mimo coding and relayingewh.ieee.org/r10/xian/com/guan.pdfmimo coding and relaying prof guan, yong...

86
MIMO Coding and Relaying Prof Guan, Yong Liang Head – Communication Engineering Division Director - Positioning and Wireless Technology Centre School of Electrical and Electronic Engineering June 2011

Upload: others

Post on 31-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • MIMO Coding and Relaying

    Prof Guan, Yong LiangHead – Communication Engineering Division

    Director - Positioning and Wireless Technology CentreSchool of Electrical and Electronic Engineering

    June 2011

    元 永 亮

  • Outline

    Group-Decodable STBC with Rate 1

    Fast-Group-Decodable STBC with Rate > 1

    Shift-Orthogonal STBC

    2-Step 2-Way MIMO Relaying

    Y L Guan, PWTC, EEE, NTU, Singapore

    EYLGuanHighlight

  • Group-Decodable (Quasi-Orthogonal) STBC

    Prof Guan Yong LiangDirector - Positioning and Wireless Technology Centre

    School of Electrical and Electronic Engineering

    Nov 2009

  • Introduction:MIMO Communications

    MIMO: Multiple-Input Multiple-Output Multi-antenna transmitter/receiver, space time processing. Benefits - Increased data rate (spatial multiplexing gain)

    - Improved link reliability (transmit diversity gain) Bell Lab Layered Space Time (BLAST) code (1998), Alamouti’s code

    (1998), Golden code (2005) …

    Y L Guan, PWTC, EEE, NTU, Singapore

    hi,2

    h1,1

    ML

    Dec

    odin

    g

    Mod

    ulat

    i on

    Dem

    o dul

    atio

    n

    .. bp .. b2 b1 2 1ˆ ˆ ˆ.. .. pb b b

    rP(k) … rp(k) … r1(k)

    CSI Estimator

    DataBit

    Stream

    ReconstructedBit

    Stream

    cK .. cp .. c2 c1

    ModulatedData

    Symbols

    STB

    C C

    ( ) ( ) ( )1 .. .. R R R

    N N NP pr r r

    EstimiatedData

    Symbols

    2 1ˆ ˆ ˆ ˆ.. .. K pc c c c

    ,T RN Nh

    rP(2) … rp(2) … r1(2)

    rP(1) … rp(1) … r1(1)xP(1) … xp(1) … x1(1)

    xP(2) … xp(2) … x1(2)

    xP(i) … xp(i) … x1(i)

    ( ) ( ) ( )1 .. .. T T T

    N N NP px x x

    TransmitAntennas

    ReceiveAntennas

  • Introduction:Transmit Diversity

    Slow flat fading cause severe reception problems in wireless radio communication FEC decoding fails due to long error bursts Typically mitigated by Rx antenna diversity But Rx diversity may not be effective in mobile phones due to

    insufficient antenna separation and cost concern.

    Transmit diversity offers an attractive solution because Base stations can afford more antenna separation Cost of additional antennas at BS is amortized over all users

    Y L Guan, PWTC, EEE, NTU, Singapore

  • Introduction:Transmit Diversity

    h1

    h2

    c1r1 r2

    c2

    -c2*

    c1*

    1 1 2 1 1* *

    2 2 1 2 2

    r c c hr c c h

    1 1 2 1 1* * * *

    2 2 1 2 2

    r h h cr h h c

    Hc1 1H*

    2 2

    2 2 * *1 2 1 1 1 2 2

    * *2 22 2 1 1 21 2

    ˆˆ

    0

    0

    c rc r

    h h c h hc h hh h

    CH1. c1 and c2

    decoupled2. MRC effect

    achieved using multiple tx antennasHcHHc

    Y L Guan, PWTC, EEE, NTU, Singapore

  • Orthogonal STBC

    2-antenna tx diversity code on last page = Alamouti’s STBC = an orthogonal space-time block code (O-STBC)

    Strength of O-STBC Provide full tx diversity (diversity order = no. of tx ant) Linear symbol-by-symbol ML decoding single symbol decodable

    O-STBC code is unitary:T

    HNC CH H I

    Y L Guan, PWTC, EEE, NTU, Singapore

  • 1 2 3* *

    1 3 2* *2 3 1

    * *3 2 1

    00

    00

    c c cc c c

    c c cc c c

    GS4

    * * * * * *1 1 2 2 3 3 4 4* *1 1 2 2 3 3 4 4

    * *2 2 1 1 4 4 3 3

    * * * * * *2 2 1 1 4 4 3 3* *3 3 4 4 1 1 2 2

    * * * * * *3 3 4 4 1 1 2 2* *4 4 3 3 2 2 1 1

    * * * * * *4 4 3 3 2 2 1 1

    c c c c c c c cc c c c c c c cc c c c c c c cc c c c c c c cc c c c c c c cc c c c c c c cc c c c c c c cc c c c c c c c

    C8

    But O-STBC has low code rates Complex O-STBC (MPSK, QAM) have

    code rate < 1 for diversity level > 2 Diversity level 3-4: max rate = ¾

    Diversity level 5-8 max rate = ½ (for sq O-STBC)

    Requires rate adaptation Complicates design of cooperative

    relay network etc.

    Orthogonal STBC

    Y L Guan, PWTC, EEE, NTU, Singapore

  • Quasi-Orthogonal STBC

    1234

    *2

    *1

    *4

    *3

    *3

    *4

    *1

    *2

    4321

    cccccccccccccccc

    C

    ηcHr c

    4

    *3

    *2

    1

    4

    3

    2

    1

    1234

    *2

    *1

    *4

    *3

    *3

    *4

    *1

    *2

    4321

    4

    *3

    *2

    1

    cccc

    hhhhhhhhhhhh

    hhhh

    rrrr

    rHc cHˆ

    4

    3

    2

    1

    4

    3

    2

    1

    4

    3

    2

    1

    000000

    00

    ˆˆˆˆ

    cccc

    cccc

    Y L Guan, PWTC, EEE, NTU, Singapore

  • Quasi-Orthogonal STBC

    4

    3

    2

    1

    4

    3

    2

    1

    4

    3

    2

    1

    000000

    00

    ˆˆˆˆ

    cccc

    cccc

    4

    1

    4

    1

    4

    1

    ˆˆ

    cc

    cc

    3

    2

    3

    2

    3

    2

    ˆˆ

    cc

    cc

    QO-STBC: HcH Hc is block diagonal

    Quasi-orthogonal group-orthogonal group-decodable

    Symbols within a group are not orthogonal must be jointly detected higher decoding complexity

    Y L Guan, PWTC, EEE, NTU, Singapore

  • QO-STBC with Minimum Decoding Complexity

    MDC QO-STBC Joint detection of 2 real symbols single (complex) symbol decodable Smallest group size for any QO-STBC

    [Yuen, Guan, Tjhung, IEEE Trans WCOM, Sep 2005], [X G Xia et al], [S Rajan et al] .

    Can be systematically constructed using smaller O-STBC:

    Rule #1: ; Rule #3: ;

    1

    Rule #2: ; Rule #4: .

    q qq K q

    q q

    q qq K q

    q q

    jj

    q Kj

    j

    A 0 B 0A A

    0 A 0 B

    0 A 0 BB B

    A 0 B 0

    Y L Guan, PWTC, EEE, NTU, Singapore

  • MDC QO-STBC

    C4 =

    R I R I R I R I1 3 2 4 3 1 4 2

    R I R I R I R I2 4 1 3 4 2 3 1

    R I R I R I R I3 1 4 2 1 3 2 4R I R I R I R I4 2 3 1 2 4 1 3

    c jc c jc c jc c jcc jc c jc c jc c jc

    c jc c jc c jc c jcc jc c jc c jc c jc

    R I R I R I R I R I R I1 4 2 5 3 6 4 1 5 2 6 3

    R I R I R I R I R I R I2 5 1 4 3 6 5 2 4 1 6 3

    R I R I R I R I R I R I3 6 1 4 2 5 6 3 4 1 5 2

    R I R I R I R I R3 6 2 5 1 4 6 3 5 2

    0 00 0

    0 00 0

    c jc c jc c jc c jc c jc c jcc jc c jc c jc c jc c jc c jc

    c jc c jc c jc c jc c jc c jcc jc c jc c jc c jc c jc

    I R I4 1

    R I R I R I R I R I R I4 1 5 2 6 3 1 4 2 5 3 6R I R I R I R I R I R I5 2 4 1 6 3 2 5 1 4 3 6

    R I R I R I R I R I R I6 3 4 1 5 2 3 6 1 4 2 5

    R I R I R I R6 3 5 2 4 1 3

    0 00 0

    0 00 0

    c jcc jc c jc c jc c jc c jc c jcc jc c jc c jc c jc c jc c jc

    c jc c jc c jc c jc c jc c jcc jc c jc c jc c jc

    I R I R I6 2 5 1 4c jc c jc

    C8 =

    rate = 4/4 = 1

    rate = 6/8 = 3/4

    Y L Guan, PWTC, EEE, NTU, Singapore

  • MDC QO-STBC:Single Symbol Decodable

    Decoding metrics for C4

    4 2 22 R I R I R I1 1 , 1 1 1 1 1 1

    1 1

    4 2 22 R I R I R I2 2 , 2 2 2 2 2 2

    1 1

    4 2 22 R I R I R I3 3 , 3 3 3 3 3 3

    1

    ( ) 2Re ( ) ( ) ( )

    ( ) 2Re ( ) ( ) ( )

    ( ) 2Re ( ) ( )

    R

    R

    N

    i kk i

    N

    i kk i

    i ki

    f c h c c c c c c

    f c h c c c c c c

    f c h c c jc jc c c

    1

    4 2 22 R I R I R I4 4 , 4 4 4 4 4 4

    1 1

    ( )

    ( ) 2Re ( ) ( ) ( )

    R

    R

    N

    k

    N

    i kk i

    f c h c c jc jc c c

    ( )* * ( ) ( )* * ( )1, 1 2, 2 3, 3 4, 4

    k k k kk k k kh r h r h r h r ,

    ( )* * ( ) ( )* * ( )3, 1 4, 2 1, 3 2, 4

    k k k kk k k kh r h r h r h r ,

    * *1, 3, 2, 4,2Re( )k k k kh h h h ,

    ( )* * ( ) ( )* * ( )2, 1 1, 2 4, 3 3, 4

    k k k kk k k kh r h r h r h r ,

    ( )* * ( ) ( )* * ( )4, 1 3, 2 2, 3 1, 4

    k k k kk k k kh r h r h r h r ,

    * *1, 3, 2, 4,2Re( )k k k kh h h h

    Y L Guan, PWTC, EEE, NTU, Singapore

  • MDC QO-STBC:Benefits

    vs. Square O-STBC Rate increased by 1/4 smaller QAM size larger Euclidean distance lower BER/SER

    vs. other QO-STBC Min. decoding

    complexity little/no performance loss

    Y L Guan, PWTC, EEE, NTU, Singapore

    Code Rate Decoding Complexity Origin 3-4 tx ants 5-8 tx ants

    O-STBC 3/4 1/2Symbol-by-

    symbol detection

    AT&T,Nokia,

    UU

    QO-STBC 1 3/4

    Joint detection of 2 complex

    symbols

    AT&T, Nokia,

    Bell Lab

    MDC-QOSTB

    C1 3/4

    Joint detection of 2 real symbols

    NTU

  • MDC QO-STBC:Performance

    5 10 15 2010-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    SNR

    BE

    R

    4 tx antennas

    8 tx antennas QO-STBCMDC-QOSTBCCIODQO-STBCMDC-QOSTBCCIOD

    < 0.5 dB loss from double-symbol-decodable QO-STBC

    BER 10e-3

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    5.5

    6

    10 15 20 25 30SNR (dB)

    Spec

    tral E

    ffici

    ency

    (bits

    /sec

    /Hz)

    3/4 Rate O-STBC

    MDC-QOSTBC

    gain over rate-3/4 O-STBC increases with spectral efficiency

    Y L Guan, PWTC, EEE, NTU, Singapore

  • Non-coherent tx diversity can be achieved using Differential Space Time Modulation (DSTM) Start with a known seed codeword Xo Transmit

    where Up = unitary info-carrying STBC

    Receive assume Hp Hp-1

    Decode

    no need to know Hp

    Non-Coherent Tx Diversity

    1p p pX X U

    1

    p p p p

    p p p

    R H X NR U N

    H 1ˆ arg Max Re Trp

    p p p p

    UU R R U

    U

    Y L Guan, PWTC, EEE, NTU, Singapore

  • Non-Coherent Tx Diversity

    / 2 / 2H

    / 2 / 2

    t t

    t t

    N N

    N NK K

    I 0 0 ICC

    0 I I 0

    2

    1

    Kii

    c

    / 2 R I R I/ 2 / 212K

    i i K i K iic c c c

    QO-STBC is not unitary cannot be used for DSTM

    But MDC-QOSTBC can be rendered quasi-unitary if its symbol constellation meets following conditions:

    = 0 = constant

    Y L Guan, PWTC, EEE, NTU, Singapore

  • Single-Symbol-Decodable Differential ST Modulation

    Differential MDC QO-STBC Single-symbol-decodable DSTM Unitary criterion met by special constellation design

    [Yuen, Guan, Tjhung, IEEE Trans WCOM, Oct 2006]

    Same code rate and benefits as coherent MDC QO-STBC

    QAM/PSK symbols

    constellation mapping

    MDC QO-STBC

    single-symbol-decodableDSTM

    Y L Guan, PWTC, EEE, NTU, Singapore

  • Single-Symbol-Decodable Differential ST Modulation

    Single-Symbol-Decodable DSTM constellation design for 4 antennas

    -1.5 -1 -0.5 0 0.5 1 1.5-1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    0.577

    1.29

    1

    -1.5 -1 -0.5 0 0.5 1 1.5-1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    0.35

    1.05

    0.78

    1.48

    2bps/Hz

    spectral efficiency = R logM bps/Hz where R = MDC-QOSTBC code rate, M = constellation size

    3bps/Hz

    Y L Guan, PWTC, EEE, NTU, Singapore

  • Chau YUEN, Yong Liang GUAN, T T Tjhung (I2R)

    R I R I R I R I R I R I1 4 2 5 3 6 4 1 5 2 6 3

    R I R I R I R I R I R I2 5 1 4 3 6 5 2 4 1 6 3

    R I R I R I R I R I R I3 6 1 4 2 5 6 3 4 1 5 2

    R I R I R I R I R3 6 2 5 1 4 6 3 5 2

    0 00 0

    0 00 0

    c jc c jc c jc c jc c jc c jcc jc c jc c jc c jc c jc c jc

    c jc c jc c jc c jc c jc c jcc jc c jc c jc c jc c jc

    I R I4 1

    R I R I R I R I R I R I4 1 5 2 6 3 1 4 2 5 3 6R I R I R I R I R I R I5 2 4 1 6 3 2 5 1 4 3 6

    R I R I R I R I R I R I6 3 4 1 5 2 3 6 1 4 2 5

    R I R I R I R6 3 5 2 4 1 3

    0 00 0

    0 00 0

    c jcc jc c jc c jc c jc c jc c jcc jc c jc c jc c jc c jc c jcc jc c jc c jc c jc c jc c jc

    c jc c jc c jc c jc

    I R I R I6 2 5 1 4c jc c jc

    MDC QO-STBC

    hi,2

    h1,1

    ML

    Dec

    odin

    g

    Mod

    ulat

    i on

    Dem

    o dul

    atio

    n

    .. bp .. b2 b1 2 1ˆ ˆ ˆ.. .. pb b b

    rP(k) … rp(k) … r1(k)

    CSI Estimator

    DataBit

    Stream

    ReconstructedBit

    Stream

    cK .. cp .. c2 c1

    ModulatedData

    Symbols

    STB

    C C

    ( ) ( ) ( )1 .. .. R R R

    N N NP pr r r

    EstimiatedData

    Symbols

    2 1ˆ ˆ ˆ ˆ.. .. K pc c c c

    ,T RN Nh

    rP(2) … rp(2) … r1(2)

    rP(1) … rp(1) … r1(1)xP(1) … xp(1) … x1(1)

    xP(2) … xp(2) … x1(2)

    xP(i) … xp(i) … x1(i)

    ( ) ( ) ( )1 .. .. T T T

    N N NP px x x

    TransmitAntennas

    ReceiveAntennas

    c1R , c1I

    c2R , c2I

    : :

    Dif

    fere

    nti

    al

    Enco

    ding

    group decoder

    group decoder

  • Single-Symbol-Decodable DSTM:Decoding Complexitybps/Hz DSTM Scheme Decoding Search Space Dimension1.95 Sp2 Code 225

    2 Group Code 256

    2 Zhu & JafarkhaniWCNC 2004 16

    2 Single-Symbol-Decodable DSTM (proposed) 4

    3.13 Sp2 Code 5929

    3 Zhu & JafarkhaniWCNC 2004 64

    3 Single-Symbol-Decodable DSTM (proposed) 8

    Y L Guan, PWTC, EEE, NTU, Singapore

  • Single-Symbol-Decodable DSTM:Performance

    0 5 10 15 20 25 3010-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    Sp(2) 1.95 bps/Hz (decoding search space:225) QO-STBC 2 bps/Hz (decoding search space:16) MDC-QOSTBC 2 bps/Hz (decoding search space:4) Sp(2) 3.13 bps/Hz (decoding search space:5929)QOSTBC 3 bps/Hz (decoding search space:64)MDC-QOSTBC 3 bps/Hz (decoding search space:8)

    BLE

    R

    SNR Y L Guan, PWTC, EEE, NTU, Singapore

  • References (monograph) C Yuen, Y L Guan, T T Tjhung, Quasi-Orthogonal Space Time Block

    Code, Imperial College Press, Dec 2007.

    C. Yuen; Y. L. Guan; T. T. Tjhung, “Quasi-Orthogonal STBC with Minimum Decoding

    Complexity”, IEEE Trans. Wireless Comms., vol. 4, Sept. 2005.

    C. Yuen; Y. L. Guan; T. T. Tjhung, “Single-Symbol-Decodable Differential Space-

    Time Modulation Based on QO-STBC”, IEEE Trans Wireless Comm, October 2006.

    Y L Guan, PWTC, EEE, NTU, Singapore

  • Outline

    Group-Decodable STBC with Rate 1

    Fast-Group-Decodable STBC with Rate > 1

    Shift-Orthogonal STBC

    2-Step 2-Way MIMO Relaying

    Y L Guan, PWTC, EEE, NTU, Singapore

    EYLGuanHighlight

  • Group-Decodable STBC with Rate > 1

    T. P. RenNational University of Defense Technology, China

    Y. L. GuanNanyang Technological University, Singapore

    C. YuenInstititute for Infocomm Research, Singapore

    Fast-Group-Decodable STBC with Rate > 1

  • 2

    Motivation• To have spatial multiplexing gain, STBC needs code

    rate > 1 (e.g. Golden code, Perfect code)

    • But decoding complexity of high-rate STBC is very high, unless the code has group-decodable structure.

    • Only two group-decodable high-rate STBC reported:

    – 2-group-decodable SMC of rate 1.25 for 4 transmit antennas obtained by computer search [C. Yuen, Y. L. Guan, and T. T. Tjhung, 2006];

    – 2-group-decodable square SMC for 2m (integer m > 1) transmit antennas [K. Pavan Srinath and B. Sundar Rajan, 2009];

    Not available for any tx antenna number, any code rate.

  • 3

    Group Decodable STBC with Rate > 1

    block diagonal property of HcHHc

  • 4

    Signal Model

  • 5

    Code Construction

    • Step 1: Pick a full-rank matrix of size 2x2

    • Step 2: Write (i) as

    where1 0 1 0 0 0 0 00 0 0 0 1 0 -1 0

    1 0 -1 0 1 0 1 00 -1 0 1 0 1 0 1

    C

    0y C

    1

    1 11 1

    C

    11 11 21 21 12 12 22 22 TR I R I R I R Iy y y y y y y y y

    T. P. Ren, Y. L. Guan, C. Yuen, E. Gunawan and E. Y. Zhang, "Unbalanced and Balanced 2-Group Decodable Spatial Multiplexing Code,“ IEEE VTC-Fall, Sep 2009.

    over-determined

  • 6

    • Step 3: Obtain the solution space of (i):

    • Step 4: Transform to form dispersion matrices of 2nd group:

    1 1 2 2 3 3 4 4

    1 2 3 4

    0 0 0 11 1 1 00 0 0 11 1 1 0 0 0 0 11 1 1 00 0 0 11 1 1 0

    y k y k y k y k y

    k k k k

    1 2 3 4

    1 1, , ,

    1 1j j j j j j

    Y Y Y Yj j j j j j

    iy

    iy

  • 7

    Achievable Code RatesUnbalanced Balanced

    T < Nt

    T Nt

    22 12

    t tTN NT

    2 12

    TT

    2 1t tTN NT

    2 44

    TT

  • Group-Decodable STBC with Rate > 1

    T. P. RenNational University of Defense Technology, China

    Y. L. GuanNanyang Technological University, Singapore

    C. YuenInstititute for Infocomm Research, Singapore

    Fast-Group-Decodable STBC with Rate > 1

  • 9

    Fast Decoding of STBC

    LL

    L

    L

    f

    ffff

    00

    00

    222

    111

    R

    r=Hs+z r’=Rs+z’

    The code is fast-decodable if

    Fast decoding:

    MLL

    MLssTN

    MLTN

    MLTN

    ssrr

    srrr

    srrr

    MLML

    r

    r

    r

    ,,decodingjoint ML ',,' )3

    decodingjoint ML ',,',' )2

    decodingjoint ML ',,',' )1

    3 ,

    3

    232

    131

    21

    where s=[s1 s2 ... sL]T, H=QR is QR decomposition,

    r’=[r’1, r’2, … ]T=QTr, z’=QTz.

  • 10

    Motivation

    • Fast-decodable (FD) STBC was proposed by Biglieri et

    al in 2009 to reduce the QRM decoding complexity of

    high-rate STBC. But complexity reduction is limited.

    • Group-Decodable (GD) STBC has more complexity

    reduction, but code rate is low.

    Nice to have STBC with both FD and GD advantages

  • 11

    Relationship between FD, GD and FGD

  • 12

    Outline

    • Motivation

    • Code Construction

    • Performance

    • Conclusions

  • 13

    Group-Decodable STBC

  • 14

    Fast-Group-Decodable STBC

    Ref: T. P. Ren, Y. L. Guan, C. Yuen and R. J. Shen, "Fast-Group-Decodable Space-Time Block Code,“ IEEE ITW'10, 6-8 Jan. 2010.

  • 15

    Code Construction (max complexity reduction)

  • 16

    Code ExampleFGD-STBC of size 4x4 can be constructed based on O-STBC of size 4x4.

    Such an O-STBC [Ganesan and Stoica, 2001] has dispersion matrices:

  • 17

    Code ExampleIn GD-STBC construction, let C1 be the seed matrix in the first group. There will be 2NtT – NtNt = 2x4x4 - 4x4 = 16 dispersion matrices in the second group, hence the code rate is 17/8. Use C2-C6 to obtain the other 11 dispersion matrices in the second group:

  • 18

    Code Example

  • 19

    Complexity Comparison

    Note: For FGD-STBC proposed, only C1-C16 are applied for a rate-2 code.

  • 20

    BER Performance

    -6 -4 -2 0 2 4 6 8 10 12

    10-5

    10-4

    10-3

    10-2

    10-1

    SNR per bit/dB

    BE

    R

    BLAST[2], O=24

    Perfect code[4], O=216

    FD-STBC best known[5], O=4x213

    Proposed rate-2 FGD-STBC, O=5x211

  • 21

    Remarks

    •FD and GD code structure can be integrated to generate FGD-STBC

    •A scalable code construction for FGD-STBC with max complexity reduction is presented

    •The proposed FGD-STBC achieves•Full transmit diversity gain •Best known rate-complexity trade off

  • 22

    References • Tian Peng Ren; Yong Liang Guan; Chau Yuen, Gunawan, E.; Er Yang Zhang;,

    "Group-Decodable Space-Time Block Codes with Code Rate > 1", IEEE Transactions

    on Communications, accepted, 2010.

    • C. Yuen; Y. L. Guan; T. T. Tjhung, “On the Search for High-Rate Quasi-Orthogonal

    Space-Time Block Code”, International Journal of Wireless Information Network

    (IJWIN), May 2006, Pages 1 – 12. http://dx.doi.org/10.1007/s10776-006-0033-2.

    • T. P. Ren, Y. L. Guan, C. Yuen, E. Gunawan and E. Y. Zhang, "Unbalanced and

    Balanced 2-Group Decodable Spatial Multiplexing Code,“ IEEE VTC-Fall, Sep 2009.

    • T. P. Ren, Y. L. Guan, C. Yuen and R. J. Shen, "Fast-Group-Decodable Space-Time

    Block Code,“ IEEE ITW'10, Cairo, Egypt, 6-8 Jan. 2010.

    Y L Guan, PWTC, EEE, NTU, Singapore

  • Outline

    Group-Decodable STBC with Rate 1

    Fast-Group-Decodable STBC with Rate > 1

    Shift-Orthogonal STBC

    2-Step 2-Way MIMO Relaying

    Y L Guan, PWTC, EEE, NTU, Singapore

    EYLGuanHighlight

  • MIMO RELAYING (1)

    Async Cooperative Diversity

    Relaying

    Ren Tian Peng 1, Guan Yong Liang2, Yuen Chau3,

    Erry Gunawan2, and Rong Jun Shen1

    1 National University of Defense Technology, China 2 Nanyang Technological University, Singapore3 Institute of Infocomm Research, Singapore

    Dec 2010

    元永亮

  • 2

    • Introduction

    • Shift-Orthogonal STBC (SO-STBC)

    • Delay-Tolerant Cooperative Diversity Routing

    • Performance

    • Conclusion

    Outline

  • MIMO Relaying

    • Benefits– Diversity via single-antenna base stations/relays

    (cooperative diversity)

    – Range extension

    – Relay (router) failure tolerance

    Distributed Alamouti code

  • Distributed Alamouti Coding

    h1

    h2

    c1r1 r2

    c2

    -c2*

    c1*

    1 1 2 1 1* *

    2 2 1 2 2

    r c c hr c c h

    1 1 2 1 1* * * *

    2 2 1 2 2

    r h h cr h h c

    Hc is unitary1 1H

    *2 2

    2 2 * *1 2 1 1 1 2 2

    * *2 22 2 1 1 21 2

    ˆˆ

    0

    0

    c rc r

    h h c h hc h hh h

    CH

    1. c1 and c2decoupled

    2. MRC effect achievedHcHHc = I

    R1

    R2

  • Distributed Alamouti Coding

    h1

    h2

    c1r1 r2

    c2

    -c2*

    c1*

    1 1 2 1 1* *

    2 2 1 2 2

    r c c hr c c h

    1 1 2 1 1* * * *

    2 2 1 2 2

    r h h cr h h c

    Hc is unitary

    What if– Received STBC signals are not synchronized in time?– OFDM (high PAPR) or joint detection (high complexity)

    cannot be afforded?

    R1

    R2

  • 6

    Asynchronous MIMO Relaying

    STBC matrix X of length L:

    Asynchronous version of X received:

    Design objectives on X A sub-matrix of Xa (an async version of X) should have full row-rank and be unitary. Rows of X should have aperiodic correlation = 0

  • 7

    Shift-Orthogonal STBC

    is a shift-orthogonal STBC

    :

    AMM can also be formed using zero correlation sequence set.

    [T Ren, Y L Guan, E Gunawan, E Y Zhang, IEEE Trans Comm, June 2010]

  • 8

    Shift-Orthogonal STBC

    is a shift-orthogonal STBC

    :

    p

    code rate of X = Ls / (M Ls+Lp) 1/M when Ls Lp

    [T Ren, Y L Guan, E Gunawan, E Y Zhang, IEEE Trans Comm, June 2010]

  • 9

    the shift-orthogonal STBC

    Code example for 2 relays

    2 relays

    differential delay < 2

  • 10

    Async received signal:

    SO-STBC

    Code example for 2 relays

    Equivalent channel matrix:

    to obtain:

    Decode SO-STBC by: H

  • Code example for 3 relays

    Despite shifts in 2nd and 3rd rows, sub-matrix still orthogonal and rank 3

    3

    1

    2

    3

    13/4

    2

    23/2

    33/4

    1

    13/2

    33/2

    23/4

    23/4

    13/2

    33/2

    321

    13/4

    33/4

    2

    23/2

    13

    321

    13

    2

    321

    sss

    sse

    s

    sese

    s

    sesesesesese

    sss

    sesessess

    sss

    ssssss

    j

    j

    j

    jjj

    jjj

    jj

    j

    1

    3

    2

    3

    2

    1

    23/2

    13/2

    33/2

    13/4

    33/4

    23/4

    321

    23/4

    13/4

    33/4

    13/2

    33/2

    23/2

    321

    213

    132

    321

    :relay3:relay2:relay1

    sss

    sss

    sesesesesese

    sss

    sesesesesese

    sss

    sssssssss

    jjj

    jjj

    jjj

    jjj

    postfix

  • 12

    An Application

    S

    I12

    I11

    D

    I32

    I31I21

    I22

    In a SPR (single-path routing) MANET, a link from a source node to a destination node is typically accomplished by finding the best single path through some relay nodes.

    Fig. 1. Single-path routing (SPR) MANET forinter-vehicle communications

    However, when a node fails, re-routing is necessary, leading to delays.

    -- Async MANET

  • 13

    An ApplicationIn the DR (dispersity routing) MANET, several parallel

    routing paths are permitted in order to transmit information with redundancy.

    Fig. 3. Dispersity routing (DR) MANET

    S

    I12

    I11

    D

    I32

    I31I21

    I22

    -- Async MANET

    However, DR requires additional bandwidth to prevent self-interference among the parallel paths.

    [N F Maxemchuk, IEEE MILCOM 2007]

  • 14

    An ApplicationIn a cooperative diversity routing (CDR) MANET, data is

    transported from relay cluster to relay cluster. Any two adjacent relay clusters form a virtual MIMO system and apply distributed STBC to obtain cooperative diversity.

    Fig. 4. Synchronous cooperative diversity routing (S-CDR) MANET

    -- Async MANET

    1x

    2x

    1x

    2x

    However, cooperative diversity works only if there is timing alignment among the routing nodes, this requires complex MAC protocol and may be impossible if node mobility is high.

    [M. A. Tope, J. C. McEachen, and A. C. Kinney, ISCC, June 2006]

  • 15

    Delay-Tolerant Cooperative Diversity Routing MANETUsing SO-STBC, delay-tolerant cooperative diversity routing (DT-CDR) with simple symbol-wise decoding is possible.

    Fig. 5. Delay-tolerant cooperative diversity routing (DT-CDR) MANET

    1x

    2x

    1ax

    2ax

    [T Ren, Y L Guan, et. al., VTC-Fall, 2010]

  • 16

    Simulation

    All nodes (source, destination, relays/routers) use only 1 antenna

  • • DR-MANET (all radio links synchronous) loses diversity when routing node I21 fails

    • CDR-MANET (all radio links asynchronous) maintains diversity

    Simulation – DF Example

    SO-STBC

    SO-STBCSO-STBC

    [T Ren, Y L Guan, et. al., VTC-Fall, 2010]

  • In DF (decode and forward) relaying, every relay detects (decode) the symbols and uses only the “cleaned” symbols in the next hop.

    In AF (amplify and forward) relaying, the relays use the noisy symbols to form the next-hop signal.

    1 2s k s s

    1g

    2g

    1h

    2h

    1r k

    2r k

    1x k

    2x k

    1 2y k y k y k

    Asynchronous AF Relaying

    Due to its row-wise design, SO-STBC supports async AF relaying + full diversity + linear decoding

  • Simulation: AF Example

    ML decoding BER of SO-STBC and O-STBC for an asynchronous AF

    wireless relay network with 3 relays and maximum time difference 2

    [T Ren, Y L Guan, E Gunawan, E Y Zhang, IEEE Trans Comm, June 2010]

  • Comparison: Delay-Tolerant STC

    The other delay-tolerant STC’s require trellis decoding

  • 21

    • Shift-Orthogonal STBC (SO-STBC) provides distributed, open-loop

    spatial diversity for async MANET or async Network MIMO.

    • SO-STBC can be systematically constructed based on Fourier Matrix or

    Zero Periodic Correlation sequence set.

    • Symbol-wise ML decoding of SO-STBC can be done using very simple

    Alamouti-like linear decoding.

    • SO-STBC supports both async DF relaying and async AF relaying.

    • SO-STBC simplifies the routing protocol and reduces the network

    latency of async MANET.

    Conclusion

  • Outline

    Group-Decodable STBC with Rate 1

    Fast-Group-Decodable STBC with Rate > 1

    Shift-Orthogonal STBC

    2-Step 2-Way MIMO Relaying

    Y L Guan, PWTC, EEE, NTU, Singapore

    EYLGuanHighlight

  • MIMO RELAYING (2)

    2-Step Bi-Directional Relaying

    M. Eslamifar (Nanyang Technological University, Singapore)C. Yuen (Institute for Infocomm Research, Singapore)

    W. H. Chin (Toshiba Research Lab, UK)Y. L. Guan (Nanyang Technological University, Singapore)

    Dec 2010

  • 2

    • 2-Step Bi-Directional Relaying• Uplink • Downlink

    – Antenna Selection – Antenna Selection with Binary Network Coding– STBC with Binary Network Coding– Transmit Beamforming– Max-Min AS-BNC

    • Performance• Conclusion

    Outline

  • 3

    Introduction Bi-directional relaying:

    Conventional routing:

    4 time slots A

    A

    A

    A

    B

    B

    B

    B

    R

    R

    R

    R1st step

    2nd step

    3rd step

    4th step

    sB

    sA

    sA

    sB

    node A

    Relay

    node B

  • 4

    Network coding with single-antenna relay: 3 time slots

    A

    A

    A

    B

    B

    B

    R

    R

    R

    1st step

    2nd step

    3rd step sXOR sXOR

    sA

    sB

    BAXOR sss ˆˆ

    Network coding with multi-antenna relay: 2 time slots

    Multi-Antenna Downlink options:

    - Spatial diversity gain?

    - Binary/Analog network coding?

    - Open/Closed loop (need CSI)?

    - Single/Multiple relays?

    A

    A B

    B

    R

    R

    2nd stepsR sR

    sA sB1st step

  • 5

    Uplink In the 1st step:

    The relay performs joint ML decoding:

    Diversity order of uplink = N (number of relay antennas)

    A BR

  • 6

    The best antenna channel to node A is selected to transmit

    Likewise, the best antenna channel to node B is selected to tx

    e.g.

    node A receives:

    After canceling off ,

    Downlink 1: Antenna Selection

    Bŝ

    |h||h| and |h||h| B1B2A2A1 if

    Aŝ

    AABBA

    A nshshy

    2)ˆ( 21

    AA sh ˆ1 ABAAA nshyy ˆˆ 1

    R

    1Ah

    2Bh

    BŝAŝ

  • 7

    Same as “Antenna Selection” scheme, except that both selected antennas transmit

    Node A receives , cancels hA1 sXOR ,

    decodes hB2 sXOR , then obtain .

    Downlink 2: Antenna Selection with Binary Network Coding

    AXORBA

    A nshhy

    2)( 21

    R

    1Ah

    2Bh

    XORsXORs

    BAXOR sss ˆˆ

    BAXOR sss ˆˆ

  • 8

    Downlink 3: Alamouti STBC with Binary Network Coding

    Since both nodes A and B are able to extract the other node’s data from sXOR , it may be transmitted using STBC such as Alamouti Code.

    Note: 2 time slots are used to transmit 2 symbols rate = 1

    RRs Rs

  • 9

    Downlink 4: Tx Beamforming Relay transmits:

    where (maximal ratio transmission)

    Node A receives:

    After canceling off , yA

  • 10

    Downlink 5: Max-Min AS-BNC 1 out of N relay antennas is selected to transmit

    Antenna selection is determined in 2 steps.

    Step 1:

    Step 2:

    E.g. with N = 2 relay antennas: ABR

    hA1 hB1

    hA2 hB2

  • 11

    Moment Generating Function:

    Diversity Order:

    Average Symbol Error Probability (SEP):

    , = instantaneous received SNR ,= moment generating function (MGF) of and .

    Max-Min AS-BNC: Analysis

  • 12

    0 5 10 15 20 2510-4

    10-3

    10-2

    10-1

    100

    SNR(dB)

    Sym

    bol E

    rror P

    roba

    bilit

    y(S

    EP

    )

    Simulation Results for AS-BNCSimulation Results for AlamoutiSimulation Results for Max-Min AS-BNCSimulation Results for ASSimulation Results for TB

    PerformanceComparing all 5 schemes At high SNR,

    • TB best• Max-Min AS- BNC• Alamouti-BNC• AS• AS-BNC worst

    • AS-BNC has no spatial diversity gain

  • 13

    0 5 10 15 20 2510-4

    10-3

    10-2

    10-1

    100

    101

    SNR (dB)

    Sym

    bol E

    rror P

    roba

    bilit

    y

    Simulation Results for TBAnalytical Results for TBSimulation Results for Max-Min-AS-BNCAnalytical Results for Max-Min-AS-BNC

    Comparing best 2 schemes (TB and Max-Min AS BNC)

    SEP upper bounds verified by simulation

    Both have diversity order N

    TB outperforms Max-Min AS-BNC

    Performance

  • 14

    Remarks Downlink CSI (channel state info) knowledge

    • TB needs full and accurate CSI at the relay.• Max-Min AS-BNC only needs coarse CSI (which

    channel is better) at the relay. No phase info needed.

    Max-Min AS-BNC can be implemented across multiple relays using a distributed protocol: • Each relay waits for a delay inversely proportional to its

    own downlink channel gain before transmitting• While waiting, listen to other relays. If another relay

    transmit first, abort own transmission.

  • 15

    Conclusions Multi-antenna relaying with binary/analog network coding

    achieves bi-directional communication in 2 time slots(shortest possible) + spatial diversity.

    TB has the best performance but requires full downlinkCSI (channel state information) at the relay

    Max-Min AS-BNC has comparable performance as TBbut only requires course CSI and can also be extendedto multiple relays with distributed antennas

    STBC-BNC comes next in performance and does notrequire CSI, but suffers rate loss or more complexdecoding if the number of relay antennas is more than 2.

  • 16

    References • Mahshad Eslamifar, Woon Hau Chin, Chau Yuen, Y L Guan, “Performance

    Analysis of Bi-Directional Relaying with Multiple Antennas”, IEEE Trans

    Wireless Comms, 2nd review.

    • --, “Performance Analysis of Two-Way Multiple-Antenna Relaying with

    Network Coding”, VTC-Fall 2009

    • --, “Max-Min Antenna Selection for Bi-Directional Multi-Antenna Relaying”,

    VTC-Spring 2010

    Y L Guan, PWTC, EEE, NTU, Singapore

  • Y L Guan, PWTC, EEE, NTU, Singapore

    Thank You