monte carlo simulation of semiconductors

22
Monte Carlo Simulation of Semiconductors -Chris Darmody Neil Goldsman 2018

Upload: others

Post on 07-Jul-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Monte Carlo Simulation of Semiconductors

Monte Carlo Simulation of Semiconductors

-Chris Darmody Neil Goldsman

2018

Page 2: Monte Carlo Simulation of Semiconductors

Background

โ€ข What is the Monte Carlo method?

โ€“ Use repeated random sampling to build up distributions and averages

โ€ข Want to determine electron energy and velocity distributions under applied electric fields in crystal

๐‘˜, ๐ธ ๐‘˜โ€ฒ, ๐ธ + ฤงฯ‰

๐‘ž = ๐‘˜โ€ฒ โˆ’ ๐‘˜, ฤงฯ‰

๐‘˜, ๐ธ

๐‘˜โ€ฒ, ๐ธ โˆ’ ฤงฯ‰

๐‘ž = ๐‘˜ โˆ’ ๐‘˜โ€ฒ, ฤงฯ‰

Initial Electron Momentum: ๐‘˜

Final Electron Momentum: ๐‘˜โ€ฒ Phonon Momentum: ๐‘ž

๐น

Phys. Rev. Let., 118(10) (2017)

Chris Darmody Neil Goldsman

Page 3: Monte Carlo Simulation of Semiconductors

Jacoboni and Reggiani, Rev. Mod. Phys. 55.3

Slope = ฮผ

๐‘ฃ๐‘ ๐‘Ž๐‘ก

๐ธ๐ถ๐‘Ÿ๐‘–๐‘ก

Silicon Transport Properties

http://www.ioffe.ru/SVA/NSM/Semicond/Si/electric.html

Chris Darmody Neil Goldsman

Page 4: Monte Carlo Simulation of Semiconductors

Simulation Overview

Random flight time: ฯ„

Drift in field for ฯ„

Scatter

t < tmax

Start

Stop

YES

NO

Position Changing in Real Space:

Energy Changing in Momentum

Space:

๐น

ฯ„

E

๐ธ 1 + ๐›ผ๐ธ =ฤง2๐‘˜2

2๐‘šโˆ—

๐‘˜

F

Electron Drift Motion

Electron Scattering

ฯ„

Chris Darmody Neil Goldsman

Page 5: Monte Carlo Simulation of Semiconductors

Reciprocal Space, Band Structure, and Constant Energy Ellipses

Chris Darmody Neil Goldsman

Page 6: Monte Carlo Simulation of Semiconductors

Schrodinger Eq. in Periodic Potential

โˆ’ฤง2

2๐‘š

๐‘‘2๐œ“ ๐‘ฅ

๐‘‘๐‘ฅ2 + ๐‘‰ ๐‘ฅ ๐œ“ ๐‘ฅ = ๐ธ๐œ“ ๐‘ฅ

โ€ข Eigenvalue problem gives allowed eigenvalues (E) for each eigenfunction (๐œ“๐‘˜)

โ€ข Only certain E-k pairs allowed ๐‘˜ = 0 ๐œ‹

๐‘Ž โˆ’

๐œ‹

๐‘Ž

โˆ†๐‘˜ =2๐œ‹

๐ฟ

๐ธ

Allowed k-states (๐œ“๐‘˜)

Allowed energies for each state

๐‘‰ ๐‘ฅ = ๐‘‰ ๐‘ฅ + ๐‘›๐‘Ž , ๐‘› = 1, 2, 3, 4โ€ฆ

Periodic Potential in Crystal

Bloch Solutions:

๐œ“๐‘˜ ๐‘ฅ = ๐‘ข ๐‘ฅ ๐‘’๐‘–๐‘˜๐‘ฅ,

๐‘ข ๐‘ฅ = ๐‘ข ๐‘ฅ + ๐‘›๐‘Ž ,

๐‘˜ =2๐œ‹๐‘›

๐ฟ=

2๐œ‹๐‘›

๐‘๐‘Ž

Forbidden Gap Eg

Chris Darmody Neil Goldsman

Page 7: Monte Carlo Simulation of Semiconductors

Reciprocal Space

Real (๐‘Ÿ ) Space Recip. (๐‘˜) Space ๐‘˜๐‘ง

๐‘˜๐‘ฅ ๐‘˜๐‘ฆ

ฮ›

ฮฃ

ฮ”

Reciprocal Lattice is the Fourier Transformation of the Real-Space Lattice!

FCC Brillouin Zone

Wessner, IUE Dissertation 2006

Bartolo, Phys. Rev. A 90.3 (2014)

Chris Darmody Neil Goldsman

Page 8: Monte Carlo Simulation of Semiconductors

Plotting Band Structure: E vs k Filled

Valen

ce Ban

ds

Emp

ty CB

s E

G

Irreducible Wedge High Symmetry Points

Constant Energy Ellipsoids Osintsev, IUE Dissertation 1986

Real Silicon Band Structure

(Path through k-space along high symmetry directions) Chris Darmody Neil Goldsman

Page 9: Monte Carlo Simulation of Semiconductors

Simplified Band Model

๐ธ 1 + ๐›ผ๐ธ =ฤง2๐‘˜2

2๐‘šโˆ—โ‰ก ๐›พ(๐‘˜)

๐‘˜

E

๐ธ =1 + 4๐›ผ๐›พ(๐‘˜) โˆ’ 1

2๐›ผ

ml mt mt

๐‘šโˆ— =1

13

1๐‘š๐‘™

+2๐‘š๐‘ก

= ๐‘š๐‘

Electrons in a crystal move like free particles except with an effective mass

๐‘š๐‘‘ = (๐‘š๐‘™๐‘š๐‘ก2)1 3

http://math.ucr.edu/home/baez/information/index.html

non-parabolicity factor

Chris Darmody Neil Goldsman

Page 10: Monte Carlo Simulation of Semiconductors

Breakdown of Algorithm Steps

Chris Darmody Neil Goldsman

Page 11: Monte Carlo Simulation of Semiconductors

Monte Carlo Algorithm

Random flight time: ฯ„

Drift in field for ฯ„

Scatter

t < tmax

Start

Stop

YES

NO

Chris Darmody Neil Goldsman

Page 12: Monte Carlo Simulation of Semiconductors

Electron Drift Motion in Electric Field ๐น

S1 S2

Scattering Mechanisms (Scattering Rates): S1, S2, โ€ฆ S3 S4 S5 โ‹ฏ Virtual

Constant Total Scattering Rate: ฮ“ ~1014 โˆ’ 1015 1/s

๐‘ƒ ๐œ = ฮ“๐‘’โˆ’ฮ“๐œdฯ„ Probability of drifting for time ๐œ then scattering:

๐œ = โˆ’ln(๐‘Ÿ1)

ฮ“ Choose random flight time:

r1 uniformly random number from 0-1

โˆ†๐‘˜ = โˆ’๐‘ž๐น

ฤงโˆ†๐‘ก Change k while drifting for time โˆ†๐‘ก < ๐œ:

๐‘ฃ =1

ฤง๐›ป๐‘˜๐ธ =

ฤง๐‘˜

๐‘šโˆ—

1

(1 + 2๐›ผ๐ธ) Instantaneous velocity:

Chris Darmody Neil Goldsman

Page 13: Monte Carlo Simulation of Semiconductors

Monte Carlo Algorithm

Random flight time: ฯ„

Drift in field for ฯ„

Scatter

t < tmax

Start

Stop

YES

NO

Chris Darmody Neil Goldsman

Page 14: Monte Carlo Simulation of Semiconductors

Scattering

S1 S2 S3 S4 S5 โ‹ฏ Virtual

Constant Total Scattering Rate: ฮ“

ฮ›1(๐ธ) ฮ›2(๐ธ)

ฮ›3(๐ธ) ฮ›4(๐ธ)

ฮ›5(๐ธ) ฮ›โ€ฆ(๐ธ)

ฮ›๐‘›

ฮ“< ๐‘Ÿ2 โ‰ค

ฮ›๐‘›+1

ฮ“ Randomly choose scattering mechanism (n+1):

r2, r3, r4 uniformly random numbers from 0-1

๐œ‘โ€ฒ = 2๐œ‹๐‘Ÿ3, cos ๐œƒโ€ฒ = 1 โˆ’ 2๐‘Ÿ4 Randomly choose kโ€™ orientation:

๐‘˜๐‘ฅโ€ฒ = ๐‘˜โ€ฒ sin(๐œƒโ€ฒ) cos(๐œ‘โ€ฒ)

๐‘˜๐‘ฆโ€ฒ = ๐‘˜โ€ฒ sin(๐œƒโ€ฒ) sin(๐œ‘โ€ฒ)

๐‘˜๐‘งโ€ฒ = ๐‘˜โ€ฒ cos(๐œƒโ€ฒ)

๐‘˜๐‘ฅ ๐‘˜๐‘ฆ

๐‘˜๐‘ง

๐‘˜ ๐œƒโ€ฒ

ฯ•โ€ฒ

๐‘˜โ€ฒ

After scattering, change energy from E to Eโ€™ depending on

mechanism, then calculate ๐‘˜โ€ฒ from Eโ€™

Chris Darmody Neil Goldsman

Page 15: Monte Carlo Simulation of Semiconductors

Scattering Mechanisms โ€ข Acoustic Scattering:

โ€“ ๐‘†๐‘Ž๐‘ ๐ธ =2๐‘š๐‘‘

3 2 ๐‘˜๐ต๐‘‡๐ท๐‘Ž๐‘

2

๐œ‹ฤง4๐‘ฃ๐‘ 2๐œŒ

๐ธ + ๐›ผ๐ธ2 1 2 (1 + 2๐›ผ๐ธ)

โ€“ ๐ธโ€ฒ โ‰ˆ ๐ธ

โ€ข Optical Scattering (absorb upper, emit lower):

โ€“ ๐‘†๐‘œ๐‘ ๐ธ =๐ท๐‘ก๐พ ๐‘œ๐‘

2 ๐‘š๐‘‘3 2

๐‘

2๐œ‹๐œŒฤง3๐œ”๐‘œ๐‘

๐‘๐‘œ๐‘

๐‘๐‘œ๐‘ + 1๐ธโ€ฒ + ๐›ผ๐ธโ€ฒ2

1 2 (1 + 2๐›ผ๐ธโ€ฒ)

โ€“ ๐ธโ€ฒ = ๐ธ ยฑ ฤง๐œ”๐‘œ๐‘

โ€“ ฤง๐œ”๐‘œ๐‘ = ๐‘˜๐ต๐‘‡๐‘œ๐‘ (get temperatures from parameter sheet)

โ€“ ๐‘๐‘œ๐‘ =1

expฤง๐œ”๐‘œ๐‘

๐‘˜๐ต๐‘‡โˆ’1

(# of phonons in mode)

โ€ข Virtual Scattering:

โ€“ ๐ธโ€ฒ = ๐ธ

โ€“ ๐‘˜โ€ฒ = ๐‘˜ โ€“ Do nothing: Effectively combines two drift events without scattering Chris Darmody

Neil Goldsman

Page 16: Monte Carlo Simulation of Semiconductors

Intervalley Scattering

๐‘“1โˆ’3

๐‘”1โˆ’3 ๐‘˜๐‘ฅ

๐‘˜๐‘ฆ

๐‘˜๐‘ง

Equivalent Final Valleys in Si ๐’๐’‡ = ๐Ÿ’

๐’๐’ˆ = ๐Ÿ

Introduce degeneracy factor in optical scattering rate formulas

โ€ข 3 different โ€˜gโ€™ mechanisms with 3 different ๐œ”๐‘œ๐‘

โ€ข 3 different โ€˜fโ€™ mechanisms with 3 additional ๐œ”๐‘œ๐‘

โ€ข All 6 mechanisms can absorb or emit a phonon

13 Total Scattering Equations: 12 Intervalley + 1 Acoustic

๐‘†๐‘œ๐‘ ๐ธ =๐ท๐‘ก๐พ ๐‘œ๐‘

2 ๐‘š๐‘‘3 2 ๐’

2๐œ‹๐œŒฤง3๐œ”๐‘œ๐‘

โ‹ฏ

g mechanisms scatter to ellipses across the zone f mechanisms scatter to neighboring ellipses

Chris Darmody Neil Goldsman

31 ways to scatter from a given valley. 2 โˆ— 3 โˆ— 4 + 3 โˆ— 1 + 1 = 31

Absorb/Emit Acoustic f1, f2, f3 g1, g2, g3

*Intervalley scattering mechanisms treated using optical scattering form

Page 17: Monte Carlo Simulation of Semiconductors

Detailed Monte Carlo Algorithm Start

Calc. Scattering Rates: S(E)

Initialize: ๐ธ =3

2๐‘˜๐ต๐‘‡, ๐‘˜

Random flight time: r1, ฯ„

Randomly Choose Scatter Mechanism: r2, get Eโ€™

๐œ > 0

Drift Flight ๐œ = ๐œ โˆ’ โˆ†๐‘ก

๐‘˜ = ๐‘˜ โˆ’๐‘ž๐น

ฤงโˆ†๐‘ก

Sample Data E, ๐‘ฃ ||๐น

Randomly Choose Scatter Final State: r3, r4, get ๐‘˜โ€ฒ

Update State: ๐‘˜ = ๐‘˜โ€ฒ, E=Eโ€™

Max Time? Sample Data

E, ๐‘ฃ ||๐น

Output Histograms Velocity & Energy Distributions

Stop

Y

N

N

Y

Perform this algorithm for each Field

Chris Darmody Neil Goldsman

Page 18: Monte Carlo Simulation of Semiconductors

Sampling Data Between Scattering Events

๐œ

โˆ†๐‘ก

Drifting Between Scattering Events โ€ข Choose a global sub-flight time step โˆ†๐‘ก โ€ข Round ๐œ to an integer number of sub-flights โ€ข Sample E and ๐‘ฃ ||๐น at each sub-flight time step

Histograms:

Run simulation for enough real scattering events to obtain smooth histograms

Chris Darmody Neil Goldsman

Page 19: Monte Carlo Simulation of Semiconductors

http://www.ioffe.ru/SVA/NSM/Semicond/Si/electric.html

Extracting Field-Dependent Averages

Average velocity for one input field F

Take time-average of E and ๐‘ฃ ||๐น for each field to generate final Drift Velocity and Average Energy vs Field plots

Jacoboni and Reggiani, Rev. Mod. Phys. 55.3

Chris Darmody Neil Goldsman

Page 20: Monte Carlo Simulation of Semiconductors

Parameter Name Conversion

Remember to convert units!

Powerpoint Parameter Sheet

๐‘š๐‘™ , ๐‘š๐‘ก ๐‘š๐‘™โˆ†, ๐‘š๐‘กโˆ†

๐ท๐‘Ž๐‘ E1โˆ†

๐‘‡๐‘œ๐‘ ๐œƒ ๐‘“,๐‘” 1โˆ’3

๐›ผ ๐›ผโˆ†

๐‘ฃ๐‘  ๐‘ข๐‘™

Chris Darmody Neil Goldsman

Page 21: Monte Carlo Simulation of Semiconductors

Mean Velocity Result Comparison to Lit.

http://www.ioffe.ru/SVA/NSM/Semicond/Si/electric.html Chris Darmody Neil Goldsman

Page 22: Monte Carlo Simulation of Semiconductors

Mean Energy Result Comparison to Lit.

http://www.ioffe.ru/SVA/NSM/Semicond/Si/electric.html Chris Darmody Neil Goldsman