Antenler

18

Page 18: Mikrodalga Antenler

19

Parabolik anten yayılım deseni

Test edilen anten

Merkez anten

•Tes edilen antenin heryönde aldıği sinyal miktarı yayılım deseninden anlaşılabilir

Page 19: Mikrodalga Antenler

Grafikte bir yuvarlak yansıtıcının ideal biçimi gösterilmektedir ve bu anten kalem demet olarak anılan, çok dar bir ışın demeti meydana getirir. Yansıtıcı bir eliptik biçime sahipse, yayacağı ışın biçimi bir pervane kanadına benzer

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 20: Mikrodalga Antenler

21

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 21: Mikrodalga Antenler

22

Temel anten türleri?

Standart parabolik anten

Davul anten

Focal Plane Antenna

Izgara antenYILDIZ TEKNİK ÜNİVERSİTESİ

ELEKTRİK – ELEKTRONİK FAKÜLTESİELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 22: Mikrodalga Antenler

LOOPANTENLER

ENDER KARAN

Page 23: Mikrodalga Antenler

24

Small loop kablonun boyunun λ’ya oranı 0.085 ve altı olan antenler Large loop kablo boyunun yaklaşık 1λ olduğu anten türü

•Kapalı eğriler şekline sokulmuş kablolardan anten yapmak mümkündür.bu anten türüne loop anten ( halka) denilmektedir ve genel olarak 2 kategoride değerlendirilirler.

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 24: Mikrodalga Antenler

25

SMALL LOOP ANTEN •Small loop anten, dairesel döngüsü dalga boyunun 1/12 si( 0.085) yada daha alt seviyelere kadar olan anten türüdür.•Böyle kısa bir iletkende,akımı zamanın her anında sabit olarak kabul edebiliriz.Bu dipol’den oldukca farklıdır çünkü dipol antende akım besleme noktasında maksimum,antenin sonunda 0 dır.•Small loop anten tek bir sargıdan yada çoklu sargıdan oluşabilir.

Page 25: Mikrodalga Antenler

26

SMALL LOOP ANTEN •Işıma deseni dipol antene çok benzer,aşağıdaki resim bize döngünün olduğu düzeleme dik olan 2 boyutlu küresel ışıma deseni olduğunu gösterir ve halkada yayılım yoktur.

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 26: Mikrodalga Antenler

27

SMALL LOOP ANTEN

•Halkanın merkezinden paralel geçen eksen boyunca halkadan yayılım olmaz

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 27: Mikrodalga Antenler

28

SMALL LOOP ANTEN

•Halka yatay olarak yerleştirilirse yayılım yatay yönde olur ve dikeyde yayılım gerçekleşmez yada tam tersi.

Page 28: Mikrodalga Antenler

29

SMALL LOOP ANTEN

•Giriş empedansının reel kısmı çok küçüktür, yaklaşık 1 ohm civarında,iletkendeki kayıp direncinin çoğu halkayı oluşturur.•Etkili yayılım direnci 0.5 yada daha az olabilir,çünkü yayılım direnci kayıp direncine oranla daha azdır.small loop anten etkili bir anten değildir ve bu yüzden iletim için kullanılamaz. •İyi bir verici anten olmasada iyi bir alıcı anten olarak kullanılbilir özellikle LF ve VLF’de.

•Düşük frekanlarda dipole anteni kullamak büyüklük ve pratiklik yüzünden çok kolay deiğildir.(LF de 1600-16000 feet,VLF de 30000feet e kadar uzanabilir anten boyu.)•Small loop anten EM dalganın sadece manyetik alan bileşenine duyarlıdır ve çevresel gürültülerden çok fazla etkilenmez

Page 29: Mikrodalga Antenler

30

LARGE LOOP ANTEN

Page 30: Mikrodalga Antenler

31

LARGE LOOP ANTEN

•Bir large loop anten yakaşık olarak bir dalga boyunda uzunluktan meydana gelir.şekil karesel,dairesel,üçgensel yada farklı şekillerde olabilir.•Çünkü artık halka oldukça büyük ve akım sabit değildir,sonuç olarak bu antenin davranışı küçük kardeşi gibi değildir.

•Akım ve dağılım deseni,şekildeki gibi,2 tane yarım dalga antenin katlanması ve bağlanmasıyla elde edilirmiş gibi düşünebiliriz.

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 31: Mikrodalga Antenler

32

LARGE LOOP ANTEN

•λ/2 lik 2 tane dipolün 2ye ayrılmasıyla başlayalım,akıl dağılımı ozaman pembe çizgide belirtildiği gibi olur ve akım uç noktalarda 0 dır.

•Her iki dipol de U şeklini aldı fakat davarnış şekli değişmedi ve uç noktalarda hala akım 0.

Page 32: Mikrodalga Antenler

33

LARGE LOOP ANTEN

•Uçlar birleştirildiğinde şekil tamamlanmiş olur.•Böylece uzunluğu 1λ olan loop anten elde etmiş olduk.•Bu antenin yayılım deseni şekildeki gibi oluşur.

•Yatay yayılım deseni XY Ekseninde kırmızı ile belirtilmiş oldu.

Page 33: Mikrodalga Antenler

34

LARGE LOOP ANTEN

•Amaca göre daha dikey yada yatay desenler elde etmek mümkündür.•Polarizasyon merkez noktasıyla belirlenir.•Kaynak noktası yataydaysa yayılım yatay,dikeydeyse yayılım dikey olur.

Page 34: Mikrodalga Antenler

35

LARGE LOOP ANTEN

•İncelediğimiz anten kareseldi fakat unutmamamız gereken nokta ise yayılım deseni için antenin şeklinin bir önem teşkil etmediğidir.

Örneğin ; antenin şekli ne olursa olsun halka boyu 1λ olduğu sürece yayılım deseni nerdeyse aynı olucaktır.

•Kazan ise şekile bağlıdır.dairesel loop anten en çok kazanca sahip olurken üçgensel loop anten en az kazanca sahiptir.

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 35: Mikrodalga Antenler

36

LOOP ANTEN ÖRNEKLERİ

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 36: Mikrodalga Antenler

37

TEŞEKKÜRLER

Ender KARAN

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 37: Mikrodalga Antenler

38

HORN ANTENLER

Deniz BEKTAŞ07014095

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 38: Mikrodalga Antenler

39

Horn Anten

• En temel mikrodalga antenlerinden birisidir.. En basit anten tiplerinden biri olan horn anten yapısı yanda görülmektedir.

• Antenin dış yüzeylerinin duvarlarının genişlemesi dalga kılavuzu ile serbest uzay arasındaki uygunsuzluğun azalmasını sağlar.

• Horn anten elektromagnetik enerjiyi her yöne homojen olarak dağıtmaz. Enerjinin büyük bölümü belirli bir yönde yayılırken, diğer yönlere daha az enerji yayılır.

• Yayılan gücün belirli bir yönde artma miktarı (izotropik antene göre) kazanç olarak adlandırılır.

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 39: Mikrodalga Antenler

40

Tarihçe• İlk olarak 19. Yüzyılda J. Chunder Bose tarafında 1897 yılında Londra

Royal Enstitüsünde tanıtıldı. Tanıttığı antende 60 GHZ kullanılıyordu. Guglielmo Marconi ilk kıtalararası wireless transmisyonunu başardığı zaman horn antenlere olan ilgi azalmaya başladı. O zaman, uzun mesafe transmisyonlarında daha alçak frekansların uygun olduğu ve horn antenin bu bakımdan yetersiz kaldığı anlaşıldı. Bu ilgisizlik 2. Dünya Savaşı’na kadar devam etti ta ki araştırmalar ve geliştirmeler mikrodalga frekansları üzerinde tekrar yoğunlaşana kadar. 2. Dünya Savaşı’ı sırasında mikrodalga teorisi araştırmacılar arasında popüler hale geldi ve hakkında daha çok makale yazılmaya başlandı. Horn anten üzerine yazılan ilk gerçek makale olan ‘Theory of the Electromagnetic Horn’ W.L. Barrow ve L.J. Chu tarafından 1939’da yazıldı.

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 40: Mikrodalga Antenler

41

1951 yılında çekilmiş olan Harold Ewen ve onun horn anteni. Anten sadece mükemmel bir dalga toplayıcısı değil aynı zaman da mükemmel bir yağmur toplayıcısıydı. Her yağmurda labaratuarı su basardı

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 41: Mikrodalga Antenler

42

The Horn Antenna at Bell Telephone Laboratories in Holmdel, New Jersey. 1959 yılında NASA’ nın ECHO projesi için tasarlandı

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 42: Mikrodalga Antenler

43

Kullanım Yerleri• Horn antenler en temel mikrodalga antenlerindendir. Hem yerde hem de

uzayda mikrodalga haberleşmelerinde kullanılmaktadır. Bazı uygulama alanları;

• Askeriyede• Radar sistemlerinde özellikle düşman uçaklarını yakalamada• Uçaklarda ve uzay araçlarında gövdeye montajlarının kolay olması

sebebiyle tercih edilirler• Uzay araştırma projelerinde• Sağlık alanında vücut taraması yaparken

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 43: Mikrodalga Antenler

44

Tercih Edilme Sebepleri• Yüksek kazanç¸ ve düşük voltaj-duran-dalga oranı (VSWR: voltage standing

wave ratio) verdiklerinden dolayı• Basit geometri• Kolay monte edilebilirlik

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 44: Mikrodalga Antenler

45

Yönlendiricilik Karakteristikleri• Bir antenin yönlendiricilik karakteristikleri, her bir doğrultudaki güç

yoğunluklarının grafik olarak çizilmesi ile görsellestirilebilir. Bu grafikler uzak alan radyasyon paterni olarak bilinirler. Antenlerin yakın alan ısıma ifadeleri oldukça komplekstirler ve pratikte genellikle kullanılmazlar. Antenler için uzak alan kosulu λ serbest uzay dalgaboyu, D en büyük anten boyutu olmak üzere asağıdaki esitlikle verilebilir;

• r ≥ 2D² /λ• Bir horn antenin yönlendiricilik özelliklerini gösteren radyasyon paterni

aşağıdaki gibidir

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 45: Mikrodalga Antenler

46

Horn Anten Çeşitleri

• E Plane sectoral horn• H Plane sectoral horn• Piramit Horn• Konik Horn

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 46: Mikrodalga Antenler

47

E-Plane Sectoral HornE- and H-Plane Patterns of the E-Plane Sectoral Horn

E-plane

H-plane00

030

060

090

0120

0150

0180

0150

0120

090

060

030

102030

10

20

30Rel

ativ

e po

wer

(dB

dow

n)

Page 47: Mikrodalga Antenler

48

H-Plane Sectoral HornE- and H-Plane Patterns of the H-Plane Sectoral Horn

E-plane

H-plane00

030

060

090

0120

0150

0180

0150

0120

090

060

030

102030

10

20

30Rel

ativ

e po

wer

(dB

dow

n)

Page 48: Mikrodalga Antenler

49

Piramit HornE- and H-Plane Patterns of the H-Plane Sectoral Horn

E-plane

H-plane00

030

060

090

0120

0150

0180

0150

0120

090

060

030

102030

10

20

30Rel

ativ

e po

wer

(dB

dow

n)

Page 49: Mikrodalga Antenler

50

Konik HornE- and H-Plane Patterns of the H-Plane Sectoral Horn

E-plane

H-plane00

030

060

090

0120

0150

0180

0150

0120

090

060

030

102030

10

20

30Rel

ativ

e po

wer

(dB

dow

n)

Page 50: Mikrodalga Antenler

51

TEŞEKKÜRLER

Page 51: Mikrodalga Antenler

52

HELİSEL ANTENLER

MERVE GÜLLE

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 52: Mikrodalga Antenler

53

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 53: Mikrodalga Antenler

54

Helisel (Helix) antenler; toprak bir tabandan koaksiyel kablo ile beslenen düz bir telin düzgün bir silindir üzerine sarılarak helis tel haline getirilmiş geometriye sahiptirler. Bu üç boyutlu geometri düzgün bir doğru, bir daire ve bir silindirden oluşmaktadır .

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 54: Mikrodalga Antenler

55

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 55: Mikrodalga Antenler

57

Günümüzde mobil iletişime olan talep giderek artış göstermiştir. Bu talebe karşın GSM operatörleri de kapasitelerini artırmak durumunda kalmışlardır. Bunu sağlamanın yollarından biri de birden fazla frekans bandı kullanmaktır. Bu 2 farklı frekans bandını cep telefonunun algılaması için iki farklı anten kullanmak pek zekice değildir. Bunun yerine kullanılacak anten türü ise helisel antendir.

90’lı yıllardan hatırlayacağımız cep telefonlarında da kullanılan anten helisel antene güzel bir örnektir. YILDIZ TEKNİK ÜNİVERSİTESİ

ELEKTRİK – ELEKTRONİK FAKÜLTESİELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 56: Mikrodalga Antenler

58

GPS uygulamaları helisel antenin güncel kullanım alanından biridir. GPS sivil uygulamalarında kullanılacak alıcı antenlerde aranan özelliklerden biri düşük açılarda yataya yaklaştıkça uyduları izleme işleminin devamlılığının sürdürülebilmesidir. Bu özelliği sağlaması açısından tasarım için seçilen anten yapısı helis antendir. Helis antenden beklenen diğer özellikler ise belirli bir merkez frekansını sağlaması ve sağ el dairesel polarizasyona sahip olmasıdır.

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 57: Mikrodalga Antenler

59

Helisel antenleri 2 modda inceleriz: 1) Normal Mod : Helisel antenin normal modda

çalışabilmesi için D<< λ ve L<< λ koşulları sağlandığında çok sarımlı anten tek bir sarımlı anten olan “Hertz Loop” olarak kabul edilir.

Normal moddaki helisel antenin ışıma paterni dairesel polarizasyon özelliğine sahiptir.

Page 58: Mikrodalga Antenler

60

> Normal moddaki ışıma karakteristiklerini ideal dipol ve Hertz Loop’un kombinasyonları olarak düşünmek mümkündür. Burada EL uzak alandaki Hertz Loop’un elektrik alanı, ED ise uzak alandaki ideal dipolün elektrik alanıdır.

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 59: Mikrodalga Antenler

61

> Polarizasyon formülünü de aşağıdaki gibi verebiliriz;

> Özel Durumlar:S=0 olması durumu küçük halka anten özelliği gösterir, yatay polarizasyona sahiptir.C=0 olması durumu ideal dipol anten özelliği gösterir, düşey polarizasyona sahiptir.

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 60: Mikrodalga Antenler

62

2) Eksenel Mod : 15 dB’e kadar kazancın gerektiği durumlarda eksenel modlu helisel antenler kullanılır. Eksenel modlu helis antenin azimut ve elevasyon diyagramları aynı, normal modlu helis antenin ise farklıdır. Eksenel modlu helis anten için ışımanın en fazla olduğu yer helis ekseninin uzantısı doğrultusundadır.

Page 61: Mikrodalga Antenler

63

• Eksenel moddaki helisel antenin oldukça küçük olan kesiti, onun uydu haberleşmesinde kullanılan UHF bandındaki yaygınlığını artırmaktadır. Eksenel modun en iyi çalışma şartı : 3λ/4 ≤ C ≤ 4λ/3 ve

Band genişliği oranı : Br = fu/fL = C/λu /C/λL = 1.78 Güç Işıma Paterni :

K= Normalizasyon KatsayısıN=Tur sayısı

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 62: Mikrodalga Antenler

64

> Her bir dalga boyunca oluşan zayıflama katsayısını da şu formülden elde ederiz :

>Bir helis anten boyunca oluşan yayılma katsayısının formülü ise :

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 63: Mikrodalga Antenler

65

> Bir herlis anten boyunca ilerleyen akımın hızını bulmak için gerekli formül :

V : Faz Hızı C : Işık Hızı P : Hız Faktörü

P < 1 için “Yavaş Dalga” denir.

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 64: Mikrodalga Antenler

66

> Bulduğumuz ifadelere dayanarak tekrar elde

edilen patern formülümüz ise :

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 65: Mikrodalga Antenler

67

> 3λ/4 ≤ C ≤ 4λ/3 , ,, N>3 koşullarında elde edilen anten parametreleri şöyledir ;

HP : Yarım Güç Huzme Genişliği Açısı

RA : Giriş Direnci

G : Anten Kazancı

[AR] : Eksenel OranYILDIZ TEKNİK ÜNİVERSİTESİ

ELEKTRİK – ELEKTRONİK FAKÜLTESİELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 66: Mikrodalga Antenler

68

> Helis antenin çeşitli frekanslarda konuşma ve bekleme modlarında dBd cinsinden kazançları şöyledir :

Page 67: Mikrodalga Antenler

71

SPİRAL ANTENLER

MERVE GÜLLE

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 68: Mikrodalga Antenler

72

Spiral antenler;• Gezgin haberleşme sistemlerinde• Erken uyarı sistemlerinde• Yer altı görüntüleme radarlarında• Yön bulma sistemlerine kadar bir çok alanda

kullanılmaktadır. • Neredeyse frekanstan bağımsızdır.• Dairesel polarizasyonludur . • Düzlemsel olduğu kadar konik yapıda da

tasarlanabilir.

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 69: Mikrodalga Antenler

73

• Spiral antenin frekansı yükseldikçe aktif ışıma bölgesi en dıştan en içe doğru kaymaktadır.

Üst kesim frekansı ise besleme bölgesindeki sarım tarafından belirlenir.

• Spiral antenlerin giriş empedansı 140-200Ω arasında değişir.

• Geniş bantlı spiral antenler dengeli sistemlerdir, ancak çoğu kez dengesi 50 Ω-koaksiyel kablolar üzerinden beslendiklerinden balun sistemlerine gerek duyulur.

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 70: Mikrodalga Antenler

74

• Spiral antenlerin 2 farklı türü mevcuttur : 1 ) Arşimet Spiral Antenler 2 ) Konik Logaritmik Spiral Antenler

1) Arşimet Spiral Antenler : • Elektromanyetik ışıma, antenin çapının dalga

boyunun yarısına (λ/2) eşit olduğu yerde maksimumdur.

• Sarım sayısı, spiral kol sayısı, sarım genişliği gibi parametrelere bağlı olarak performansı değişir.

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 71: Mikrodalga Antenler

75

• En dıştaki halka alt frekansı; en içteki halkada üst frekansı belirler.

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 72: Mikrodalga Antenler

76

– Nümerik çözümün kolaylığı için anteni iç içe girmiş halkalar olarak düşünürüz.

– Her bir halka dualite ilkesine göre bir manyetik dipole karşı gelir.

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 73: Mikrodalga Antenler

77

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 74: Mikrodalga Antenler

78

• 1 GHz ‘deki 3 boyutlu ışıma paterni :

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 75: Mikrodalga Antenler

79

2 ) Konik Logaritmik Spiral Antenler :• Sarım sayısı(N)• Sarımlar arasındaki boşluk(s)• Antenin boyu(L)• Spiral kol sayısı • Üst çap(d)• Alt çap(D)Parametrelerine bağlı olarak performansları değiştirilebilmektedir.

Page 76: Mikrodalga Antenler

80

Tur sayısının artmasının kazanca etkisi :N=3D=15cmd=3cmL=30cm

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 77: Mikrodalga Antenler

81

• N=5• D=15cm• d=3cm• L=30cm

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 78: Mikrodalga Antenler

82

Alt çapın artmasının anten kazancına etkisi :• N=5• D=20cm• d=3• L=30cm

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 79: Mikrodalga Antenler

83

Üst çapın azalmasının anten kazancına etkisi :

• N=5• D=20• d=2cm• L=30cm

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 80: Mikrodalga Antenler

84

• N=5• D=20cm• d=1cm• L=30

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 81: Mikrodalga Antenler

85

TEŞEKKÜRLER…

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Page 82: Mikrodalga Antenler

86

Log-Periyodik Antenler

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

A.Hüseyin ATALIK

Page 83: Mikrodalga Antenler

87

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Antenler, uyduların en önemli bileşenlerindendir. Uydular üzerindeki fiziksel alanın ve hareket kabiliyetinin sınırlı olması nedeniyle, kullanılacak olan frekans bandının sabit parçalardan oluşan tek bir antenle kapsanması arzu edilir. Bu amaçla, geniş bantta ışınım yapabilen antenlerin tasarımı gereklidir. Log-periyodik antenler, geometrik yapılarından dolayı geniş bant özelliği gösterebilen antenlerdendir. Bu antenlerin ışınım özellikleri tasarım aşamasında karar verilen geometrik parametrelere göre belli bir frekans bandında yaklaşık olarak sabit tutulabilir. Ayrıca bunların uygun dizgeler haline getirilmesiyle is-tenilen yönlerde frekanstan bağımsız yayın yapabilen veya yayın alabilen sis-temler kurulabilir. Bu sistemler uydu yer istasyonları içinde son derece uygundur.

350-2500 MHz log-periyodik trapezoidal anten

Page 84: Mikrodalga Antenler

88

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Şekil-1 : Log-periyodik anten tasarımı, yukarıdan ve üç boyutlu görünüm

Page 85: Mikrodalga Antenler

89

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Bir log-periyodik anten büyüklük ve merkez noktasına uzaklığı bakımından logaritmik olarak tekrar eden elemanların oluşturduğu bir geometriye sahiptir. Teorik olarak elemanların hem dışa hem de merkez noktasına doğru sonsuza kadar devam etmesi gerektiği halde, pratikte anteni oluşturan eleman dizisi her iki taraftan da, gerekli bant genişliği göz önünde bulundurularak kesilir. Antenin doğru olarak çalıştığı frekans aralığı yüksek akımların bulunduğu aktif alanın anten üzerindeki pozisyonuyla ilgilidir. Genel olarak bu pozisyon dalga boyunun dörtte biri kadar uzun elemanların bulunduğu yere denk gelir ve yüksek frekanslardan düşük frekanslara gidildikçe aktif alan merkez noktasın-dan antenin dışına doğru kayar. Sonuç olarak, belirli bir aralıkta frekanslara uygun uzunlukta elemanlar bulunabilir ve aktif alan antenin içine düştüğü için antenin doğru bir şekilde çalışması beklenebilir.

Page 86: Mikrodalga Antenler

90

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Log-periyodik antenlerin önemli bir özelliği, geniş bantlar içerisinde yaklaşık olarak frekansa bağlı olmayan özellikler gösterebilmeleridir. Bu kabiliyetin kaynağı yukarıda anlatılan periyodik geometridir. Bu yapı sayesinde aktif alanın anten üzerindeki yayılımı logaritmik olarak artan frekanslarda benzerdir ve aktif alanın frekansa bağlı hareketi, aktif alanın durağan olması ve antenin ölçeklenmesiyle eşdeğerdir. Bu durumda logaritmik olarak katlanan frekanslarda antenin aynı şekilde çalışması beklenir. Eğer komşu elemanların arasındaki büyüklük katsayısı 1’e yeterince yakın yapılırsa, yani geometride yumuşak bir geçiş düzeni kurulursa, arada kalan frekanslarda da antenin işlevsel özelliklerindeki değişim çok değildir. Çünkü anten periyodik olarak aynı özellikleri göstermeye zorlanmıştır ve periyodun kısa tutulması sabit değerlerden fazla uzaklaşılmamasını sağlar.

Page 87: Mikrodalga Antenler

91

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Önceki sayfalarda bir log-periyodik anten tasarımı görmüştük. Bu tasarımda geometrik katsayı 0.95 olarak alınmış, her kolda 38 adet olmak üzere toplam 76 eleman kullanılmıştır. Ayrıca elemanların kalınlıkları boylarına göre çok küçük yapılmıştır. Bu tasarımdan da anlaşılabileceği gibi, iki tane açısal parametre vardır ki, bunların belirlenmesi antene uygulanacak işleme bağlı-dır.Bunlardan antenin genişlemesini belirleyen α açısı 30° olarak seçilmiş, böylece ne çok düşük tutulup elemanların yeterli hızla büyümesi engellenmiş, ne de çok yüksek tutulup ileri aşamalardaki anten dizgesi tasarımları için sorun çıkartılmıştır. İki kol arasındaki açı olan ϕ ise uzak-alan ışınım grafikleri dikkate alınarak 45° olarak belirlenmiştir. Tasarımın 300-800 MHz aralığındaki üç boyutlu uzak-alan ışınım grafikleri Şekil 2’de verilmiştir.Bu frekansların seçilmesinin nedeni antenin tek kolunun 1 m olarak tasarlanmasıdır.Farklı frekanslarda çalışan bir anten gerektiğinde bu tasarım uygun oranda ölçek-lenerek kullanılabilinir. Grafiklerin hepsi için dB ölçeği kullanılmış, maksimum ışınım 40 dB olacak şekilde normalize edilmiştir. Koordinat sisteminden anlaşılabileceği gibi maksimum ışınım z yönündedir.Şekillere bakıldığında ışınımın neredeyse frekanstan bağımsız olduğu görülebilir.

Page 88: Mikrodalga Antenler

92Şekil-2 : Üç boyutlu uzak alan ışınım grafikleri

300 MHz 350 MHz 400 MHz 450 MHz

500 MHz 550 MHz 600 MHz 650 MHz

700 MHz 750 MHz 800 MHz

Page 89: Mikrodalga Antenler

93

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Şekil-3 : Directivity

Tanımlanan antenin directivity değerleri, frekansa bağlı olarak Şekil 3’te gösterilmiştir.Görüldüğü gibi, antenin directivity değerleri, 300-800 MHz frekans aralığında çok az değişmektedir; 10-11 civarında hemen hemen sabit değerler almaktadır.

Page 90: Mikrodalga Antenler

94

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Log-Periyodik Anten DizgesiAntenleri kullanarak dizgelerin tasarlanması, kullanılan antenlerin iyi özelliklerini geliştirmek ve genelleştirmek açısından sıkça yapılan bir uygulamadır. Örneğin, daha önce tasarlanan log-periyodik antenden birkaç tanesini dairesel olarak birleştirebiliriz. Bu şekilde oluşacak olan yeni tasarım log-periyodik antenin frekanstan bağımsızlık özelliğini taşıyacaktır. Ayrıca tasarımı oluşturan antenlerin istenildiği zaman açılıp kapatılabilecek veya değişik güçlerde kaynaklara bağlanabilecek olması, ışınımın yönünü kontrol etmeyi mümkün kılacaktır. Özellikle maksimum ışınım yönünün seçilebilir olması sabit bir anten dizgesi için büyük bir avantaj olacaktır.Teorik olarak bir dizgenin uzak-alan ışınımı, dizgeyi oluşturan antenlerin uzak-alan ışınımından kolayca hesaplanabilir. Genel olarak yeni ışınım, eski ışınımın dizge faktörü denilen ve yöne bağlı olan bir fonksiyonla çarpımıdır. Dairesel bir dizge için dizge faktörü ise aşağıdaki formülden hesaplanabilir:

Page 91: Mikrodalga Antenler

95

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Bu formülde 1’den N’e kadar olan dizge elemanları I büyük-lüğüne ve αn fazına sahip kay-naklarla beslenmektedir ve n. eleman x eksenine göre Φ açısı yapmakmaktadır. Ayrıca x-y düzlemindeki dairesel dizgenin yarıçapı a ve formüldeki k faz sabitidir.Öte yandan, dizge faktörünü kullanarak yapılan hesaplama-lar, dizge içindeki antenlerin kendi aralarındaki etkileşimini yok sayar. Halbuki bu antenler birbirleriyle etkileşirler ve diz-genin gerçek ışınımı bu etkile-şimleri içerdiğinden analitik olarak hesaplanması imkansız-dır.

Şekil 4. Dairesel dizge.

Page 92: Mikrodalga Antenler

96

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Şekil-5 : 5 log-periyodik antenden oluşan anten dizgesinin yukarıdan görünümü.

Antenlerin birbirlerine olan uzaklığı sabit tutulmuş, böylece dairesel bir simetri elde edilmiştir.Eğer tüm antenleri kapatırsak ve sadece x yönündeki anteni çalıştırırsak maksimum ışınımın –x yönünde olmasını bekleriz. Bu durum diğer antenler için de geçerli olupçalışan antene bağlı olarak beş farklı yöne ışınım yöneltilebilir.

5’li dizgedeki tek bir antenin çalışması yerine, beş antende aynı anda, ama farklıkaynaklarla beslenerek çalıştırılabilir. Bu şekilde, tek antenin çalıştırıldığı durum-dan daha iyi sonuçlar elde edilebilir. Ancak, anten besleme parametrelerinin rastgele seçilmemeleri, tam tersine, en iyi

sonuçları elde edebilecek şekilde optimize edilmeleri gerekir. Optimizasyon sürecinin her aşamasında, beşli anten dizgesinin EM çözümünün sayısal olarak yapılması ge-rekmektedir. Bu çeşit sayısal elektromanyetik çözümlerin zaman ve bilgisayar kay-nakları açısından pahalı olması nedeniyle, en iyiye en kısa yoldan ulaşabilen hızlı ve verimli çalışan bir optimizasyon algoritmasına gereksinim vardır.

Page 93: Mikrodalga Antenler

97

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Directivity = 4.37 Directivity = 6.71

(a) Sadece x yönündeki anten çalışırken (b) Beş anten de aynı anda çalıştırılmış ve her birinin kaynak değeri (–x yönünde daha yönlenmiş bir ışınım elde edilebile-cek şekilde) optimize edilmiştir.

Page 94: Mikrodalga Antenler

98

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Log-periyodik antenlerin dairesel olarak dizilmesiyle elde edilen dizgelerin teorik olarak frekanstan bağımsız çalışmaları gerektiği halde, antenlerin birbirleriyle etkileşmesinden dolayı, frekansa bağımlı ışınımlar da gösterebildikleri bilinmektedir. Bu etkileşimin matematiksel çözümlemesi olmadığından, log-periyodik anten dizge tasarımlarının devamlı olarak test edilmeleri gerekmektedir. Çok antenli dizgelerin test edilmesinde, genetik algoritmalar gibi verimli metotların kullanılması zorunlu hale gelmiştir. Bu sayede tasarımların niteliği hakkında hızlı ve güvenilir bilgiler elde edilebilir ve çalışmalar hızlandırılabilir.

PCB üzerinde bir Log-periyodik anten Çift Polarizasyonlu Log-Periyodik Anten

Page 95: Mikrodalga Antenler

99

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Mikroşerit Antenler

Page 96: Mikrodalga Antenler

100

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Son yıllarda mikroşerit antenlerin uzay araçları, uçaklar, radarlar uydu haberleş-mesi, güdümlü mermi gibi birçok askeri alanda kolaylıkla kullanılabilir yapısı ve baskı devre teknoloji ile üretilmesi gibi kolay üretim tekniği ile mikrodalga an-tenleri içinde başlı başına bir konu biçimine gelmiştir.En basit biçimde bir mikroşerit anten yapısı bir toprak düzlemi üzerinde aynı ta-ban alanına sahip bir yalıtkan ve onun üzerinde bulunan ışıma alanından(iletken) meydana gelir.Mikroşerit antenin performansının yüksek olabilmesi için yalıtkana ilişkin dielek-trik sabitinin 10’dan küçük olması istenir.Işıma alanı ideal iletken olup, bakır veya altından yapılmıştır ve genellikle çözümlemeyi kolaylaştıracak, performans bek-lentilerine cevap verebilecek malzemeler seçilir.

Page 97: Mikrodalga Antenler

101

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

MİKROŞERİT ANTENLERİN AVANTAJLARI

Yaklaşık olarak 100 MHz'den 50 GHz'e kadar geniş bir frekans aralığında kullanı-lan mikroşerit antenlerin bilinen mikrodalga antenlerine göre üstünlükleri ;

a) Hafifliği, küçük hacimli olması.b) Düşük üretim maliyeti.c) Düzlemsel biçimliliği nedeniyle kullanışlı olması,d) Çok ince biçimli yapılabildiği için uzay araçlarının aerodinamik yapısına uyumue) Bu tip antenler güdümlü mermiler, roketler ve uydular üzerine önemli değişik-liklere neden olmaksızın yerleştirilebilirler.f) Düşük saçılma ara kesitine (scattering cross section) sahiptirler.g) Besleme konumundaki ufak değişikliklerle doğrusal ve dairesel kutuplanmış ışıma yapabilirler.h) İkili frekans antenlerinin kolaylıkla yapılabilir olmasıi) Osilatör, yükselteç, değişken zayıflatıcılar, anahtarlar, modülatörler, karıştırıcılar, faz değiştiricileri v.s. gibi araçları mikroşerit antenlere ilave edilerek, bileşik sis-temler geliştirilebilir.j) Besleyici hatları ve uyumlandırma devreleri, antenle birlikte aynı zamanda üretilebilir biçimdedir.

Page 98: Mikrodalga Antenler

102

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Mikroşerit antenlerin üstünlüklerinin yanı sıra bazı dezavantajları da vardır.

a) Dar bant genişliği.b) Çeşitli kayıplar sonucu; düşük kazançlı olmaları.c) Mikroşerit antenlerin çoğu yarı düzlem içinde ışırlar.d) 20 dB olan en üst kazancın elde edilmesinde pratik güçlükler olması.e) Düşük ışıma performansı.f) Besleyici ve ışıma elemanı arasındaki zayıf yalıtım.g) Yüzey dalgaları uyarımının mümkün olabilmesi,h) Düşük güç kapasitesi olması.Yukarıda belirtilen dezavantajlardan bazıları tasarım ve üretimde en düşük düze-ye indirilebilirler.

MİKROŞERİT ANTENLERİN DEZAVANTAJLARI

Page 99: Mikrodalga Antenler

103

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

MİKROŞERİT ANTENLERDE IŞIMAMikroşerit antenlerden ışıma mikroşerit anten iletkeninin kenarları ve toprak düzlemi arasındaki kenar alanlardan oluşur. Bu yayılma şekilde görülen dik-dörtgen biçimli ve dalga boyundan çok küçük boyutlu mikroşerit alanına sahip bir anten üzerinde kolayca anlaşılabilir.Elektrik alanın genişlik ve kalınlık boyunca değişmediği kabul edilerek elektrik alan dağılımı şekildeki gibi çizilebilir. Işıma en çok üstteki parçanın açık devre edilmiş kenarlarındaki kenar alanlarından oluşur. Uçlardaki bu alanlar toprak düzlemine göre dik ve teğet olarak iki bileşene ayrılabilir. Dik bileşenler, üstteki iletkenle aynı fazda değildirler, bu nedenle uzak alanda birbirlerini yok ederler. Teğet bileşenler ise aynı fazdadırlar ve uzak alanda en yüksek ışıma alan değerini (anten yüzeyine dik) verecek biçimde toplanırlar. Böylece anteni X/2 uzaklığında yerleştirilmiş, eş fazda uyarılmış ve toprak düzleminin üst kısmına ışıma yapan iki yarık olarak gösterebiliriz

Page 100: Mikrodalga Antenler

104

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Mikroşerit antenlere ilişkin fiziksel parametreler bilinen mikrodalga antenlerine oranla daha çoktur. Herhangi bir geometri ve boyutlara sahip olabilirler.Bunun-la beraber mikroşerit antenler üç grupta toplanabilirler:

MİKROŞERİT ANTEN TİPLERİ

a) Mikroşerit Parçalı AntenlerBu tip antenlerde dielektrik plakanın bir yanı toprak düzlemi ile kaplanmış, diğer yanında ise herhangi bir geometriye sahip, düzlemsel ince bir iletken parça bu-lunmaktadır.

b) Mikroşerit Yürüyen Dalga AntenleriBu tip mikroşerit antenleri, zincir biçimli iletkenler veya TE modu taşıyan bilinen uzun bir TEM hattında açık uç uyumlu bir direnç ile sonlandırılmıştır.Anten yapı-sındaki değişiklikle ana huzmenin yatay veya düşey konum arasında herhangi bir yönde oluşması sağlanabilir.c) Mikroşerit Yarıklı AntenlerMikroşerit yarık antenleri toprak düzleminde herhangi bir biçimde olan ve bir mik-roşerit hat ile beslenen bir yarıktan meydana gelir.

Page 101: Mikrodalga Antenler

105

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Mikroşerit veya eşeksenli hatlarla besleme olarak iki şekilde beslenir. Besleyici hattı ve anten arasına, antenin giriş empedansının hat empedansından farklı ol-ması nedeniyle bir uyumlandırıcı konması gerekir.

MİKROŞERİT ANTEN BESLEME ÇEŞİTLERİ

a) Mikroşerit BeslemeBu tip besleme merkez besleme ve merkez dışı besleme olmak üzere ikiye ayrılır. Besleyici konumu uyarılan moduda belirler. Anten empedansı ve besleyici hat em-pedansı arasında uyumlandırma yapmak için araya uyumlandırıcı dönüştürücü konulabildiği gibi, antende yalnızca ana mod yayımlanmakta ise besleyici hattı bir köşeye kaydırılarak da iyi bir uyumlama elde edilebilir.

Page 102: Mikrodalga Antenler

106

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

b) Koaksiyel Kablo Besleme

Koaksiyel kablo(eş eksenli) beslemede, eş eksenli bağlayıcı toprak düzleminin altında bulunur ve eşeksen iletken anten üzerindeki iletken parçaya bağlanmış-tır.Eşeksenli ile beslenmiş mikroşerit antenlerde eğer eşeksenli bağlayıcı üst iletkeninkenarında ve simetriyi bozmuyorsa merkez beslemeli, eğer üst iletkenin kenarın-da ve simetriyi bozuyorsa merkez dışı beslemeli, eğer üst iletkenin iç kısmında ise değişik beslemeli olarak tanımlanırlar.

Page 103: Mikrodalga Antenler

107

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

2.4 GHz Patch (Yama) Anten Yapımı

Page 104: Mikrodalga Antenler

108

YILDIZ TEKNİK ÜNİVERSİTESİELEKTRİK – ELEKTRONİK FAKÜLTESİ

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

PCB üzerinde mikroşerit anten

Eş eksenli beslenmiş mikroşerit anten

Patch Anten Dizisi

Page 105: Mikrodalga Antenler

109

TEŞEKKÜRLER