mysteries of the nanotechnique

263

Upload: nguyenkien

Post on 05-Feb-2017

236 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Mysteries of the Nanotechnique
Page 2: Mysteries of the Nanotechnique

英汉对照读物·纳米专辑

Mysteries of the Nanotechnique

纳米世界探秘

江 林

范可强

梁 健

译注

北 京 大 学 出 版 社

·北 京·

Page 3: Mysteries of the Nanotechnique

图书在版编目( CIP ) 数据

纳米世界探秘 /江林等编译. - 北京: 北京大学出版社, 2001. 7

( 英汉对照读物·纳米专辑)

ISBN 7-301-05086-0

Ⅰ. 纳⋯ Ⅱ. 江⋯ Ⅲ. 英语 - 对照读物, 纳米技术 Ⅳ. H319. 4: T

中国版本图书馆 CIP 数据核字( 2001 ) 第 037124 号

书 名: 纳米世界探秘

著作责任者: 江林 范可强 梁健 译注

责 任 编 辑: 沈浦娜

标 准 书 号: ISBN 7-301-05086-0 / H·0640

出 版 者: 北京大学出版社

地 址: 北京市海淀区中关村北京大学校内 100871

网 址: http: / / cbs. pku. edu. cn

电 话: 邮购部 62752019 发行部 62754140 编辑室 62752028

电 子 信 箱: zpup@ pup. pku. edu. cn gl@ pup. pku. edu. cn

排 版 者: 兴盛达打字服务社 62549189

印 刷 者:

发 行 者: 北京大学出版社

经 销 者: 新华书店

850× 1168 32 开本 8. 125 印张 204 千字

2001 年 7 月第 1 版 2001 年 7 月第 1 次印刷

定 价: 12. 00 元

Page 4: Mysteries of the Nanotechnique

Mysteries of the Nanotechnique Lin Jiang, Keqiang Fan, Jian Liang Peking University Press ISBN: 7-301-05086-0/H•640 Preface Nanometer is a unit of length. One nanometer equals to one-billionth of a meter. This very small unit is much smaller than the size scales in normal life. When common materials are changed into the particle sizes between one and one hundred nanometers, novel properties appear. This phenomenon has attracted much research interest. Nanotechnique refers to the technology of making and manipulating objects at 1-100 nanometer scale, which is considered of great potential to advance microelectronics and biomedical industries. It covers the fields of novel materials, green energy, environment protection and management, micro machines, electronic devices, biomedicals, all of which will transform human life. On the other hand, English has become more and more important in our life. Everyone wishes to come into contact with original English literature to improve English reading skills. In order for readers to learn English and cutting edge materials science at the same time, we compiled this book. When choosing contents, we attempted to avoid elaborated theories that require professional knowledge to grasp, and instead focused on the vivid vision of researchers in the field and life-related aspects of nanotechnique. We hope this book will help build a bridge between our readers and the future nano-world. We sincerely hope you enjoy and benefit from this book.

jiangl
Text Box
Please find all the main figures in "BinderofAmyloidFiber.FigureTable.ppt". You may notice that I re-organized the compound number. For example, the old compound 53 is now called as "BAF31", and BAF stands for Blocker/Binder of Amyloid Fibril. Also I made some of supplementary figures as the extension of the main figures. Please find them in "BinderofAmyloidFiber.SuppleFiguresTable.ppt".
Page 5: Mysteries of the Nanotechnique

Contents

目 录

Chapter 1 First View of Nanotechnique ( 2)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

第一章 纳米技术初探 ( 3)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

Chapter 2 Exploring into the World of Molecules ( 14)⋯⋯⋯⋯⋯

第二章 深入分子世界的探险 ( 15)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

Chapter 3 Controlling and Operating Atoms ( 44)⋯⋯⋯⋯⋯⋯⋯⋯

第三章 控制和操纵微小的原子 ( 45)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

Chapter 4 World with Prolific Nanotechnique ( 68)⋯⋯⋯⋯⋯⋯⋯

第四章 丰富多彩的纳米技术世界 ( 69)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

Chapter 5 Nanomedicine—Soldier into the Body ( 108)⋯⋯⋯⋯⋯

第五章 纳米医学 ( 109)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

Chapter 6 Healing and Protecting the Earth

Environment ( 174)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

第六章 保护地球生态环境 ( 175)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

Chapter 7 Future Space Explorer ( 212)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

第七章 未来的空间探险工具 ( 213)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

Chapter 8 The Future Nanotechnology Society ( 226)⋯⋯⋯⋯⋯⋯

第八章 未来的纳米技术社会 ( 227)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

Chapter 9 Prospects: An Unbound Future ( 250)⋯⋯⋯⋯⋯⋯⋯⋯

第九章 展望: 一个前途无量的未来 ( 251)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

Page 6: Mysteries of the Nanotechnique

纳米, 为什么这样红

纳米技术在全世界范围内引起了一阵研究热

潮, 各国在纳米技术方面展开了你追我赶的激烈竞

争。纳米本是一个长度单位, 它又是如何成了这门

技术的代名词? 为什么纳米技术能够引起如此多的

关注呢? ⋯⋯

Page 7: Mysteries of the Nanotechnique

Chapter 1 First View of Nanotechnique

“When Nicole entered chicken, potatoes, and spinach①

into her

own computer , a listing of keyboard commands which represent the com-

plex chemicals in these particular foods was printed out on her output

buffer. After I signaled that we were ready, she typed that string of com-

mands on the keyboard. They were immediately received here, and what

we saw was a response. . . "

—from Arthur C. Clarke’s Rama Revealed

Is Clarke a visionary②

on the wonders that nanotechnology will bring

us, truly realizing what the future holds, or another blindly speculating③

science fiction④

writer? In Rama Revea led, the human characters inter-

act with an advanced civilization, obtaining food and other goods by en-

tering their chemical components into a computer. The“ nanofactory"

that was just discovered in this scene reveals how the necessary raw⑤

materials are gathered and processed, resulting in outputs of food, pa-

per, electronics, and even toys for the children. Will this be the stand-

ard personal computer in the home of the future, or is this too much the

stuff⑥

of science fiction and fantasy? Perhaps people asked this same

question when someone imagined circling the earth, or building a flying

vehicle⑦

, or journeying to the moon. All these possibilities were real-

ized, just as nanotechnology’s will be. Clarke, like all good science fic-

tion writers, includes scientific basis for his imaginings, sensing that

technology’s rapid progress will someday bring his ideas to life.

·2· 纳米世界探秘

Page 8: Mysteries of the Nanotechnique

第一章 纳米技术初探

“当尼克尔输入鸡肉、土豆和菠菜进入她自

己的计算机时, 一系列描述这些特定的食物中的

复杂的化学成分的键盘命令被打印到她的输出缓

冲中。在我发信号表示准备好了之后, 她在键盘

上打出这一长串命令。这些命令被立刻在这里接

受, 我们所看到的只是一种回应⋯⋯”

———选自亚瑟·C. 克拉克《揭开神的面纱》

克拉克是一个坚信纳米技术将在未来使奇迹

能够成为现实的梦想者, 还是一个盲目推测的科

幻小说作者? 在《揭开神的面纱》中, 各色人物与

一种先进的文明相互作用, 通过将食物或其他货

物的化学组成输入电脑而获得它们。在这一场景

中出现的“纳米工厂”展示了必须的天然原料是

如何被收集和加工, 最后生产出食物、纸张、电子

元件、甚至孩子们的玩具。这将是未来家庭使用

的标准的个人计算机的功能, 还是充斥了太多科

学幻想或者是个白日梦? 也许当有人想象环绕地

球的旅行、建造飞行的交通工具、或者到月球去旅

行时, 人们提出过相同的问题。所有这些可能都

已经被实现了, 纳米技术也将会实现。克拉克作

为一位优秀的科幻作家, 在他的想象中包含了科

学的基础, 感到技术的飞速发展将有一天把他的

想法带入现实之中。

① spinach [ �spinid�]

n . a type of wildly-

growth vegetable whose

board green leaves are

eaten 菠菜② visionary [ �vi��n�ri]

n . a person whose aims

for the future are noble

or excellent but lack re-

ality or are not easy to

put into practice 梦 想者 ; 理想主义者③ speculate

[ �spekjuleit] v. to think

( about a matter ) in a

light way or without

facts that would lead a

firm result . ( 肤浅而空泛的 ) 玄思, 思索 , 推测④ science fiction

[ �sai�ns �fik�( �) n] n.

literature, esp. novels

and stories, which deals

with imaginary future

developments in science

and their effect on life

科幻小说⑤ raw [ r��] adj. in the

natural state; not yet

treated for use 天然的,

未处理过的⑥ stuff [ st�f] v. to fill

with a substance 填塞;

装填

⑦ vehicle [ �vi�ik( �) l]

n . something in or on

which people or goods

can be carried from one

place to another 交通工具

·3·第一章 纳米技术初探

Page 9: Mysteries of the Nanotechnique

Manufactured products are made from atoms. The properties of

those products depend on how those atoms are arranged. If we rearrange

the atoms in coal we can make diamond. If we rearrange the atoms in

sand ( and add a few other trace elements ) we can make computer

chips. If we rearrange the atoms in dirt, water and air we can make po-

tatoes.

Todays manufacturing methods are very crude at the molecular lev-

el. Casting①

, grinding②

, milling③

and even lithography④

move atoms in

great thundering statistical herds. It’s like trying to make things out of

LEGO blocks with boxing gloves on your hands. Yes, you can push the

LEGO blocks into great heaps and pile them up, but you can ’t really

snap⑤

them together the way you’d like.

In the future, nanotechnology will let us take off the boxing gloves.

We’ll be able to snap together the fundamental building blocks of nature

easily, inexpensively and in almost any arrangement that we desire. This

will be essential if we are to continue the revolution in computer hard-

ware beyond about the next decade, and will also let us fabricate an en-

tire new generation of products that are cleaner, stronger, lighter, and

more precise.

It’s worth pointing out that the word“ nanotechnology" has become

very popular and is used to describe many types of research where the

characteristic dimensions⑥

are less than about 1, 000 nanometers. For

example, continued improvements in lithography have resulted in line

widths that are less than one micron: this work is often called“ nano-

technology. " Sub-micron lithography is clearly very valuable ( ask any-

one who uses a computer! ) but it is equally clear that lithography will

not let us build semiconductor devices in which individual dopant atoms

are located at specific lattice sites.

·4· 纳米世界探秘

Page 10: Mysteries of the Nanotechnique

加工制造业的产品由原子制成。这些产品的

特性依赖于那些原子是如何安排的。如果我们重

新安排煤中的原子位置, 我们可以制造出金刚石。

如果我们重新安排沙子中的原子 ( 并且加入极微

量的其他原子 ) , 我们可以制造出计算机芯片。

如果我们重新安排构成泥土、水和空气的原子, 我

们就得到了土豆。

今天的制造工艺方法从原子水平来看是非常

粗糙的。铸造、研磨、碾轧、甚至连光刻印刷术都

是在同时移动统计学上异乎寻常大数量的成群的

原子。这就像是在手上带着拳击手套却想要拼装

起乐高玩具一样。是的, 你可以把乐高玩具小块

推成一堆, 堆高起来, 但是你没法像你所期望的那

样把它们一个个地咬合在一起。

在将来, 纳米技术将让你脱下这副拳击手套。

我们将能够容易地、廉价地、几乎可以以任何希望

的方式, 把大自然的基本建筑模块拼装在一起。

如果我们要在下一个十年中继续计算机硬件方面

的革命, 这将是最根本的技术工艺, 这还能使我们

制造出新一代的产品, 更清洁, 更坚硬, 更轻便, 而

且更精密。

值得指出的是,“纳米技术”这个词已经变得

非常流行, 被用于描述特征的尺寸小于 1000 纳米

的很多类型的研究工作。比如不断发展的光刻技

术已经制造出了宽度小于 1 微米的细线: 这样的

工作常被称为“纳米技术”。亚微米级光刻技术

无疑是有非常高的价值的( 问问使用着计算机的

每个人) , 但是同样清楚的是, 光刻技术不可能让

我们建造出只有一个搀杂原子处于一个特定晶格

位置上的半导体元件。

① cast [ ka�st ] v. to

make ( an object ) by

pouring hot metal ( or

plastic) into a specially

shaped container

( mould) 铸造

② grind [ �raind ] v.

to crush into small

pieces or a powder by

pressing between hard

surfaces. 磨 碎 ( 成 粉

末 )

③ mi ll [ mil ] v. to

press or roll ( a metal )

in a machine 以 机 器

碾、轧 ( 金属 )

④ lithography

[ li����r�fi] n. a way of

printing patterns , pic-

tures , etc. , from a

piece of stone or metal

石版印刷术 ; 平板、金

属版印刷术

⑤ snap [ sn�p ] v. to

close the jaws quickly

( on) 咬 , 噬

⑥ dimension

[ di�men�-( �) n ] n. a

measurement in any one

direction 长 , 宽 , 高

·5·第一章 纳米技术初探

Page 11: Mysteries of the Nanotechnique

Many of the exponentially improving trends in computer hardware

capability have remained steady for the last 50 years. There is fairly

widespread confidence that these trends are likely to continue for at least

another ten years, but then lithography starts to reach its fundamental

limits.

If we are to continue these trends we will have to develop a new

“post-lithographic" manufacturing technology which will let us inexpen-

sively build computer systems with mole①

quantities of logic elements

that are molecular in both size and precision and are interconnected in

complex and highly idiosyncratic②

patterns. Nanotechnology will let us

do this.

When it’s unclear from the context whether we ’re using the specific

definition of“nanotechnology" ( given here) or the broader and more in-

clusive③

definition ( often used in the literature ) , we ’ll use the terms

“molecular nanotechnology" or“molecular manufacturing. "

Whatever we call it, it should let us:

( 1 ) Get essentially every atom in the right place.

( 2 ) Make almost any structure consistent with the laws of physics

and chemistry that we can specify in atomic detail.

( 3) Have manufacturing costs not greatly exceeding the cost of the

required raw materials and energy.

There are two more concepts commonly associated with nanotechnol-

ogy: Positional assembly; Self replication.

Clearly, we would be happy with any method that simultaneously④

achieved the first three objectives. However, this seems difficult without

using some form of positional assembly ( to get the right molecular parts

in the right places) and some form of self replication ( to keep the costs

down) .

·6· 纳米世界探秘

Page 12: Mysteries of the Nanotechnique

计算机硬件能力方面的很多指数级的改善趋

势在最近 50 年内保持了稳定。人们普遍保持了

信心, 相信这些发展趋势还很可能在至少另一个

十年中继续下去, 但是到那时光刻技术开始到达

它的基本极限。

如果我们要继续这种发展趋势, 我们将不得

不发展新的“后光刻”制造技术, 使我们能够廉价

地制造出包含有摩尔数量级( 1023数量级) 的分子

尺寸和精密度的逻辑元件, 以复杂的和高度特殊

的方式相互连接的计算机。纳米技术将使我们能

够这样做。

因为我们使用的这一术语的含义不清楚, 不

知道是指“纳米技术”的专业化的定义( 在这里我

们将要给出) , 还是指更广泛、包含更多内容的定

义( 经常在其他文章中使用) , 我们使用“分子纳

米技术”或“分子制造技术”来描述我们的想法。

不管我们称其为什么, 它应该使我们能够:

( 1 ) 从根本上使每个原子处于正确的位置。

( 2 ) 利用物理的和化学的规律制造几乎任何

在原子细节上指定的结构。

( 3 ) 制造工艺的花费并不远远超出所需的原

材料和能源的价值。

还有两个概念通常与纳米技术相联系着: 定

位聚集; 自我复制。

很明显, 如果有什么方法能够同时达到最初

的三个目标, 我们会非常高兴。无论如何, 如果没

有某种形式的定位聚集 ( 确保正确的分子出现在

正确的位置上 ) 和某种形式的自我复制 ( 以保持

价格低廉) , 达到这样的目标是很困难的。

① mole [ m�ul ] 摩尔 ,

物质的量的单位。每

摩尔物质包含6× 1023

个相应微粒。

② i diosyncratic

[ �i di�usi��kr�tik] a dj.

characteri stic peculiari-

ty ( as of temperament )

特殊物质的 , 特殊的

③ i nclusive

[ in�klu�siv] adj. com-

prehending stated lim-

its or extremes 包 含

的 , 包括的

④ s imultaneous

[ sim�l�teini�s ] adj.

happening or done at

the same moment 同时

发生的 , 同时的

·7·第一章 纳米技术初探

Page 13: Mysteries of the Nanotechnique

The need for positional assembly implies an interest in molecular ro-

botics①

, e. g. , robotic devices that are molecular both in their size and

precision. These molecular scale positional devices are likely to resemble

very small versions of their everyday macroscopic counterparts②

. Posi-

tional assembly is frequently used in normal macroscopic manufacturing

today, and provides tremendous advantages. Imagine trying to build a

bicycle with both hands tied behind your back! The idea of manipulating

and positioning individual atoms and molecules is still new and takes

some getting used to. However, as Feynman said in a classic talk in

1959:“The principles of physics, as far as I can see, do not speak a-

gainst the possibility of maneuvering③

things atom by atom. " We need to

apply at the molecular scale the concept that has demonstrated its effec-

tiveness at the macroscopic scale: making parts go where we want by

putting them where we want!

The requirement for low cost creates an interest in self replicating

manufacturing systems, studied by von Neumann in the 1940 ’s. These

systems are able both to make copies of themselves and to manufacture

useful products. If we can design and build one such system the manu-

facturing costs for more such systems and the products they make ( as-

suming they can make copies of themselves in some reasonably inexpen-

sive environment) will be very low.

Nanotechnology is a new science moving faster than the speed of

light might even take over our world one day. Nanotechnology refers to

the ability to create and manipulate④

matter by precisely placing atoms

and molecules.

·8· 纳米世界探秘

Page 14: Mysteries of the Nanotechnique

对定位聚集的要求暗含了对于分子机器人技

术的兴趣, 也就是无论是从大小还是精密程度上

而言都是由分子构成的机器人机械装置。分子尺

度的定位机械很可能像是每天我们看到的它们的

宏观物体类似物的非常小的缩小版本。在今天,

定位聚集频繁的用于常规的宏观物体制造技术

中, 并且提供了巨大的技术优势。想象一下把双

手都绑在后背上再试图安装一辆自行车吧! 制造

和定位单个原子和分子的想法仍然是新奇的, 需

要人们渐渐习惯。但是正如费曼在 1959 年一次

经典的谈话中提到的:“就我所知, 物理学的原理

并没有否认一个个移动原子的可能性。”我们需

要在分子水平上应用这一概念, 它已经在宏观尺

度上展示了它的强大效果: 通过把部件放置到我

们期望的位置, 而使它到达应有的位置。

对低成本的要求引起了对于自我复制制造系

统的兴趣, 这类系统在 20 世纪 40 年代曾被冯·

纽曼研究过。这样的系统能够制造它们的复制

品, 同时还能生产出有用的产品。如果我们能够

设计制造出一个这样的系统, 制造更多这样的系

统以及它们的产品的生产成本将会很低 ( 假设它

们能够利用适当便宜的环境物质制造出自己的复

制品) 。

纳米技术是一门新兴科技, 它的发展速度可

以说比光速还快, 也许有一天将在我们整个世界

盛行。纳米技术指的是通过精确的放置原子和分

子的位置建立和制造物质的能力。

① robotics

[ �r�ub�tiks ] n. 机 器

人学 , 机器人技术

② counterpart

[ �kaunt�pɑ�t ] n . a

person or thing that

serves the same pur-

pose as another 相对应

的人或物

③ maneuver

[ m��nu�v�( r ) ] ( =

manoeuvre ) n. the

moving of ( part of) an

army or of warships ,

planned for a certain

purpose 调遣

④ manipulate

[ m��nipjuleit ] v. to

handle or cont rol

( esp. a machine ) ,

usu. skillfully 操 作 ,

使用

·9·第一章 纳米技术初探

Page 15: Mysteries of the Nanotechnique

In nanotechnology, man creates molecular-sized nanomachines.

These machines would be programmed to reproduce themselves in the

millions and then place atoms precisely to build molecules. These mole-

cules could then be assembled together into whatever hard compounds we

need or can imagine.

Nanotechnology is really an engineering process. We currently as-

semble things by using large machines to build smaller ones or by taking

gross matter and cutting or molding①

it into steel, paper, plastic, etc. ,

and then further cutting and die casting to manufacture goods.

With nanotechnology, we begin at the bottom with single atoms and

assemble more and more of them until matter is produced. This change is

revolutionary and will affect all aspects of existence.

Nanotechnology might be two years off; it might be ten years off; it

might be thirty years away. What is needed right now to complete the

first stage of nano research is the concerted②

efforts of many disciplines

to produce the first nanoscale machines which, as we said above, will

replicate themselves and then follow their programs to place atoms and

make matter .

·01· 纳米世界探秘

Page 16: Mysteries of the Nanotechnique

使用纳米技术, 人们创造出分子大小的纳米

机械。这些机械能够被编程控制, 成百万地复制

自身, 精确地放置原子以建造分子。随后, 这些分

子组装在一起, 形成坚硬的混合物, 像我们所需要

的或能够想象得到的那样坚硬。

纳米技术是真正的工程学的方法。我们现在

用大的机械装置组装物体, 制成更小的机械装置,

或者把粗材料切割、成型, 制成钢铁、纸张、塑料等

等, 然后切削、拉模铸造成制造业产品。

使用纳米技术, 我们以单个原子为基础开始,

组装越来越多的原子, 直到产品被制成。这一变

化是革命性的变革, 并且将影响到生活的各个方

面。

纳米技术也许离我们只有两年时间, 也许要

十年的发展, 也许还要 30 年以后才能实现。为了

完成纳米技术研究的第一阶段, 现在所需要做的

是许多学科之间的协调努力, 生产出第一台如同

我们刚刚描述的纳米尺度的机械, 能够自我复制,

以及按照控制程序的要求放置原子, 从而生产出

各种物品。

① mold [ m�uld]

( = mould) v. to shape

or form ( something sol-

id) 塑成

② concerted

[ k�n�s��tid] adj.

planned or done togeth-

er by agreement; com-

bined 一致的 , 共同的

·11·第一章 纳米技术初探

Page 17: Mysteries of the Nanotechnique

纳米, 揭开面纱

纳米技术是一门新兴科技, 它是自分子水平向

上构筑起来的、“自底向上”的技术。由于缺乏对分

子世界直接的经验, 使得我们难以将纳米技术形象

化, 由此造成理解上的困难。不妨假设我们能把自

己缩小, 这样就可以进行一次漫游微观分子世界的

冒险旅行。想不想一起来试试啊? ⋯⋯

Page 18: Mysteries of the Nanotechnique

Chapter 2 Explor ing into the

World of Molecules

Nanotechnology will be a bottom-up technology, building upward

from the molecular scale. It will bring a revolution in human abilities

like that brought by agriculture or power machinery. It can even be used

like that brought by agriculture or power machinery. But we humans are

huge creations with no direct experience of the molecular world, and this

can make nanotechnology hard to visualize, hence hard to understand.

Scientists working with molecules face this problem today. They can

often calculate how molecules will behave, but to understand this behav-

ior, they need more than heaps①

of numbers: they need pictures, movies,

and interactive simulations, and so they are producing them at an ever-in-

creasing pace. The U. S. National Science Foundation has launched a

program in“scientific visualization" , in part to harness②

supercomputers

to the problem of picturing the molecular world.

Molecules are objects that exert forces on one another. If your

hands were small enough, you could grab them, squeeze them, and

bash③

them together. Understanding the molecular world is much like

understanding any other physical world: it is a matter of understanding

size, shape, strength, force, motion, and the like—a matter of under-

standing the differences between sand, water, and rock, or between

steel and soap bubbles. Today’s visualization tools give a taste of what

will become possible with tomorrow’s faster computers and better“virtual

realities, " simulated environments that let you tour a world that“exists"

only as a model inside the computer. Before discussing nanotechnology

and

·41· 纳米世界探秘

Page 19: Mysteries of the Nanotechnique

第二章 深入分子世界的探险

纳米技术可以说是一种“自底向上”的技术,

也就是说, 自分子水平向上构筑。它如同农业和

机器一样, 将给人类的能力带来一场革命; 进一步

来说, 它能像农业和动力机器一样被人类使用。

但是我们人类是上帝的巨大的创造物, 对分子世

界没有直接的经验。因此, 我们难以将纳米技术

形象化, 由此造成了理解上的困难。

与分子打交道的科学家们如今面临着这样的

困难: 他们常常能够计算出分子的行为, 但要理解

这些行为是如何发生的, 则需要堆积如山的数据,

需要图画、电影和相互作用的模拟。为此, 科学家

们正在以不断增长的速度造出这些视觉形象。美

国国家科学基金会已经启动了一个关于“科学形

象化”的计划, 其中一部分就是利用超级计算机

来解决以图像的形式来表现分子世界的问题。

分子是相互之间具有力的作用的物体。如果

您的手足够小的话, 您可以抓住它们, 挤压它们,

或者把它们打到一起。认识分子世界和认识其他

物理世界是大同小异的: 需要明白其大小、形状、

浓度、力、运动以及其他诸如此类的事情, 就好像

认识沙子、水、岩石之间, 或者钢铁和肥皂泡之间

的差异一样。现代的视觉化工具使我们体验到由

未来的更快的计算机带来的感觉和更好的“形象

实体”, 模拟出一个环境, 带领您在一个只存在于

计算机内的模型世界中漫游。在讨论纳米技术以

① heap [ hi�p] n. a

collection of things

thrown one on another;

a great number or large

quantity 堆 , 大量 , 许

② harness [ hɑ�nis ]

vt . to utilize 利用 ( 河

流、瀑布等 ) 产生动力

( 尤指电力 )

③ bash [ b��] v. to

st rike violently: hit; to

injure or damage by

st riking 怒殴 , 打坏

·51·第二章 深入分子世界的探险

Page 20: Mysteries of the Nanotechnique

how it relates to the technologies of today, let’s try to get a more concrete

understanding of the molecular world by describing a simulation embed-

ded in a scenario①

. In this scenario, events and technologies described

as dating from 1990 or before are historically accurate; those with later

dates are either projections or mere scenario elements. The descriptive

details in the simulation are written to fit designs and calculations based

on standard scientific data, so the science isn’t fiction.

2 . 1 The firs t vis io n of microc osm

The early twenty-first century should be able to do even better: i-

magine, then, that today you were to take a really long nap, oversleep,

and wake up decades later in a nanotechnological world.

In the twenty-first century, even more than in the twentieth, it’s

easy to make things work without understanding them, but to a newcomer

much of the technology seems like magic, which is dissatisfying. After a

few days, you want to understand what nanotechnology is, on a gut lev-

el. Back in the late twentieth century, most teaching used dry words and

simple pictures, but now—for a topic like this—it’s easier to explore a

simulated world. And so you decide to explore a simulation of the molec-

ular world.

Looking through the brochure②

, you read many tedious facts about

the simulation: how accurate it is in describing sizes, forces, motions,

and the like; how similar it is to working tools used by both engineering

students and professionals③

; how you can buy one for your very own

home, and so forth. It explains how you can tour the human

body, see state-of-the-art nanotechnology in action, climb a bacterium,

etc.

·61· 纳米世界探秘

Page 21: Mysteries of the Nanotechnique

及它和其他现代技术的关系之前, 让我们通过对一

个特定情节的模拟的描述, 来获得对分子世界的更

为坚实的理解。在这个特定情节中, 从 1990 年前

后至今的事件和技术的描述都具有历史的真实性,

而关于未来的描述则是展望或只是出于情节的需

要。在这个模拟中, 所描述的细节是建立在标准的

科学数据的设计和计算的基础上的, 因此, 是科学

而不是虚幻的编造。

2 Ä. 1 微观世界第一眼

在 21 世纪的初期, 人们应该能够做得更好:

请您设想一下, 今天您打算好好打一个盹, 结果睡

过头了, 数十年后醒来, 发现自己已经置身于一个

纳米技术的世界。

在 21 世纪里, 甚至早在 20 世纪, 使事情运转

起来而不必去理解它们是很容易做到的事。但对

于一个新手来说, 许多这种技术就好像魔术一样,

是不能令人信服的。过了几天以后, 您就会想在

具体情节的层面上知道什么是纳米技术。回到

20 世纪晚期, 多数的教育都采用干巴巴的词汇和

简单的图画, 但是现在, 对于一个这样的主题来

说, 在一个模拟的世界中探索则是更加容易的事

情。显然, 您会选择亲自去探索一个分子的世界。

通读这本小册子, 您会看到关于这场模拟的

枯燥无味的细节: 它能把关于大小、力、运动以及

诸如此类的事情描述得多么准确; 这与工程专业

的学生与专业人员使用的工具是多么的类似; 您

甚至可以自己买一个放在家里, 等等。它能够解

释您如何在人体中旅行, 看处于最新发展状况的纳

米技术如何起作用, 以及如何爬到一个细菌上面

等等。

① scenario

[ si�nɑ: ri�u] n. a se-

quence of events espe-

cially when imagined;

especially an account

or synopsis of a possi-

ble course of action or

event s 想 象中 未来 事

情的顺序 ; 某一 特定

情节

② brochure

[ br�u��� ( r ) ] n .

pamphlet, booklet ; es-

pecially one containing

descriptive or advertis-

ing material 小册子

③ professional

[ pr��fe��n ( �) l ] n .

one that is profess ion-

al ; especially one that

engages in a pursuit or

activity professionally

自由职业 者 , 专 业人

员 , 职 业运 动 员 , 职

业艺人

·71·第二章 深入分子世界的探险

Page 22: Mysteries of the Nanotechnique

For starters, you decide to take an introductory tour: simulations of real

twentieth-century objects alongside quaint twentieth-century concepts of

nanotechnology.

After paying a small fee and memorizing a few key phrases ( any vari-

ation of“Get me out of here! " will do the most important job) , you pull

on a powersuit, pocket a Talking Tourguide, step into the simulation

chamber①

, and strap the video goggles over your eyes. Looking through

the goggles, you seem to be in a room with a table you know isn’t really

there and walls that seem too far away to fit in the simulation chamber.

But trickery with a treadmill floor makes the walk to the walls seem far e-

nough, and when you walk back and thump②

the table, it feels solid be-

cause the powersuit stops your hand sharply at just the right place. You

can even feel the texture of the carvings on the table leg, because the suit

’s gloves press against your fingertips in the right patterns as you move.

The simulation isn’t perfect, but it’s easy to ignore the defects. On the ta-

ble is ( or seems to be) an old 1990s silicon computer chip. When you

pick it up, as the beginners’instructions suggest, it looks like Figure 1A.

Then you say,“Shrink③

me! " , and the world seems to expand.

Figure 1

·81· 纳米世界探秘

Page 23: Mysteries of the Nanotechnique

对一个新手而言, 您决定要进行一次入门性的旅

行, 即在真实的 20 世纪的物体世界中, 引入 20 世

纪的纳米技术的新奇概念。

在付了一小笔费用, 记住了几个关键的习惯

用语后( 任何类似于“把我从这儿救出去! ”的话

是最为有用的 ) , 您就可以披上一件具有神奇力

量的外衣, 兜里揣一本发声的旅游指南, 走进模拟

舱中, 把可视式护目镜戴好。通过它, 您好像置身

于一个房间中, 里面有一张实际上并不存在的桌

子, 而且这个房间的墙超出了模拟舱的范围。走

在单调重复的地板上造成的假象使您感到墙离您

是如此之远, 当您走回头, 用手敲击桌子的时候,

感觉是实在的, 因为您的外衣使您的手恰到好处

地突然停了下来。您甚至可以触摸到桌腿上雕刻

的纹理, 因为您外衣连着的手套在您的手移动的时

候, 按照纹理的走向给您的手施加了压力。这种模

拟并不是十全十美的, 但其中的缺陷是很容易被忽

略的。在桌上有 ( 或者说看起来有) 一块 20 世纪

90 年代的计算机硅芯片。当您遵照对初来者的指

示拿起它时, 如图 1A 所示。然后您叫道,“让我缩

小吧! ”这时整个世界就膨胀了起来。

① chamber

[ �t�eimb�( r ) ] n . a

natural or arti fici al en-

closed space or cavity

室 , 房间 , 议 院 , 会

所 , ( 枪 ) 膛

② thump [ ��mp ] v.

to strike or beat with or

as if with something

thick or heavy so as to

cause a dull sound 重

击 , 砰然地响

③ shrink [ �ri�k ] v.

to contract or curl up

the body or part of it ;

to contract to less ex-

tent or compass ; to be-

come small er or more

compacted 收 缩 ,

( 使 ) 皱缩 , 缩短

·91·第二章 深入分子世界的探险

Page 24: Mysteries of the Nanotechnique

Figure 1 ( p18 ) : Frame ( A) shows a hand holding a computer chip. This is

shown magnified 100 times in ( B) . Another factor of 100 magnification ( C)

shows a living cell placed on the chip to show scale. Yet another factor of 100

magnification ( D) shows two nanocomputers beside the cell. The smaller

( shown as block) has roughly the same power as the chip seen in the first view;

the larger ( with only the corner visible) is as powerful as mid-1980s mainframe

computer. Another factor of 100 magnification ( E) shows an irregular protein

from the cell on the lower right, and a cylindrical gear made by molecular manu-

facturing at top left. Taking a smaller factor of 10 jump, ( F) shows two atoms

in the protein, with electron clouds represented by stippling. A final factor of

100 magnification ( G) reveals the nucleus of the atom as a tiny speck.

You feel as though you’re falling toward the chip’s surface, shrinking

rapidly. In a moment, it looks roughly like Figure 1B, with your thumb

still there holding it. The world grows blurrier, then everything seems to

go wrong as you approach the molecular level. First, your vision blurs①

to uselessness—there is light, but it becomes a featureless fog. Your

skin is tickled by small impacts, then battered by what feel like hard-

thrown marbles. Your arms and legs feel as though they are caught in

turbulence, pulling to and fro, harder and harder. The ground hits your

feet, you stumble and stick to the ground like a fly on flypaper②

, bat-

tered③

so hard that it almost hurts. You asked for realism, and only the

built-in safety limits in the suit keep the simulated thermal motions of air

molecules and of your own arms from beating you senseless.

“Stop! " gives you a rest from the suit’s yanking and thumping, and

“Standard settings! " makes the world around you become more reasona-

ble. The simulation changes, introducing the standard cheats.

·02· 纳米世界探秘

Page 25: Mysteries of the Nanotechnique

第 18 页图 1 中框( A) 显示出一只握着一块计算机芯

片的手。框( B) 、( C) 、( D) 、( E) 依次将前图的一个

局部放大了 100 倍。为了表示比例尺 , 框( C) 中将一

个活的细胞置于计算机芯片上; 框( D) 在细胞的旁边

画出了两台纳米计算机 , 其中小的一台( 以方块表

示) 与框( A) 的芯片功率大致相同 , 大的一台( 只有一角可见) 和 80 年代中期的大型计算机功能相当; 框

( E) 在右下方画出了细胞中的不规则的蛋白质 , 在其

左上角则是通过分子组装制成的一个圆柱形齿轮。

框( F) 只比前图放大了 10 倍 , 显示的是蛋白质中的

两个原子 , 周围的黑点是其电子云。在框( G) 放大了

最后 100 倍后, 可以看到原子核如同一个斑点大小。

您感到自己正在向计算机芯片的表面降落,

同时迅速地缩小。过了一会儿, 您周围的世界看

起来就好像图 1 ( B) 一样, 您的大拇指仍然在那儿

拿着芯片。渐渐地, 世界变得越来越模糊了, 当您

到达分子水平上时, 所有的一切看起来都和平时

不一 样。首 先, 您的 视觉 模糊 到了 无用 的程

度———虽然有亮光, 但只是毫无特征的一团迷雾。

您的皮肤受到轻微的碰撞而发痒, 逐渐地变成了

猛掷过来的石弹子般的撞击。您的手和脚就好像

进入了一个气旋一样, 受到越来越猛烈的拉扯。

地面碰着您的脚, 您磕磕碰碰地努力站稳在地上,

如同一只苍蝇在一张飞舞的纸片上一样。您受到

的撞击是如此之剧烈, 差点儿使您受伤。您想回

到现实当中, 但是回应您的只有内置于外衣中的

安全界限保持着空气分子和您的手臂的模拟热运

动, 使您不致于被击昏过去。

您叫道,“停!”使您暂时摆脱了外衣的猛拉

和重击;“改为标准设置! ”则使您周围的世界变

得更接近现实。模拟的场景改变了, 显示出标准

的虚

① blur [ bl�: ( r) ] v.

to obscure or blemish

by smearing; to make

dim, indisti nct, or

vague in outline or

character; to make

cloudy or confused 涂

污 , 把 ( 界 线、视 线

等 ) 弄 得 模 糊 不 清 ,

弄污

② flypaper

[ �flaipeip� ( r ) ] n .

paper coated with a

st icky often poisonous

substance for kil ling

flies 捕蝇纸

③ battered

[ �b�t�( r ) d ] adj.

worn or damaged by

hard usage or blows 打

扁了的 , 敲碎的

·12·第二章 深入分子世界的探险

Page 26: Mysteries of the Nanotechnique

Your simulated eyes are now smaller than a light wave, making focus im-

possible, but the goggles snap your vision into sharpness and show the

atoms around you as small spheres. ( Real nanomachines are as blind as

you were a moment ago, and can’t cheat. ) You are on the surface of the

1990s computer chip, between a cell and two blocky①

nanocomputers

like the ones in Figure 1D. Your simulated body is 50 nanometers tall,

about 1 /40, 000 , 000 your real size, and the smaller nanocomputer is

twice your height. At that size, you can“ see" atoms and molecules, as

in Figure 1E.

The simulation keeps bombarding you with air molecules, but the

standard settings leave out the sensation of being pelted②

with marbles.

A moment ago you were stuck tight to the ground by molecular sticki-

ness, but the standard settings give your muscles the effective strength of

steel—at least in simulation—by making everything around you much

softer and weaker. The tourguide says that the only unreal features of the

simulation have to do with you—not just your ability to see and to ignore

thermal shaking and bombardment, but also your sheer existence at a

size too small for anything so complex as a human being. It also explains

why you can see things move, something about slowing down everything

around you by a factor of 10 for every factor of 10 enlargement, and by

another factor to allow for your being made stronger and hence faster.

And so, with your greater strength and some adjustments to make your

arms, legs, and torso③

less sticky, you can stand, see, feel, and take

stock of the situation.

2 . 2 Wonde rful a toms a nd m ole cule s

The ground underfoot, like everything around you, is pebbly④

with

atom-sized bumps the size of your fingertips. Objects look like

·32·第二章 深入分子世界的探险

Page 27: Mysteries of the Nanotechnique

bunches⑤

·42· 纳米世界探秘

Page 28: Mysteries of the Nanotechnique

拟环境。您的模拟的眼睛现在比光的波长尺寸还

小, 要使光聚焦是不可能了, 但是护目镜把您的视

力变得更加锐利, 能看出周围的原子呈现出小球

的形状。( 事实上, 纳米机器与您刚才一样看不

见东西, 而且它们不能通过创造虚拟环境来欺骗

自己。) 您处在一块 20 世纪 90 年代的计算机芯片

的表面, 在一个细胞和两个纳米计算机之间, 如图

1 D 所示。您的模拟躯体有 50 纳米高, 大概是您

真实身高的 4000 万分之一, 而那台较小的纳米计

算机有您的两倍那么高。在这个尺寸下, 您可以

“看见”原子和分子, 如图 1E 所示。

在这场模拟中, 您不断受到空气分子的轰击,

但是标准设置忽略了您被“石弹子”投掷的感觉;

刚才, 您还被分子的粘性紧紧地粘在地面, 但是标

准设置通过把您周围的所有物体变得更加柔软和

脆弱, 而赋予您的肌肉以钢铁般的力量( 至少在模

拟中如此) 。导游指南告诉您, 这场模拟中的和您

相关的惟一不真实的特征是您的视力, 您对热振动

和撞击的忽略以及您作为一个结构上如此复杂的

人能在一个如此之小的尺度上的原本不可能的存

在。因此, 您能看见物体的移动, 而且尺寸每放大

十倍, 移动的速度就减慢十倍。另外, 您将按另外

一个因子逐渐变得更加强壮, 移动得更加快速。这

样, 由于您的逐渐增大的力量以及对您的手臂、腿

脚和躯干所作的调节, 使您变得更灵活, 您就能站

立、观看、感觉, 并且能够对周围的环境作出相应的

判断。

2 Á. 2 奇妙的分子世界

脚下的地面, 如同您四周所有的东西一样, 布

满了鹅卵石般的原子尺寸的突起, 和您的手指头一

般大小。物体看起来就好像一串串透明的葡萄, 或

① blocky [ �bl�ki ]

a dj. resembling a

block in form 短 而 结

实的

② pelt [ pelt ] vt . to

st rike with a success ion

of blows; to beat or

dash repeatedly against

投掷 , 投击

③ torso [ �t�: s�u] n.

the human trunk 人的

躯干

④ pebbly [ �peb ( �)

li ] a dj. irregular,

crinkled, or grainy 多

卵石的 , 有卵石 花纹

⑤ bunch [ b�nt�] n .

a number of things of

the same kind 串 , 束

·52·第二章 深入分子世界的探险

Page 29: Mysteries of the Nanotechnique

of transparent grapes or fused marbles in a variety of pretty but imaginary

colors. The simulation displays a view of atoms and molecules much like

those used by chemists in the 1980s, but with a sharper 3-D image and a

better way to move them and to feel the forces they exert. Actually, the

whole simulation setup is nothing but an improved version of systems

built in the late 1980 s—the computer is faster, but it is calculating the

same things. The video goggles are better and the whole-body powersuit

is a major change, but even in the 1980s there were 3-D displays for

molecules and crude devices that gave a sense of touching them.

The gloves on this suit give the sensation of touching whatever the

computer simulates. When you run a fingertip over the side of the smaller

nanocomputer , it feels odd, hard to describe. It is as if the surface were

magnetic-it pulls on your fingertip if you move close enough. But the re-

sult isn’t a sharp click of contact, because the surface isn ’t hard like a

magnet, but strangely soft. Touching the surface is like touching a film of

fog that grades smoothly into foam rubber, then hard rubber, then steel,

all within the thickness of a sheet of corrugated cardboard①

. Moving side-

ways, your fingertip feels no texture, no friction, just smooth bumps more

slippery than oil, and a tendency to get pulled into hollows. Pulling free

of the surface takes a firm tug. The simulation makes your atom-sized fin-

gertips feel the same forces that an atom would. It is strange how slippery

the surface is-and it can’t have been lubricated, since even a single oil

molecule would be a lump the size of your thumb. This slipperiness makes

it obvious how nano-scale bearings②

can work, how the parts of molecular

machines can slide③

smoothly.

·62· 纳米世界探秘

Page 30: Mysteries of the Nanotechnique

者像熔合在一起的石弹子一样, 闪耀着多姿多彩

的梦幻般的颜色。模拟中显示出的原子和分子的

视觉形象和 20 世纪 80 年代的化学家使用的极为

相似, 但具有更鲜明的三维影像, 而且能更好地移

动它们, 感受到它们施加的力。实际上, 整个模拟

设置只是在 20 世纪 80 年代末期建立的系统的一

个升级版本———就好像用更快的计算机计算老问

题一样。您的可视式护目镜得到了改进, 全套的

神奇力量外衣则是一个主要的变化。但即使是在

20 世纪 80 年代, 那些分子和原始器件的栩栩如

生的三维图像也已经发明出来了。

外衣中的手套给您以触摸计算机模拟的任何

事物的感觉。当您把一根手指头沿着那个较小的

纳米计算机的边缘移动时, 它的手感很奇怪, 很难

用语言来形容。好像表面有磁性一样, 如果您的

手指头靠得足够近的话, 会被吸引过去。但是结

果并不是“啪”地一下突然接触上, 因为它的表面

并不像磁铁一般坚硬, 而是令人惊讶的柔软。接

触这种表面就好像接触一团薄雾, 然后逐渐向泡

沫橡胶过渡, 然后是硬质橡胶, 接着是钢铁, 但是

这一切都发生在一张带皱纹的纸板那么厚的范围

内。向侧面移动时, 您的手指头感觉不到结构, 也

没有摩擦力, 只是感到一些比油还滑腻的、光溜溜

的突起, 以及被吸引到凹陷处的倾向。从表面脱

离要费很大的力气。这场模拟使您的原子般大小

的手指头感到原子实际受到的力。看起来很奇

怪, 物体的表面是如此的光滑———即使一个单个

的油分子也是您拇指大小的一块隆起, 因此它不

可能用油来润滑呀! 这种光滑清楚地说明, 纳米

尺寸的轴承是如何工作的, 分子机器的部件是如

何平稳地运行的。

① cardboard

[ �kɑ: db�: d] n. a ma-

terial made from cellu-

lose fiber ( as wood

pulp) like paper but u-

sually thicker 纸板

② bearing [ �b��ri�]

n . a machine part in

which another part ( as

a journal or pin) turns

or slides 轴承

③ slide [ slaid] v. to

move smoothly along a

surface ( 使 ) 滑 动 ,

( 使 ) 滑行

·72·第二章 深入分子世界的探险

Page 31: Mysteries of the Nanotechnique

But on top of this, there is a tingling feeling in your fingers, like

the sensation of touching a working loudspeaker. When you put your ear

against the wall of the nanocomputer, you flinch①

back: for a moment,

you heard a sound like the hiss of a twentieth-century television tuned to

a channel with no broadcast, with nothing but snow and static—but

loud, painfully loud. All the atoms in the surface are vibrating at high

frequencies, too fast to see. This is thermal vibration, and it’s obvious

why it’s also called thermal noise.

Individual molecules still move too quickly to see. So, to add one

more cheat to the simulation, you issue the command“Whoa! " , and

everything around seems to slow down by a factor of ten.

On the surface, you now can see thermal vibrations that had been

too quick to follow. All around, air molecules become easier to watch.

They whiz②

about as thick as raindrops in a storm, but they are the size

of marbles and bounce in all directions. They’re also sticky in a magnet-

like way, and some are skidding③

around on the wall of the nanocomput-

er. When you grab one, it slips away. Most are like two fused spheres,

but you spot one that is perfectly round—it is an argon atom, and these

are fairly rare. With a firm grip on all sides to keep it from shooting away

like a watermelon seed, you pinch it between your steel-strong fingers. It

compresses by about 10 percent before the resistance is more than you

can overcome. It springs back perfectly and instantly when you relax,

then bounces free of your grip. Atoms have an unfamiliar perfection a-

bout them, resilient and unchanging, and they surround you in thick

swarms.

At the base of the wall is a churning④

blob⑤

that can only be a

droplet of water . Scooping⑥

up a handful for a closer look yields a swarm

of molecules, hundreds, all tumbling and bumbling over one another,

but clinging in a coherent mass. As you watch, though,

·82· 纳米世界探秘

Page 32: Mysteries of the Nanotechnique

但是, 除此之外, 您感到手指上有一种刺痛感,

好像那种与一个正在工作的高音喇叭相触的感觉。

如果您把耳朵贴近纳米计算机的外壁, 您会立即退

回: 在那一刻, 您听到一阵嘶嘶声, 如同一台 20 世

纪的电视机被调到了一个收不到信号的频道, 除了

雪花以外什么也没有, 但是持续不断地发出刺耳的

噪声。这是因为所有的表面原子均以很高的频率

在振动, 快得用眼睛无法分辨。这就是热运动, 很

明显, 它被称为热噪音的原因也在于此。

单个的分子还是运动得太快了, 以至无法看

清。于是, 为了给这场模拟再增加一点虚假的成

分, 您发出了“哇!”这一命令, 这样周围的所有物体

看起来都减慢了十倍。

在表面上, 您现在能看见刚才跟不上的极快的

热振动。周围的空气分子变得更容易看清了。它

们像暴风雨中的雨滴一样稠密, 发出呼啸声, 但是

它们有石弹子大小, 向四面八方反弹回来。它们像

磁铁那样具有粘性, 有的在纳米计算机的外壁上滑

来滑去。当您抓住一个时, 它会溜走。绝大多数空

气分子像两个熔合在一起的半球, 但是您会发现有

的是完美的球形———这是氩原子, 是相当稀少的。

为了不让它像一个西瓜籽一样射出, 您紧紧地抓住

它的四周, 用您钢铁般强大的手指把它夹住。在它

的反抗力超过您能克服的程度前, 它大约被压缩了

10% 。当您放松时, 它立即完全反弹回来, 然后弹

出了您的抓握。原子是尽善尽美的、有弹性的, 能

完全恢复其形状, 密密层层地包围着您。

在墙脚下有一小滴剧烈运动的液体, 只能是水

了。捧起一点儿细看, 您看见了一堆约有成百个的

分子, 都在翻跟头和互相碰撞, 但粘在一起, 形成

连续的一团。尽管如此, 当您观察的时候, 一个分

① flinch [ flint�] vi .

to withdraw or shrink

from or as if from pain

畏缩 , 退缩 , 畏首 畏

② whiz [ wiz ] v. to

hum, whir, or hiss like

a speeding object ( as

an arrow or bal l) pass-

ing through air 发出呼

啸声

③ skidding [ �skidi�]

v. to slide without rota-

ting 滑行

④ churning [ �t��:

ni�] n . producing or

being in viol ent motion

剧烈运动

⑤ blob [ bl�b] n. a

small drop or lump of

something viscid or

thick 一滴 , 水滴

⑥ scooping

[ �sku: pi�] v. to take

out or up with or as if

with a scoop; to pick

up quickly or surrepti-

tiously with or as if

with a sweep of the

hand 掘 , 挖 , 捧起

·92·第二章 深入分子世界的探险

Page 33: Mysteries of the Nanotechnique

one breaks free of the liquid and flies off into the freer chaos of the sur-

rounding air: the water is evaporating. Some slide up your arm and

lodge in the armpit①

, but eventually skitter②

away. Getting rid of all the

water molecules takes too much scraping, so you command“Clean me! "

to dry off.

2 . 3 Too S ma ll a nd Too La rge

Beside you, the smaller nanocomputer is a block twice your height,

but it’s easy to climb up onto it as the tourguide suggests. Gravity is less

important on a small scale: even a fly can defy gravity to walk on a ceil-

ing, and an ant can lift what would be a truck to us. At a simulated size

of fifty nanometers, gravity counts for nothing. Materials keep their

strength, and are just as hard to bend or break, but the weight of an ob-

ject becomes negligible. Even without the strength-enhancement that lets

you overcome molecular stickiness, you could lift an object with 40 mil-

lion times your mass—like a person of normal size lifting a box contai-

ning a half-dozen fully loaded oil tankers. To simulate this weak gravity,

the powersuit cradles your body’s weight, making you feel as if you were

floating. This is almost like a vacation in an orbital theme park, walking

with stickyboots on walls, ceilings, and whatnot③

, but with no need for

antinausea④

medication.

On top of the nanocomputer is a stray protein molecule, like the one

in Figure 1E. This looks like a cluster of grapes and is about the same

size . It even feels a bit like a bunch of grapes, soft and loose. The parts

don’t fly free like a gas or tumble and wander like a liquid, but they do

quiver like gelatin and sometimes flop or twist. It is solid enough, but

the folded structure is not as strong as your steel fingers.

·03· 纳米世界探秘

Page 34: Mysteries of the Nanotechnique

子脱离了液体, 飞入了更加自由和混乱的周围的

空气中: 水蒸发了。有的水分子滑上了您的手臂,

在腋窝中逗留, 但最终还是溜走了。把全部水分

子除掉要费太大的劲去擦, 您命令道,“把我变干

净些! ”于是您就变干了。

2 Ä. 3 极小与极大的不同尺度

在您的旁边, 那个较小的纳米计算机是一个有

您两倍那么高的方块, 但按照旅游指南所指引的那

样, 很容易就能爬到它的顶上。在小的尺度上, 引

力变得不那么重要了: 例如, 苍蝇能抗拒地球引力

在天花板上行走, 蚂蚁能举起相对人类来说如同卡

车般大的东西。在 50 纳米的模拟尺度上, 引力不

起任何作用。材料仍然保持着它们的强度, 不易弯

曲和断裂, 但是物体的重量变得可以忽略不计了。

即使没有帮助您克服分子粘性而特意加强的力量,

您也能举起一个相当于自身质量 4000 万倍的物

体———就好像一个正常大小的人举起一个巨型盒

子, 而这个盒子盛着六艘满载的油轮一样。为了模

拟弱引力的作用, 您的外衣支撑着您身体的重量,

令您感到好像浮在半空中。这一切就仿佛在一个

以空间轨迹为主题的公园里度假, 穿着黏乎乎的靴

子在墙上、天花板上和其他的一些什么东西上走

路, 但并不需要治疗头晕的药物。

在这台纳米计算机的顶上是一个游离的蛋白

质分子, 如图 1E 所示。它看起来像一串葡萄, 也恰

如葡萄般大小。它甚至具有一点点类似葡萄的手

感, 柔软而松散。它的各个部分并不像气体分子一

样自由飞舞, 也不像液体分子般翻跟头、漫步, 但它

们会像凝胶似的颤抖, 时而跳动或扭曲。它足够坚

固, 但它的折叠的结构不如您钢铁般的手指结实。

① armpit [ �ɑ: mpit ]

n. the hollow beneath

the junction of the arm

and shoulder 腋窝

② skitter [ �skit�( r ) ]

vi . to glide or skip

lightly or quickly 掠过

③ whatnot [ �w�tn�t ]

n . any of various other

things that might also

be mentioned 等 等 的

东西 ( 或人 )

④ antinausea

[ �nti�n�: si: ] serving

to prevent , cure , or al-

leviate a stomach dis-

tress with distaste for

food and an urge to

vomit 抗晕船的

·13·第二章 深入分子世界的探险

Page 35: Mysteries of the Nanotechnique

In the 1990s, people began to build molecular machinery out of pro-

teins , copying biology. It worked, but it’s easy to see why they moved on

to better materials.

From a simulated pocket, you pull out a simulated magnifying glass

and look at the simulated protein. This shows a pair of bonded atoms on

the surface at 10 times magnification, looking like Figure 1F. The atoms

are almost transparent, but even a close look doesn’t reveal a nucleus in-

side, because it’s too small to see. It would take 1 , 000 times magnifica-

tion to be able to see it, even with the head start of being able to see at-

oms with your naked eye. How could people ever confuse big, plump①

atoms with tiny specks like nuclei? Remembering how your steel-strong

fingers couldn’t press more than a fraction of the way toward the nucleus

of an argon atom from the air , it’s clear why nuclear fusion is so difficult.

In fact, the tourguide said that it would take a real-world projectile over

a hundred times faster than a high-powered rifle bullet to penetrate into

the atomic core and let two nuclei fuse. Try as you might, there just isn

’t anything you could find in the molecular world that could reach into the

middle of an atom to meddle with its nucleus. You can’t touch it and you

can’t see it, so you stop squinting through the magnifying glass. Nuclei

just aren’t of much interest in nanotechnology.

2 . 4 P uzzle Cha ins

Taking the advice of the tourguide, you grab two molecular knobs on

the protein and pull. It resists for a moment, but then a loop comes free,

letting other loops flop around more, and the whole structure seems to

melt into a writhing②

coil.③

After a bit of pulling and wrestling, the pro-

tein’s structure becomes obvious: It is a long chain—longer than you are

tall, if

·23· 纳米世界探秘

Page 36: Mysteries of the Nanotechnique

在 20 世纪 90 年代, 人们开始通过借鉴生物学, 由

蛋白质构筑分子机械。它能起一定作用, 但显而易

见它们要向前发展到更为先进的材料。

从一个虚拟的口袋里, 您拿出一个虚拟的放大

镜, 对这个虚拟的蛋白质进行观察。您将看到蛋白

质表面放大十倍后的一对成键原子, 如图 1F 所示。

原子看起来几乎是透明的, 但即使是近距离的观察

也看不到原子核, 因为它实在是太小了, 即使您能

用肉眼看见原子, 也得再放大 1000 倍才能看见原

子核。人们又怎么会混淆个头大而丰满的原子和

小如斑点的原子核呢? 想想您钢铁般的手指从原

子外部出发去摸原子核, 但只能伸进整个距离的几

分之一, 您就知道为什么核聚变是如此的困难了。

事实上, 旅游指南告诉您, 在现实世界中, 需要一个

比高能步枪枪弹还要快几百倍的投射物, 才能够穿

入原子的核心, 引发两个核的聚变。您不信试试

看, 在分子世界中您找不到任何东西能够到达原子

的中心, 去掺和原子核的事情。您碰不到, 看不到

它, 于是您只好停止了通过放大镜对它的窥视。在

纳米技术中, 原子核并不是主要的兴趣所在。

2 Á. 4 令人疑惑不解的链条

按照旅行指南的建议, 您抓住蛋白质上的两个

分子的球形突起向外拉。开始您感到了阻力, 但是

接着一段环区松开了, 使其他的环区也跟着向四周

跳动, 整个结构看起来就好像融化成了翻腾着的一

团。经过一阵拉伸和扭曲后, 蛋白质的结构变得明

显起来: 它是一条长链———如果您能把它伸直的

话, 比您还高———链上的每隔一段就有一种侧向

① plump [ pl�mp ]

a dj. having a full

rounded usually pleas-

ing form 圆胖的 , 丰满

的 , 鼓起的

② writhing [ �rai�i�]

v. to twist into coils or

folds; to twis t so as to

distort ; to move or pro-

ceed with twists and

turns 翻腾

③ coil [ k�il ] n. a se-

ries of loops ; a single

loop of such a coil 盘

绕 , 卷

·33·第二章 深入分子世界的探险

Page 37: Mysteries of the Nanotechnique

you could get it straight—and each segment of the chain has one of sever-

al kinds of knobs sticking off to the side. With the multicolored, glassy-

bead portrayal of atoms, the protein chain resembles a flamboyant neck-

lace. This may be decorative, but how does it all go back together? The

chain flops and twists and thrashes, and you pull and push and twist, but

the original tight, solid packing is lost. There are more ways to go wrong

in folding up the chain than there are in solving Rubik’s Cube, and now

that the folded structure is gone, it isn’t even clear what the result should

look like. How did those twentieth-century researchers ever solve the no-

torious“protein folding problem" ? It’s a matter of record that they started

building protein objects in the late 1980s.

This protein molecule won’t go back together, so you try to break it.

A firm grip and a powerful yank①

straightens a section a bit, but the chain

holds together and snaps back. Though unfolding it was easy, even mus-

cles with the strength of steel—the strength of Superman—can’t break the

chain itself. Chemical bonds are amazingly strong, so it’s time to cheat a-

gain. When you say,“Flimsy②

world—one second! " while pulling, your

hands easily move apart, splitting the chain in two before its strength re-

turns to normal. You’ve forced a chemical change, but there must be easi-

er ways since chemists do their work without tiny superhands. While you

compare the broken ends, they thrash③

around and bump together. The

third time this happens, the chain rejoins, as strong as before. This is

like having snap-together parts, but the snaps are far stronger than welded

steel. Modern assembler chemistry usually uses other approaches, but

seeing this happen makes the idea of molecular assembly more under-

standable: Put the right pieces together in the right positions, and they

snap together to make a bigger structure.

·43· 纳米世界探秘

Page 38: Mysteries of the Nanotechnique

伸展的球形突起。如果将原子描绘成彩色的玻璃

珠, 整个蛋白质链就好像一条华丽的项链。这也许

能当装饰品, 但它是如何重新组合在一起的呢? 肽

链在不停地跳动、摆动、颠簸, 尽管您在推拉、扭曲,

但总是回不到原来的那种紧密坚固的堆积方式去。

把肽链折叠起来的错误方式比在玩魔方时还多, 因

此现在原先的正确折叠方式已经“一去不复返”,

甚至连结果应该是如何的也变得不再清楚了。那

些 20 世纪的研究者们是如何解决有名的“蛋白质

折叠问题”的呢? 有记录显示, 他们在 20 世纪 80

年代后期就开始构建由蛋白质组成的对象了。

既然您手上的蛋白质分子不能恢复原状, 您就

尝试着掰断它吧! 您紧紧地抓住它, 使劲猛拉, 使

其中的一段伸长了一点, 但是肽链仍然聚集在一

起, 还反弹了回来。虽然把分子解开折叠很容易,

但是即使您具有钢铁般的肌肉, 力大如超人, 也不

能打断肽链本身。化学键是令人惊讶的强, 所以现

在只能再来创造虚拟来欺骗自己了。您叫道,“脆

弱的世界, 要一秒钟! ”一边去拉, 您的双手很容易

就分开了, 在强度恢复正常之前把肽链折成了两

段。您造就了一次化学变化, 但是一定有更容易的

方法, 因为化学家们没有像您一样的微小的“超人

的手”。当您正在比较断裂的两端时, 它们颠簸起

来, 撞在了一起。这已经是第三次发生了, 整条肽

链重新结合在一起, 和先前一样坚固。这就好像有

能自动拼接的部件, 而且这种拼接比焊接的钢铁还

结实。现代的组合化学通常会采用其他手段, 但看

看这是如何发生的, 有助于理解分子组装的概念:

把恰当的片段在恰当的位置上放到一起, 它们就会

拼接在一起, 组成一个更大的结构。

① yank [ j��k ] n. a

st rong sudden pull 拽 ;

拔 ; 猛拉

② flimsy [ �flimzi ]

a dj. lacking in physi cal

st r-ength or substance

易坏的 , 脆弱的

③ thrash [ �r��] vi .

to move or stir about

violently 颠簸

·53·第二章 深入分子世界的探险

Page 39: Mysteries of the Nanotechnique

Remembering the“Whoa! " command, you decide to go back to the

properly scaled speed for your size and strength. Saying“Standard set-

tings! , " you see the thrashing of the protein chain speed up to hard-to-

follow blur.

2 . 5 Na noma chine s

At your feet is a ribbed, ringed cylindrical object about the size of a

soup but not a messy, loosely folded strand like the protein ( before it fell

apart) , but a solid piece of modern nanotechnology. It’s a gear like the

one in Figure 1E. Picking it up, you can immediately feel how different it

is from a protein. In the gear, everything is held in place by bonds as

strong as those that strung together the beads of the protein chain. It can’t

unfold, and you’d have to cheat again to break its perfect symmetry. Like

those in the wall of the nanocomputer, its solidly attached atoms vibrate

only slightly. There ’s another gear nearby, so you fit them together and

make the atomic teeth mesh①

, with bumps on one fitting into hollows on

the other. They stick together, and the soft, slick atomic surfaces let them

roll smoothly.

Underfoot is the nanocomputer itself, a huge mechanism built in the

same rigid style. Climbing down from it, you can see through the trans-

parent layers of the wall to watch the inner works. An electric motor an

arm-span wide spins inside, turning a crank that drives a set of oscillating

rods, which in turn drive smaller rods. This doesn’t look like a computer;

it looks more like an engineer’s fantasy from the nineteenth century. But

then, it is an antique design-the tourguide said that the original proposal

was a piece of exploratory engineering dating from the mid-1980s, a me-

chanical design that was superseded②

by improved electronic designs be-

fore anyone had the tools to build even a prototype③

. This simulation is

based on a version built by a hobbyist④

many years later.

·63· 纳米世界探秘

Page 40: Mysteries of the Nanotechnique

当您决定要回到相对于您的尺寸和力量大小相称的速度时, 别忘了那个“哇!”指令; 如果您看到蛋白质的链条颠簸得太快, 变成看不清的一团时, 您可以使用“标准设置”指令。

2 Á. 5 纳米机器在您的脚下是一个带棱纹的、镶环的圆柱形物

体, 大约有一个汤碗大小, 但不是一个像蛋白质那样混乱的, 松散地折叠的条带( 在它散开以前) , 而是一个纯粹的现代纳米技术的杰作。这是一个齿轮, 如图 1E 所示。您把它拾起来以后, 您能立即感觉到它和蛋白质是如此的不同。在这个齿轮里, 所有的东西都粘结在各自的位置上, 就好像那些把蛋白质链上的珠子连在一起的化学键一样坚固。它不能被解开, 因此您不得不通过虚拟来打破它完美的对称性。和纳米计算机的外壁一样, 它那牢固地吸附在一起的原子只能作轻微的振动。在附近还有另外一个齿轮, 于是您把它们拼在一起, 通过让一个齿轮上的突起与另一个齿轮的凹陷吻合, 来使这些原子的“齿”相啮合。它们粘在一起, 其柔软光滑的原子表面使它们能够自如地转动。

在您的脚下的纳米计算机本身就是一台用同样坚固的方式建造的巨型机械。从上面爬下来后, 您可以透过透明的层壁看到内部的机件。在里面有一个电子马达和一个与您手臂跨度等宽的转轴, 带动一个曲柄的旋转, 从而驱动一套摆动的连杆, 进而带动那些更小的连杆。这看起来不像一台计算机, 而更像是一位 19 世纪的工程师的幻想。但是, 这实际上是一种古董式的设计 旅游指南上说, 它的最初设想是来自于 20 世纪 80 年代中期的一个试验性的工程,在有人拥有构建这种机械式的设计的原型的工具之前, 它已经被改进的电子设计取代了。我们这场模拟只是基于许多年以后的一位收藏家的版本罢了。

① mesh [ me�] vi. to

become entangled in or

as if in meshes ; to be

in or come into mesh,

used especially of

gears; to fit or work to-

gether properly ( 齿

轮 ) 相啮合 ; 配合

② supersede

[ sju: p��si: d ] vt. to

cause to be set aside ;

to force out of use as

inferior; to take the

place, room, or posi-

tion of 代 替 , 取 代 ,

接替 , 紧接着⋯ 而到

③ prototype

[ �pr�ut�utaip ] n. an

original model on

which something is pat-

terned 原型

④ hobbyist

[ �h�biist] n . a person

with a pursuit outs ide

one ’s regular occupa-

tion engaged in espe-

cially for relaxation 沉

溺于某 种 癖好 者 , 嗜

好成癖的人

·73·第二章 深入分子世界的探险

Page 41: Mysteries of the Nanotechnique

The mechanical nanocomputer may be crude, but it does work, and

it’s a lot smaller and more efficient than the electronic computers of the

early 1990s. It’s even somewhat faster. The rods slide back and forth in a

blur of motion, blocking and unblocking each other in changing patterns,

weaving patterns of logic. This nanocomputer is a stripped-down model

with almost no memory, useless by itself. Looking beyond it, you see the

other block—the one on the left in Figure 1D—which contains a machine

powerful enough to compete with most computers built in 1990. This com-

puter is a millionth of a meter on a side, but from where you stand, it

looks like a blocky building looming over ten stories tall. The tourguide

says that it contains over 100 billion atoms and stores as much data as a

room full of books. You can see some of the storage system inside: row

upon row of racks containing spools①

of molecular tape somewhat like the

protein chain, but with simple bumps representing the 1s and 0s of com-

puter data.

These nanocomputers seem big and crude, but the ground you’re now

standing on is also a computer—a single chip from 1990, roughly as pow-

erful as the smaller, stripped-down nanocomputer at your side. As you

gaze out over the chip, you get a better sense for just how crude things

were a few decades ago. At your feet, on the smallest scale, the chip is

an irregular mess. Although the wall of the nanocomputer is pebbly with

atomic -scale bumps, the bumps are as regular as tile. The chip’s surface,

though, is a jumble②

of lumps and mounds. This pattern spreads for doz-

ens of paces in all directions, ending in an irregular cliff marking the edge

of a single transistor . Beyond, you can see other ridges and plateaus

stretching off to the horizon. These form grand, regular patterns, the cir-

cuits of the computer. The horizon—the edge of the chip—is so distant

that walking there from the center would ( as the tourguide warns) take

days . And these vast pieces of landscaping were considered twentieth-cen-

·83· 纳米世界探秘

Page 42: Mysteries of the Nanotechnique

tury miracles of miniaturization③

.

·93·第二章 深入分子世界的探险

Page 43: Mysteries of the Nanotechnique

这台机械式的纳米计算机也许是原始了些, 但它能够工作, 而且比 20 世纪 90 年代早期的电子计算机要小得多, 有效得多。甚至它运算得更快。那些连杆前后滑动, 变成了一团模糊不清的影子, 以变化的方式形成和解开各种模块, 演绎出逻辑符号的表示。这台纳米计算机缺乏许多部件, 几乎没有内存, 不能自己工作。从它的上面看过去, 您看到另外一个方块———就是在图 1D 左边画出的那个———在那里头有一台功能强大的机器, 可以和20 世纪 90 年代的绝大多数计算机媲美。这台计算机边长为 100 万分之一米, 但从您的视角来看,它看起来就像一个超过十层楼高的巨大建筑。旅游指南告诉您, 它由超过 1000 亿个原子组成, 能储存相当于一整个房间的书籍的数据量。您可以看见里面的一些存储系统: 在一排排架子上, 放着一盘盘“分子录音带”, 有些像蛋白质的链条, 但用简单的突起来代表计算机数据的“0”和“1”。

这些纳米计算机看起来又大又原始, 但别忘了您正站在一台计算机上面———一块 20 世纪 90 年代的单芯片, 功能几乎与您旁边的那台较小的、零件不全的纳米计算机相当。当您站在芯片上往外看的时候, 您能够更好地认识到数十年前的物品是多么原始。在您的脚下, 在最小的尺度上, 整块芯片是不规则的一团。虽然那台纳米计算机的外壳像卵石一样有原子大小的隆起, 但是这些隆起像瓷砖一样排列得很整齐。然而, 芯片的表面布满了杂乱无章的突起和鼓包, 并且向四面八方伸展出数十步之远, 终止于一个不规则的“悬崖”处, 也就是一个晶体管的边缘。其上您可以看到别的“山脊”和“高原”一直延伸到地平线处。这些构成的浩大的, 规则的图案, 就是计算机的电路。地平线( 芯片的边缘) 是如此的遥远, 旅游指南上写着您从芯片中央走到那儿需要好几天的时间。这些巨大的景物被认为是 20 世纪缩微的奇迹。

① spool [ spu: l ] n. a

cylindrical device

which has a rim or

ridge at each end and

an axial hole for a pin

or spindle and on which

material ( as thread,

wire, or tape) is wound

线轴 , 缠线用的框

② jumble [ d��mbl ]

n. a mass of things

mingled together with-

out order or plan 混乱

③ miniaturization

[ mini�t�urai�zei��n ]

n.

a design or construction

in small size 小型化

·04· 纳米世界探秘

Page 44: Mysteries of the Nanotechnique

2 . 6 The World of Mole cule s in Life

Even back then, research in molecular biology had revealed the ex-

istence of smaller , more perfect machines such as the protein molecules

in cells. A simulated human cell—put here because earlier visitors wan-

ted to see the size comparisons—its on the chip next to the smaller nano-

computer. The tourguide points out that the simulation cheats a bit at

this point, making the cell act as though it were in a watery environment

instead of air. The cell dwarfs①

the nanocomputer, sprawling across the

chip surface and rearing into the sky like a small mountain. Walking the

nature trail around its edge would lead across many transistor-plateaus

and take about an hour. A glance is enough to show how different it is

from a nanocomputer or a gear: it looks organic, it bulges②

and curves

like a blob of liver , but its surface is shaggy③

with waving molecular

chains.

Walking up to its edge, you can see that the membrane wrapping

the cell is fluid ( cell walls are for stiff things like plants) , and the mem-

brane molecules are in constant motion. On an impulse, you thrust your

arm through the membrane and poke④

around inside. You can feel many

proteins bumping and tumbling around in the cell’s interior fluid, and a

crisscrossing⑤

network of protein cables and beams. Somewhere inside

are the molecular machines that made all these proteins, but such bits of

machinery are embedded in a roiling, organic mass. When you pull your

arm out, the membrane flows closed behind. The fluid, dynamic struc-

ture of the cell is largely self healing. That’s what let scientists perform

experimental surgery on cells with the old, crude tools of the twentieth

century: They didn ’t need to stitch up the holes they made when they

poked around inside.

·14·第二章 深入分子世界的探险

Page 45: Mysteries of the Nanotechnique

2 Ä. 6 生命中的分子世界

即使是回到现在, 分子生物学的研究表明更

小、更完美的机器, 诸如细胞中的蛋白质分子是存

在的。一个模拟的人的细胞( 放在这儿的原因是

因为早先的参观者想看看尺寸的比较) 被放在芯

片上面, 在那台较小的计算机旁边。旅游指南指

出, 这场模拟在这一点上欺骗了您, 就是让这个细

胞表现出在水中而不是在空气中的行为。与细胞

相比, 那台纳米计算机显得十分矮小; 细胞在芯片

表面铺开, 高耸入天, 仿佛一座小山一般。沿着它

边缘的自然的小路行走, 您会跨越许多晶体管的

高原, 而且要花上您大约一个小时的时间。您只

要看上一眼, 就能分辨出它和纳米计算机或者齿

轮有非常大的差异。它看起来像有机物, 膨胀扭

曲, 如同一个有生命的物体, 但它的表面是粗糙不

平的, 布满了不停挥动的分子长链。

走近细胞的边缘, 您可以看到包在细胞外面

的细胞膜是流动的( 细胞壁是刚性生物体, 如植

物所特有的 ) , 而且细胞膜分子在不停地运动。

您一时冲动把手臂插进了细胞膜内, 并在里头搅

动。您能感到许多蛋白质在细胞内的液体中翻腾

碰撞, 组成一个十字型的蛋白质缆索和桥梁的网

络结构。在里头的某处安放着制造所有这些蛋白

质的机器, 但这些小机器都镶嵌在一团旋转着的

有机物质中。当您拉出手臂时, 细胞膜重新愈合

在一起。这种细胞的液体动态的结构在很大程度

上是能够自我修复的。该特性使得科学家能够使

用 20 世纪的古老原始的工具对细胞进行试验性

的外科手术: 他们不需要把刺入细胞时弄出的洞

重新缝合起来。

① dwarf [ dw�: f] vt .

to cause to appear

smaller or to seem infe-

rior 使变得 , 显得矮小

② bulge [ b�ld�] v.

to jut out; to bend out-

ward; to become swol-

len or protuberant 凸

出 , 膨胀

③ shaggy [ ��ɡi ]

a dj. covered with or

consisting of long,

coarse, or matted hair;

having a rough nap,

texture, or surface 毛

发粗浓杂 乱的 , 蓬松

的 , 表面粗糙的

④ poke [ p�uk] vi . to

urge or stir by prodding

or jabbing; to cause to

prod; to move or act

slowly or aimless ly 戳 ,

刺 , 捅 , 刺探 , 闲荡

⑤ crisscrossing

[ �kriskr�s i� ] a dj.

mar-ked or charact er-

ized by intersecting

lines 十字形的

·24· 纳米世界探秘

Page 46: Mysteries of the Nanotechnique

Even a single human cell is huge and complex. No real thinking

being could be as small as you are in the simulation: A simple computer

without any memory is twice your height, and the larger nanocomputer,

the size of an apartment complex, is no smarter than one of the submo-

ronic①

computers of 1990. Not even a bendable finger could be as small

as your simulated fingers: in the simulation, your fingers are only one at-

om wide, leaving no room for the slimmest possible tendon, to say noth-

ing of nerves.

For a last look at the organic world, you gaze out past the horizon

and see the image of your own, full-sized thumb holding the chip on

which you stand. The bulge of your thumb rises ten times higher than

Mount Everest. Above, filling the sky, is a face looming like the Earth

seen from orbit, gazing down. It is your own face, with cheeks the size

of continents. The eyes are motionless. Thinking of the tourguide’s data,

you remember: The simulation uses the standard mechanical scaling

rules, so being 40 million times smaller has made you 40 million times

faster. To let you pull free of surfaces, it increased your strength by

more than a factor of 100, which increased your speed by more than a

factor of 10. So one second in the ordinary world corresponds to over 400

million here in the simulation. It would take years to see that huge face

in the sky complete a single eyeblink.

Enough. At the command“ Get me out! " , the molecular world

vanishes, and your feeling of weight returns as the suit goes slack②

. You

strip off the video goggles③—and hugely, slowly, blink.

·34·第二章 深入分子世界的探险

Page 47: Mysteries of the Nanotechnique

即使单个的人类细胞也是巨大而复杂的。没

有一个能思考的人会像您在这场模拟中那么小,

以至于一台没有内存的简单纳米计算机有您两倍

那么高, 而如同一套复合式公寓大小的那台较大

的纳米计算机, 并不比 20 世纪 90 年代的近于愚

蠢的计算机聪明。没有一个能弯曲的手指和您的

模拟的手指一样小: 在这场模拟中, 您的手指只有

一个原子宽, 甚至不能容纳最细小的肌腱, 更不要

说是神经了。

作为对这个有机世界的最后一瞥, 您向地平

线以外看去, 看见了您自己的影像, 一个拿着您正

站着的芯片的原来大小的大拇指。您大拇指的凸

起部分看起来有珠穆朗玛峰的十倍那么高。在其

上布满整个天空的是您的正在朝下看的脸, 如同

在太空轨道上眺望地球的幻景。这可是您自己的

脸, 有着如大洲一样大的脸颊, 眼睛凝视不动。想

起旅游指南中的数据, 您记起来了: 这场模拟采用

的是标准力学的比例缩放规则, 因此您比原来小

了 4000 万倍, 意味着您运动比原来快了 4000 万

倍。为了使您从表面的吸引中解脱出来, 您的力

量增大了不止 100 倍, 这也使您的运动速度加快

了超过十倍。于是, 在平常世界中的一秒钟, 相当

于模拟中的四亿秒。换句话说, 要花上数以年计

的时间才能看见空中的那张巨大的脸庞完成一次

眨眼!

您已经看够了。随着命令“让我出去!”分子

世界突然消失了, 当您的外衣松弛下来, 您又恢复

了对重力的感觉。您摘下可视护目镜, 使劲地、慢

慢地眨了眨眼。

① submoronic

[ s�bm��r�nik ] adj.

less than completely,

normally mentally re-

tarded; somewhat , al-

most , or nearly very

stupid 次 低 能的 , 次

鲁钝的

② sl ack [ sl�k ] adj.

not tight or taut ; lac-

king in usual or normal

firmness and steadiness

松弛的

③ goggles [ �g�g ( �)

lz] n. protective glas-

ses set in a flexible

frame ( as of rubber or

plastic) that fits snugly

against the face ( 复

数 ) 风镜 , 护目镜

·44· 纳米世界探秘

Page 48: Mysteries of the Nanotechnique

纳米技术, 微观世界的魔术师

纳米技术指的是通过精确地放置原子和分子的

位置来建立和制造物质的能力。科学家使用各种仪

器操纵原子———重新安排和组合它们。这需要高超

的实验技术, 也产生了许多精美的艺术品。不要忘

了这些可是由微小的原子拼成的杰作。

Page 49: Mysteries of the Nanotechnique

Chapter 3 Contr olling and

Oper ating Atoms

Coal and diamonds, sand and computer chips, cancer and healthy

tissue: throughout history, variations in the arrangement of atoms have

distinguished the cheap from the cherished①

, the diseased from the

healthy. Arranged one way, atoms make up soil, air, and water; ar-

ranged another, they make up ripe strawberries②

. Arranged one way,

they make up homes and fresh air; arranged another, they make up ash

and smoke.

Our ability to arrange atoms lies at the foundation of technology.

We have come far in our atom arranging, from chipping flint③

for arrow-

heads to machining aluminum④

for spaceships. We take pride in our

technology, with our lifesaving drugs and desktop computers. Yet our

spacecraft are still crude, our computers are still stupid, and the mole-

cules in our tissues still slide⑤

into disorder, first destroying health, then

life itself. For all our advances in arranging atoms, we still use primitive

methods. With our present technology, we are still forced to handle at-

oms in unruly herds.

But the laws of nature leave plenty of room for progress, and the

pressures of world competition are even now pushing us forward. For bet-

ter or for worse, the greatest technological breakthrough in history is still

to come.

·44· 纳米世界探秘

Page 50: Mysteries of the Nanotechnique

第三章 控制和操纵微小的原子

煤炭和金刚石, 沙子和计算机芯片, 癌变的和

健康的组织: 纵观整个历史, 各种各样的原子安排

不同, 使便宜的东西与珍贵的区分开, 使患病的组

织与健康的区分开。以一种方式安排原子, 构成

土壤、空气和水; 以另一种方式安排, 就长成了熟

透的草莓。以一种方式安排原子, 它们构成家和

新鲜空气; 以另一种方式安排, 就变成了灰和烟。

我们重新组合原子的能力是以我们的技术发

展为基础的。从打碎燧石做成箭头, 到用铝合金

制成航天飞机, 我们已经在安排原子这方面做得

很多了。挽救生命的药物, 台式计算机, 我们的确

为我们的技术发展感到自豪。但是, 我们的宇宙

飞船还很粗糙, 我们的计算机还很愚蠢, 我们身体

内的分子还会不知不觉地陷入混乱, 先是损伤健

康, 然后就会使生命中止。现在我们所有的安排

原子的成就, 还只是使用了最简单的方法。以我

们现有的技术, 原子仍然还是一群不听使唤的野

兽。

但是自然的法则还是为继续发展留下了余

地, 世界竞争的压力现在也还在推动我们前进。

不论会变得更好还是更糟, 历史上最伟大的突破

依然要到来。

① cherish [ �t�eri�] v.

to care for tenderly,

love 珍爱 , 爱惜

② s trawberry

[ �str��b�ri ] n . the

juicy edibl e usually red

fruit of any of several

low-growing temperate

herbs 草莓

③ flint [ flint ] n.

massive hard quartz

that produces a spark

when struck by steel 燧

④ aluminum

[ ��l u�min�m] n. 铝

⑤ slide ( into )

[ slaid] v. 不知不觉地

陷入

·54·第三章 控制和操纵微小的原子

Page 51: Mysteries of the Nanotechnique

3 . 1 Wha t Are th e Ma in Tools Use d for Mole c ula r Engine e ring?

Almost by definition, the path to molecular nanotechnology must lead

through molecular engineering. Working in different disciplines①

, driven

by different goals, researchers are making progress in this field. Chemists

are developing techniques able to build precise molecular structures of

sorts never before seen. Biochemists are learning to build structures of fa-

miliar kinds, such as proteins②

, to make new molecular objects.

In a visible sense, most of the tools used by chemists and biochem-

ists are rather unimpressive③

. They work on countertops cluttered with

dishes, bottles, tubes, and the like, mixing, stirring④

, heating, and

pouring liquids—in biochemistry, the liquid is usually water with a trace

of material dissolved in it. Periodically, a bit of liquid is put into a lar-

ger machine and a strip of paper comes out with a graph printed on it.

As one might guess from this description, research in the molecular sci-

ences is usually much less expensive than research in high-energy phys-

ics ( with its multibillion-dollar particle accelerators ) or research in

space ( with its multibillion-dollar spacecraft ) . Chemistry has been

called“ small science" , and not because of the size of the molecules.

Chemists and biochemists advance their field chiefly by developing

new molecules that can serve as tools, helping to build or study other

molecules. Further advances come from new instrumentation, new ways

to examine molecules and determine their structures and behaviors. Yet

more advances come from new software tools, new computer-based tech-

niques for predicting how a molecule with a particular structure will be-

have. Many of these software tools let researchers peer⑤

through a screen

into simulated molecular worlds as if they were traveling into the real mo-

lecular world.

·64· 纳米世界探秘

Page 52: Mysteries of the Nanotechnique

3 Ä. 1 分子工程的主要工具

差不多就像是按定义规定的那样, 通向分子纳

米技术的道路必然要经过分子工程学。在不同学

科领域工作, 为了不同目标而努力的研究者们正在

这一领域前进。化学家们发展技术, 能够精确地建

立从未见过的各种各样的新结构。生物化学家们

学习建立为人们所熟悉的结构, 比如蛋白质, 以便

能够制造新的分子物体。

从视觉的角度而言, 化学家和生物化学家使

用的工具大部分都不能让人留下深刻的印象。他

们工作的实验台上, 凌乱地摆放着盘盘碟碟、瓶瓶

罐罐、各种试管以及诸如此类的东西, 他们所做的

也无非是混合、搅拌、加热, 还有把液体倒来倒

去———在生物化学中, 这些液体通常都是水, 有很

少量的其他材料溶解在其中。时不时地, 一点液

体被加到一个大一些的机器中, 一张打印了图形

的纸从机器中卷出。人们根据这些描述, 也许会

猜测, 分子科学领域内的这些研究通常比在高能

物理领域内的研究( 它们有价值几百万美元的粒

子加速器) 和空间科学的研究 ( 它们的宇宙飞行

器价值几百万美元) 要便宜得多。化学曾经被称

为“小科学”, 当然不是因为分子的大小而得来

的。

化学家和生物化学家们在他们研究领域内的

进展首先是发展得到新的分子, 能够作为工具帮

助他们建立或者研究其他分子。更深入的发展来

自新仪器、新的检测和确定分子结构和行为的方

法。但是最主要的发展来自新的软件工具、新的

基于计算机的技术的使用, 能够预言具有特殊结

构的分子的行为。许多这样的软件让研究者可以

透过屏幕窥探模拟的分子世界, 就像在真正的分

子世界中旅行一样。

① discipline

[ �disipli n] n. a field of

study 学科

② protein [ �pr�uti�n ]

n. 蛋白质

③ unimpressive adj.

未留下深刻印象的

④ stir [ s t��( r) ] v. to

move around and mix

( esp. something main-

ly li quid) by means of

an object such as a

spoon 搅拌

⑤ peer [ pi�( r) ] v.

to look narrowly or cu-

rious ly 窥探

·74·第三章 控制和操纵微小的原子

Page 53: Mysteries of the Nanotechnique

Of these fields, it is biomolecular science that is most obviously de-

veloping tools that can build nanotechnology, because biomolecules al-

ready form molecular machines, including devices resembling crude as-

semblers. This path is easiest to picture, and can surely work, yet there

is no guarantee①

that it will be fastest: research groups following another

path may well win. Each of these paths is being pursued worldwide, and

on each, progress is accelerating.②

Physicists have recently contributed new tools of great promise for

molecular engineering. These are the proximal③

probes, including the

scanning tunneling microscope ( STM) and the atomic force microscope

( AFM) . A proximal-probe device places a sharp tip in proximity to a

surface and uses it to probe ( and sometimes modify) the surface and any

molecules that may be stuck to it.

igure 2 Illustr ation of STM a nd AFM

The scanning tunneling microscope ( STM, on the left) ima ges sur-

fa ces well enough to show individual a toms, sensing surface contours by

monitoring the current jumping the gap between tip and surfa ce. The a -

tomic force microscope ( AFM, on the right) senses surfa ce contours by me-

cha nical contact, drawing a tip over the surface and optically④

sensing itsmotion as it pa sses over single-atom bumps.

·84· 纳米世界探秘

Page 54: Mysteries of the Nanotechnique

在这些领域中, 生物分子科学是最明显可以

用于建立纳米技术的了, 因为现有的生物分子已

经构成了类似粗糙聚集物之类的装置的纳米机

械。这样一种方法是最容易想像的, 也肯定能成

功, 但是却不能保证最快获得成功: 沿着其他道路

前进的研究组也同样能成功。在全世界范围内,

各种途径都在被追踪使用, 而且每种途径都在加

速进步。

物理学家最近为分子工程学提供了强有力支

持的新工具。这就是“近距离探针技术”, 包括

“扫描隧道显微镜 ( STM) ”和“原子力显微镜

( AFM) ”。近距离探针技术将一根很细的针尖靠

近表面并使用针尖来探测 ( 有时也用来修改) 表

面以及黏附在表面上的任何分子。

[ 附 图 2 说 明文 字 ] 扫 描 隧道 显 微镜

( STM, 左侧图) 通过监测跳过针尖和表面之间缝

隙的电流感知表面的轮廓, 显示出表面精细到单

个原子的图像。原子力显微镜 ( AFM, 右侧图 ) 通

过机械接触感觉表面的轮廓, 针尖在表面上拖动,

通过光学仪器监测针尖跨过单个原子时的颠簸运

动。

① guarantee

[ g�r�n�ti�] n. an as-

surance for the fulfill-

ment of a condition 保

② accelerate

[ �k�sel�reit ] v. to

cause to move faster 加

速 , 促进

③ proximal

[ �pr�ksim ( �) l ] a dj.

situated close to 最接近

④ optically [ ��ptik( �)

l ] a dv. of or relating to

the science of optics 光

学地

·94·第三章 控制和操纵微小的原子

Page 55: Mysteries of the Nanotechnique

3 . 2 Dire ctly P hoto of Atoms

The first of the Scanning Probe Microscopes was the Scanning Tun-

neling Microscope ( STM) developed in the late 1970s and early 1980s

by Gerd Karl Binnig and Heinrich Rohrer at an IBM research lab in Zur-

ich, Switzerland, earning these scientists, along with Ernst Ruska, the

1986 Nobel in Physics. The STM was initially used as an imaging de-

vice, capable of resolving individual atoms by recording the quantum①

tunneling current that occurs when an extremely②

sharp conductive probe

tip ( usually tungsten③

, nickel, gold, or PtIr) is brought to within about

one atomic diameter of an atom, and then adjusting the position of the

tip to maintain a constant current as the tip is scanned over a bumpy a-

tomic surface. A height change as small as 0. 1 nm can cause tunneling

current to double. The tip is connected to an arm that is moved in

threedimensions by stiff ceramic piezoelectric④

transducers that provide

subnanometer positional control. If the tip is atomically sharp, then the

tunneling current is effectively confined to a region within ~0. 1 nm of

the point on the surface directly beneath the tip, thus the record of tip

adjustments generates an atomicscale topographic map of the surface.

STM tips can scan samples thousands times every second, although slo-

wer scans are used for very rough surfaces. In some modern STMs, the

sample is moved while the tip is held stationary.

A major limitation of the STM was that it only worked with conduc-

ting materials such as metals or semiconductors⑤

, but not with insula-

tors⑥

or biological structures such as DNA. To remedy this situation, in

1986 Binnig, Quate and Gerber developed the Atomic Force Microscope

( AFM) which is sensitive directly to the forces between the tip and the

sample, rather than a tunneling current. An AFM can

·05· 纳米世界探秘

Page 56: Mysteries of the Nanotechnique

3 Ä. 2 直接给原子拍照

最早出现的扫描探针显微镜技术是在 70 年

代末、80 年代初由 IBM公司在瑞士苏黎世的研究

实验室的格尔德·卡尔·比尼西和亨利西·罗勒

所发展的扫描隧道显微镜, 这两位科学家和欧内

斯特·路斯卡一起获得了 1986 年的诺贝尔物理

学奖。STM 最初作为一种能够分辨单个原子的

成像装置来使用, 当一个特别尖的导电探针针尖

( 通常用钨、镍、金或铂铱合金制成) 非常靠近原

子, 以至于其间的距离在一个原子半径之内时, 两

者之间产生的量子隧道电流被记录下来, 在针尖

扫过颠簸不平的原子表面时不断调整针尖的高

度, 以便保持电流强度不变。针尖高度小到 0. 1

纳米的变化, 也会引起隧道电流两倍的变动。针

尖被连接在一个可以进行三维运动的固定臂上,

通过坚硬的压电陶瓷变换器提供亚纳米级的位置

控制。如果针尖具有原子级的尖锐度, 隧道电流

被有效地局限在针尖正下方那一点附近, 在表面

上大约为 0. 1 纳米的区域内, 这样记录针尖高度

的调整就产生了原子尺度的表面地形图。STM

针尖可以每秒扫描样品几千次, 但是对于非常粗

糙的表面要使用更慢的扫描速度。在某些现代的

STM仪器中, 样品是移动的, 而针尖被固定不动。

STM的主要局限在于它只能应用于导电的

材料, 比如金属或者半导体, 而对于绝缘体和像

DNA 这样的生物分子结构就无能为力了。为了

弥补这一缺陷, 比尼西、夸特和格尔伯于 1986 年

发展了原子力显微镜( AFM) , 它直接检测针尖和

样品之间的力, 而不再是隧道电流。AFM至少可

① quantum

[ �kw�nt�m] n.

quantity, amount 量子

② extremely

[ ik�stri�mli ] a dv. to

an extreme extent 特别

③ t ungs ten

[ �t��st ( �) n ] n.

called al so wolfram 钨

④ piezoelect ric

[ pai�i�zoui�lektrik ]

a dj. of, relating to,

marked by, or functio-

ning by means of piezo-

electricity 压电 ( 现象 )

⑤ semiconductor

[ semik�n�d�kt�( r ) ]

n . 半导体

⑥ i nsulator

[ �insjuleit�( r ) ] n .

one that insulates 绝缘

·15·第三章 控制和操纵微小的原子

Page 57: Mysteries of the Nanotechnique

operate in at least three modes. In“ attractive " or noncontact mode

( NCAFM) , the tip is held some tens of nanometers above the sample

surface where it experiences the attractive combination of van der Waals,

electrostatic, or magnetostatic forces. In“ repulsive" or contact mode

( CAFM) , the tip is pressed close enough to the surface for tip and sam-

ple electron clouds to overlap, generating a repulsive electrostatic force

of ~10 nN, much like the stylus①

riding a groove in a record player.

There is also intermittentcontact mode ( ICAFM) , which is sometimes

called“ tapping" mode. In any of these modes, a topographic map of the

surface is generated by recording the upanddown motions of the cantile-

ver②

arm as the tip is scanned. These motions may be measured either

by the deflection of a light spot reflected from a mirrored surface on the

cantilever or by tiny changes in voltage generated by piezoelectric trans-

ducers attached to the moving cantilever arm. Typical AFM cantilevers

have lengths of 100-400 microns, widths of 20-50 microns, and thick-

nesses between 0 . 4 to several microns. AFM tips may be positioned with

~0. 01 nm precision, compressive loads as small as 110 pN are routine-

ly measured, and the tips may be operated even in liquids.

Vetter notes that STM technology has also improved, reaching reso-

lutions of ~0. 001 nm in the z direction ( vertical) and ~0. 01 nm in

the xy plane, well beyond atomic resolution. The STM remains the in-

strument with the best resolution. The conductingsurface limitation has

been overcome in some cases by coating the target with an extremely thin

conducting layer, developing tips with multiple electrodes③

, and coating

a conducting substrate④

with a sample so thin as to allow enough conduc-

tion even if the sample is characterized as an insulator in bulk.

·25· 纳米世界探秘

Page 58: Mysteries of the Nanotechnique

以以三种方式工作。在“吸引模式”或称非接触

模式( NCAFM) 中, 针尖停在距离样品表面几十纳

米的地方, 受到包括范德华作用力 ( 分子间作用

力) 、静电作用力和静磁作用力在内的吸引力。

在“排斥模式”或称接触模式 ( CAFM) 中, 针尖被

推压到距离样品足够近, 使得针尖和样品的电子

云有重叠, 而产生大约 10 纳牛的静电排斥力, 与

唱针在电唱机唱片的凹槽中滑动时很相似。还有

一种间断接触工作模式 ( ICAFM) , 有时也叫做

“轻敲模式”。在任何一种工作模式中, 表面地形

图都是从记录针尖扫描时悬臂的上下运动而产生

的。这种运动可以通过观察悬臂平滑如镜的表面

所反射光点的偏转, 或者随着悬臂移动, 压电变换

器产生的电压的微小变化来测量。典型的 AFM

悬臂有 100 - 400 微米长, 20 - 50 微米宽, 厚度在

0 À. 4 到几个微米之间。在常规的标准中, AFM 的

针尖可以准确定位到大约 0. 01 纳米的精度, 承载

压力小到 110 皮牛, 针尖甚至可以在液体中操作。

沃特注意到 STM 技术也在发展改进之中, 现

在 z 方向( 垂直方向 ) 的分辨率已经达到了大约

0 . 001 纳米, xy 平面内的分辨率也达到了大约

0 . 01纳米, 分辨率远远超过了原子尺度。STM 保

持了具有最好分辨率的仪器的称号。只能检测导

电表面的局限也在很多情况下得到了克服, 比如

在目标样品表面覆盖一层极薄的导电层, 发展中

的带有多个电极的针尖, 或者将一薄层绝缘的样

品覆盖在导电的底层基质上, 尽管成块的样品表

现为绝缘体, 但是在很薄的情况下却可以得到足

够的导电性。

① s tylus [ �s tail�s ] n.

a cutting tool used to

produce an original re-

cord groove during disc

recording 唱针

② cantilever

[ �k�ntil i�v�( r) ] n . a

projecting beam or

member supported at

only one end 悬臂

③ electrode

[ i�lektr�ud] n. a con-

ductor used to establish

electrical contact with a

nonmetallic part of a

circuit 电极

④ substrate

[ �s�bstreit ] n . sub-

st ratum 底层 , 下层

·35·第三章 控制和操纵微小的原子

Page 59: Mysteries of the Nanotechnique

By 1998, the growing family of SPMs included at least forty types of

instruments and techniques that relied on interactions between a scanned

surface and a nearby probe. Different instruments measured different

forces and thus could be used to characterize different properties of the

surface. For example, friction①

force microscopes ( FFMs) , magnetic

force microscopes ( MFMs) , shear②

force microscopes ( ShFMs) , scan-

ning capacitance③

microscopes ( SCMs) , scanning conducting ion micro-

scopes, chemical force microscopes, and electrostatic force microscopes

( EFMs) measured frictional drag or other binding forces. Magnetic reso-

nance force microscopes ( MRFM) used a field generated from a small

magnet mounted on the tip of the cantilever arm to probe nuclear magnetic

moments in a small region on the surface of the sample, imaging atom

types and even detecting the spin of a single electron.

3 . 3 Move Atoms a s You Wa nt

To those thinking in terms of nanotechnology, STMs immediately

looked promising not only for seeing atoms and molecules but for manipu-

lating them. This idea soon became widespread among physicists. As Cal-

vin Quate stated in Physics Toda y in 1986,“Some of us believe that the

scanning tunneling microscope will evolve. . . that one day [ it ] will be

used to write and read patterns of molecular size. " This approach was

suggested as an path to molecular nanotechnology in Engines of Creation,

again in 1986.

By now, whole stacks of scientific papers document the use of STM

and AFM tips to scratch, melt, erode④

, indent, and otherwise modify

surfaces on a nanometer scale. These operations move atoms around, but

with little control. They amount to bulk operations on a tiny scale—one

fine scratch a few dozen atoms wide, instead of the billions that result

·45· 纳米世界探秘

Page 60: Mysteries of the Nanotechnique

from conventional polishing⑤

operations.

·55·第三章 控制和操纵微小的原子

Page 61: Mysteries of the Nanotechnique

到 1998 年为止, 仍在发展中的扫描探针显微

技术家族已经包含了至少 40 种仪器和技术了, 它

们都依赖于被扫描的表面和接近的探针之间的各

种相互作用。不同的仪器测量不同的力, 从而得到

表面 的不 同 特征。举 例来 说, 摩 擦力 显 微 镜

( FFMs) 、磁力显 微镜 ( MFMs ) 、剪切 力显微 镜

( ShFMs) 、扫描电容显微镜( SCMs) 、扫描电导离子

显微镜、化学力显微镜、以及静电力显微镜( EFMs)

测量拖动时的摩擦力以及其他各种结合力。磁共

振力显微镜( MRFM) 使用一个小型的安装在悬臂

尖端的磁铁产生磁场, 探测样品表面上一个很小区

域内的原子核磁力产生的力矩, 得到原子类型的图

像, 甚至可以探测单个电子的自旋状态。

3 Ä. 3 随心所欲移动原子

对于那些思考纳米技术方面问题的人, STM

技术立刻被认为不仅对于观察原子和分子有用,

也同样能用于制造分子。这一想法很快在物理学

家中传遍了。正如 1986 年卡尔文·夸特在《今日

物理》中所宣称的,“我们中的一些人相信, 扫描

隧道显微镜将会发展⋯⋯有一天它将会被用于在

分子尺寸上书写或阅读图案。”同样在 1986 年, 在

《创造的火车头》中, 这种方法被建议为通向分子

纳米技术的一条途径。

到如今, 成堆的科学论文证明了 STM 和 AFM

在刮擦、融化、腐蚀、刻痕以及在纳米尺度修改表面

的其他方式中的应用。这些操作使原子四处移动,

但是缺乏精确的控制。它们提供了在微小尺寸上

的操作———一条只有几个原子那么宽的精细刮痕,

而不是像普通抛光操作产生的上十亿条痕迹那样。

① friction

[ �frik�( �) n ] n. the

force that res ists rela-

tive motion between

two bodies in contact

摩擦力

② shear [ �i�( r ) ] n .

any of various cut ting

tools or machines oper-

ating by the action of

opposed cutting edges

of metal 剪切

③ capaci tance

[ k��p�sit�ns] n. the

property of an elect ric

nonconductor that per-

mits the storage of en-

ergy 电容

④ erode [ i�r�ud ] v.

to produce or form by

eroding 腐蚀

⑤ polish [ �p�uli�] v.

to make smooth and

glossy usually by fric-

tion 抛光

·65· 纳米世界探秘

Page 62: Mysteries of the Nanotechnique

In 1987, Becker, Golovchenko, and Swartzentruber at AT&T Bell

Laboratories announced that they had used an STM to deposit small blobs

on a germanium surface. Each blob was thought to consist of one or a

few germanium atoms. Shortly thereafter , IBM researchers John Foster,

Jane Frommer, and Patrick Arnett achieved a milestone in STM-based

molecular manipulation. Of this team, Foster and Arnett attended the

First Foresight①

Conference on Nanotechnology, where they told us the

motivations behind their work.

Foster came to IBM from Stanford University, where he had comple-

ted a doctorate in physics and taught at graduate school. The STM work

was one of his first projects in the corporate world. He describes his col-

league Arnett as a former“ semiconductor jock②

" involved in chip crea-

tion at IBM’s Burlington and Yorktown locations. Besides his doctorate in

physics, Arnett brought mechanical-engineering training to the effort.

Arnett explains what they were trying to do:“ We wanted to see if

you could do something on an atomic scale, to create a mechanism for

storing information and getting it back reliably. " The answer was yes. In

January 1988, the journal Na ture carried their letter reporting success in

pinning an organic molecule to a particular location on a surface, using

an STM to form a chemical bond by applying an electrical pulse③

through

the tip. They found that having created and sensed the feature, they

could go back and use another voltage pulse from the tip to change the

feature again: enlarging it, partly erasing it, or completely removing it.

·75·第三章 控制和操纵微小的原子

Page 63: Mysteries of the Nanotechnique

1987 年, AT&T 贝尔实验室的贝克尔、格罗威

钱科和施瓦岑特鲁伯宣布他们已经使用 STM 在

锗表面上沉积了若干小斑点。每个斑点被认为由

一个或几个锗原子组成。此后不久, IBM 的研究

人员约翰·福斯特、简·福罗默和帕特里克·阿

耐特达到了在基于 STM 的分子操作技术上里程

碑式的成就。这个研究组的福斯特和阿耐特参加

了第一届纳米技术研究前沿会议, 在那里他们告

诉了我们藏在他们工作后的研究动机。

福斯特在斯坦福大学获得博士学位并在研究

生院任教, 后来到了 IBM。STM 的研究是他在公

司里最初的几个项目之一。他把他的同事阿耐特

描述成前任“半导体运动员”, 与 IBM 在伯灵顿和

约克镇的芯片设计工作有关。除了他的物理学博

士学位, 阿耐特还有着机械工程的训练背景。

阿耐特解释他们想要做的工作:“我们想看

看你能否在原子尺度上做些什么, 比如建立一种

可以储存信息并使它可靠地恢复的机制。”答案

是“能”。1988 年 1 月,《自然》杂志上发表了他

们的研究通讯, 报道了他们使用 STM 技术, 应用

针尖电脉冲形成化学键, 从而成功地将一个有机

分子钉在表面上一个特定位置上。他们已经建立

并能够感知到这个特征标记, 他们也能返回去, 用

另一个来自针尖的电脉冲改变这一特征标记: 扩

大它, 部分擦除它, 或者完全清除它。

① foresight [ �f��sait ]

n . an act of looking

forward; also, a view

forward 前沿

② jock [ d��k ] n.

athlete; especi ally a

college athlete 运动员

③ pulse [ p�ls ] n .

the palpable beat resul-

ting from such pulse as

detected in a superfi-

cial artery; also: the

number of individual

beats in a speci fied

time period ( as one

minute ) 脉冲

·85· 纳米世界探秘

Page 64: Mysteries of the Nanotechnique

IBM quickly saw a commercial use, as explained by Paul M. Horn,

acting director of physical sciences at the Thomas J. Watson Research

Center:“This means you can create a storage element the size of an at-

om. Ultimately①

, the ability to do that could lead to storage that is ten

million times more dense than anything we have today. ”A broader vi-

sion was given by another researcher, J. B. Pethica, in the issue of Na -

ture in which the work appeared:“The partial erasure reported by Foster

et al. implies that molecules may have pieces deliberately②

removed,

and in principle be atomically‘edited’, thereby demonstrating one of the

ideals of nanotechnology. "

Foster’s group succeeded in pinning single molecules to a surface,

but they couldn’t control the results—the position and orientation③—pre-

cisely. In April 1990, however, another group at the same laboratory

carried the manipulation of atoms even further , bringing a splash④

of

publicity. Admittedly, the story must have been hard to resist: it was

accompanied by an STM picture of the name IBM, spelled out with thir-

ty-five precisely placed atoms ( Figure 3 ) . The precision here is com-

plete, like the precision of molecular assembly: each atom sits in a dim-

ple⑤

on the surface of a nickel crystal; it can rest either in one dimple or

in another, but never somewhere between.

Figur e 3 W or ld’s Sma llest Logo-35 Xenon At oms

·95·第三章 控制和操纵微小的原子

Page 65: Mysteries of the Nanotechnique

IBM 很快看到了它的商业用途。托马斯· J.

沃森研究中心的物理科学部代理主任保罗·M.

豪恩解释说:“这意味着你可以建立一个原子大

小的记忆单元。最后, 这种能力能使我们达到比

现在使用的任何材料更高 1000 万倍的记忆密

度。”J. B. 珀西卡在《自然》中描述这一工作的文

章中, 给出了更富于想象力的前景:“福斯特等人

报道的部分擦除暗示了分子可能含有可以被故意

清除的小片, 原则上可以在原子尺度上‘编辑’,

从而显示了纳米技术的目标之一。”

福斯特的研究组成功地将单个原子钉在了表

面上, 但是他们不能精确地控制结果———分子的

位置和方向。可是, 1990 年 4 月, 同一个实验室

的另一个研究组将原子操纵技术推进了一步, 在

公众中引起了轰动。无可否认, 这一奇迹让人无

法抗拒: 它包含了一张 IBM 公司名字的 STM 照

片, 用 35 个精确定位的原子拼成( 图 3) 。这里的

定位是完全精确的, 像精确的分子装配一样: 每个

原子坐落在镍晶体表面的小坑中的; 它可以保持

在这个小坑中, 或者那个小坑中, 但决不会停在两

个小坑中间。

① ultimately

[ ��ltim�tli ] a dv. in

the end; finally, funda-

mentally 最后

② deliberately

[ di�lib�r�t li ] a dv.

characteri zed by aware-

ness of the conse-

quences 故意地

③ orientation

[ ��ri�n�tei�( �) n] n.

the act or process of o-

rienting or of being ori-

ented 方向

④ spl ash [ spl�f] n. a

vivid impression crea-

ted especially by os ten-

tatious act ivit y or ap-

pearance 轰动

⑤ dimple [ �dimp( �)

l ] n . a depression or

indentation on a sur-

face 小坑

·16·第三章 控制和操纵微小的原子

Page 66: Mysteries of the Nanotechnique

Donald Eigler , the lead author on the Na ture paper describing this

work, sees clearly where all this is leading:“For decades, the electron-

ics industry has been facing the challenge of how to build smaller and

smaller structures. For those of us who will now be using individual at-

oms as building blocks, the challenge will be how to build up structures

atom by atom. "

Proximal probes have advantages as a tool for developing nanotechn-

ology, but also weaknesses. Today, their working tips are rough①

and ir-

regular, typically even rougher than shown in Figure 3. To make stable

bonds form, John Foster’s group used a pulse of electricity, but the re-

sults proved hard to control. The“ IBM" spelled out by Donald Eigler’s

group was precise, but stable only at temperatures near absolute zero—

such patterns②

vanish at room temperature because they are not based on

stable chemical bonds. Building structures that are both stable and pre-

cise is still a challenge. To form stable bonds in precise patterns is the

next big challenge.

John Foster says,“We ’re exploring a concept which we call‘ mo-

lecular herding③

’, using the STM to‘herd’ molecules the way my Shet-

land sheep dog would herd sheep. . . Our ultimate goal with molecular

herding is to make one particular molecule move to another particular

one, and then essentially force them together. If you could put two mole-

cules that might be small parts of a nanomachine on the surface, then

this kind of herding would allow you to haul④

one of them up to the oth-

er. Instead of requiring random motion of a liquid and specific chemical

lock-and-key interactions to give you exactly what you want in bringing

two molecules together [ as in chemical and biochemical approaches] , you

could drive that reaction on a local level with the STM. You could use the

STM to put things where you want them to be. "

·26· 纳米世界探秘

Page 67: Mysteries of the Nanotechnique

唐纳德·爱格勒作为《自然》上描述这一工

作的文章的第一作者, 很明白这一切将导向什么

结果:“几十年来, 电子工业面对着如何制作越来

越小的电路的挑战。对于我们中那些将用原子作

为建造单元的人来说, 挑战将变成如何一个原子

一个原子的建立起电路。”

近距离探针技术作为发展纳米技术的工具有

它的优点, 但也有缺点。今天, 他们所使用的针尖

既粗糙又不规则, 一般而言比图 3 中显示的图案

还要粗糙些。为了形成稳定的化学键, 约翰·福

斯特的研究组使用了电脉冲, 但结果还是很难以

控制。唐纳德·爱格勒的研究组拼出的“ IBM”很

精确, 但是只能在接近绝对零度下保持稳定———

由于不是以稳定的化学键为基础的, 在室温下这

种图案会很快消失。建立起既稳定又精确的结构

仍然是一种挑战。以精确的模式形成稳定的化学

键则是下一个大的挑战。

约翰·福斯特说:“我们正在探索一个我们

称之为‘分子放牧’的概念, 用 STM‘放牧’分子,

就像设得兰牧羊犬放牧羊群那样⋯⋯我们的分子

放牧的最终目标是, 将一个特定的原子移动到另

一个特定的位置, 然后从根本上使之固定。如果

你把可能成为纳米机械小部分的两个分子放到表

面上, 那么这种分子放牧将允许你拖动其中一个

到另外一个上去。要把两个分子精确地弄到一

起, 在液体中形成像锁与钥匙那样的专一性化学

相互作用的情况下( 像在化学和生物化学方法中

那样) 你需要借助分子的随意运动, 但是使用

STM你可以在局域水平上驱动反应。你可以用

STM把东西放在任何你希望的地方。”

① rough [ r�f] a dj. :

marked by inequali-

ties , ridges, or projec-

tions on the surface ;

coarse 粗糙的

② pattern [ �p�t�n ]

n. a form or model

proposed for imitation;

exemplar 式样 , 模式

③ herd [ h��d ] v. to

gather, lead, or drive

as if in a herd 把⋯赶

在一起放牧

④ haul [ h��l ] v. to

exert traction on; draw

拖动

·36·第三章 控制和操纵微小的原子

Page 68: Mysteries of the Nanotechnique

Proximal-probe instruments may be a big help in building the first

generation of nanomachines, but they have a basic limit: Each instru-

ment is huge on a molecular scale, and each could bond only one molec-

ular piece at a time. To make anything large—say, large enough to see

with the naked eye—would take an absurdly long time. A device of this

sort could add one piece per second, but even a pinhead①

contains more

atoms than the number of seconds since the formation of Earth. Building

a Pocket Library this way would be a long-term project.

Rabbits and dandelions②

contain structures put together one molec-

ular piece at a time, yet they grow and reproduce quickly. How? They

build in parallel, with many billions of molecular machines working at

once. To gain the benefits of such enormous parallelism, researchers can

either 1) use proximal probes to build a better , next-generation technol-

ogy, or 2) use a different approach from the start.

The techniques of chemistry and biomolecular engineering already

have enormous③

parallelism④

, and already build precise molecular

structures. Their methods, however, are less direct than the still hypo-

thetical proximal probe-based molecule-positioners. They use molecular

building blocks shaped to fit together spontaneously⑤

, in a process of

self-assembly.

David Biegelsen, a physicist who works with STMs at the Xerox Pa-

lo Alto Research Center , put it this way at the nanotechnology confer-

ence:“Clearly, assembly using STMs and other variants will have to be

tried. But biological systems are an existence proof that assembly and

self-assembly can be done. I don’t see why one should try to deviate from

something that already exists. "

·46· 纳米世界探秘

Page 69: Mysteries of the Nanotechnique

近距离探针设备可能对于建造第一代的纳米

机械有很大的帮助, 但是它们有一个根本性的局

限: 对于分子尺度而言, 每一件仪器都是个庞然大

物, 而且它们一次都只能与一个分子片结合。想要

制造些大点的东西———大到可以用肉眼看见的地

步———将要花费荒唐的极其长的时间。一个此类

仪器每秒钟可以添加一个分子片到目标产品上, 但

是即使是一个针头里包含的原子的个数, 也要比自

从地球诞生以来度过的秒数多得多。以这种方式

建造一个袖珍图书馆将是一个长期的工作。

野兔和蒲公英体内包含的生物结构每次只把

一个分子片添加到目标分子上, 但是却能很迅速地

生长和繁殖。为什么呢? 因为它们有几十亿个分

子机器同时工作, 平行地进行建造工作。要获得这

种数目巨大的平行工作, 研究者们可以 1 ) 使用近

距离探针技术构建下一代更好的工艺技术, 或者

2) 从一开始就使用一种不同的方法。

化学和生物分子工程已经使用了类似的数目

巨大的平行工作技术, 而且也建造出精确的分子

结构。然而, 他们的方法比起仍然处于设想中的

基于近距离探针技术的分子定位器件来说更不直

接。他们使用的分子建造模块被设计成通过自组

装过程可以自发地组合在一起。

戴维·比格森, 一位在施乐公司帕罗·奥托

研究中心里研究 STM 技术的物理学家, 将这一想

法带到了纳米技术会议上, 他说:“很明显的, 使

用 STM 技术和其他该技术的变体技术的组装过

程应当被尝试。但是已经存在的生物系统证明了

组装和自组装过程也可以进行。我不知道为什么

我们应该背离已经存在的东西, 而去尝试其他

的。”

① pinhead [ �pinhed ]

n. the head of a pin 针

② dandelion

[ �d�ndilai�n] n. herb

sometimes grown as a

potherb and nearly cos-

mopolitan as a weed 蒲

公英

③ enormous

[ i�n��m�s ] adj. mar-

ked by extraordinarily

great size , number, or

degree 巨 大 的 , 庞 大

④ parallelism

[ �p�r�lelism ] n. the

quality or state of being

parallel [ 数 ] 平行

⑤ spontaneous ly

[ sp�n�teini�sli ] a dv.

arising from a momen-

tary impulse 自 然 地 ,

本能地

·56·第三章 控制和操纵微小的原子

Page 70: Mysteries of the Nanotechnique

A huge technology base for molecular construction already exists.

Tools originally developed by biochemists and biotechnologists to deal

with molecular machines found in nature can be redirected to make new

molecular machines. The expertise①

built up by chemists in more than a

century of steady progress will be crucial in molecular design and con-

struction.②

Both disciplines routinely handle molecules by the billions

and get them to form patterns by self-assembly. Biochemists, in particu-

lar, can begin by copying designs from nature.

Molecular building-block strategies could work together with proxi-

mal probe strategies, or could replace them, jumping directly to the con-

struction of large numbers of molecular machines. Either way, protein

molecules are likely to play a central role, as they do in nature.

·66· 纳米世界探秘

Page 71: Mysteries of the Nanotechnique

一种基于分子建造的无限技术已经存在了。

这些最初由生物化学家和生物技术专家发展起来

的处理自然界中发现的分子机器的工具, 可以被

重新导向到制造新的分子机械上。由化学家一个

多世纪以来创立的专业技术正在稳步发展, 并将

成为分子设计和建造的关键。在这两门学科里,

科学家们每天例行公事般地处理着上十亿个分

子, 让它们通过自组装过程形成各种需要的模式。

特别的, 生物化学家可以从复制大自然的设计来

开始他们的工作。

分子建造模块策略可以和近距离探针技术策

略结合起来工作, 也可以取代它, 直接跳到大规模

建造大批量分子机械上。不管怎样, 蛋白质分子

将在其中扮演一个中心角色, 正如它已经在大自

然中所扮演的一样。

① expertise

[ eksp���ti�z ] n. the

skill of an expert 专业

技术

② construction

[ k�n�str�k�( �) n] n.

the act or resul t of con-

st ruing, interpreting,

or explaining 构建

·76·第三章 控制和操纵微小的原子

Page 72: Mysteries of the Nanotechnique

纳米技术, 方兴未艾

纳米技术的应用是多方面的, 它在化学工业、绿

色能源、材料工程、医药保健、环境科学、太空探险等

领域有着广阔的应用前景。纳米技术将会给人类带

来什么? 我们无法对此作出包罗万象的描述, 只能

在这里展示一幅幅美丽的图景。

Page 73: Mysteries of the Nanotechnique

Chapter 4 Wor ld with Pr olific

Nanotechnique

4 . 1 S ce ne s from a P os t-bre a kthrough Wo rld

What nanotechnology will mean for human life is beyond our predic-

ting, but a good way to understand what it could mean is to paint scenari-

os. A good scenario brings together different aspects of the world ( tech-

nologies, environments, human concerns) into a coherent whole. Major

corporations use scenarios to help envision the paths that the future may

take—not as forecasts, but as tools for thinking. In playing the“ What

if?" game, scenarios present trial answers and pose new questions.

The following scenarios can ’t represent what will happen, because

no one knows. They can, however, show how post-breakthrough capa-

bilities could mesh with human life and Earth’s environment. The results

will likely seem quaintly conservative from a future perspective, however

much they seem like science fiction today.

4 . 1 . 1 Scenario: Sola r Energy

In Fairbanks, Alaska, Linda Hoover yawns and flips①

a switch on a

dark winter morning. The light comes on, powered by stored solar elec-

tricity. The Alaska oil pipeline shut down years ago, and tanker traffic is

gone for good.

Nanotechnology can make solar cells efficient, as cheap as news-

paper, and as tough as asphalt②—tough enough to use for resurfacing

roads, collecting energy without displacing any more grass and trees. To-

gether with efficient, inexpensive storage cells, this will yield low-cost

power. Some other chapters discuss prospects③

for energy and the envi-

ronment in more depth.

·86· 纳米世界探秘

Page 74: Mysteries of the Nanotechnique

第四章 丰富多彩的

纳米技术世界

4 Ä. 1 后纳米技术时代的畅想

纳米技术对人类生活究竟意味着什么是我们

无法预言的, 但我们可以把其创造成特定情节的形

式, 以便于理解它。一场好的情景将生活的各个方

面( 技术、环境和人类所关心的各种问题) 糅合在

一起, 组成一个前后连贯的整体。在大公司中, 这

种特定情节被用来帮助想象未来的道路———并不

仅仅作为一种预言, 也作为一种思考的工具。在

“如果⋯⋯, 会怎样?”的问答游戏中, 这种特定情节

能提供试验性的回答, 并提出新的问题。

下面的特定情节不能代表未来会发生什么, 因

为这没有人确切地知道。但是, 它们能够显示技术

突破后人类的能力是如何与生活和地球环境息息

相关的。不管它们现在看起来是多么像科学幻想,

从未来的视角来看, 可能反而会显得出奇的保守。

4 . 1 . 1 特定情节之一: 太阳能

在阿拉斯加的费尔班克斯, 琳达·胡佛打了

个呵欠, 在一个黑暗冬天的早晨按下了一个开关。

灯亮了, 是由存储的太阳能电力驱动的。这时阿

拉斯加的输油管道早已关闭多年了, 油轮也已改

为运输货物。

纳米技术导致了太阳能电池的使用。它们便

宜得跟报纸差不多, 而且与沥青一样坚硬———硬

得能够用于重新修饰路面, 能够收集能量而不必

砍伐更多的草和树木。配合有效价廉的蓄电池,

可以创造出低成本的能源。在其他章节中将对能

源和环境方面的问题作更深入的讨论。

① flip [ fl ip ] vt . to

move with a small

quick motion 弹 , 轻击

② asphalt [ ��sf�l t ]

n . a dark bituminous

substance that is found

in natural beds and is

also obtained as a resi-

due in petroleum refi-

ning and that cons ists

chiefly of hydrocarbons

沥青

③ prospect

[ �pr�spekt] n. a men-

tal picture of something

to come 前景 , 前途 ,

期望

·96·第四章 丰富多彩的纳米技术世界

Page 75: Mysteries of the Nanotechnique

4 . 1 . 2 Scenario: Medicine That Cures

Sue Miller of Lincoln, Nebraska, has been a bit hoarse for weeks,

and just came down with a horrid head cold. For the past six months,

she’s been seeing ads: the Cure for the Common Cold, so she spends her

five dollars and takes the nose-spray①

and throat-spray doses. Within

three hours, 99 percent of the viruses in her nose and throat are gone,

and the rest are on the run. Within six hours, the medical mechanisms

have become inactive, like a pinch of inhaled but biodegradable dust,

soon cleared from the body. She feels much better and won’t infect her

friends at dinner.

The human immune system is an intricate molecular mechanism,

patrolling the body for viruses and other invaders, recognizing them by

their foreign molecular coats. The immune system, though, is slow to

recognize something new. For her five dollars, Sue bought 10 billion②

molecular mechanisms primed to recognize not just the viruses she had

already encountered, but each of the five hundred most common viruses

that cause colds, influenza, and the like.

Weeks have passed, but the hoarseness Sue had before her cold

still hasn’t gone away; it gets worse. She ignores it through a long vaca-

tion, but once she’s back and caught up, Sue finally goes to see her doc-

tor. He looks down her throat and says,“Hmmm. " He asks her to in-

hale an aerosol, cough, spit in a cup, and go read a magazine. The di-

agnosis pops③

up on a screen five minutes after he pours the sample into

his cell analyzer. Despite his knowledge, his training and tools, he feels

chilled to read the diagnosis: a malignant cancer of the throat, the same

disease that has cropped up all too often in his own mother’s family.

·07· 纳米世界探秘

Page 76: Mysteries of the Nanotechnique

4 À. 1 . 2 特定情节之二: 治愈疾病的“神药”

在内布拉斯加州的林肯, 苏·米勒患轻微喉

咙嘶哑已经有几星期了, 她刚刚因为一场可怕的

头伤风而卧病在床。在过去的六个月里, 她一直

在看能够治愈普通感冒的广告, 花五美圆买了鼻

腔和喉咙的喷雾剂。在三个小时内, 她鼻子和喉

咙 99 % 的病毒都被杀死了, 其余的四散奔逃。在

六个小时内, 治疗的机制不再起作用, 就像被吸入

的一小撮能被生物降解的灰尘那样, 很快在体内

消失了。她感到好多了, 也不再会在晚餐会上把

病传染给她的朋友们了。

人类的免疫系统是一架复杂的分子机械, 在

体内巡逻以发现病毒和其他入侵者, 依靠它们陌

生的分子外壳进行识别。但是, 免疫系统对新的

敌人的识别是缓慢的。苏花五美元买的 100 亿个

预先制好的分子机械, 不仅能认出她所遇到的病

毒, 而且能识别 500 种最常见的感冒和流感病毒

及其变种。

几星期过去了, 但是苏伤风前的喉咙嘶哑症状

却仍然没有消失, 反而更严重了。她外出度过了一

个漫长的假期, 在此期间没有把它放在心上; 但是

她一回来, 又感觉到患上了先前的症状。她最后去

看医生。医生看了看她的喉咙, 说道,“唔。”他让苏

吸入一种气溶胶, 然后咳嗽, 在一个杯子中吐出唾

液, 接着让她到一旁看杂志去了。在他把唾液样品

倒入细胞分析器的五分钟后诊断结果在一个屏幕

上闪现出来。虽然医生接受过医学训练, 掌握医学

知识和医疗器械使用方法, 但他看到诊断结果时还

是打了个冷战: 是喉部的恶性肿瘤, 这种疾病曾经

数次夺去他自己母亲家人的生命。

① spray [ sprei ] n. a

jet of vapor or finely

divided liquid 喷 雾 ,

飞沫

② billion [ �bili�n] n.

the quanti ty of 10 9 十

亿

③ pop [ p�p ] vi. to

appear suddenly 突 然

出现

·17·第四章 丰富多彩的纳米技术世界

Page 77: Mysteries of the Nanotechnique

He touches the“Proceed" button. In twenty minutes, he looks at

the screen to check progress. Yes, Sue ’s cancerous cells are all of one

basic kind, displaying one of the 16, 314 known molecular markers for

malignancy. They can be recognized, and since they can be recognized,

they can be destroyed by standard molecular machines primed to react to

those markers. The doctor instructs the cell analyzer to prime some“ im-

mune machines" to go after her cancer cells. He tests them on cells from

the sample, watches, and sees that they work as expected, so he has the

analyzer prime①

up some more.

Sue puts the magazine down and looks up.“Well, Doc, what’s the

word?" she asks.

“ I found some suspicious cells, but this should clear it up, " he

says. He gives her a throat spray and an injection.“ I’d like you to come

back in three weeks, just to be sure. "

“Do I have to? " she asks.

“You know, " he lectures her, “we need to make sure it ’s gone.

You really shouldn’t let things like this go so far before coming in. "

“Yes, fine, I’ll make the appointment, " she says. Leaving the of-

fice, Sue thinks fondly of how old-fashioned and conservative the doctor

is.

The molecular mechanisms of the immune system already destroy

most potential cancers before they grow large enough to detect. With

nanotechnology, we will build molecular mechanisms to destroy those

that the immune system misses. Some chapter in this book discusses

medical nanotechnologies in more depth.

4 . 1 . 3 Scenario: Cleansing the Soil

California Scout②

Troop③

9731 has hiked for six days, deep in the

second-wilderness forests of the Pacific Northwest.

“ I bet we ’re the first people ever to walk here, " says one of the

youngest scouts.

·27· 纳米世界探秘

Page 78: Mysteries of the Nanotechnique

他按下了“执行”按钮。20 分钟后, 他看了看

屏幕, 检查进展情况。不错, 苏的癌变细胞都属于

一种基本类型, 表现为 16 314 种已知的恶性分子

标识中的一种。他们能够被识别, 正因如此, 它们

能够被预先设计与它们作用的标准的分子机器所

摧毁。这位医生输入指令, 让细胞分析器准备好

一些“免疫机器”来追踪癌细胞。他以样品中的

细胞来试验观察, 看到它们具有预想的功能, 于是

他让分析器制造出更多“免疫机器”。

苏放下杂志, 抬起头来。“医生, 是什么病?”

她问道。

“我发现了一些可疑的细胞, 但可以清除

掉, ”他说。他给她一剂咽喉的喷雾剂, 还打了一

针。“希望您三周以后再来一趟, 以便确诊。”

“我必须来吗?”她问。

“您知道, ”他训诫道,“我们需要确定可疑细

胞已经消失了。您实在不应该让病情发展到这样

才来。”

“好的,我做个预约吧, ”她说。在离开诊所的路

上, 苏天真地想着, 这个医生真是太老土和保守了。

免疫系统的分子机械在癌肿长得大得能探测

到以前, 已经摧毁了绝大多数的潜在的癌细胞。

借助纳米技术, 我们可以建造分子机器来消灭那

些逃过免疫系统的残余分子。在本书的某些章节

中会在更深的层次上讨论医学中的纳米技术。

4 À. 1 . 3 特定情节之三: 清洁土壤污染

加利福尼亚州的 9731 侦察大队已经在毗邻太

平洋的西北地区荒无人烟的丛林深处探险了六天。

“我打赌我们是走到这里的第一批人, ”一个

年轻的侦察队员说道。

① prime [ praim] v.

to instruct beforehand

预先准备好

② scout [ skaut ] n.

the act of exploring an

area to obtain informa-

tion ( as about an ene-

my ) or making a

search 侦察 , 搜索

③ t roop [ tru: p] n. a

group of soldiers; a

cavalry unit corre-

sponding to an infantry

company; a collection

of people or things 群 ,

组 , 军队

·37·第四章 丰富多彩的纳米技术世界

Page 79: Mysteries of the Nanotechnique

“Well, maybe you’re right about walking, " says Scoutmaster Jack-

son,“but look up ahead—what do you see, scouts? "

Twenty paces ahead runs a strip of younger trees, stretching left and

right until it vanishes among the trunks of the surrounding forest.

“Hey, guys! Another old logging road! " shouts an older scout.

Several scouts pull probes from their pockets and fit them to the ends of

their walking sticks. Jackson smiles: It’s been ten years since a Califor-

nia troop found anything this way, but the kids keep trying.

The scouts fan out, angling their path along the scar of the old

road, poking at the ground and watching the readouts on the stick han-

dles. Suddenly, unexpectedly, comes a call:“ I’ve got a signal! Wow—

I’ve got PCBs! "

In a moment, grinning scouts are mapping and tracing the spill.

Decades ago, a truck with a leaking load of chemical waste snuck down

the old logging road, leaving a thin toxic trail. That trail leads them to a

deep ravine, some rusted drums, and a nice wide patch of invisible

filth. The excitement is electrifying.

Setting aside their maps and orienteering practice, they unseal①

a

satellite locator to log the exact latitude②

and longitude③

of the site, then

send a message that registers their cleanup claim on the ravine④

. The

survey done, they head off again, eagerly planning a return trip to earn

the now-rare Toxic Waste Cleanup Merit Badge.

Today, tree farms are replacing wilderness. Tomorrow, the slow re-

turn to wilderness may begin, when nature need no longer be seen as a

storehouse of natural resources to be plundered. This book will discuss

just how little need be taken from nature to provide humans with wealth,

and how post-breakthrough technologies can remove from nature the toxic

residues⑤

of twentieth-century mistakes.

·47· 纳米世界探秘

Page 80: Mysteries of the Nanotechnique

“唔, 在‘走’这一点上也许你是对的, ”杰克逊队长说,“但请你抬头向前看———侦察队员们,你们看到了什么?”

在 20 步远的前方, 有一行小树苗蜿蜒延伸,直至消失在四周森林的巨大树木当中。

“嘿, 伙计们! 这又 是一条古老 的采木通道! ”一个年纪较大的侦察队员叫道。有数名队员从口袋中取出探测器, 安装在他们的探路棒的顶端。杰克逊微笑了: 加州的侦察队上一次使用这种方法找到目标已经是十年前的事了, 但是这帮小伙子居然还在尝试。

队员们散开了, 沿着古老小道的遗迹探索, 不时戳戳地面, 然后看看探路棒把手上的读数。突然, 有人叫道:“我找到了一个信号! 啊, 我发现了化学污染带! ”

过了一会儿, 咧嘴而笑的队员们开始绘制和追踪倾洒物质的踪迹。数十年前, 一辆装载化学废弃物的卡车发生了泄漏, 秘密地驶入了这条古老的伐木小道,使小路受到轻微污染。沿着这条小路, 他们抵达了一条深深的峡谷。这里有一些鼓状的圆桶, 还有一条很宽的看不见的污染带。兴奋如同电击一般蔓延开来。

把地图放下以后, 他们停了下来, 开启了一个卫星定位系统, 记录下该地的准确纬度和经度, 然后发送了一条信息, 其中包含了他们关于清理这个峡谷的主张。勘测完成以后, 他们又出发了, 兴奋地盘算着回去后能获得稀有的“清理有毒废弃物荣誉勋章”。

当代, 栽有树木的农场代替了原野。将来, 当自然不需要再被看作是被掠夺的天然资源的仓库时, 向原野的缓慢回归也许会开始。本书将会讨论, 不需要太多地依赖大自然就能提供人类以财富, 而且后纳米技术时代的技术可以从自然界中除去 20 世纪中人类错误扔掉的有毒废物。

① unseal [ �n�s i: l] v.

to break or remove the

seal of; open 开启② latitude [ �l�titj u�d]

n. angular distance

north or south from the

earth ’s equator meas-

ured through 90 de-

grees 纬度③ l ongitude

[ �l��d�it ju�d ] n. the

arc or portion of the

earth’s equator intersec-

ted between the meridi-

an of a given place and

the prime meridian and

expressed either in de-

grees or in time 经度 ,

经线④ ravine [ r��vi�n] n.

a small narrow steep-

sided vall ey that is l ar-

ger than a gully and

smaller than a canyon

and that is usually

worn by running water

沟壑 , 峡谷 , 溪谷

⑤ residue [ �rezidju�]

n . something that re-

mains after a part is

taken, separated, or

designated 残 余 , 渣滓 , 滤渣 , 剩余物

·57·第四章 丰富多彩的纳米技术世界

Page 81: Mysteries of the Nanotechnique

4 . 1 . 4 Scenario: Pocket Super computer s

At the University of Michigan, Joel Gregory grabs a molecular rod

with both hands and twists. It feels a bit weak, and a ripple①

of red re-

veals too much stress in a strained molecular bond halfway down its

length. He adds two atoms and twists the rod again: all greens and

blues, much better. Joel plugs the rod into the mechanical arm he’s de-

signing, turns up the temperature, and sets the whole thing in motion. A

million atoms dance in thermal vibration, gears spin, and the arm swings

to and from in programmed motion. It looks good. A few parts are still

mock②

-ups, but doing a thesis takes time, and he’ll work out the rest of

the molecular details later. Joel strips off the computer display goggles

and gloves and blinks at the real world. It’s time for a sandwich and a

cup of coffee. He grabs the computer itself, stuffs it into his pocket, and

heads for the student center.

Researchers already use computers to build models of molecules,

and“virtual reality systems" have begun to appear, enabling a user to

walk around the image of a molecule and“ touch" it, using computer-

controlled gloves and goggles. We can ’t build a supercomputer able to

model a million-atom machine yet—much less build a pocket supercom-

puter—but computers keep shrinking in size and cost. With nanotechn-

ology to make molecular parts, a computer like Joel’s will become easy to

build. Today’s supercomputers will seem like hand-cranked③

adding ma-

chines by comparison. Chapters 2 take a closer look at a simulated mo-

lecular world.

·67· 纳米世界探秘

Page 82: Mysteries of the Nanotechnique

4 À. 1 . 4 特定情节之四: 袖珍超级计算机

在密歇根大学里, 约耳·格利高里双手抓住

一根分子棒, 加以扭转。它摸起来有些脆弱, 在它

的中段泛起的红色显示出其张紧的分子键受到了

过大的张力。他往里添加了两个原子, 再次加以

扭转: 这次整根棒都是绿色和蓝色, 表明好多了。

约耳把这根棒装到他正在设计的机械臂里, 升高

温度, 让整套装置运动起来。100 万个原子在热

振动中跳舞, 调整着旋转的姿态, 机械臂因此来回

摆动, 按照程序设计运动。这东西看起来不错。

有一些零件还是仿制品, 但完成一个论题是需要

时间的, 他会晚一些再来解决分子水平上的其他

细节。约耳摘下带计算机屏幕的眼镜和手套, 在

现实世界中眨了眨眼。是时候该吃一块三明治和

一杯咖啡了。他抓起计算机, 塞进口袋里, 向学生

中心走去。

研究者们已经使用计算机来建造分子模型,

“虚拟显示系统”开始出现, 使得使用者能够借助

于计算机控制的手套和眼镜, 绕着一个分子的图

像“走动”, 并“触摸”它。我们现在还不能建造一

台模拟百万个原子的机器的超级计算机, 更不用

说要造一台袖珍的超级计算机了; 但计算机的尺

寸和成本一直都在降低。使用纳米技术制造分子

部件, 像约耳那样的计算机就容易造出来了。与

之相比, 当代的计算机就好像用手柄带动的老式

加法器一样。第二章已经给出了一个虚拟分子世

界的大幅图景。

① ripple [ �rip ( �) l ]

n . a shallow stretch of

rough water in a

st ream; the ruffling of

the surface of water; a

small wave 波纹

② mock [ m�k ] n.

something made as an

imitation 仿制品

③ cranked [ kr��kt ]

a dj. something with a

bent part of an axle or

shaft or an arm keyed

at right angles to the

end of a shaft by which

circular motion is im-

parted to or received

from the shaft or by

which reciprocating

motion i s changed into

circular motion or vice

versa 有曲柄的

·77·第四章 丰富多彩的纳米技术世界

Page 83: Mysteries of the Nanotechnique

4 . 1 . 5 Scenario: Global W ealth

Behind a village school in the forest a stone’s throw from the Congo

River, a desktop computer with a thousand times the power of an early

1990s supercomputer lies half-buried in a recycling bin. Indoors, Joseph

Adoula and his friends have finished their day’s studies; now they are

playing together in a vivid game universe using personal computers each

a million times more powerful than the clunker①

in the trash. They stay

late in air-conditioned comfort.

Trees use air, soil, and sunlight to make wood, and wood is cheap

enough to burn. Nanotechnology can do likewise, making products as

cheap as wood—even products like supercomputers, air conditioners,

and solar cells to power them. The resulting economics may even keep

tropical forests from being burned. This book will discuss how costs can

fall low enough to make material wealth for the Third World easy to a-

chieve.

4 . 1 . 6 Scenario: Cleansing the Air

In Earth’s atmosphere, the twentieth-century rise in carbon-dioxide

levels has halted②

and reversed. Fossil fuels are obsolete③

, so pollution

rates have lessened. Efficient agriculture has freed fertile land for refor-

estation, so growing trees are cleansing the atmosphere. Surplus solar

power from the world’s repaved roads is being used to break down excess

carbon dioxide at a rate of 5 billion tons per year. Climates are returning

to normal, the seas are receding to their historical shores, and ecosys-

tems are beginning the slow process of recovery. In another twenty

years, the atmosphere will be back to the pre-industrial composition it

had in the year 1800. We will discuss environmental cleanup, from re-

ducing the sources to cleaning up the messes already in place.

·87· 纳米世界探秘

Page 84: Mysteries of the Nanotechnique

4 À. 1 . 5 特定情节之五: 全球的财富

在距刚果河咫尺之遥的森林中的一所乡村小

学后面, 一台比 20 世纪 90 年代早期的超级计算

机还要功能强大 1000 倍的桌上型电脑被半埋在

一个垃圾回收箱里。在屋里, 约瑟夫·阿多拉和

他的朋友们完成了他们的学习; 他们正沉浸在生

动的游戏世界里。他们每个人使用的都是比那台

扔在垃圾堆里的年久失修的破机器还要强大上

100 万倍的计算机。他们在空调的舒适中呆到很

晚。

树木以空气、土壤和阳光为原料生产木头, 因

此木材作为燃料是便宜的。纳米技术按类似的做

法, 造出和木头一样便宜的产品, 包括超级计算

机、空调及驱动它们的太阳能电池。由此经济发

展甚至可以保护热带森林不被焚烧。本书将会讨

论如何降低成本, 使第三世界能轻易地获得材料

财富。

4 . 1 . 6 特定情节之六: 净化空气

在地球的大气中, 20 世纪二氧化碳水平的升

高得到了抑制并开始回落。化石燃料已经不再使

用了, 污染率得到了降低。高效的农业把肥沃的

土地解放出来, 重新种以树木, 生长着的树木进而

净化了空气。来自世界上重新铺砌的道路的过剩

的太阳能正用来以每年 50 亿吨的速率分解过量

的二氧化碳。气候恢复了正常, 海平线降回到历

史的位置, 生态系统开始以缓慢的速率恢复。再

过 20 年, 大气将会回到 1800 年工业化之前的组

成。本书将要讨论环境的清洁, 包括污染源和业

已存在的脏乱。

① clunker

[ �kl��k�( r ) ] n . an

old or badly working

piece of machinery 年

久失修的旧机器

② halt [ h�: lt ] vi. to

cease marching or jour-

neying 立定 , 停止

③ obsolete [ ��bs�lit ]

a dj. no longer in use or

no longer useful 荒 废

的 , 陈旧的

·97·第四章 丰富多彩的纳米技术世界

Page 85: Mysteries of the Nanotechnique

4 . 1 . 7 Scenario: Tr anspor tation Outwar d

Jim Salin ’s afternoon flight from Dulles International is on the

ground, late for departure. Impatiently, Jim checks the time: any later,

and he’ll miss his connecting flight.

At last, the glassy-surfaced craft rolls down the runway. With glid-

erlike wings, it lifts its fat body and climbs steeply toward the east. A

few pages into his novel, Jim is interrupted by a second recitation of

safety instructions and the captain’s announcement that they’ll try to make

up for lost time. Jim settles back in his seat as the main engines kick in,

the wings retract, the acceleration builds, and the sky darkens to black.

Like the highest-performance rockets of the 1980s, Jim’s liner produces

an exhaust of pure water vapor. Spaceflight has become clean, safe, and

routine. And every year, more people go up than come down.

The cost of spaceflight is mostly the cost of high-performance, relia-

ble hardware. Molecular manufacturing will make aerospace structures

from nearly flawless, superstrong materials at low cost. Add inexpensive

fuel, and space will become more accessible①

than the other side of the

ocean is today.

4 . 1 . 8 Scenario: Restoring Species

Restoration Day Ceremonies are always moving events. For some rea-

son, the old people always cry, even though they say they’re happy.

Crying, Tracy Stiegler thinks, doesn’t make any sense. She looks a-

gain through the camouflage screen over the sandy Triangle Keys beach,

gazing across the Caribbean②

toward the Yucatán Peninsula③

. Soon this

will be theirs again, and that’s all to the good.

·08· 纳米世界探秘

Page 86: Mysteries of the Nanotechnique

4 À. 1 . 7 特定情节之七: 太空探险

吉姆·沙林的下午在杜勒斯国际机场的航班

还在地面上, 推迟起飞。吉姆不耐烦地看了看时

间: 如果再晚的话, 他就要错过中转班机了。

终于, 那架具有玻璃光泽的飞行器开始在跑

道上滑行。依靠滑翔机般的翅膀, 它抬起宽大的

身躯, 快速向东方爬升。读了几页小说后, 吉姆被

打断了。他听到重复两遍的安全指示和机长的通

告: 他们将要追回耽误的时间。吉姆靠坐在座椅

上, 这时主发动机开启, 两翼缩回, 不断加速, 外面

的天空变成了漆黑一片。如同 20 世纪 80 年代最

先进的火箭一样, 吉姆的航班放出由纯水蒸汽组

成的废气。太空飞行业已变得清洁、安全和常规

化了。每年都有更多的人们飞上飞下。

太空飞行的价钱主要来自于高效可靠的硬件

设施。分子构筑使得由几乎没有缺陷的、超强的

材料制成的宇宙航空器的成本大大降低。加上廉

价的燃料, 太空将比今天的大洋彼岸更加容易抵

达。

4 . 1 . 8 特定情节之八: 恢复濒危生物种群

“恢复节”的庆典总是激动人心的。因为某

个原因, 尽管老人们说他们很高兴, 但他们总是要

流泪。

特雷西·斯提格勒认为, 哭泣是没有任何意

义的。她再一次通过伪装的屏幕通过沙质的三角

钥匙形状的海岸, 越过加勒比地区, 看到了育卡坦

半岛。不久这里就是他们自己的了, 这真是太好

了。

① accessible

[ �k�sesib ( �) l ] adj.

capable of being

reached 易接近的 , 可

到达的

② Caribbean

[ �k�ri�bi��n] n. of or

relating to the Caribs ,

the eastern and south-

ern West Indies, or the

Caribbean Sea 加 勒比

海 , 加勒比地区

③ peninsula

[ pi�ninsjul�] n . a por-

tion of land nearly sur-

rounded by water and

connected with a larger

body by an isthmus; a

piece of land jut ting

out into the water

whether wi th or without

a well-defined isthmus

半岛

·18·第四章 丰富多彩的纳米技术世界

Page 87: Mysteries of the Nanotechnique

Tracy and the other scientists from BioArchive have positions of

honor in today’s Restoration Day Ceremony. Since the mid-twentieth cen-

tury there had been no living Caribbean monk seals①

, only grisly②

rel-

ics③

of the years of their slaughter: seal furs and dry museum speci-

mens. Tracy’s team struggled for years, gathering these relics and stud-

ying them with molecular instruments. It had been known for decades—

since the 1980 s—that genes are tough enough to survive in dried skin,

bone, horn, and eggshell. Tracy’s team had collected genes and rebuilt

cells.

They worked for years, and gave thanks to the strict protection-late,

but good enough-that saved one related species. At last, a Hawaiian

monk seal had given birth to a genetically-pure Caribbean monk seal,

twin to a seal long dead. And now there were five hundred, some

young, some middle-aged, with decent genetic diversity and five years ’

experience living in the confines of a coastal ecological station.

Today, with raucous voices, they are moving out into the world to

reclaim their ecological niche. As Tracy watches, she thinks of the

voices that will never be heard again: of the species, known and un-

known, that left not a even a bloody scrap④

to be cherished and re-

stored. Thousands ( millions? ) of species had simply been brushed into

extinction as habitats were destroyed by farming and logging⑤

. People

knew-for years they had known-that freezing or drying would save genes.

And they knew of the ecological destruction, and they knew they weren’t

stopping it. And the ignorant bastards didn’t even keep samples.

·28· 纳米世界探秘

Page 88: Mysteries of the Nanotechnique

特雷西和其他来自生物档案局的科学家们拥

有出席今天“恢复节”的庆典的荣誉。自 20 世纪

中期以来加勒比僧侣海豹就灭绝了, 只留下对它

们大屠杀后的恐怖的遗迹: 海豹的皮毛和干枯的

博物馆标本。特雷西的队伍奋斗了多年, 收集这

些遗迹, 并用分子仪器加以研究。从 20 世纪 80

年代的数十年来一直为人所知的一个事实是: 基

因是如此顽强, 它们能够在干燥的皮肤、骨头、动

物的角或是蛋壳中存活下来。特莱丝的队伍把基

因集中起来, 重建了细胞。

他们工作了多年, 并且要感谢后来的严格的

生物保护, 挽救了一个与该海豹有亲缘关系的物

种。最后, 一只夏威夷僧侣海豹生下了一只纯种

的加勒比僧侣海豹, 也是一只早已死去的海豹的

孪生子。如今, 有 500 只海豹生活在一个海岸生

态站的范围内, 它们有的年轻, 有的中年, 并且有

良好的基因多样性和五年的生存经验。

如今, 它们发出沙哑的声音走向世界, 要恢复

它们在生物圈中的一席之地。特雷西边看边想着

这种再也听不到的声音: 在已知或未知的生物种

类里, 有的连一点血肉的碎片都没有留下。成千

上万种( 也许是上百万种) 生物曾因开垦荒地和

砍伐森林而灭绝。人们许多年前就知道, 寒冷和

干燥能保存基因。人们也知道生态的破坏, 他们

并没有采取措施加以阻止。那些无知的坏蛋们甚

至连样品都没有留下。

① seal [ si�l ] n . any

of numerous carnivo-

rous marine mammals

that live chiefly in cold

regions and have limbs

modified into webbed

flippers adapted prima-

rily to swimming 海豹

② grisly [ �grizli ] adj.

inspiring horror or in-

tense fear 恐怖的 , 可

怕的 , 令人毛骨 悚然

③ relics [ �rel iks ] n.

remains , corpse 遗物 ,

遗迹 , 废墟 , 纪念物

④ scrap [ skr�p] n. a

small detached piece

小片 , 残余物 , 废料

⑤ logging [ �l�gi�] n .

cutting ( trees ) for

lumber ( 美 ) 伐木搬运

·38·第四章 丰富多彩的纳米技术世界

Page 89: Mysteries of the Nanotechnique

Tracy discovers that she, too, cries at Restoration Day Ceremonies.

People will surely push biomedical applications of nanotechnology

far and fast for human health-care. With a bit more pushing, this tech-

nology base will be good enough to restore some species now thought lost

forever, to repair some of the damage human beings have done to the

web of life. It would be better to preserve ecosystems①

and species in-

tact, but restoration, even of a few species, will be far better than noth-

ing. Some samples from endangered species are being kept today, but

not enough, and mostly for the wrong reasons. We should take a closer

look at ecosystem restoration, and what future prospects mean for action

taken today.

4 . 1 . 9 Scenario: An Unstable Arm s Race

Disputes over technology development and trade had soured rela-

tionships between Singapore and the Japan-United States alliance. Diplo-

matic inquiries regarding peculiar seismic②

and sonar readings in the

South China Sea had just begun when they suddenly became irrelevant:

an estimated one billion tons of unfamiliar , highly-automated military

hardware appeared in coastal waters around the world. Accusations be-

gan to fly between Congress and PeaceWatch personnel③

:“ If you’d done

your jobs. . . "“ If you’d let us do our jobs. . . "

And so, in late February, Singapore emerged as a military super-

power.

Low cost, high quality, high-speed production can be applied to

many purposes, not all attractive. Nanotechnology has enormous poten-

tial for abuse.

·48· 纳米世界探秘

Page 90: Mysteries of the Nanotechnique

特雷西发现在“恢复节”的庆典上, 她也忍不

住流下了激动的泪水。

人们一定会因为人类的健康问题而快速推进

纳米技术在生物医学中的应用。再稍作努力, 这

种技术的基础就能够挽救那些被认为是早已永远

灭绝的生物。能完封不动地把生态系统和物种保

留下来当然更好, 但是即使只恢复少量种群, 也比

一事无成强得多。今天, 一些濒危生物的样品被

保留下来, 但不足够, 而且大多数并不是为了正确

的目的。我们应该对生态系统的恢复加以更加细

致的观察, 了解今天行动对将来的意义。

4 À. 1 . 9 特定情节之九: 一场不稳定的军备竞赛

对技术发展和贸易的争论使新加坡和日美联

盟之间的关系产生了危机。刚刚开始了关于在中

国南海诸岛地震波和声纳探测结果的外交质询,

但它们突然变得无关紧要了: 一个估计有十亿吨

的、陌生的、高度自动化的军事设施在世界各地的

海岸水区出现了。在美国国会和和平观察人士之

间开始了相互指控:“如果你们干好了工作⋯⋯”

“如果你们让我们做好工作的话⋯⋯”

就这样, 在二月下旬, 新加坡变成了一个军事

超级大国。

低成本、高质快速的生产能够用于各种目的,

并不是所有的方面都是引人入胜的。纳米技术极

有可能被滥用或误用。

① ecosystem

[ �i�k�usis t�m] n. the

complex of a communi-

ty of organisms and its

environment functio-

ning as an ecological u-

nit 生态系统

② seismic [ �saizmik ]

a dj. of, subject to, or

caused by an earth-

quake 地震的

③ personnel

[ p��s��nel] n. a body

of persons usually em-

ployed ( as in a facto-

ry, office, or organiza-

tion) 人员 , 职员

·58·第四章 丰富多彩的纳米技术世界

Page 91: Mysteries of the Nanotechnique

4 . 2 Te chno logie s Re vis ite d

Molecules matter because matter is made of molecules, and every-

thing from air to flesh to spacecraft is made of matter . When we learn how

to arrange molecules in new ways, we can make new things, and make old

things in new ways. Perhaps this is why Japan has identified“ control

technologies for the precision arrangement of molecules" as a basic indus-

trial technology for the twenty-first century. Molecular nanotechnology will

give thorough control of matter on a large scale at low cost, shattering a

whole set of technological and economic barriers more or less at one

stroke①

.

A molecule is an object consisting of a collection of atoms held to-

gether by strong bonds ( one-atom molecules are a special case) .“Mole-

cule" usually refers to an object with a number of atoms small enough to

be counted ( a few to a few thousand) , but strictly speaking a truck tire

( for instance) is mostly one big molecule, containing something like 1,

000, 000, 000 , 000, 000 , 000, 000, 000, 000 atoms. Counting this many

atoms aloud would take about 10 , 000, 000, 000 billion years.

Scientists and engineers still have no direct, convenient way to con-

trol molecules, basically because human hands are about 10 million

times too large. Today, chemists and materials scientists make molecular

structures indirectly, by mixing, heating, and the like. The idea of

nanotechnology begins with the idea of a molecular assembler②

, a device

resembling an industrial robot arm but built on a microscopic scale. A

general-purpose molecular assembler will be a jointed mechanism built

from rigid molecular parts, driven by motors, controlled by computers,

and able to grasp③

and apply molecular-scale tools. Molecular assem-

blers can be used to build other molecular machines—they can even

build more molecular assemblers.

·68· 纳米世界探秘

Page 92: Mysteries of the Nanotechnique

4 Ä. 2 重温纳米技术

分子之所以重要, 是由于物质是分子组成的,

而从空气到血肉到飞机的所有一切都是由物质构

成的。如果我们学会如何以新的方式来排列原

子, 我们就能造出新的东西, 以及以新方法来制造

业已存在的物品。也许这就是日本把“精确排列

分子的控制工艺”作为一项 21 世纪的基本工艺

的原因。分子水平上的纳米技术能以低成本大规

模地彻底调控物质, 或多或少地打碎了技术和经

济上的一整套壁垒。

分子是由一组由强化学键结合在一起的原子集

合( 单原子分子是一个特例) 。“分子”通常指那些原

子数目较少的、可数的对象( 几个到几千个) , 但严格

说来,例如一个卡车轮胎主要部分就是一个巨大的

分子,这个分子大约包含一千万万万万亿个原子。要

把这么多原子数一遍,要花上大约一千万万亿年。

科学家和工程师们仍然没有直接便捷的方法

来控制分子, 主要是因为人类的双手比它大了

1000 万倍。今天, 化学家和材料科学家们以混

合、加热等方法来间接构筑分子结构。纳米技术

的概念产生于分子组装体的概念, 即一个在微观

尺度上搭建的类似于工业机械手的设备。一个用

于一般目的的分子组装体可以是由刚性的分子部

件组合起来的机械装置, 由马达驱动, 计算机控

制, 能够抓住并使用分子大小的工具。分子组装

体能够被用来建造其他分子机器, 甚至建造更多

的分子组装体。如果提供合适的原材料, 在分子

生产线中

① stroke [ str�uk] n.

the act of stri king; es-

pecially a blow with a

weapon or implement

击 , 打击

② assembler

[ ��sembl�( r) ] n . one

that assembles 组装体

③ grasp [ ɡrɑ: sp] vt .

to take or seize eagerly

抓住 , 抓紧 , 掌握

·78·第四章 丰富多彩的纳米技术世界

Page 93: Mysteries of the Nanotechnique

Assemblers and other machines in molecular manufacturing systems will

be able to make almost anything, if given the right raw materials. In

effect, molecular assemblers will provide the microscopic“hands" that

we lack today. ( Chemists are asked to forgive this literary license; the

specific details of molecular binding and bonding don ’t change the con-

clusion. )

Nanotechnology will give better control of molecular building

blocks , of how they move and go together to form more complex objects.

Molecular manufacturing will make things by building from the bottom

up, starting with the smallest possible building blocks. The nano in

nanotechnology comes from nanos, the Greek word for dwarf. In sci-

ence, the prefix①

nano- means one-billionth of something, as in nanome-

ter and nanosecond, which are typical units of size and time in the world

of molecular manufacturing. When you see it tacked②

onto the name of

an object, it means that the object is made by patterning matter with mo-

lecular control: nanomachine, nanomotor, nanocomputer . These are the

smallest, most precise devices that make sense based on today’s science.

( Be cautious of other usages, though—some researchers have be-

gun to use the nano- prefix to refer to other small-scale technologies in

the laboratory today. In this book nanotechnology means the precise,

molecular nanotechnology of the future. British usage also applies the

term to the small-scale and high precision technologies of today—even to

precision grinding③

and measurement. The latter are useful, but hardly

revolutionary. )

·88· 纳米世界探秘

Page 94: Mysteries of the Nanotechnique

的组装体和其他机器能造出几乎任何东西。从效

果上看, 分子组装体能提供我们今天所缺的微观

的“手”。( 请化学家们原谅这种文学的修辞, 因

为分子的结合和成键方式的具体细节并不改变此

结论。)

纳米技术能够更好地控制分子建筑的砖块,

使它们移动, 组合成更加复杂的物体。分子建造

以“自底向上”的方法来制造物体, 也就是说, 从

可能的最小的建筑单元作为开始。纳米技术中的

“纳”来自与希腊语中的“侏儒”一词。在科学上,

“纳”这一前缀意味着某单位的十亿分之一, 例如

纳米、纳秒等, 这些都是分子建筑世界中典型的尺

度和时间单位。当您看到这个字出现在一个物体

的名字当中时, 意味着该物体是分子水平上加以

控制的有序物质。例如纳米机器、纳米发动机、纳

米计算机等。这些是基于现代科学的有实际意义

的最小最精确的设备。

( 但是, 要注意该字的其他用途。有的研究

者开始用“纳”这一前缀来代表现代实验室的其

他小尺度技术。在本书里, 纳米技术表示将来精

确的、分子的纳米技术。英国也把这个术语用于

现代小尺度的、高精度的技术, 甚至用到精细的研

磨和测量上。后者也是有用的, 但并不是创新性

的。)

① prefix [ �pri�fiks ]

n. an affix attached to

the beginning of a

word, base , or phrase

and serving to produce

a derivative word or an

inflectional form [ 语 ]

前缀

② tack [ t�k] vt . at-

tach; especially to fas-

ten or affix with tacks ;

to join in a slight or

hasty manner; to add

as a supplement 附加

③ grind [ ɡraind ] v.

to reduce to powder or

small fragments by fric-

tion ( as in a mill or

with the teeth ) ; to

wear down, polish, or

sharpen by fricti on 磨

( 碎 ) , 碾 ( 碎 )

·98·第四章 丰富多彩的纳米技术世界

Page 95: Mysteries of the Nanotechnique

Digital electronics brought an information-processing revolution by

handling information quickly and controllably in perfect, discrete pieces:

bits①

and bytes②

. Likewise③

, nanotechnology will bring a matter-pro-

cessing revolution by handling matter quickly and controllably in perfect,

discrete pieces: atoms and molecules. The digital revolution has cen-

tered on a device able to make any desired pattern of bits: the program-

mable computer . Likewise, the nanotechnological revolution will center

on a device able to make ( almost ) any desired pattern of atoms: the

programmable assembler. The technologies that plague④

us today suffer

from the messiness and wear of an old phonograph record. Nanotechnolo-

gy, in contrast, will bring the crisp, digital perfection of a compact

disc.

4 . 3 Na no, Strut His S tuff!

We ’ve surveyed a lot of devices: assemblers of various flavors,

nanocomputers, and others. What’s important about these is not the ex-

act distinctions between them, but the capabilities that they will give and

the effects they will have on human lives. Again, we are suspending⑤

discussion of potential misapplications until later.

If we tease apart the implications of what we’ve seen above, we can

analyze some of the key impacts of molecular manufacturing in industry,

science, and medicine.

4 . 3 . 1 Technology a nd Industr y

At its base, nanotechnology is about molecular manufacturing, and

manufacturing is the basis of much of today’s industry. This is what we

made a good starting point for describing the possibilities of a nanotechn-

ological world. From an industrial perspective, it makes sense to think of

nanotechnology in terms of products and production.

·19·第四章 丰富多彩的纳米技术世界

Page 96: Mysteries of the Nanotechnique

数字电子学把信息分割成完美的、离散的片

段———二进制位和字节, 加以快速可控的操作, 带

来了信息处理的一场革命。类似地, 纳米技术将

会把物质分割成完美的、离散的片段———原子和

分子, 加以快速可控的操作, 带来材料生产的一场

革命。数字化革命以能任意组合二进制位的器

件———可编程的计算机为中心。类似地, 纳米技

术的革命以能 ( 几乎 ) 任意组合原子的器件———

可设计的组装体为中心。今天令我们感到苦恼的

技术来自于古老的留声机唱片的混乱和磨损。与

之相反, 纳米技术将带来干净利落的、完美数字化

的压缩磁盘。

4 Ä. 3 纳米技术, 大显身手

我们已经纵览了许多设备: 各种各样的组装

体、纳米计算机等等。对于这些来说, 重要的并不

是它们之间的确切差别, 而在于它们能够赋予人

类的能力, 以及他们将会给人类带来什么。我们

在这里再次暂且不讨论那些可能出现的滥用。

如果我们试图去揭开在以上所看到的背后的

含义, 我们就能分析分子建造给工业、科学和医药

带来的一些主要影响。

4 . 3 . 1 技术与工艺

从基础上看, 纳米技术有关于分子的制造, 而

制造业是许多现代工业的基础。这也是我们要描

述一个纳米技术世界的可能性的好的起始点。从

工业的视角来看, 按产品和生产的术语来考虑纳

米技术的问题是有道理的。

① bit [ bit ] n . a unit

of computer information

equivalent to the result

of a choice between two

alternatives ( as yes or

no, on or off) [ 计 ]

位 , 比特

② byte [ bait ] n . a

group of eight binary

digits processed as a u-

nit by a computer and

used especially to re-

present an alphanumer-

ic character 字 节 , 八

位元组

③ likewise [ �laikwaiz]

a dv. in like manner

similarly go and do

likewise ; in addition 同

样地 , 照样地 , 又 , 也

④ plague [ pleiɡ] vt.

to smi te, infest, or af-

flict with or as if with

disease, calamity, or

natural evil; to cause

worry or distress to; to

disturb or annoy per-

si stently 折 磨 , 使 苦

恼 , 使遭受灾祸

⑤ suspend [ s��spend]

v. to cause to s top tem-

poraril y; to set aside or

make temporarily inop-

erative; to defer to a

later time on specified

conditions; to hold in

an undetermined or un-

decided state awaiting

further information 延

·29· 纳米世界探秘

Page 97: Mysteries of the Nanotechnique

New Products: Today, we handle matter crudely, but nanotechnology

will bring thorough control of the structure of matter, the ability to build

objects to atom-by-atom specifications. This means being able to make al-

most anything. By comparison, even today’s range of products will feel

very limited. Nanotechnology will make possible a huge range of new

products, a range we can’t envision today. Still, to get a feel for what is

possible, we can look at some easily imagined applications.

Reliable Products: Today, products often fail, but for failures to oc-

cur-for a wing to fall off an airplane, or a bearing to wear out—a lot of at-

oms have to be out of place. In the future, we can do better. There are

two basic reasons for this: better materials and better quality control, both

achieved by molecular manufacturing. By using materials tens of times

stronger than steel, it will be easy to make things that are very strong,

with a huge safety margin. By building things with atom-by-atom control,

flaws can be made very rare and extremely small—nonexistent, by present

standards.

With nanotechnology, we can design in big safety margins①

and then

manufacture the design with near-perfection. The result will be products

that are tough and reliable. ( There will still be room for bad designs, and

for people who wish to take risks in machines that balance on the edge of

disaster. )

Intelligent Products: Today, we make most things from big chunks②

of metal, wood, plastic, and the like, or from tangles of fibers. Objects

made with molecular manufacturing can contain trillions of microscopic

motors and computers, forming parts that work together to do something

useful. A climber’s rope can be made of fibers that slide around and re-

weave to eliminate frayed③

spots. Tents can be made of parts that slide

and lock to turn a package into a building. Walls and furniture can be

·39·第四章 丰富多彩的纳米技术世界

Page 98: Mysteries of the Nanotechnique

made to repair themselves, instead of passively deteriorating.

·49· 纳米世界探秘

Page 99: Mysteries of the Nanotechnique

新产品: 今天, 我们按照自然形态来加工物

质, 但纳米技术能完全控制物质的结构, 在一个个

原子的具体细节上构造物体。这意味着几乎可以

制成任何东西。与之比较, 今天的产品范围是极

其有限的。纳米技术将在一个巨大的范围内制造

新产品, 这个范围我们今天还不能预测。为了对

其取得一定的感觉, 我们还是来看看一些容易想

象的应用吧。

可靠的产品: 今天, 产品经常出毛病, 不管是

一架飞机翅膀的脱落, 还是一个轴承的磨损的场

合里, 都有许多原子离开了它们原来的位置。将

来我们可以做得更好, 是基于两个理由: 我们可以

依靠分子生产来获得更好的材料, 而且能更好地

控制质量。使用比钢铁强度大十倍的材料, 很容

易生产出坚固的产品, 有很高的安全系数。用控

制一个个原子的方法来制造物品, 能使其中的缺

陷变得非常稀少和微小, 以现在的标准来看就是

不存在的。

借助于纳米技术, 我们可以在很高的安全系

数内来进行设计, 并近乎完美地把设计蓝图生产

出来, 制得耐用可靠的产品。 ( 仍然可能有糟糕

的设计, 仍然有人愿意在就要出事的机器中冒

险。)

智能产品: 今天, 我们以大块的金属、木头、塑

料等等或是通过纤维的交织来制造出大部分东西。

用分子生产技术制造出来的物品能够容纳几万亿

台微型马达和计算机, 组成零件, 共同工作。一个

登山者的绳索可以由能够自如滑动、重新编织、消

除磨损的纤维制成。帐篷的各部分能够自动装配,

由一个包裹变为一座建筑物。墙壁和家具除了被

动装饰的作用外, 还具有自动修复的功能。

① margin [ �mɑ�d�in ]

n. a spare amount or

measure or degree al-

lowed or given for con-

tingencies or special

si tuations; a bare mini-

mum below which or an

extreme limit beyond

which something be-

comes impossible or is

no longer desirable 极

限 , 差数 , 富余

② chunk [ t���k] n.

a short thick piece or

lump 大块 , 矮胖的人

或物

③ frayed [ freid ] adj.

worn ( as an edge of

cloth ) by or as if by

rubbing 磨损的

·59·第四章 丰富多彩的纳米技术世界

Page 100: Mysteries of the Nanotechnique

On a mundane level, this sort of flexibility will increase reliability

and durability. Beyond this, it will make possible new products with a-

bilities we never imagined we needed so badly. And beyond even this, it

will open new possibilities for art.

Inexpensive Production: Today, production requires a lot of labor,

either for making things or for building and maintaining machines that

make things. Labor is expensive, and expensive machines make automa-

tion expensive, too. Molecular manufacturing can make production far

less expensive than it is today. This is perhaps the most surprising con-

clusion about nanotechnology.

Clean Production: Today, our manufacturing processes handle mat-

ter sloppily①

, producing pollution. One step puts stuff where it shouldn’

t be; the next washes it off the product and into the water supply. Our

transportation system worsens the problem as unreliable trucks and tank-

ers spill noxious chemicals over the land and sea. Everything is expen-

sive, so companies skimp②

on even the half-effective pollution controls

that we know how to build.

Nanotechnology will mean greater control of matter, making it easy to

avoid pollution. This means that a little public pressure will go a long way

toward a cleaner environment. Likewise, it will make it easy to increase

efficiency and reduce resource requirements. Products can be made of

snap-together, easily recyclable parts. Sophisticated③

products could even

be made from biodegradable④

materials. Nanotechnology will make it easy

to attack the causes of pollution at their technological root.

Nanotechnology will have great applications in the field of industry,

much as transistors had great applications in the field of vacuum tube e-

lectronics, and democracy had great applications in the field of monar-

chy⑤

. It will not so much advance twentieth-century industry as replace

it-not all at once, but during a thin slice of historical time.

·69· 纳米世界探秘

Page 101: Mysteries of the Nanotechnique

一般看来, 这种灵活性能够提高可靠性和耐

用性。从更高的层次上说, 这将给我们带来具有

我们从未想过对它的需要是如此迫切的性质的新

产品。再拔高一点来说, 这能够给“艺术”开辟新

的领域。

低成本生产: 今天, 不管是为了制造产品, 还

是维护机器, 生产都需要大量的劳动。劳动是昂

贵的, 昂贵的机器也使得自动化成本很高。分子

制造能使生产比今天便宜很多, 这也许是纳米技

术带给我们的最让人吃惊的结论。

无污染生产: 今天, 我们的生产流程漫不经心

地处理物质, 制造污染。其中的一步可能把原料

放到了本来不该在的地方; 下一步又把它从产品

中洗掉, 进入水供应系统中。我们的运输系统使

该问题变得更为严重, 因为那些不可靠的卡车和

油轮把有毒的化学品倾泻到陆地和海洋之上。一

切都是那么昂贵, 因此那些公司不愿意掏腰包, 去

建哪怕只有我们设计能力一半的污染控制系统。

纳米技术能更好地控制物质, 很容易避免污

染。这意味着一点点的公众压力也会对清洁环境

大有帮助。类似地, 它能提高生产效率, 减少对资

源的需求。产品由互相吻合的部件组成, 易于回

收。甚至结构精密的产品也能由生物可降解型材

料制成。纳米技术能轻易地从技术的根源去动摇

产生污染的原因。

纳米技术在工业领域内大有市场, 就好像晶

体管在真空电子管领域内大有市场, 民主在独裁

的领域内大有市场一样。对 20 世纪工业更多的

是取代而不是改进, 但并不是一下子就能完成的,

而是要经过一小段历史时间。

① sloppily [ �s l�pili ]

a dv. slovenly, care-less ly 粗心地 , 漫不经心地

② skimp [ skimp] v.

to give insufficient orbarely sufficient at ten-

tion or effort to or fundsfor 节约使用

③ sophisticated[ s��fistikeitid ] adj.

highly complicat ed or

developed; complex 精密的 , 复杂的

④ biodegradable

[ bai�udi�ɡreid�b ( �)

l ] a dj. capable of be-ing broken down espe-

cially into innocuousproducts by the action

of living things ( as mi-

croorganisms) 生物 所能分解的

⑤ monarchy

[ �m�n�ki] n. undivid-

ed rule or absolute sov-ereignty by a s ingle

person; a nation or

st ate having a monar-chical government ; a

government having anhereditary chief of state

with life tenure and

powers varying fromnominal to absolute 君主 政 体 , 君 主 政 治 ,君主国

·79·第四章 丰富多彩的纳米技术世界

Page 102: Mysteries of the Nanotechnique

4 . 3 . 2 Science

Chemistry: Today, chemists work with huge number of molecules

and study them using clever, indirect techniques. Making a new mole-

cule can be a major project, and studying it can be another. Molecular

manufacturing will help chemists make what they want to study, and it

will help them make the tools they need to study it. Nanoinstruments will

be used to prod①

, measure, and modify molecules in a host of ways,

studying their structures, behaviors, and interactions.

Materials: Today, materials scientists make new superconductors②

,

semiconductors, and structural materials by mixing and crushing and

baking and freezing, and so forth. They dream of far more structures

than they can make, and they stumble across more things than they

plan. With molecular manufacturing, materials science can be much

more systematic and thorough. New ideas can be tested because new ma-

terials can be built according to plan ( rather than playing around, gro-

ping for a recipe) . This need not rule out unexpected discoveries, since

experiments—even blind searches—will go much faster . A few tons of

raw materials would be enough to make a billion samples, each a cubic

micron③

in size. In all of history so far, materials scientists have never

tested so many materials. With nanoinstruments and nanocomputers,

they could. One laboratory could then do more than all of today’s materi-

als scientists put together.

Biology: Today, biologists use a host of molecular devices borrowed

from biology to study biology. Many of these can be viewed as molecular

machines . Nanotechnology will greatly advance biology by providing bet-

ter molecular devices, better nanoinstruments. Some cells have already

been mapped in amazing molecular detail, but biology still

·89· 纳米世界探秘

Page 103: Mysteries of the Nanotechnique

4 À. 3 . 2 科学

化学: 今天, 化学家们以大量分子为对象, 以

机灵的、间接的技术来研究。制备一个新的分子

是一项重要工程, 而研究它则是另一项。分子生

产将帮助化学家造出他们想要研究的对象, 以及

研究时所需要的工具。纳米仪器将用各种各样的

方法来探测、量度和修饰分子, 研究其结构、行为

和相互作用。

材料: 今天, 材料科学家们以混合、磨碎、焙烧

和冷冻等方法来制备新的超导体, 半导体和具有

特定结构的材料。他们梦想着许多他们造不出的

结构, 而且, 他们偶遇的机会比计划的要多。利用

分子生产, 材料科学能变得更加系统和完整。因

为新材料能够根据计划来制造( 而不是像四处游

玩, 或像摸索一本菜谱) , 一样新的想法就能被检

验了。这并不排斥意外的发现, 因为实验———即

使是闭上眼睛的摸索———也会比这走得快得多。

几吨原材料足以用来制备十亿个样品, 每一个的

大小在一立方微米左右。迄今为止, 材料科学家

还没有对许多材料进行检验。借助纳米仪器和纳

米计算机, 他们就能做到这一点。一个实验室将

会比今天所有的材料科学家加起来都要干得多。

生物: 今天, 生物学家们借助于各式各样的仿

生仪器来研究生物学。其中的许多都可被看作是

分子机器。纳米技术能提供更好的分子器件和纳

米仪器, 从而极大地推动生物学的发展。有的细

胞已经在惊人的分子细节上得到了绘制, 但是生

物学还有很长的路要走。用纳米仪器 ( 包括分子

① prod [ pr�d ] v. to

thrust a pointed instru-

ment into; to poke or

st ir as if wi th a prod

刺 , 刺探

② semiconductor

[ semik�n�d�kt�( r ) ]

n . any of a class of sol-

ids ( as germanium or

si licon) whose electri-

cal conductivity is be-

tween that of a conduc-

tor and that of an insu-

lator in being nearly as

great as that of a metal

at high temperatures

and nearly absent at

low temperatures [ 物 ]

半导体

③ micron [ �maikr�n ]

n. micrometer; a unit

of length equal to one

millionth of a meter 微

·99·第四章 丰富多彩的纳米技术世界

Page 104: Mysteries of the Nanotechnique

has far to go. With nanoinstruments ( including molecule-by-molecule

disassemblers) , biologists will at last be able to map cells completely

and study their interactions in detail. It will become easy not only to find

molecules in cells, but to learn what they do. This will help in under-

standing disease and the molecular requirements for health, enormously

advancing medicine.

Computation: Today, computers range from a million to a billion

times faster than an old desktop adding machine, and the results have

been revolutionary for science. Every year, more questions can be an-

swered by calculations based on known principles of physics. The advent

of nanocomputers-even slow, miserable, mechanical nanocomputers-will

give us practical machines with a trillion times the power of today’s com-

puters ( essentially by letting us package a trillion computers in a small

space, without gobbling①

too much money or energy. ) The conse-

quences will again be revolutionary.

Physics: The known principles of physics are adequate for under-

standing molecules, materials, and cells, but not for understanding phe-

nomena on a scale that would still be submicroscopic②

if atoms were the

size of marbles. Nanotechnology can’t help here directly, but it can pro-

vide manufacturing facilities that will make huge particle accelerators e-

conomical, where today they strain national budgets.

More generally, nanotechnology will help science wherever preci-

sion and fine details are important. Science frequently proceeds by trying

small variations in almost identical experiments, comparing the results.

This will be easier when molecular manufacturing can make two objects

that are identical, molecule by molecule. In some areas, today’s tech-

niques are not only crude③

, but destructive. Archaeological sites are u-

nique records of the human past, but today’s techniques throw away

most information during the dig, by accident.

·001· 纳米世界探秘

Page 105: Mysteries of the Nanotechnique

解聚体) , 用纳米仪器( 包括分子解聚体 ) , 生物学

家们终将能完整地绘制细胞并研究它们的相互作

用。在细胞中发现分子并研究它们的行为会变得

容易起来。这将有助于理解疾病和健康的分子要

素, 极大地推进医药的发展。

计算技术: 今天, 计算机的速度介于老式桌面

加法器的 100 万到十亿倍之间, 该结果已经对科

学产生革命性的影响。每年都有更多的问题能够

在已知的物理定律的基础上计算出来。纳米计算

机的降临, 哪怕是缓慢的、可怜的、机械式的纳米

计算机, 也能带来实用的机器, 比今天的计算机强

万亿倍( 主要因为我们能够在一小块空间内容纳

下一万亿个纳米计算机, 而不需要太多的费用和

精力) 。由此产生的后果也是革命性的。

物理: 已知的物理定律已经足以解释分子、材

料和细胞, 但还不足以对亚微观的现象加以解释

( 除非原子像石弹子那么大的话 ) 。纳米技术在

此处不能提供直接帮助, 但它能提供生产工具, 使

巨大的粒子加速器变得便宜, 不再像今天那样限

制国家的预算。更一般地, 纳米技术能够对需要

精确和微小细节的科学有用。科学经常在对几乎

完全相同的实验加以微小改动, 并对结果加以比

较时得到进展。当分子建筑能按一个一个分子造

出完全一样的物体时, 这就变得更容易了。在一

些地区, 今天的工艺不仅粗糙, 而且是破坏性的。

考古遗址是人类过去的独特记录, 但今天的技术

在挖掘过程中由于意外而丢掉了大量信息。未来

① gobble [ �ɡ�b( �) l ]

vt . to swallow or eat

greedily 狼吞虎咽

② submicroscopic

[ s�bmaikr��sk�pik]

a dj. too smal l to be

seen in an ordinary

light microscope; of,

relating to, or dealing

with the very minute 亚

微观的

③ crude [ kru: d] adj.

rough or inexpert in

plan or execution 粗糙

的 , 拙劣的 , 粗鲁的

·101·第四章 丰富多彩的纳米技术世界

Page 106: Mysteries of the Nanotechnique

Future archaeologists, able to sift soil not speck①

by speck but molecule

by molecule, will be grateful indeed to those archaeologists who today

leave some ground undisturbed.

4 . 3 . 3 Medicin e

Of all the areas where the ability to manufacture new tools is impor-

tant, medicine is perhaps the greatest. The human body is intricate, and

that intricacy extends beyond the range of human vision, beyond micro-

scopic imaging, down to the molecular scale. “Molecular medicine " is

an increasingly popular term today, but medicine today has only the sim-

plest of molecular tools. As biology uses nanoinstruments to learn about

disease and health, we will learn the physical requirements for restoring

and maintaining health. And with this knowledge will come the tools

needed satisfy those requirements—tools ranging from improved pharma-

ceuticals②

to devices able to repair cells and tissues through molecular

surgery.

Advanced medicine will be among the most complex and difficult

applications of nanotechnology. It will require great knowledge, but

nanoinstruments will help gather this knowledge. It will pose great engi-

neering challenges, but computers of trillionfold③

greater power will help

meet those challenges. It will solve medical problems on which we spend

billions of dollars today, in hopes of modest improvements.

Today, modern medicine often means an expensive way to prolong

misery. Will nanomedicine be more of the same? Any reader over the

age of, say, thirty knows how things start to go wrong: an ache here, a

wrinkle there, the loss of an ability. Over the decades, the physical

quality of life declines faster and faster—the limits of what the body can

do become stricter—until the limits are those of a hospital bed. The

healing abilities we have when young seem to fade away.

·301·第四章 丰富多彩的纳米技术世界

Page 107: Mysteries of the Nanotechnique

考古学家们, 能够按一个个分子而不是一粒粒地

检查土壤, 他们将会对今天的那些考古学家们把

一些地方原封不动地保留下来表示衷心的感激。

4 À. 3 . 3 医药

在制造新工具的能力显得重要的所有领域

中, 医药也许是最为注目的。人的身体是复杂的,

其复杂超出了人类的想象, 也超出了微观成像的

范围, 到了分子的尺度上。“分子药物”是今天逐

渐为人所知的术语, 但现代的医药只有最简单的

分子工具。当生物学使用纳米仪器来学习疾病和

健康的知识时, 我们将得知恢复和保持健康的必

要的生理条件。与这些知识一起到来的是那些所

需来满足这些必要条件的工具, 从改进的药品到

能够通过分子外科手术来修复细胞和组织的器

械。

先进的医药是纳米技术最为复杂和困难的应

用之一。这需要大量的知识, 纳米仪器有助于搜

集这些知识。这会对工程技术产生巨大的挑战,

但比现在强大万亿倍的计算机有助于迎接那些挑

战, 它将解决那些让我们今天花费数十亿美圆的

医学难题, 有希望获得应有的推进。

今天, 现代医药经常意味着通过一种昂贵的方

法来延长痛苦。纳米药物也会一样吗? 30 岁以上

的所有读者都知道身体是如何开始走下坡路的: 这

儿疼, 那儿起了皱纹, 某项功能丧失了。数十年后,

生命的体格衰落得越来越快, 身体能够完成的功能

越来越有限, 直到只能躺在医院的病床上做一些动

作。我们年轻时的康复能力逐渐消失了。

① speck [ spek] n. a

very small amount ; bit

一点 , 极少量

② pharmaceutical

[ �fɑ�m�sju�tik�l ] n . a

medicinal drug 药物

③ trillionfold

[ �trilj�nf�uld ] n. a

trillion times more than

万亿倍

·401· 纳米世界探秘

Page 108: Mysteries of the Nanotechnique

Modern medical practice expends the bulk of its effort on such things as

intensive care units, dragging out the last few years of life without resto-

ring health.

Truly advanced medicine will be able to restore and supplement the

youthful ability to heal. Its cost will depend on the cost of producing

things more intricate than any we have seen before, the cost of producing

computers, sensors, and the like by the trillions. To understand the

prospects for medicine, like those for science and industry, we need to

take a closer look at the cost of molecular manufacturing.

4 . 4 Na note chnolo gy a nd Da ily Life

Advancing technology may end or extend life, but it can also

change its quality. Products based on nanotechnology will permeate the

daily lives of people who choose to use them. Some consequences will be

trivial; others may be profound①

.

Some products will have effects as ordinary as simplifying house-

keeping②

( and as substantial as reducing the causes of domestic quar-

rels) . It should be no great trick, for example, to make everything from

dishes to carpets self-cleaning, and household air permanently fresh. For

properly designed nanomachines, dirt would be food.

Other systems based on nanotechnology could produce fresh food—

genuine meat, grain, vegetables, and so forth—in the home, year

round. These foods result from cells growing in certain patterns in plants

and animals; cells can be coaxed③

to grow in these same patterns else-

where. Home food growers will let people eat ordinary diets without kill-

ing anything. The animal rights movement ( the forerunner of a move-

ment to protect all conscious, feeling entities? ) will be strengthened ac-

cordingly.

·501·第四章 丰富多彩的纳米技术世界

Page 109: Mysteries of the Nanotechnique

现代的医学把主要的努力放在诸如重病特别护理

上, 拖延生命的最后几年而不能最终恢复健康。

真正先进的医药能够恢复并补充年轻时的康

复能力。它的成本依赖于制造比任何我们所见的

更为复杂的东西的代价, 即成万亿地制造计算机、

传感器等等的成本。为了理解医学发展的前景,

如同科学和工业的发展前景那样, 我们需要仔细

检查分子生产的成本。

4 Ä. 4 纳米技术与日常生活

技术的进步能够终止或者扩展生活的范畴,

也能改变其质量。基于纳米技术的产品将会渗透

到选择使用它们的人们的生活当中。由此引起的

一部分结果是微不足道的, 但另一部分结果则具

有深远意义。

有的产品具有普通的功能, 例如简化家务管

理( 看得见的如减少家庭口角的导火索 ) 。要使

所有一切———从碗碟到地毯———都能够自我保持

清洁, 室内空气总是那么清新, 并不是一场幻想。

对于设计得恰到好处的纳米机器来说, 尘土就是

它们的食物。

其余的基于纳米技术的系统则可以制造新鲜

的食物: 真正的肉类、谷物、蔬菜等等, 而且能在家

中实现一年到头的供应。这些食物是生长在植物

和动物中的某些特定类型的细胞的产品, 而人们

能够创造出特定的环境让这些细胞以和体内同样

的方式繁殖。家庭的食物栽培者们将使人们不杀

生就能吃到日常的食品。维护动物权益的运动

( 也许是保护所有有意识和感觉实体的运动的先

驱? ) 将由此得到加强。

① profound

[ pr�u�faund ] adj.

having intellectual

depth and insight; dif-

ficult to fathom or un-

ders tand 深 刻 的 , 意

义深远的

② housekeeping

[ �hauski�pi�] n . the

management of a house

and home affairs; the

routine tasks that must

be done in order for a

sys tem to function or to

function efficiently 家

务管理 , 例行公事

③ coax [ k�uks] v. to

influence or gently urge

by caressing or flatt er-

ing; to draw, gain, or

persuade by means of

gentle urging or flattery

哄 , 耐心劝说

·601· 纳米世界探秘

Page 110: Mysteries of the Nanotechnique

Nanotechnology will make possible high-resolution screens that pro-

ject different images to each eye; the result will be three-dimensional tel-

evision so real that the screen seems like a window into another world.

Screens of this sort could line the helmet①

of a suit much like the space-

suit described in Chapter 2. The suit itself, rather than being pro-

grammed to transmit forces and textures from outside, could instead ap-

ply to the skin forces and textures defined by a complex, interactive pro-

gram. A suit and helmet combination of this sort could simulate most of

the sights and sensations of an entire environment, whether real or imagi-

nary. Nanotechnology will make possible vivid art forms and fantasy②

worlds far more absorbing than any book, game, or movie.

Advanced technologies will make possible a whole world of products

that make modern conveniences seem inconvenient and dangerous. Why

shouldn ’t objects be light, flexible, durable, and cooperative? Why

shouldn’t walls look like whatever we want, and transmit only the sounds

we want to hear? And why should buildings and cars ever crush or roast③

their occupants? For those who wish, the environment of daily life can

resemble some of the wilder descriptions found in science fiction.

·701·第四章 丰富多彩的纳米技术世界

Page 111: Mysteries of the Nanotechnique

纳米技术能造出高分辨的屏幕, 并对人的两

只眼睛分别投以不同的影像, 由此造成的三维电

视是如此的逼真, 以至于屏幕就像是通到另一个

世界的窗口。这种屏幕能够勾勒出在第二章中曾

经描述过的太空服的头盔的形象。太空服的本身

并不是为了传递力和质地的感觉而设计的, 而是

根据一套错综复杂的程序来施加对皮肤的力和质

地的感觉。一套这样的外衣加上头盔能够模拟整

个环境的绝大多数视觉和其他感觉, 不管这些感

觉是真实的还是虚幻的。纳米技术将使栩栩如生

的艺术形式和科幻世界成为可能, 而且比任何的

书籍、游戏或电影要有趣得多。

先进的技术将生产出遍布全世界的产品, 使

得现代的便利在将来看起来是不方便甚至是危险

的。为什么物体不能又轻又柔软, 还依照人们的

意愿改变呢? 为什么墙壁不能具有我们所想的任

意形状, 而且只允许我们想听到的声音透过呢?

还有, 为什么建筑物和汽车会发生火灾或者是交

通事故呢? 对于那些充满憧憬的人们来说, 将来

日常生活的环境会类似于科幻小说中的某些更为

广泛的描述。

① helmet [ �helmit ]

n. a covering or enclo-

sing headpiece of

ancient or medieval ar-

mor; any of various

protective head cover-

ings usually made of a

hard material to resist

impact 头盔 , 钢盔

② fantasy [ �f�nt�si ]

n . a creation of the i-

maginative faculty

whether expressed or

merely conceived 幻

想 , 白日梦

③ roast [ r�ust ] v. to

dry and parch by expo-

sure to heat 烤 , 烘 ,

烘烤

·801· 纳米世界探秘

Page 112: Mysteries of the Nanotechnique

纳米医学, 人类健康的保障

人体是一个非常巨大的、复杂的、有生理活性的

分子世界。在纳米技术的帮助下, 我们可以尝试着

利用分子水平来根本地治愈疾病。借助微小的机械

进入人体进行手术也许不再是科幻小说的题材, 因

为这已经成为纳米医学的发展目标⋯⋯

Page 113: Mysteries of the Nanotechnique

Chapter 5 Nanomedicine—Soldier

into the Body

Our bodies are filled with intricate①

, active molecular structures.

When those structures are damaged, health suffers. Modern medicine

can affect the workings of the body in many ways, but from a molecular

viewpoint it remains crude②

indeed. Molecular manufacturing can con-

struct a range of medical instruments and devices with far greater

abilities. The body is an enormously complex world of molecules. With

nanotechnology to help, we can learn to repair it.

5 . 1 The Mole cula r Body

To understand what nanotechnology can do for medicine, we need a

picture of the body from a molecular perspective③

. The human body can

be seen as a workyard, construction site, and battleground for molecular

machines. It works remarkably well, using systems so complex that med-

ical science still doesn’t understand many of them. Failures, though, are

all too common.

5 . 1 . 1 The Body As Workyard

Molecular machines do the daily work of the body. When we chew

and swallow, muscles drive our motions. Muscle fibers contain bundles

of molecular fibers that shorten by sliding past one another.

In the stomach and intestines, the molecular machines we call diges-

tive④

enzymes⑤

break down the complex molecules in foods, forming

smaller molecules for use as fuel or as building blocks. Molecular devices

in the lining of the digestive tract carry useful molecules to the blood-

·801· 纳米世界探秘

Page 114: Mysteries of the Nanotechnique

stream.

·901·第五章 纳米医学

Page 115: Mysteries of the Nanotechnique

第五章 纳米医学

我们的身体是由复杂的、有生理活性的分子

形成的结构构成。当这些组织结构被破坏, 健康

就受到损害。现代医学可以通过很多途径对人体

活动施加影响, 但是从分子的观点来看, 这种影响

实际上是很粗糙的。分子制造学可以制造出一系

列具有更为强大的功能的医学器械和设备。人体

是一个非常巨大的, 复杂的分子世界。在纳米技

术的帮助下, 我们可以学着去修复它。

5 Ä. 1 分子组成的人体

为了理解纳米技术在医学中的应用, 我们需

要一个从分子角度来看待人体的图像。对于分子

机器而言, 人体可以被看作一个工厂, 一个建筑工

地, 一个战场。它运转的相当好, 使用的系统如此

复杂, 以至医学科学仍然对其理解不多。尽管身

体的功能失调也是经常的。

5 . 1 . 1 作为“工厂”的人体

分子维持人体的日常工作。当我们咀嚼和吞

咽时, 肌肉驱动我们的动作。肌纤维包含的成束

的分子纤维, 通过相互间的滑动使肌肉缩短。

在胃肠道内, 被我们称为消化酶的分子打碎

食物中的复杂分子, 形成较小的分子, 作为身体的

燃料或建筑单元使用。消化道内膜上的分子设备

将有用的分子传送到血流中去。

① i ntricate [ �i ntrik�t ]

a dj. containing many

detailed parts and thus

difficult to understand

复杂难懂的

② crude [ kru�d] adj.

not ski llfully made ,

done, or finished 不精

细的 , 粗糙的

③ perspective

[ p��spektiv ] n. the

way in which a mat ter

is judged 判断事物的

方法

④ digestive

[ di�d�es tiv] adj. con-

nected with or helping

in the digesti ng 消 化

⑤ enzyme [ �enzaim ]

n. a chemical sub-

st ance produced by

certain living cells ,

which can cause or

hasten chemical change

in plants or animals

without itself being

changed 酶

·011· 纳米世界探秘

Page 116: Mysteries of the Nanotechnique

Meanwhile, in the lungs, molecular storage devices called hemoglo-

bin①

molecules pick up oxygen. Driven by molecular fibers, the heart

pumps blood laden with fuel and oxygen to cells. In the muscles, fuel

and oxygen drive contraction based on sliding molecular fibers. In the

brain, they drive the molecular pumps that charge nerve cells for action.

In the liver , they drive molecular machines that build and break down a

whole host of molecules. And so the story continues through all the work

of the body.

Yet each of these functions sometimes fails, whether through dam-

age or inborn defect.

5 . 1 . 2 The Body as Construction Site

In growing, healing, and renewing tissue, the body is a construc-

tion site. Cells take building materials from the bloodstream. Molecular

machinery programmed by the cell’s genes uses these materials to build

biological structures: to lay down bone and collagen②

, to build whole

new cells, to renew skin, and to heal wounds.

With the exception of tooth fillings and other artificial③

implants,

everything in the human body is constructed by molecular machines.

These molecular machines build molecules, including more molecular

machines . They clear away structures that are old or out of place, some-

times using machinery like digestive enzymes to take structures apart.

During tissue construction, whole cells move about, amoeba④

-like:

extending part of themselves forward, attaching, pulling their material a-

long, and letting go of the former attachment site behind them. Individu-

al cells contain a dynamic pattern of molecules made of components that

can break down but can also be replaced. Some molecular machines in

the cell specialize in digesting molecules that

·111·第五章 纳米医学

Page 117: Mysteries of the Nanotechnique

同时, 在肺中, 称为血红蛋白的分子储存设备

获取氧气。在分子纤维的驱动下, 心脏将携带了

养料和氧气的血液泵向身体细胞。在肌肉中, 养

料和氧气驱动了由于分子纤维滑动造成的肌肉收

缩。在大脑中, 它们驱动分子泵维持神经细胞的

活动。在肝中, 它们驱动分子机器生成和分解所

有上述大量分子。通过人体内的各部分进行着类

似的这些工作。

但是由于受到损害或者天生的缺陷, 这些功

能中的每一个都有可能会失效。

5 À. 1 . 2 作为“建筑工地”的人体

在生长、康复和组织的更新过程中。人体成

了一个建筑工地。细胞从血流中取得材料, 由细

胞基因编码控制的分子机器利用这些材料建立起

各种生物结构: 生成骨骼和胶原蛋白, 形成新的细

胞, 更新皮肤, 使伤口愈合。

除了牙齿填补物和其他的人造填充物质以

外, 人体内的一切都是由分子机器制作而成的。

这些分子机器制作各种分子, 包括其他更多的分

子机器。它们清除衰老的或放错了位置的组织结

构, 有时动用消化酶这样的分子机械来肢解这些

组织结构。

在组织形成的过程中, 整个细胞像阿米巴虫

一样四处移动: 向前伸展它们的一部分并固定, 推

动物质向前, 越过从前的固定点, 把它甩在后面。

单个细胞包含一种分子的动态结构模式, 由细胞

内的组成分子形成, 这种模式可以被破坏, 也可以

被替换。细胞内有些分子专门负责清除那些显示

① hemoglobin

[ hi�m���l�ubin] n. a

red coloring matter in

the blood which con-

tains iron and carries

oxygen 血红蛋白

② collagen

[ �k�l�d�( �) n] 胶原

蛋白

③ artificial

[ a�ti�fi�( �) l ] adj.

made by man; not nat-

ural 人造的 , 人为的

④ amoeba [ ��mib�]

n . a very small form of

living creature consis-

ting of only one cell 阿

米巴虫 , 变形虫

·211· 纳米世界探秘

Page 118: Mysteries of the Nanotechnique

show signs of damage, allowing them to be replaced by fresh molecules

made according to genetic instructions. Components inside cells form

their complex patterns by self-assembly①

, that is, by sticking to the

proper partners.

Failures in construction increase as we age. Teeth wear and crack

and aren ’t replaced; hair follicles②

stop working; skin sags and wrin-

kles③

. The eye’s shape becomes more rigid, ruining close vision. Youn-

ger bodies can knit together broken bones quickly, making them stronger

than before, but osteoporosis④

can make older bones so fragile⑤

that they

break under minor stress.

Sometimes construction is botched⑥

from the beginning due to a

missing or defective genetic code. In hemophilia⑦

, bleeding fails to stop

due to the lack of blood clotting factor . Construction of muscle tissue is

disrupted in 1 in 3, 300 male births by muscular dystrophy, in which

muscles are gradually replaced by scar tissue and fat; the molecule

“dystrophin⑧

" is missing. Sickle cell anemia results from abnormal he-

moglobin molecules.

Paraplegics⑨

and quadriplegics⑩

know that some parts of the body

don’t heal well. The spinal cord�11

is an extreme—and extremely seri-

ous—case, but scarring and improper regrowth of tissues result from

many accidents. If tissues always regrew properly, injury would do no

permanent physical damage.

5 . 1 . 3 The Body as Battlefield

Assaults from outside the body turn it into a battlefield where the

aggressors sometimes get the upper hand�12

. From parasitic worms to pro-

tozoa to fungi to bacteria to viruses, organisms of many kinds have learn-

ed to live by entering the body and using their molecular machinery to

build more of themselves from the body’s building blocks. To

·311·第五章 纳米医学

Page 119: Mysteries of the Nanotechnique

出受损迹象的分子, 使它们被新的按照基因指示

生成的分子替代。细胞内的组成成分形成复杂的

结构模式是自我装配的, 也就是说, 是通过把自己

与特定的同伴粘在一起实现的。

组织形成中的失误随着我们年龄的增加而增

加。牙齿磨损, 出现裂纹, 得不到修复; 头发的毛

囊停止工作; 皮肤松弛, 出现皱纹。眼睛的晶状体

变得更硬, 损害了看近处物体的视力。年轻人的

身体可以很快将断骨紧密结合起来, 使它们比以

前更强壮, 但是骨质疏松症使得老年人的骨骼变

得很脆, 在较小的压力下就断裂。

有时候由于遗传密码丢失或有缺陷, 组织形

成从一开始就被搞砸了。血友病患者由于凝血因

子缺乏, 出血不能停止。每 3300 个男婴中有 1 个

患有肌肉营养失调, 他们体内缺少肌营养不良蛋

白, 肌肉组织的形成被中断, 肌肉逐渐被疤痕组织

和脂肪取代。镰刀状红细胞贫血症是不正常血红

蛋白分子形成的结果。

截瘫和四肢瘫痪的患者知道他们身体的某些

部分不能被彻底治愈。脊髓损伤是一个极端———

并且是极端严重———的例子, 但是疤痕形成和组

织的不正确重新生长是许多意外损伤的结果。如

果组织总能正确地重新生长, 这些损伤就不再是

永久性的身体损伤。

5 À. 1 . 3 作为“战场”的人体

来自体外的袭击把人体变成一个战场, 侵略

者有时会占到上风。从寄生虫、原生动物、真菌、

细菌到病毒, 各种各样的生物都学会了在人体内

求得生存, 利用他们的分子机械, 从人体的物质材

料制造他们自己的分子。面对这样的攻击, 人体

① assemble[ ��semb( �) l] v. to puttogether ( something,su-ch as a machine) 装配 ( 机器 )② follicle [ �fulik( �) l]n . any of the smallholes in a person’s or an-imal ’s skin, from whichhairs grow 毛囊③ wrinkle [ �ri�k ( �) l ]v. ( esp. of the skin) to fo-rm into lines , folds , etc.( 尤指皮肤) 起皱纹④ osteoporosis[ �sti�up��r�us is] 骨质疏松症⑤ fragile[ �fr�d�ail ] a dj. easilybroken or damaged 易碎的 , 易坏的⑥ botch [ b�t�] v. todo ( something) badly做的不好⑦ hemophilia[ hi�m��fili�] n. a dis-ease passed by inherit-ance, which makes the

sufferer bleed for a longtime after a cut or asmall accident 血友病⑧ dystrophin 肌 营 养不良蛋白⑨ paraplegic[ p�r��pli�d�ik ] adj. /n . ( of or being) paral-ysis of the lower part ofthe body, includingboth legs 截瘫者⑩ quadriplegics[ �kw�dri�pled�iks ] 四肢瘫痪�11 spinal cord [ �spain( �) l�k��d ] n. thethick and inclosed inthe spine by which

nervous message arecarried 脊髓�12 upper hand: control控制 , 上风 , 优势

·411· 纳米世界探秘

Page 120: Mysteries of the Nanotechnique

meet this onslaught①

, the body musters the defenses of the immune②

system—an armada of its own molecular machines. Your body ’s own

amoebalike white blood cells patrol the bloodstream and move out into

tissues, threading their way between other cells, searching for invaders.

How can the immune system distinguish the hundreds of kinds of

cells that should be in the body from the invading cells and viruses that

shouldn’t? This has been the central question of the complex science of

immunology. The answer, as yet only partially understood, involves a

complex interplay③

of molecules that recognize other molecules by stick-

ing to them in a selective fashion. These include free-floating antibod-

ies④—which are a bit like bumbling

⑤guided missiles—and similar mol-

ecules that are bound to the surface of white blood cells and other cells of

the immune system, enabling them to recognize foreign surfaces on con-

tact.

This system makes life possible, defending our bodies from the fate

of meat left at room temperature. Still, it lets us down in two basic

ways.

First, the immune system does not respond to all invaders, or re-

sponds inadequately⑥

. Malaria, tuberculosis, herpes, and AIDS all

have their strategies for evading destruction. Cancer is a special case in

which the invaders are altered cells of the body itself, sometimes suc-

cessfully masquerading as healthy cells and escaping detection.

Second, the immune system sometimes overresponds, attacking

cells that should be left alone. Certain kinds of arthritis, as well as lupus

and rheumatic fever, are caused by this mistake. Between attacking

when it shouldn’t and not attacking when it should, the immune system

often fails, causing suffering and death.

·511·第五章 纳米医学

Page 121: Mysteries of the Nanotechnique

将集合起免疫系统的防御部队———一支人体自身

分子机器组成的舰队。体内的阿米巴形状的白细

胞本来在血流中巡逻, 现在离开血管进入组织, 在

其他细胞中挤过去, 寻找入侵者。

免疫系统是如何把上百种应有的人体细胞和

不应出现的入侵者细胞或病毒区分开呢? 这是复

杂的免疫科学的中心问题。答案, 尽管我们还只

知道其中的一部分, 在于分子之间复杂的相互作

用, 分子以一种有选择性的方式粘在其他分子上,

以此来识别其他分子。自由漂浮着的抗体———有

点像模糊制导的导弹———以及固定在白细胞和免

疫系统其他细胞表面上的类似分子, 使识别接触

的外来表面成为可能。

这一系统使生命的存在成为可能, 保护我们

的身体免于遭受在通常温度下腐烂的命运。但

是, 在两种基本的情况下, 它也使我们生病。

首先, 免疫系统不会对所有入侵者产生反应,

或者反应不够激烈。疟疾、肺结核、疱疹和艾滋病

都有逃避被消灭的策略。癌症是一种特殊的病

例: 入侵者是人体自身变异了的细胞, 有时成功地

伪装为健康的细胞并逃脱检查。

其次, 免疫系统有时会反应过火, 袭击应该被

保留的细胞。某些类型的关节炎, 以及狼疮和风

湿热都是由这样的错误引起的。在不应当的时候

做出攻击和应当的时候不做攻击之间, 免疫系统

经常出错, 导致疾病和死亡。

① onslaught

[ ��nsl��t ] n . ( on) a

fierce attack ( on ) 猛

攻 , 猛袭

② immune [ i�mju�n ]

a dj. ( to) unable to be

harmed because of spe-

cial powers in oneself

免疫的

③ interplay

[ �int�plei ] n. interac-

tion 交互作用

④ antibody

[ ��ntib�di] n. a sub-

st ance produced in the

body and which fight a-

gainst di sease 抗体

⑤ bumble

[ �b�mb ( �) l ] v. to

speak without making

much sense, or so that

the words are hard to

hear 语 无伦 次 , 说 话

含糊

⑥ i nadequate

[ in��dikw�t ] adj. not

good enough in quali-

ty , ability, s ize etc .

( for some act) 不充分

的 , 不胜任的

·611· 纳米世界探秘

Page 122: Mysteries of the Nanotechnique

5 . 2 Me dic ine Toda y: P roble ms a nd Hope s

When the body’s working, building, and battling goes awry①

, we

turn to medicine for diagnosis and treatment. Today’s methods, though,

have obvious shortcomings.

5 . 2 . 1 Cru de Methods

Diagnostic procedures vary widely, from asking a patient questions,

through looking at X-ray shadows, through exploratory surgery and the

microscopic and chemical analysis of materials from the body. Doctors

can diagnose many ills, but others remain mysteries. Even a diagnosis

does not imply understanding: doctors could diagnose infections before

they knew about germs, and today can diagnose many syndromes②

with

unknown causes. After years of experimentation and untold loss of life,

they can even treat what they don ’t understand—a drug may help,

though no one knows why.

Leaving aside such therapies as heating, massaging, irradiating,

and so forth, the two main forms of treatment are surgery and drugs.

From a molecular perspective, neither is sophisticated③

.

Surgery is a direct, manual approach to fixing the body, now prac-

ticed by highly trained specialists. Surgeons sew together torn tissues and

skin to enable healing, cut out cancer, clear out clogged arteries, and e-

ven install pacemakers and replacement organs. It’s direct, but it can be

dangerous : anesthetics④

, infections, organ rejection, and missed cancer

cells can all cause failure. Surgeons lack fine-scale control. The body

works by means of molecular machines, most working inside cells. Sur-

geons can see neither molecules nor cells, and can repair neither.

·711·第五章 纳米医学

Page 123: Mysteries of the Nanotechnique

5 Ä. 2 现代的医学: 问题与曙光

当人体的正常工作、组织生长和防御斗争中

出现错误, 我们转向医学寻求诊断和治疗, 尽管现

代的医学方法还有明显的缺点。

5 . 2 . 1 粗糙的方法

诊断的手续变化多样, 从向病人询问问题, 到

观察 X 光照片, 以及检查性质的外科手术和对人

体取样进行显微的和化学的分析。医生可以诊断

出许多种疾病, 但其他的疾病仍然是未知的。即

使能够进行诊断, 也并不意味着理解病因: 医生们

在认识微生物之前就已经能诊断传染病, 现在也

能诊断出许多种不明原因的综合症。经过了成年

累月的实验和付出无数生命的代价, 他们才能治

疗未知病因的疾病———某一种药物也许有效, 尽

管没有人知道为什么。

除了热疗、按摩、照射等治疗手段以外, 两种

主要的治疗方式是外科手术和药物治疗。从分子

的角度来看, 没有一种是精密的。

外科手术是一种直接的、手工的修复肢体的

方法, 在现在需要由受过专业训练的专门医师实

施。外科医生缝合破损的组织和皮肤, 使之能够

愈合, 切除肿瘤, 清除栓塞的动脉, 甚至于安放起

博器或更换器官。这是直接的方法, 但是也是很

危险的: 麻醉、感染、器官排异反应、癌细胞遗留,

都会造成失败。外科医生对此缺乏小尺度上的控

制。人体以分子机械的方式工作, 多数是在细胞

内进行的。外科医生既看不到分子, 也看不到细

胞, 更无法修复它们。

① awry [ ��rai ] a dv.

a dj. not as planned or

intended; in a wrong

manner 错了 的 , 走 样

② syndrome

[ �sindr�um] n. a col-

lection of medical

symptoms which repre-

sent a bodily disorder

or disorder of the mind

综合病症

③ sophisticated

[ s��fistikeitid ] adj.

having many parts ;

complicated, complex

复杂的 , 精密的 , 错综

④ anesthetic

[ �n�s��i�zi�]

( = anaes thetic ) adj.

of, concerning, or cau-

sing anaes thesia 麻 醉

·811· 纳米世界探秘

Page 124: Mysteries of the Nanotechnique

Drug therapies affect the body at the molecular level. Some thera-

pies—like insulin①

for diabetics—provide materials the body lacks.

Most—like antibiotics②

for infections—introduce materials no human

body produces. A drug consists of small molecules; in our simulated mo-

lecular world, many would fit in the palm of your hand. These molecules

are dumped into the body ( sometimes directed to a particular region by a

needle or the like) , where they mix and wander through blood and tis-

sue. They typically bump into other molecules of all sorts in all places,

but only stick to and affect molecules of certain kinds.

Antibiotics like penicillin③

are selective poisons. They stick to mo-

lecular machines in bacteria④

and jam them, thus fighting infection. Vi-

ruses are a harder case because they are simpler and have fewer vulnera-

ble molecular machines. Worms, fungi, and protozoa are also difficult,

because their molecular machines are more like those found in the human

body, and hence harder to jam selectively. Cancer is the most difficult of

all. Cancerous growths consist of human cells, and attempts to poison

the cancer cells typically poison the rest of the patient as well.

Other drug molecules bind to molecules in the human body and

modify their behavior. Some decrease the secretion of stomach acid, oth-

ers stimulate the kidneys, many affect the molecular dynamics of the

brain. Designing drug molecules to bind to specific targets is a growth

industry today, and provides one of the many short-term payoffs that is

spurring⑤

developments in molecular engineering.

·911·第五章 纳米医学

Page 125: Mysteries of the Nanotechnique

药物治疗在分子水平上作用于人体。一些治

疗手段———像给糖尿病人使用胰岛素———是向人

体提供缺乏的物质。更多的方法———像使用抗感

染的抗生素———向体内引入了不是人体天然产生

的物质。药物由小的分子组成; 在我们的模拟分

子世界中, 许多分子都与你的手掌大小相吻合。

这些分子被倾倒入体内 ( 有时通过一根注射针或

类似的东西直接引进到体内特定的区域 ) , 在那

里它们与血液混合, 在组织中四处游荡。它们到

处不断地撞击各种各样的分子, 但只能与某些特

定的分子结合并发挥作用。

像青霉素这样的抗生素具有选择性的毒性。

它们粘住细菌的分子机械, 并使其出现故障, 从而

对抗感染。病毒是个难以对付的角色, 因为它们

结构更简单, 易受攻击的分子机械更少。寄生虫、

真菌和原生动物也难以应付, 它们的分子机械与

人体自身的分子更相似, 因此难以有选择的破坏。

癌肿瘤是这一切中最难以对付的。癌的生长包含

了人体细胞, 毒杀癌细胞的尝试通常也对病人的

其他细胞造成毒害。

其他药物分子与人体内的分子结合, 改变它

们的行为。一些药物分子减少胃酸的分泌, 另外

一些激发肾脏的功能, 很多药物影响大脑的分子

动力学。设计能结合于特定目标的药物分子是一

门新兴的现代产业, 提供给人以许多短期赢利, 对

这些利益的追求激发了分子工程学的发展。

① insulin [ �insjul in ]

n. a subst ance pro-

duced naturally in the

body which allow sugar

to be used for energy

胰岛素

② antibiotic

[ �nt ibai��tik] n. / a dj.

( a medical substance )

produced by living

things and able to stop

the growth of, or de-

st roy harmful bacteria

抗生素 ( 的 )

③ penicill in

[ peni�silin] n. a sub-

st ance used as a medi-

cine to destroy certain

bacteria 青霉素

④ bacteria

[ b�k�ti�ri�] n. very

small living things ( re-

lated to plants ) , some

of which cause disease

细菌

⑤ spur [ sp��( r ) ] v.

to urge to ( fas ter ) ac-

tion or ( greater) effect

驱策 , 激励

·021· 纳米世界探秘

Page 126: Mysteries of the Nanotechnique

5 . 2 . 2 Limited Abilities of Curr ent Medicine

Current medicine is limited both by its understanding and by its

tools . In many ways, it is still more an art than a science. Mark Pearson

of Du Pont points out,“ In some areas, medicine has become much more

scientific , and in others not much at all. We’re still short of what I would

consider a reasonable scientific level. Many people don’t realize that we

just don’t know fundamentally how things work. It’s like having an auto-

mobile, and hoping that by taking things apart, we ’ll understand some-

thing of how they operate. We know there’s an engine in the front and we

know it’s under the hood, we have an idea that it’s big and heavy, but we

don’t really see the rings that allow pistons①

to slide in the block. We

don’t even understand that controlled explosions are responsible for provi-

ding the energy that drives the machine. "

Better tools could provide both better knowledge and better ways to

apply that knowledge for healing. Today’s surgery can rearrange blood ves-

sels, but is far too coarse②

to rearrange or repair cells. Today’s drug ther-

apies can target some specific molecules, but only some, and only on the

basis of type. Doctors today can’t affect molecules in one cell while leav-

ing identical molecules in a neighboring cell untouched because medicine

today cannot apply surgical control to the molecular level.

5 . 2 . 3 Nanotechnique and Health

We will use molecular technology to bring health because the hu-

man body is made of molecules. The ill, the old, and the injured all

suffer from mis-arranged patterns of atoms, whether mis-arranged by in-

vading viruses, passing time, or swerving③

cars. Devices able to rear-

range atoms will be able to set them right. Nanotechnology will bring a

fundamental breakthrough④

in medicine.

·121·第五章 纳米医学

Page 127: Mysteries of the Nanotechnique

5 À. 2 . 2 当今医学的局限性

现代的医学在理解人体机能和治愈人体的工

具两方面都受到局限。在很多方面, 它还是一门

艺术, 而不是科学。杜邦公司的马克·皮尔森指

出:“在某些领域, 医学已经变得更加科学化了,

但在其他领域却根本不是这样。我们仍然没有达

到我所认为的理想的科学水平。很多人并没有认

识到, 我们还没有理解人体的基本工作原理。这

就像当我们面对一辆汽车时, 希望通过把它拆成

零件来理解它的工作原理。我们知道了前面是发

动机, 它在发动机盖下面, 我们知道它很大、很重,

但我们并没有真地看见使活塞在这大铁块中来回

运动的活塞环。我们甚至不明白受控制的快速燃

烧提供了能量, 驱动这发动机。”

更先进的工具可以提供更多的知识, 以及更多

的方法将新知识应用于治疗。现代的外科手术可以

重新安排血管, 但还太粗糙, 远不能用于重新安排和

修复细胞。现代的药物治疗可以作用于某些特定的

分子,但仅仅是某些, 而且只是能区分不同的类型。

今天的医生还不能只影响一个细胞中的分子, 而让

相邻细胞中的同样的分子不受影响, 因为现代的医

学还不能在分子水平上进行外科手术般的控制。

5 . 2 . 3 纳米技术与健康

我们将使用分子技术带来健康, 因为人的身

体是由分子构成的。疾病、衰老和损伤都是由于

原子的错误安排模式造成的痛苦, 这些错误的安

排模式分别由入侵的病毒、时间的流逝或者突然

转向的汽车造成。能够重新安排原子的机械装置

将能使它们恢复正常。纳米技术将在医学领域内

带来一场根本性的突破。

① piston [ �pist( �) n ]

n. a round metal plate

or a short solid pipe -

shaped piece of metal

that fits tightly into a

tube in which it is

moved up and down 活

② coarse [ k��s ] adj.

not fine ; lumpy; rough

未精炼的 , 粗的 , 粗糙

③ swerve [ sw��v] v.

to turn suddenly to one

side, when moving a-

head 突然改变方向

④ breakthrough

[ �breik�ru�] n . the ac-

tion of making a dis-

covery ( often suddenly

and after earlier fail-

ures ) that will lead to

other discoveries 突破

·221· 纳米世界探秘

Page 128: Mysteries of the Nanotechnique

Physicians now rely chiefly on surgery and drugs to treat illness.

Surgeons have advanced from stitching wounds and amputating limbs to

repairing hearts and re-attaching limbs. Using microscopes and fine

tools , they join delicate blood vessels and nerves. Yet even the best mi-

cro-surgeon cannot cut and stitch finer tissue structures. Modern scalpels

and sutures are simply too coarse for repairing capillaries①

, cells, and

molecules . Consider“delicate" surgery from a cell’s perspective: a huge

blade sweeps down, chopping blindly past and through the molecular

machinery of a crowd of cells, slaughtering thousands. Later, a great

obelisk②

plunges through the divided crowd, dragging a cable as wide as

a freight train③

behind it to rope the crowd together again. From a cell’s

perspective, even the most delicate surgery, performed with exquisite

knives and great skill, is still a butcher job. Only the ability of cells to

abandon their dead, regroup, and multiply makes healing possible.

Yet as many paralyzed accident victims know too well, not all tis-

sues heal.

Drug therapy, unlike surgery, deals with the finest structures in

cells . Drug molecules are simple molecular devices. Many affect specific

molecules in cells. Morphine④

molecules, for example, bind to certain

receptor molecules in brain cells, affecting the neural impulses that sig-

nal pain. Insulin, beta⑤

blockers, and other drugs fit other receptors.

But drug molecules work without direction. Once dumped into the body,

they tumble and bump around in solution haphazardly until they bump a

target molecule, fit, and stick, affecting its function.

·321·第五章 纳米医学

Page 129: Mysteries of the Nanotechnique

医生们现在主要依靠外科手术和药物治疗疾

病。外科医生已经从缝合伤口和切除肢体前进到

了修补心脏和肢体再植。使用显微镜和精细的工

具, 他们能够连接微小的血管和神经。但是即使

是最好的显微外科医生也不能切断和缝合更为精

细的组织结构。现代的解剖刀和缝合线对于修补

毛细血管、细胞和分子来说太过粗糙了。想象一

下从细胞视点观察到的“显微”外科手术吧: 一柄

巨大的刀席卷而过, 在大群细胞的分子机械中间

和旁边盲目地砍剁着, 成千的细胞被残杀。随后,

一座庞大的方尖石碑陷入分裂的成群细胞中, 在

它后面拖着像货运火车车厢粗细的电缆, 将这群

细胞重新捆绑在一起。在细胞的角度看来, 即使

是最精细的外科手术, 尽管使用了精细的刀法和

高超的技术, 也仍然像是屠夫的行径。只有细胞

本身的抑制死亡、重新组合和繁殖的能力, 使得康

复成为可能。

但是正如那些在车祸中瘫痪的受害者所清楚

知道的那样, 并不是所有的组织都康复了。

与外科手术不同, 药物治疗作用于细胞内最

精细的结构。药物分子是简单的分子装置。许多

药物作用于细胞内特定的分子。举例而言, 吗啡

分子与大脑细胞中特定的受体分子结合, 影响传

递痛苦的神经冲动的正常传递而止痛。胰岛素、

贝塔受体阻断剂以及其他药物分别匹配于其他的

受体。但是药物分子的工作没有方向性。一旦进

入人体, 它们在人体内溶液中随意地四处翻滚、碰

撞, 直到它们碰到一个目标分子, 匹配, 并且结合,

发挥它们的作用。

① capillary

[ k��pil�ri ] n . a very

fine hair-like tube with

very narrow width such

as the small er blood

vessels in the body 毛

细血管

② obeli sk [ ��b�li sk ]

n. a tall pointed stone

pillar usu. in honor of

a person or event 方尖

石碑

③ freight train

[ freit trein] ( = goods

train) 货运火车

④ morphine

[ �m��fi�n ] n. a sub-

st ance ( in liquid or

powder form) having a

st rong affect on the

nerves and used for

stopping pain 吗啡

⑤ beta [ �bi�t�] n . the

second letter of the

Greek alphabet 希腊字

母的第二个 β贝塔

·421· 纳米世界探秘

Page 130: Mysteries of the Nanotechnique

Surgeons can see problems and plan actions, but they wield①

crude

tools; drug molecules affect tissues at the molecular level, but they are

too simple to sense, plan, and act. But molecular machines directed by

nanocomputers will offer physicians another choice. They will combine

sensors②

, programs, and molecular tools to form systems able to examine

and repair the ultimate components of individual cells. They will bring

surgical control to the molecular domain.

These advanced molecular devices will be years in arriving, but re-

searchers motivated③

by medical needs are already studying molecular

machines and molecular engineering. The best drugs affect specific mo-

lecular machines in specific ways. Penicillin, for example, kills certain

bacteria by jamming the nanomachinery they use to build their cell

walls, yet it has little effect on human cells.

Biochemists study molecular machines both to learn how to build

them and to learn how to wreck④

them. Around the world ( and especial-

ly the Third World) a disgusting variety of viruses, bacteria, protozoa,

fungi, and worms parasitize human flesh. Like penicillin, safe, effective

drugs for these diseases would jam the parasite ’s molecular machinery

while leaving human molecular machinery unharmed. Dr. Seymour Co-

hen, professor of pharmacological science at SUNY ( Stony Brook, New

York) , argues that biochemists should systematically⑤

study the molecu-

lar machinery of these parasites. Once biochemists have determined the

shape and function of a vital protein machine, they then could often de-

sign a molecule shaped to jam it and ruin it. Such drugs could free hu-

manity from such ancient horrors as schistosomiasis and leprosy, and

from new ones such as AIDS.

·521·第五章 纳米医学

Page 131: Mysteries of the Nanotechnique

外科医生能够看到问题, 事先筹划行动, 但是

他们挥舞的是粗糙的工具; 药物分子在分子水平

上作用于组织, 但是它们太简单, 不能感知、计划

并执行。但是由纳米计算机指导的分子机械将给

医生们提供另外的选择。它们将组合传感器、控

制程序和分子工具, 组成一个系统, 能够检查和修

复单个细胞中的最终组成成分。它们将把外科手

术般的控制引进到分子领域来。

这些先进的分子机械装置还要若干年时间才

能被实现, 但是被医学的需求激发了的研究者们已

经在研究分子机械和分子工程学了。最好的药物

以特殊的方式作用于特殊的分子机械。例如青霉

素, 通过干扰细菌用以建筑细胞墙壁的纳米机械而

杀死特定的细菌, 而对人体细胞几乎没什么影响。

生物化学家研究分子机械, 既学习如何建立

它们, 又学习如何破坏它们。在全世界范围内

( 特别是在第三世界国家) 各种各样令人厌恶的

病毒、细菌、原生动物、真菌和寄生虫感染着人类

的肉体。像青霉素这样安全有效地治疗这些疾病

的药物, 能阻塞寄生者的分子机械活动, 而保持人

体的分子机械不受伤害。西摩·科恩博士, 纽约

州立大学( 位于纽约州的石溪 ) 的药理学教授, 宣

称生物化学家们应该系统地研究这些寄生者的分

子机械。一旦生物化学家确定了一个重要蛋白质

的形状和功能, 他们常常能够设计出特定的分子

来扰乱和破坏它。这样的药物将能使人类从恐怖

中解脱出来, 例如古代的血吸虫病和麻风病, 以及

现代的艾滋病等等。

① wield [ wi�ld] v. to

control the action of 控

② sensor [ �sens�( r) ]

n . any apparatus used

for discovering the

presence of a particular

quality or effect 传 感

③ motivate

[ �m�utiveit ] v. to pr-

ovide ( someone) with

a ( very strong) reason

or cause for doing

something, taking

some action, etc. 激发

④ wreck [ rek ] v. to

destroy 把 ⋯ 弄 砸 , 破

⑤ sys tematic

[ sis�teim�ti k ] adj.

based on a regular plan

or fixed method; thor-

ough 有条 不紊的 , 有

条理的 , 彻底的

·621· 纳米世界探秘

Page 132: Mysteries of the Nanotechnique

Drug companies are already redesigning molecules based on knowl-

edge of how they work. Researchers at Upjohn Company have designed

and made modified molecules of vasopressin①

, a hormone that consists of

a short chain of amino acids. Vasopressin increases the work done by the

heart and decreases the rate at which the kidneys produce urine; this in-

creases blood pressure. The researchers designed modified vasopressin

molecules that affected receptor molecules in the kidney more than those

in the heart, giving them more specific and controllable medical effects.

More recently, they designed a modified vasopressin molecule that binds

to the kidney ’s receptor molecules without direct effect, thus blocking

and inhibiting the action of natural vasopressin.

Physicians aim to make tissues healthy, but with drugs and surgery

they can only encourage tissues to repair themselves. Molecular ma-

chines will allow more direct repairs, bringing a new era②

in medicine.

To repair a car, a mechanic first reaches the faulty assembly, then

identifies and removes the bad parts, and finally rebuilds or replaces

them. Cell repair will involve the same basic tasks—tasks that living

systems already prove possible.

Access. White blood cells leave the bloodstream and move through

tissue, and viruses enter cells. Biologists even poke③

needles into cells

without killing them. These examples show that molecular machines can

reach and enter cells.

Recognition. Antibodies and the tail fibers of the T4 phage④—and

indeed, all specific biochemical interactions—show that molecular sys-

tems can recognize other molecules by touch.

·721·第五章 纳米医学

Page 133: Mysteries of the Nanotechnique

药物公司已经根据关于药物如何发挥作用的

知识来重新设计药物。厄普约翰公司的研究者已

经设计制造出后叶加压素的改进型分子。后叶加

压素是一种激素, 是由氨基酸组成的短链, 它能促

进心脏的工作同时降低肾脏生成尿的速率; 这使

得血压升高。研究者设计的改进型后叶加压素分

子对肾脏中的受体分子比对心脏中的受体产生的

作用更强烈, 给出更明确和易于控制的药物作用。

更近些时候, 他们设计出的改进后叶加压素分子,

能与肾脏中的受体分子结合, 但不直接发挥作用,

而是阻碍和抑制天然的后叶加压素分子发挥作

用。

医生的目标是使组织恢复健康, 但是利用药

物和外科手术, 他们只能促使组织修复自己。分

子机械将能够进行更多的直接修复, 这将带来医

学的一个新时代。

要修好一辆汽车, 技工先找到出问题的部件,

然后检查并且移走坏了的部分, 最后重建或替换

这些部件。细胞修复将包括同样的基本任务———

已经被生物系统证明可能的任务。

接近: 白细胞离开血流在组织中移动, 病毒进

入细胞。生物学家甚至能将针刺入细胞而不致杀

死它。这些例子说明分子机械也能到达和进入细

胞。

识别: 抗体, T4 噬菌体的尾部纤维———实际

上所有的生物化学相互作用———说明分子系统可

以通过接触来识别其他分子。

① vasopress in

[ �veiz�u�presin ] 后 叶

加压素

② era [ �i�r�] n . a

period of time in histo-

ry named after an im-

portant event or devel-

opment 历史上重要的

时代

③ poke [ p�uk ] vt .

hit, punch 戳 , 刺

④ phage [ feid�] n .

bacteriophage 噬菌体

·821· 纳米世界探秘

Page 134: Mysteries of the Nanotechnique

Disassembly. Digestive enzymes ( and other, fiercer chemicals )

show that molecular systems can disassemble damaged molecules.

Rebuilding. Replicating cells show that molecular systems can build

or rebuild every molecule found in a cell.

Reassembly. Nature also shows that separated molecules can be put

back together again. The machinery of the T4 phage, for example, self-

assembles from solution, apparently aided by a single enzyme. Replica-

ting cells show that molecular systems can assemble every system found

in a cell.

Thus, nature demonstrates①

all the basic operations that are needed

to perform molecular-level repairs on cells. What is more, systems based

on nanomachines will generally be more compact and capable than those

found in nature. Natural systems show us only lower bounds to the possi-

ble, in cell repair as in everything else.

5 . 3 Me dic ine s De e ply into the Body

5 . 3 . 1 W or king Outside Tissues

One approach to nanomedicine would make use of microscopic mo-

bile devices built using molecular-manufacturing equipment. These

would resemble the ecosystem②

protectors and mobile cleanup machines.

Like them, they would either be biodegradable, self-collecting, or col-

lected by something else once they were done working. They would be

more difficult to develop than simple, fixed-location nanomachines, yet

clearly feasible③

and useful. Development will start with the simpler ap-

plications, so let’s begin by looking at what can be done without entering

living tissues.

·921·第五章 纳米医学

Page 135: Mysteries of the Nanotechnique

分解: 消化酶 ( 以及其他作用更猛烈的化学

物质) 说明分子系统能够分解被损坏的分子。

重建: 细胞复制说明分子系统能够建立和重

建细胞内发现的任何分子。

重组: 自然同样说明了互相分离的分子能够

重新结合在一起。比如, T4 噬菌体的分子机械,

明显地在一个酶的帮助下, 在溶液中自己组装起

来。复制细胞说明分子系统能够组装细胞内发现

的任何系统。

这样, 自然示范给我们所有执行分子水平的

细胞修复工作所需的基本操作。更甚者, 基于纳

米机械的系统一般会比自然中的系统更紧凑、更

有能力。在细胞修复领域, 正如在其他任何一件

事上一样, 自然系统显示给我们的只是较低程度

的工作。

5 Ä. 3 深入人体的药物

5 . 3 . 1 在细胞组织外发挥作用

通向纳米医学的一条途径就是使用由分子制

造器械制作的可移动显微机械。这与生态系统保

护者或者可移动清扫机器很类似。像它们一样,

显微机械要么是可以自动集中并被生物分解的,

要么是在完成任务后被其他机械收集。它们要比

简单的、固定位置的纳米机械更难以制造, 但明显

是可行的并且有用处。纳米机械的发展将从简单

些的应用开始, 所以我们先来看看不进入组织中

我们可以做些什么。

① demonstrate

[ �dem�nstreit ] v. to

show clearly 示 范 , 展

② ecosystem

[ �i�k�usis t�m ] n. an

ecological system which

relates all the plants ,

animals and people in

an area to their sur-

roundings, cons idered

as a whole 生态系统

③ feasible [ �fi�zib( �)

l ] adj. able to be car-

ried out or done, possi-

ble 可行的 , 可能的

·031· 纳米世界探秘

Page 136: Mysteries of the Nanotechnique

The skin is the body’s largest organ, and its exposed position sub-

jects it to a lot of abuse. This exposed position, though, also makes it

easier to treat. Among the earlier applications of molecular manufactur-

ing may be those popular , quasimedical①

products, cosmetics②

. A

cream packed with nanomachines could do a better and more selective

job of cleaning than any product can today. It could remove the right a-

mount of dead skin, remove excess oils, add missing oils, apply the

right amounts of natural moisturizing compounds, and even achieve the

elusive goal of“ deep pore cleaning" by actually reaching down into

pores and cleaning them out. The cream could be a smart material with

smooth-on, peel-off convenience③

.

The mouth, teeth, and gums④

are amazingly troublesome. Today,

daily dental care is an endless cycle of brushing and flossing⑤

, of losing

ground to tooth decay and gum disease as slowly as possible. A mouth-

wash full of smart nanomachines could do all that brushing and flossing

do and more, and with far less effort-making it more likely to be used.

This mouthwash would identify and destroy pathogenic bacteria

while allowing the harmless flora⑥

of the mouth to flourish in a healthy e-

cosystem. Further , the devices would identify particles of food, plaque,

or tartar⑦

, and lift them from teeth to be rinsed away. Being suspended

in liquid and able to swim about, devices would be able to reach sur-

faces beyond reach of toothbrush bristles or the fibers of floss. As short-

lifetime medical nanodevices, they could be built to last only a few mi-

nutes in the body before falling apart into materials of the sort found in

foods ( such as fiber) . With this sort of daily dental care from an early

age, tooth decay and gum disease would likely never arise. If under

way, they would be greatly lessened.

·131·第五章 纳米医学

Page 137: Mysteries of the Nanotechnique

皮肤是人体最大的器官, 它暴露在外, 遭受到

很多的损害。这种暴露在外的位置也使得它容易

接受治疗。分子制造业最早的应用也许是那些最

普通的, 类似药物的化妆品。包含了纳米机械的

软膏可以比现在的任何产品更好、更有选择地清

洁皮肤。它能准确地清除死皮, 除去多余的油脂,

增加缺少的油脂, 为皮肤补充适量的天然滋润成

分, 甚至实现“深层清洁毛孔”的困难目标, 深入

毛孔并清洁污物。这种软膏使用很方便, 只需抹

在皮肤上, 再除去就可以了。

口腔、牙齿和牙龈的麻烦多得令人惊讶。今

天的每日牙齿护理只是一个无休止的循环: 刷牙,

使用牙线, 尽可能减慢牙齿腐烂和牙龈疾病的出

现。含有很多精巧的纳米机械的漱口水除了可以

代替刷牙和使用牙线, 还能做更多事情, 而且使用

更方便, 使之更容易被选用。

这种漱口水将识别并消灭致病细菌, 同时允

许无害的口腔菌群发展成为有益健康的生态系

统。更进一步, 这些机械还识别食物残渣、牙斑和

牙垢, 从牙齿上清除它们, 以便在漱口时被带走。

这些机械悬浮在漱口水中, 四处游动, 可以达到牙

刷刷毛和牙线纤维达不到的牙齿表面。它们是短

寿命的医疗纳米机械, 在人体内只能保持几分钟,

就变成某些食物成分物质 ( 比如纤维素 ) 。从小

开始这种每天的牙齿护理, 牙齿腐烂和牙龈疾病

可能永远不发生。对于那些已经发生的牙病, 其

程度也将会极大的减弱。

① quasi-[ �kweizai ]seeming like ( 结 合式 ) 类似的 , 有几分

② cosmetic[ k�z�metik] n. ( usu.pl. ) a preparationsuch as a face-cream,body-powder, etc. ,intended to make theskin or hair more beau-tiful ( 通常复数 ) 化妆品

③ convenience[ k�n�vi�ni�ns] n. fit-ness, suitableness , thequality of being con-venient 方便 , 便利

④ gum [ g�m ] n.( usu. pl. ) either ofthe two areas of fi rmpink flesh in which theteeth are fixed, at thetop and bottom of themouth ( 通常复数 ) 牙龈

⑤ floss [ fl�s ] n. finesi lk , spun but not twis-ted, used for cleaningteeth and for sewing.牙线。丝线

⑥ flora [ �fl��r�] n .all the plants growingwild in a particularplace, or belonging toa particular age in his-tory ( 某 地 区 或 某 时代的 ) 植物群

⑦ tartar [ �ta�t�( r ) ]n . a hard chalklikesubst ance that forms onthe teeth 牙石 , 牙垢

·231· 纳米世界探秘

Page 138: Mysteries of the Nanotechnique

Going beyond this superficial①

treatment would involve moving a-

mong and modifying cells. Let ’s consider what can be done with this

treatment inside the body, but outside the body ’s tissues. The blood-

stream carries everything from nutrients②

to immune-system cells, with

chemical signals and infectious organisms besides.

Figure 4 Im mune Machines

Medica l na nodevices could a ugment③

the immune system by finding

a nd disabling unwanted ba cteria and viruses. The immune device in the

foreground has found a virus; the other has touched a red blood cell. ( A-

dapted from Scien tific America n, January 1988)

Here , it is useful to think in terms of medical nanomachines that re-

semble small submarines, like the ones in the Figure 4. Each of these is

large enough to carry a nanocomputer as powerful as a mid-1980s main-

frame, along with a huge database ( a billion bytes ) , a complete set of

instruments for identifying biological surfaces, and tools for clobbering④

viruses, bacteria, and other invaders. Immune cells, as we’ve seen, trav-

el through the bloodstream checking surfaces for foreignness and—when

working properly—attacking and eliminating what should not be there.

These immune machines would do both more and less. With

·331·第五章 纳米医学

Page 139: Mysteries of the Nanotechnique

超越这些肤浅的治疗方式的, 将会是在细胞

中间移动并修复细胞。让我们考虑一下在人体内

组织之外可以进行的治疗吧。血流携带了各种各

样的物质, 从养料到免疫细胞, 也包括了化学信号

和有感染性的生物。

[ 附图 4 说明文字] 医疗纳米机械能发现

有害的细菌和病毒, 使它们失去活动能力, 增强免

疫系统的作用。前景中的免疫机械已经发现一个

病毒, 另一个接触的是红细胞。( 选自《科学美国

人》1988 年 1 月号)

在这里, 从图 4 中类似潜水艇的医学纳米机

械的角度考虑这一问题很有意义。每一个这样的

纳米机械都足够大, 携带一台具有 20 世纪 80 年

代中期大型计算机能力的纳米计算机, 随计算机

带有一个大型数据库 ( 10 亿字节) , 一整套识别

生物表面的器械, 和摧毁病毒、细菌和其他入侵

者的工具。正如我们已经看到的, 免疫细胞在血

流中旅行, 检查各种表面的陌生程度, 并且———

当工作正常时———攻击并消灭不该在当地出现的

任何东西。这些免疫机械也能多多少少这样做。

① superficial

[ su�p��fi�( �) l ] adj.

not serious , complete ,

or searching in

thought, ideas, etc .

肤浅的 , 浅薄的 , 皮毛的

② nutrient

[ �nju�tri�nt ] adj. ( a

chemical or food ) pro-

viding for life and

growth 有营养的

③ augment

[ ����ment ] v. to

( cause to ) become

bigger, more valuable ,

better, etc. 增 大 , 增值 , 改善

④ clobber [ �kl�b�( r ) ] v. t o attack

fiercely and continually

凶狠 而连 续 的攻 击 ,

猛击

·431· 纳米世界探秘

Page 140: Mysteries of the Nanotechnique

their onboard①

sensors and computers, they will be able to react to the

same molecular signals that the immune system does, but with greater

discrimination. Before being sent into the body on their search-and-de-

stroy mission, they could be programmed with a set of characteristics that

lets them clearly distinguish their targets from everything else. The body

’s immune system can respond only to invading organisms that had been

encountered by that individual ’s body. Immune machines, however,

could be programmed to respond to anything that had been encountered②

by world medicine.

Immune machines can be designed for use in the bloodstream or the

digestive tract ( the mouthwash described above used these abilities in

hunting down harmful bacteria) . They could float and circulate, as anti-

biotics do, while searching for intruders to neutralize③

. To escape being

engulfed④

by white blood cells making their own patrols, immune ma-

chines could display standard molecules on their surface-molecules the

body knows and trusts already—like a fellow police officer wearing a fa-

miliar uniform.

When an invader is identified, it can be punctured, letting its con-

tents spill out and ending its effectiveness. If the contents were known to

be hazardous by themselves, then the immune machine could hold on to

it long enough to dismantle⑤

it more completely.

If the physician in charge is sure the task will be finished within,

say, one day, the devices prescribed could be of a type designed to fall a-

part⑥

after twenty-four hours. If the treatment time needed is variable,

the physician could monitor progress and stop action at the appropriate

time by sending a specific molecule—aspirin perhaps, or something even

safer—as a signal to stop work. The inactivated devices would then be

cleared out along with other waste eliminated from the body.

·531·第五章 纳米医学

Page 141: Mysteries of the Nanotechnique

在它们携带的传感器和计算机的帮助下, 它们也

能对免疫系统的相同化学信号做出反应, 但更有

辨别力。在进入人体进行它们的“寻找并消灭”

使命之前, 纳米机械可以通过编程指明一组将目

标与其他物体明确区分开的特征。人体的免疫系

统只能对个人曾经遭遇过的入侵者做出反应, 而

纳米机械可以编程使它能对整个世界医学界遇到

的任何东西做出反应。

免疫机械可以设计成在血流中或消化道中活

动( 刚才提到的漱口水就具有活动能力来搜寻有

害细菌) 。在搜寻入侵者并压制它们时, 纳米机

械可以像抗生素一样四处漂浮、运行。为了避免

被进行巡逻的白细胞吞噬, 免疫机械必须在它自

身表面上显示出人体已经认识并信赖的分子———

像一个穿着人们熟悉的制服的警官那样。

当一个入侵者被识别出来, 它会被刺破, 使其

中的物质流出来而使它失去活力。如果已知这些

入侵者内的物质有危险性, 免疫机械会坚持工作

足够长时间以便把它彻底拆除。

如果主管治疗的医生有把握这些任务将能

在, 比如说, 一天之内完成, 所使用的纳米机械将

被设计成在 24 小时之后瓦解。如果治疗需要的

时间是变化的, 医生可以监视治疗进程并在适当

的时候通过使用某种特殊分子———也许是阿司匹

林, 也许是其他什么更安全的———作为信号使纳

米机械停止工作。停止活动的机械将随着其他废

物被清除出人体。

① onboard [ ��n�b��d ]

a dj. carried within or

occurring aboard a ve-

hicle 随车携带的

② encounter

[ in�kaunt�( r ) ] v. to

meet or be faced by

( something bad, esp.

a danger or a diffi cul-

ty) 遭 遇 ( 困 难 , 危

险 )

③ neutralize

[ �nju�tr�lai z ] v. to

cause to have no

effect, destroy the

qualiti es , force, or ac-

tivity of 使无效 , 中和

④ engulf [ in�g�lf] v.

to destroy by swallowing

up 吞噬

⑤ dismantle

[ dis�m�nt( �) l] v. to

take ( a machine or an

article) to pieces 拆开

( 机器、用具 )

⑥ fall apart 崩溃土崩

瓦解

·631· 纳米世界探秘

Page 142: Mysteries of the Nanotechnique

5 . 3 . 2 Rea chin g Every Point into Tissues

In most parts of the body, the finest blood vessels, capillaries, pass

within a few cell diameters of every point. Certain white blood cells can

leave these vessels to move among the neighboring cells. Immune ma-

chines and similar devices, being even smaller , could do likewise. In

some tissues, this will be easy, in some harder, but with careful design

and testing, essentially any point of the body should become accessible

for healing repairs.

Merely fighting organisms in the bloodstream would be a major ad-

vance , cutting their numbers and inhibiting their spread. Roving①

medi-

cal nanomachines, though, will be able to hunt down invaders through-

out the body and eliminate them entirely.

Cancers are a prime example. The immune system recognizes and

eliminates most potential cancers, but some get by②

. Physicians can

recognize cancer cells by their appearance and by molecular markers,

but they cannot always remove them all through surgery, and often can-

not find a selective poison. Immune machines, however, will have no

difficulty identifying cancer cells, and will ultimately be able to track

them down and destroy them wherever they may be growing. Destroying

every cancer cell will cure the cancer.

Bacteria, protozoa, worms, and other parasites have even more ob-

vious molecular markers. Once identified, they could be destroyed, rid-

ding the body of the disease they cause. Immune machines thus could

deal with tuberculosis, strep throat, leprosy, malaria, amoebic dysenter-

y, sleeping sickness, river blindness, hookworm, flukes, candida, val-

ley fever, antibiotic-resistant bacteria, and even athlete ’s foot. All are

caused by invading cells or larger organisms ( such as worms) . Health

officials estimate that parasitic diseases, common in

·731·第五章 纳米医学

Page 143: Mysteries of the Nanotechnique

5 À. 3 . 2 深入细胞组织内部

在人体的绝大多数部位, 最纤细的血管———

毛细血管———在只有几个细胞半径大小的距离内

互相穿过。特定的白细胞可以离开血管, 在相邻

细胞中移动。免疫机械以及类似的设备, 也许体

积更小, 也可以这样做。在某些组织中很容易这

样做, 在其他某些组织中也许更难些, 但是经过精

巧的设计与测试, 理论上说人体内每一个位置, 对

于治疗修复而言, 都是可以到达的。

在血流中消灭入侵生物将是主要的战斗, 减

少它们的数量, 阻止它们的传播。尽管如此, 四处

漫游的医学纳米机械将能在人体内到处穷追不

舍, 彻底清除入侵者。

癌症是最好的例子。免疫系统识别并且清除

大多数潜在的癌, 但是也有些会蒙混过关。医生

通过外观和分子标记也能识别癌细胞, 但是他们

通常不能通过外科手术清除所有癌细胞, 而且也

常常找不到合适的有选择性毒性的药物杀死癌细

胞。然而, 免疫机械能毫无困难地识别癌细胞。

无论癌细胞可能生长在哪儿, 都能最终追踪癌细

胞并消灭它们。消灭所有癌细胞将使癌症痊愈。

细菌、原生生物、寄生虫和其他寄生者都有更

不相同的分子标记。它们一旦被识别出来, 就会

被消灭, 使人体摆脱由此产生的疾病。免疫机械

从而可以应用于肺结核、链球菌喉炎、麻风病、疟

疾、阿米巴痢疾、睡眠病 ( 非洲锥虫病 ) 、河盲症

( 盘尾丝虫病) 、钩虫病、丝虫病、念珠菌、溪谷热、

对抗生素有抵抗作用的细菌、甚至脚气。所有这

些疾病都是由入侵细胞或更大的生物体 ( 比如寄

① rove [ r�uv] v. to

wander, move continu-

ally ( around ) 流 浪 ,

漂泊 , 不停地流动

② get by: to proceed

without being discov-

ered, criticized, or

punished 蒙混过关

·831· 纳米世界探秘

Page 144: Mysteries of the Nanotechnique

·931·第五章 纳米医学

Page 145: Mysteries of the Nanotechnique

the Third World, affect more than one billion people. For many of these

diseases, no satisfactory drug treatment exists. All can eventually be e-

liminated as threats to human health by a sufficiently advanced form of

nanomedicine.

5 . 3 . 3 H er ding Cells

Destroying invaders will be helpful, but injuries and structural

problems pose other problems. Truly advanced medicine will be able to

build up and restructure tissues. Here, medical nanodevices can stimu-

late and guide the body’s own construction and repair mechanisms to re-

store healthy tissue.

Healthy tissue consists of normal cells in normal patterns in a nor-

mal matrix①

all organized in a normal relationship to the surrounding tis-

sues. Surgeons today ( with their huge, crude tools) can fix some prob-

lems at the tissue level. A wound disrupts the healthy relationship be-

tween two different pieces of tissue, and surgical glues and sutures②

can

partly remedy this problem by holding the tissues in a position that pro-

motes healing. Likewise, coronary artery③

bypass surgery brings about a

more healthy overall configuration of tissues—one that provides working

plumbing to supply blood to the heart muscle. Surgeons cut and stitch,

but then they must rely on the tissue to heal its wounds as best it can.

Healing establishes healthy relationships on a finer scale. Cells

must divide, grow, migrate, and fill gaps. They must reorganize to form

properly connected networks of fine blood vessels. And cells must lay

down materials to form the structural, intercellular matrix—collagen to

provide the proper shape and toughness④

, or mineral grains to provide

rigidity⑤

, as in bone. Often, they lay down unwanted scar tissue in-

stead, blocking proper healing.

·041· 纳米世界探秘

Page 146: Mysteries of the Nanotechnique

虫) 。卫生部门的官员估计寄生性疾病在第三世

界国家很普遍, 遭受此类疾病的人数超过十亿。

其中许多疾病, 还没有令人满意的药物治疗方法。

使用充分发展了的医学纳米机械, 这一类疾病最

终将不再是对人类健康的威胁。

5 À. 3 . 3 “放牧”细胞

消灭入侵者是很有用的, 但是伤害和组织结

构的问题又会引起其他的问题。真正先进的医学

将能够促进组织生长并重新构建人体组织。这

里, 纳米机械能刺激并指导人体自身的建设和修

复机制, 恢复健康的人体组织。

健康的组织是由正常的细胞组成, 它们按照

正常的模式在正常的细胞间质上生长, 与周围的

组织保持正常的关联。今天的外科手术 ( 使用那

些对细胞组织而言巨大的、粗糙的工具) 可以在

组织水平上修复某些缺损。一道伤口破坏了两片

不同组织之间的正常关联, 外科手术胶和缝线将

组织固定于促进伤口愈合的位置, 部分地解决这

一问题。与此类似, 冠状动脉搭桥手术带来更全

面的健康组织结构———一根向心脏肌肉供应血液

的管道。外科医生切切缝缝, 但他们必须依靠组

织自身的恢复能力尽可能好地治愈伤口。

真正的康复在更小尺度上建立细胞的正确关

联。细胞必须分裂、生长、移动、填补空隙。它们

必须重新组织起微小血管的恰当的连通网络。而

且细胞必须平铺在形成组织结构的细胞间质———

胶原蛋白上以便形成恰当的形状和足够的韧性,

或者像在骨骼中那样结合在矿物质颗粒上以提供

足够的硬度。然而, 新生细胞经常覆盖在讨厌的

伤疤组织上, 妨碍了伤口的正确愈合。

① matrix [ �mei triks ]

n. a living part in

which something is

formed or developed 母

体组织

② suture [ �su�t��

( r) ] n . a ( type of )

thread used for stitc-

hing a wound together

缝 ( 合 ) 线

③ coronary artery

[ �k�r�n�ri�ɑ�t�ri ] 冠

状动脉

④ tough [ t�f ] adj.

not easily cut, worn or

broken 坚韧的

⑤ rigidity [ ri�d�id�ti ]

n . the quality of being

rigid 硬度

·141·第五章 纳米医学

Page 147: Mysteries of the Nanotechnique

With enough knowledge of how these processes work ( and nanoin-

struments can help gather that knowledge ) and with good enough soft-

ware to guide the process—a more difficult challenge—medical nanoma-

chines will be able to guide this healing process. The problem here is to

guide the motion and behavior of a mob①

of active, living cells—a

process that can be termed cell herding.

Cells respond to a host of signals from their environment: to chemi-

cals in the surrounding fluids, to signal molecules on neighboring cells,

and to mechanical forces applied to them. Cell-herding devices would

use these signals to spur cell division where it is needed and to discour-

age it where it is not. They would nudge②

cells to encourage them to mi-

grate in appropriate directions, or would simply pick them up, move

them along, and deliver them where needed, encouraging them to nes-

tle③

into a proper relationship with their neighbors. Finally, they would

stimulate cells to surround themselves with the proper intercellular-matrix

materials . Or—like the owner of a small dog who, on a cold day, wraps

the beast in a wool jacket—they would directly build the proper sur-

rounding structures for the cell in its new location.

In this way, cooperating teams of cell-herding devices could guide

the healing or restructuring of tissues, ensuring that their cells form

healthy patterns and a healthy matrix and that those tissues have a

healthy relationship to their surroundings. Where necessary, cells could

even be adjusted internally.

Again, skin provides easy examples and may be a natural place to

start in practice. People often want hair where they have bare④

skin,

and bare skin where they have hair . Cell herding machines could move

·241· 纳米世界探秘

Page 148: Mysteries of the Nanotechnique

有了关于这一康复过程如何进行的知识 ( 纳

米仪器设备可能帮助我们收集有关资料) , 同时,

更具挑战性的是, 有了足够优秀的软件来指导这

一过程进行, 医学纳米机械将能够引导这一康复

过程。这里的问题是去引导一群活细胞的乌合之

众的行为和行动, 这就是被称为“放牧细胞”的过

程。

细胞可以对环境中的各种信号做出反应: 周

围液体环境中的化学物质, 相邻细胞中的信号分

子, 以及作用在它上的机械力。细胞放牧装置将

会利用这些信号, 在需要的地方刺激细胞分裂, 或

在不需要的地方阻碍细胞分裂。它们会轻轻推动

细胞, 促使细胞向正确方向移动, 或者简单地抓住

细胞, 携带细胞移动并放置在合适的位置上, 促使

它们建立与相邻细胞的正确关联并且安定下来。

最后, 它们促使细胞产生包围在周围的合适的细

胞间质材料, 或者———像一只小狗的主人在寒冷

的日子里给自己的狗穿上羊毛外套那样———直接

给处于新位置上的细胞建立起合适的周围组织结

构。

通过这种方式, 相互协作的细胞放牧装置小

组可以指导组织的康复和重新组建, 确保细胞形

成正确的模式、正确的细胞间质物质, 以及组织与

周围环境的正确关联。在需要的地方, 还可以在

细胞内部进行调整。

皮肤再次成为一个简单的例子, 同时也可能

成为适合开始进行治疗实践的简单场所。人们经

常希望在光秃秃的地方长出头发, 或者去掉汗毛

① mob [ m�b] n. the

common people, con-

sidered as being people

whose opinions, feel-

ings, etc. , change

from moment to mo-

ment, and whose ac-

tions are not the result

of thought or reason

( 贬义 ) 一般群 众 , 尤

指意见 感 情常 变、行

为多不经思考的一群

② nudge [ n�d�] v.

to touch or push gen-

tly, esp. with one’s el-

bow, esp. in order to

call a person’s attention

or give a s ignal ( 尤指

以肘 ) 轻轻推动 ( 促使

注意或给信号 )

③ nestle [ �nes( �) l ]

v. to settle into a

warm, close, or com-

fortable position 舒 适

地安顿下来

④ bare [ be�( r ) ]

a dj. uncovered, empty

赤裸的 , 空无所有的

·341·第五章 纳米医学

Page 149: Mysteries of the Nanotechnique

or destroy hair follicle①

cells to eliminate an unwanted hair, or grow

more of the needed cells and arrange them into a working follicle where a

hair is desired. By adjusting the size of the follicle and the properties of

some of the cells, hairs could be made coarser , or finer, or straighter,

or curlier . All these changes would involve no pain, toxic chemicals, or

stench②

. Cell-herding devices could move down into the living layers of

skin, removing unwanted cells, stimulating the growth of new cells, nar-

rowing unnaturally prominent blood vessels, insuring good circulation by

guiding the growth of any needed normal blood vessels, and moving cells

and fibers around so as to eliminate even deep wrinkles.

At the opposite end of the spectrum, cell herding will revolutionize

treatment of life-threatening conditions. For example, the most common

cause of heart disease is reduced or interrupted supply of blood to the

heart muscle. In pumping oxygenated blood to the rest of the body, the

heart diverts③

a portion for its own use though the coronary arteries.

When these blood vessels become constricted, we speak of coronary-ar-

tery disease. When they are blocked, causing heart muscle tissue to die,

we speak of someone“ having a coronary, " another term for heart at-

tack.

Devices working in the bloodstream could nibble④

away at athero-

sclerotic⑤

deposits, widening the affected blood vessels. Cell herding

devices could restore artery walls and artery linings⑥

to health, by ensu-

ring that the right cells and supporting structures are in the right places.

This would prevent most heart attacks.

But what if a heart attack has already destroyed muscle tissue, leav-

ing the patient with a scarred, damaged, and poorly functioning heart?

Once again, cell-herding devices could accomplish repairs, working

their way into the scar tissue and removing it bit by bit,

·441· 纳米世界探秘

Page 150: Mysteries of the Nanotechnique

得到光滑的皮肤。细胞放牧机械能够移走或者销

毁毛囊细胞来清除不需要的毛发, 或者在想长出

毛发的地方生成所需的细胞并组织成生长毛发的

毛囊。通过调整毛囊的大小以及其他一些细胞的

特征, 可以使生长出的毛发更粗些、更细些、更直

一些, 或者更卷曲一些。所有这些变化都不需要

以痛苦、有毒的化学药品和散发的臭气为代价。

细胞放牧装置可以深入到皮肤的活细胞层, 移走

不需要的细胞, 刺激新细胞的生长, 缩小不正常的

粗大血管, 引导任何需要的血管生成以确保良好

的微循环, 移动细胞和周围的纤维组织以消除深

层皱纹。

在另一方面, 细胞放牧将引起一场对于危及

生命的病征的治疗革命。举例而言, 诱发心脏病

的主要原因是心肌血液供应的减少或中断。当把

携带氧气的血液输送到人体其余部分时, 心脏通

过冠状动脉转移一部分以供自己使用。当这部分

血管变得狭窄时, 我们称之为冠状动脉疾病。当

冠状动脉堵塞, 导致心肌组织死亡时, 我们说这个

人“心肌梗死”, 这是心脏病发作的另一种类型。

在血流中工作的纳米机械可以一点点地清除

动脉粥样硬化的沉积, 使受影响的血管变粗。细

胞放牧机械确保正确的细胞和支持组织处在正确

的位置上, 从而恢复动脉壁和动脉内层的健康。

这可以防止绝大多数心脏病发作。

但是当心脏病发作已经损伤了心肌时该怎么

办? 难道就把病人受到创伤已经损坏的、难以正

常工作的心脏丢下不管了吗? 细胞放牧装置再一

次完成修补工作, 钻进疤痕组织中一点一点的把

① follicle [ �fulik ( �)

l ] n . any of the small

holes in a person ’s or

animal ’ s skin, from

which hairs grow 毛囊

② stench [ stent�] n .

a ( strong ) bad smell

臭气 , 恶臭

③ divert [ dai�v��t] v.

to cause to turn as ide

or from one use or di-

rection to another 使转

向 , 改换用途

④ nibble [ �nib ( �) l ]

v. to take small bites

( out of something ) ,

eat ( something) with

small bites 细 咬 , 细

食 , 一点点的咬

⑤ atherosclerotic

[ ���r�uskli��r�utik]

动脉粥样硬化

⑥ lining [ �laining] n.

a piece of material cov-

ering the inner surface

of a garment, box,

etc. ( 衣 服、盒 子 等

的 ) 内层

·541·第五章 纳米医学

Page 151: Mysteries of the Nanotechnique

replacing it with fresh muscle fiber. If need be, this new fiber can be

grown by applying a series of internal molecular stimuli to selected heart

muscle cells to“ remind " them of the instructions for growth that they

used decades earlier during embryonic①

development.

Cell-herding capabilities should also be able to deal with the various

forms of arthritis②

. Where this is due to attacks from the body’s own im-

mune system, the cells producing the damaging antibodies can be identi-

fied and eliminated. Then a cell-herding system would work inside the

joint③

where it would remove diseased tissues, calcified④

spurs, and so

forth, then rework patterns of cells and intercellular material to form a

healthy, smoothly working, and pain-free joint. Clearly, learning to re-

pair hearts and learning to repair joints will have some basic technologies

in common, but much of the research and development will have to be de-

voted to specific tissues and specific circumstances. A similar process—

but again, specially adapted to the circumstances at hand—could be used

to strengthen and reshape bone, correcting osteoporosis.

In dentistry, this sort of process could be used to fill cavities, not

with amalgam⑤

, but with natural dentin⑥

and enamel⑦

. Reversing the

ravages of periodontal disease will someday be straightforward, with nano-

medical devices to clean pockets, join tissues, and guide regrowth. Even

missing teeth could be regrown, with enough control over cell behavior.

5 . 4 S urgica l Ope ra tio n on Ce lls

Moving through tissues without leaving a trail of disruption will re-

quire devices able to manipulate and direct the motions of cells, and to

repair them. Much remains to be learned—and will be easy to learn with

nanoscale tools—but today’s knowledge of cells is enough for a start on

the problem of how to do surgery on cells.

·641· 纳米世界探秘

Page 152: Mysteries of the Nanotechnique

它们搬走, 用新生的肌肉纤维代替这些伤疤。如

果需要, 可以通过使用一系列内在的分子刺激物,

使特定的心肌细胞回忆起几十年前在胚胎发育阶

段听到过的指令, 生长出这些新的心肌纤维。

细胞放牧的能力还能用于治疗各种各样类型

的关节炎。这类疾病的产生是由于遭受了人体自

身免疫系统的攻击。免疫细胞产生的有破坏性的

抗体可以被鉴别出来并被清除干净。然后细胞放

牧系统将在关节内工作, 移走患病的组织, 使骨刺

钙化等等, 随后重新建立细胞和细胞间质结合的特

定模式, 形成健康的、平稳工作的、无痛苦的关节。

很明显, 学习修补心脏和学习修补关节将有一些共

同的基本技术, 但是研究和发展的大部分将是针对

特定的组织和特定的环境的。相似的方法———但

是再次强调, 特别适应于不同的具体环境———可以

用于加强和改造骨骼, 能够纠正骨质疏松。

在牙科, 这类方法能用于填补牙洞, 不是用汞

合金, 而是天然的牙本质和牙釉质。恢复由牙周疾

病造成的创伤有一天也会变得简单直接, 用纳米机

械清洁破损处, 加入牙龈组织, 并引导它重新生长。

在对细胞行为的足够控制下, 失去的牙齿也能重新

生长出来。

5 Ä. 4 给细胞做手术

穿过组织而不留下裂开的痕迹需要机械能够

操纵和指挥细胞的运动, 并且修复它们。其中大部

分还需要我们学习———在纳米尺度工具的帮助下

很容易学习这些知识———然而今天我们关于细胞

的知识已经足够我们开始对细胞进行外科手术。

① embryonic

[ �embri��nik] adj. in

an undeveloped or very

early state of growth,

in the condition of an

embryo 萌 芽期 的 , 初期的 , 胚胎的

② arthri tis [ ɑ���raitis ]

n. a disease caus ing

pain and swelling in

the joints of the body

关节炎

③ j oint [ d��int] n . a

place where things

( esp. bones) join 关节

④ calcify [ �k�lsifai ]

v. to ( cause to ) be-

come hard by the addi-

tion of lime 钙化

⑤ amalgam

[ ��m�l��m ] n. a

mixture of metals, one

of which is mercury 汞

合金

⑥ dentin [ �dentin] n.

a calcareous material

simi lar to but harder

and denser than bone

that composes the prin-

cipal mass of a tooth 牙本质

⑦ enamel

[ i�n�m ( �) l ] n . the

hard smooth outer sur-

face of the teeth 牙 釉质

·741·第五章 纳米医学

Page 153: Mysteries of the Nanotechnique

Cell biology is a booming①

field, even today. Cells can be made to

live and grow in laboratory cultures if they are placed in a liquid with

suitable nutrients, oxygen, and the rest. Even with today’s crude tech-

niques, much has been learned about how cells respond to different

chemicals , to different neighbors, and even to being poked and cut with

needles. Conducting a rough sort of surgery on individual cells has been

routine for many years in scientific laboratories.

Today, researchers can inject new DNA into cells using a tiny nee-

dle; small punctures in a cell membrane automatically reseal. But both

these techniques use tools that on a cellular scale are large and clumsy—

like doing surgery with an ax or a wrecking ball②

, instead of a scalpel.

Nano-scale tools will enable medical procedures involving delicate sur-

gery on individual cells.

5 . 4 . 1 Elimina ting Vir uses by Cell Sur gery

Some viral diseases will respond to treatments that destroy viruses in

the nose and throat, or in the bloodstream. The flu and common cold are

examples . Many others would be greatly improved by this, but not elimi-

nated. All viruses work by injecting their genes into a cell and taking o-

ver its molecular machinery, using it to produce more viruses. This is

part of what makes viral illnesses so hard to treat—most of the action is

performed by the body’s own molecular machines, which can’t be inter-

fered③

with on a wholesale basis. When the immune system deals with a

viral illness, it both attacks free virus particles before they enter cells,

and attacks infected cells before they can churn out④

too many more vi-

rus particles.

·841· 纳米世界探秘

Page 154: Mysteries of the Nanotechnique

即使是今天, 细胞生物学也是一个急速发展的

领域。细胞可以在实验室培养下存活和生长, 只要

放置在富含营养物质和氧气等的溶液中。甚至使

用现代的粗糙的实验技术, 我们已经了解了很多关

于细胞如何对不同的化学物质、不同的邻居细胞做

出反应的知识, 也能用针刺穿和切割细胞。最近几

年来在科学实验室里, 对单个细胞进行某种粗糙的

外科手术已经成为日常的工作。

今天, 研究者可以用一根细针将新的脱氧核

糖核酸( DNA) 注射入细胞; 细胞膜上的小洞可以

自己恢复密封。但是这些技术使用的工具对于细

胞来说既大又笨拙———就像是斧子和落锤破碎

机, 而不是解剖刀。纳米尺度的工具将使包括对

于单个细胞进行精细外科手术在内的医学手段成

为可能。

5 À. 4 . 1 通过细胞手术清除病毒

一些病毒性疾病将会对在鼻部、喉咙和血液

中消灭病毒的治疗做出反应。流感和普通感冒就

是这样的例子。很多其他疾病能够通过这样的治

疗得到很大的改善, 但是不能完全治愈。所有的

病毒通过将它们的基因注入人体细胞发挥作用,

接管细胞的分子机械, 并以此生产更多的病毒。

这就是病毒性疾病难以治愈的部分原因———大部

分病毒的活动是由人体自身的分子机械完成的,

这些分子机械的活动是不能被大规模干扰的。当

免疫系统处理病毒性疾病时, 它既攻击还没有进

入细胞的自由活动的病毒, 也在受感染细胞制作

出太多病毒颗粒之前攻击这些受感染的细胞。

① boom [ bu�m] v. to

grow rapidly, esp. in

value, in importance ,

or in the opinion of

others ( 价 值、重 要

性 ) 迅速增长

② wrecking ball

[ �reki��b��l ] 落锤破

碎机

③ interfere [ int��fi�

( r ) ] v. to get in the

way of another, block

the action of another 干

扰 , 阻挠 , 妨碍

④ churn out: to pro-

duce a large quantity of

( something) , as if by

machinery 大量生产

·941·第五章 纳米医学

Page 155: Mysteries of the Nanotechnique

Some viruses, though, insert their genes among the genes of the

cell, and lay low. The cell can seem entirely normal to the immune sys-

tem, for months or years, until the viral genes are triggered into action

and begin the infective process anew. This pattern is for the persistence of

herpes①

infections, and for the slow, deadly progress of AIDS.

These viruses can be eliminated by molecular-level cellular surgery.

The required devices could be small enough to fit entirely within the

cell, if need be. Greg Fahy, who heads the Organ Cryopreservation②

Project at the American Red Cross’s Jerome Holland Transplantation La-

boratory, writes,“Calculations imply that molecular sensors, molecular

computers, and molecular effectors can be combined into a device small

enough to fit easily inside a single cell and powerful enough to repair mo-

lecular and structural defects ( or to degrade③

foreign structures such as

viruses and bacteria) as rapidly as they accumulate. . . . There is no rea-

son such systems cannot be built and function as designed. "

Equally well, a cell surgery device located outside a cell could reach

through the membrane with long probes. At the ends of the probes would

be tools and sensors along with, perhaps, a small auxiliary④

computer.

These would be able to reach through multiple membranes, unpackage

and uncoil DNA, read it, repackage it, and recoil it,“ proofreading⑤

"

the DNA by comparing the sequences in one cell to the sequences of other

cells.

On reading the genetic sequence spelling out the message of the

AIDS virus, a molecular surgery machine could be programmed to respond

like an immune machine, destroying the cell. But it would seem to make

more sense simply to cut out the AIDS virus genes themselves, and recon-

nect the ends as they were before infection. By doing this, and killing any

viruses found in the cell, the procedure would restore the cell to health.

·051· 纳米世界探秘

Page 156: Mysteries of the Nanotechnique

尽管一些病毒将它们的基因插入人体细胞的

基因中并潜伏下来, 被感染的细胞可能在几个月

到几年中, 在免疫系统看来仍然是正常的, 直到病

毒基因被触发, 开始行动, 重新开始感染的过程。

这种方式引起了疱疹传染的持续, 以及艾滋病的

缓慢的、最终导致死亡的发病过程。

这些病毒可以通过分子水平的细胞外科手术

清除。所需要的装置要足够小, 以便在需要的时

候能完全进入细胞中。格雷格·法伊在美国红十

字会的杰罗姆·荷兰移植实验室领导器官低温储

藏项目, 他写道:“计算表明分子传感器、分子计

算机和分子作用器可以组合起来, 形成一个小到

能够轻易地进入单个细胞的机械, 同时又功能强

大到完成修复分子和结构损坏( 或者破坏外来的

结构, 比如病毒和细菌) , 以损伤积累的速度迅速

完成破坏工作。⋯⋯没有理由表明这样的系统不

能制造出来并像设计的那样工作。”

定位在细胞外的细胞手术装置也能很好的工

作, 用一根长长的探针穿过细胞膜进入细胞。探

针的尖端是工具和传感器, 也许还有一个小型的

辅助计算机。探针能够刺穿多层膜, 打开包裹起

来的 DNA, 解开双螺旋, 阅读, 重新包裹和卷曲

DNA, 通过比较一个细胞的 DNA 序列和其他细胞

的序列来校对 DNA。

当阅读基因序列, 读出艾滋病病毒的信息时,

分子手术装置可以在程序控制下像免疫机械那样

做出反应, 销毁细胞。但是还可以显得更有理智

一些, 只要简单地切除艾滋病病毒基因, 重新连接

两个末端, 就像未被感染之前那样。除此以外, 再

消灭所有细胞内的病毒, 这样的过程就能使细胞

恢复健康。

① herpes [ �h��pi�z ]

n. a skin disease in

which red spots spread

around the body 疱疹

② cryopreservation

[ �krai�u�prez��vei��n]

低温储藏

③ degrade [ di��reid]

v. t o ( cause to )

change from a higher to

a lower kind of living

matter, or from a com-

pound chemical to a

simpler one 退 化 , 降

④ auxiliary

[ ����zilj�ri]

a dj. offering or giving

help, esp. with lower

rank or of less impor-

tance, adding support

辅助的 , 协助的

⑤ proofread

[ �pru�fri�d]

v. to read and correct

the printer ’s proofs of

( a book, magazine ,

etc. ) 校对

·151·第五章 纳米医学

Page 157: Mysteries of the Nanotechnique

5 . 4 . 2 Molecular Repa irs

Cells are made of billions of molecules, each built by molecular ma-

chines. These molecules self-assemble to form larger structures, many in

dynamic patterns, perpetually①

disintegrating and reforming. Cell-sur-

gery devices will be able to make molecules of sorts that may be lacking,

while destroying molecules that are damaged or present in excess. They

will be able not only to remove viral genes, but to repair chemical and

radiation-caused damage to the cell’s own genes. Advanced cell surgery

devices would be able to repair cells almost regardless of their initial

state of damage.

By activating and inactivating a cell ’s genes, they will be able to

stimulate cell division and guide what types of cells are formed. This will

be a great aid to cell herding and to healing tissues.

As surgeons today rely on the spontaneous, self-organizing ability of

cells and tissues to join and heal the parts they manipulate, so cell-sur-

gery devices will rely on the spontaneous self-organizing capabilities of

molecules to join and“heal" the parts they put together. Healing of a

surgical wound involves sweeping up②

dead cells, growing new cells,

and a slow and genuinely painful process of tissue reorganization. In

contrast, the joining of molecules is almost instantaneous③

and occurs on

a scale far below that of the most sensitive pain receptor .“Healing" will

not begin after the repair devices have done their work, as it does in

conventional surgery; rather, when they complete their work, the tissue

will have been healed.

5 . 4 . 3 Cell Repair Ma chines

In short, with molecular technology and technical AI④

we will com-

pile complete, molecular-level descriptions of healthy tissue, and we will

build machines able to enter cells and to sense and modify their struc-

·251· 纳米世界探秘

Page 158: Mysteries of the Nanotechnique

tures.

·351·第五章 纳米医学

Page 159: Mysteries of the Nanotechnique

5 À. 4 . 2 分子修复

细胞是由数十亿个分子组成的, 每个分子都是

由分子机械生产出来的。这些分子自动组装成更

大的结构, 大多数是种动态的模式, 不断地分解并

重新生成。细胞手术装置能够制造出缺少的各种

分子, 清除被破坏的和多余的分子。它们不仅能除

去病毒基因, 还能修复由于化学物质或辐射造成的

细胞本身基因的损伤。先进的细胞手术装置将能

够修复细胞, 几乎不用顾及最初的损伤有多严重。

通过使细胞的基因发挥作用或不发挥作用,

它们能够刺激细胞分裂, 引导细胞形成不同类型

的细胞。这将是对细胞放牧和组织康复的巨大帮

助。

正如今天的外科医生依靠细胞和组织的自发

的自动组织能力来连接和治愈他们所处理的人体

组织, 细胞外科手术装置将会依靠分子的自发的

自动组织能力来连接和“治愈”它们装配起来的

部分。外科伤口的康复包括了清除死细胞、新细

胞生长和人体组织重新结合的缓慢而且真正痛苦

的过程。与此相反, 分子的连接几乎是在一瞬间

完成的, 它发生的尺度远远小于最灵敏的痛觉感

受器的尺寸。“康复过程”不是像在传统外科学

中那样, 在修复机械做完它们的工作后开始的; 确

切的说, 当这些修复机械完成工作时, 人体组织就

已经被治愈了。

5 . 4 . 3 细胞修复机械

简要说来, 在分子技术和人工智能技术的帮

助下, 我们能够编辑整理出完整的、分子水平上的

对健康组织的描述, 同时建造出能够进入细胞检

查并修复细胞结构的机械。

① perpetual

[ p��petju�l ] a dj. un-

interrupted, happening

often 不断 的 , 一再 重

复的

② sweep up [ swi�p ]

to clean a place, esp.

to sweeping the floor

清扫

③ i nstantaneous

[ inst�n�teini�s ] adj.

happening at once 立

即的 , 瞬间发生的

④ AI ( = Artificial In-

telligence) 人工智能

·451· 纳米世界探秘

Page 160: Mysteries of the Nanotechnique

Cell repair machines will be comparable in size to bacteria and viru-

ses, but their more-compact parts will allow them to be more complex.

They will travel through tissue as white blood cells do, and enter cells as

viruses do—or they could open and close cell membranes with a surgeon

’s care. Inside a cell, a repair machine will first size up the situation by

examining the cell’s contents and activity, and then take action. Early

cell repair machines will be highly specialized, able to recognize and

correct only a single type of molecular disorder, such as an enzyme defi-

ciency or a form of DNA damage. Later machines ( but not much later,

with advanced technical AI systems doing the design work) will be pro-

grammed with more general abilities.

Complex repair machines will need nanocomputers to guide them. A

micron①

-wide mechanical computer will fit in 1 /1000 of the volume of a

typical cell, yet will hold more information than does the cell’s DNA. In

a repair system, such computers will direct smaller , simpler computers,

which will in turn direct machines to examine, take apart, and rebuild

damaged molecular structures.

By working along molecule by molecule and structure by structure,

repair machines will be able to repair whole cells. By working along cell

by cell and tissue by tissue, they ( aided by larger devices, where need

be) will be able to repair whole organs. By working through a person or-

gan by organ, they will restore health. Because molecular machines will

be able to build molecules and cells from scratch②

, they will be able to

repair even cells damaged to the point of complete inactivity. Thus, cell

repair machines will bring a fundamental breakthrough: they will free

medicine from reliance on self-repair as the only path to healing.

·551·第五章 纳米医学

Page 161: Mysteries of the Nanotechnique

细胞修复机械的大小可以与细菌和病毒相

比, 但是它们结构更紧凑的部件使得它们更复杂

一些。它们能够像白细胞那样穿过组织, 像病毒

那样进入细胞———或者像外科医生做手术那样打

开和封闭细胞膜。在细胞内, 修复机械首先检查

细胞的成分和活动性, 估计大体情况, 然后采取行

动。早期的细胞修复机械将是高度专一性的, 它

们只能识别和修复单一类型的分子疾病, 比如某

一种酶的缺乏或者某一种形式的 DNA 损伤。后

来的机械 ( 但不是很晚的, 由先进的人工智能技

术系统进行设计工作的 ) 将能够被编程序控制,

从而具有更多一般性的工作能力。

复杂的修复机械需要纳米计算机来管理它

们。一台微米尺寸的机械计算机大约只有典型细

胞体积的千分之一, 但是它保存的信息比细胞

DNA 还多。在一个修复系统中, 这样的计算机指

导更小的、更简单的计算机, 小计算机再控制纳米

机械检查、拆卸和重新组装被损坏的分子结构。

这样一个分子接一个分子、一种结构接一种

结构地, 修复机械将能够修复整个细胞。再一个

细胞接一个细胞、一片组织接一片组织地, 它们

( 在必要的地方, 有更大的机械装置帮助它们 ) 将

修复整个器官。在人体中一个器官接一个器官地

进行下来, 就能使人体恢复健康。因为分子机械

能够从一无所有开始重建分子和细胞, 它们甚至

连被损坏到完全失去生物活动能力的细胞也能修

复。这样, 细胞修复机械将带来一场根本性的革

命: 它们将使医学从依赖组织自身修复能力作为

治疗的惟一途径的状况中解脱出来。

① micron [ �maikr�n ]

n. one 1, 000, 000th of

a meter 微米

② from scratch: star-

ting from zero or with

nothing 从头 做起 , 从

一无所有开始

·651· 纳米世界探秘

Page 162: Mysteries of the Nanotechnique

To visualize an advanced cell repair machine, imagine it—and a

cell—enlarged until atoms are the size of small marbles①

. On this scale,

the repair machine’s smallest tools have tips about the size of your finger-

tips; a medium-sized protein, like hemoglobin, is the size of a typewrit-

er; and a ribosome②

is the size of a washing machine. A single repair

device contains a simple computer the size of a small truck, along with

many sensors of protein size, several manipulators of ribosome size, and

provisions for memory and motive power. A total volume ten meters

across, the size of a three-story house, holds all these parts and more.

With parts the size of marbles packing this volume, the repair machine

can do complex things.

But this repair device does not work alone. It, like its many sib-

lings③

, is connected to a larger computer by means of mechanical data

links the diameter of your arm. On this scale, a cubic-micron computer

with a large memory fills a volume thirty stories high and as wide as a

football field. The repair devices pass it information, and it passes back

general instructions. Objects so large and complex are still small

enough: on this scale, the cell itself is a kilometer across, holding one

thousand times the volume of a cubic-micron computer, or a million

times the volume of a single repair device. Cells are spacious.

Will such machines be able to do everything necessary to repair

cells? Existing molecular machines demonstrate the ability to travel

through tissue, enter cells, recognize molecular structures, and so forth,

but other requirements are also important. Will repair machines work fast

enough? If they do, will they waste so much power that the patient will

roast?

·751·第五章 纳米医学

Page 163: Mysteries of the Nanotechnique

把这样一种先进的细胞修复机械形象化, 想

像它———还有一个细胞———在你面前放大, 直到

每个原子都有小弹子球那样大小。在这样的比例

下, 修复机械上最小的工具的尖端都有你手指尖

那样大; 中等大小的蛋白质, 比如血红蛋白, 像一

台打字机那么大; 核糖体有洗衣机那么大。简单

修复机械包括了一台小卡车般大小的简单计算

机, 许多蛋白质大小的传感器, 几个核糖体般尺寸

的操纵器, 以及记忆存储和动力能源的储备。包

括了所有这些甚至更多的部件, 纳米修复机械的

总尺寸有十多米, 大约三层楼房大小。由弹子球

大小的原子堆积而成的这个修复机械, 能完成很

复杂的工作。

但是这台修复机械不是单独工作的。它和它

的许多兄弟一起, 与一台更大的计算机通过手臂

粗细的机械数据连接线连接起来。在这样的比例

下, 一台立方微米大小的大存储容量计算机有 30

层楼高, 足球场那么大。修复机械将信息传送给

主计算机, 主计算机传送回概括性的指令。这样

巨大和复杂的物体仍然足够小: 在这样的比例下,

细胞自身尺寸有大约一公里, 能包含上千个立方

微米计算机, 或者上百万个简单修复机械。细胞

内有的是空间。

这样的机械能完成修复细胞所必须的任何事

情吗? 存在的分子机械已经展示给我们穿过组

织、进入细胞、识别分子结构等等的能力, 但是其

他一些要求也同样重要。修复机械工作速度快不

快? 它们工作时, 会不会散发出太多的热量, 以至

病人都被烤坏了?

① marble [ �mɑ�b( �)

l ] n . a small hard ball

of usu. colored glass

used by children to

play the game of mar-

bles 弹子球

② ribosome

[ �raib�s�um] 核糖体 ,

细胞内合成蛋白质的

细胞器

③ sibling [ �sibli�] n .

a brother or a sister 兄

弟或姊妹

·851· 纳米世界探秘

Page 164: Mysteries of the Nanotechnique

The most extensive repairs cannot require vastly more work than

building a cell from scratch. Yet molecular machinery working within a

cellular volume routinely does just that, building a new cell in tens of mi-

nutes ( in bacteria) to a few hours ( in mammals) . This indicates that re-

pair machinery occupying a few percent of a cells volume will be able to

complete even extensive repairs in a reasonable time—days or weeks at

most. Cells can spare this much room. Even brain cells can still function

when an inert①

waste called lipofuscin②

( apparently a product of molecu-

lar damage) fills over ten percent of their volume.

Powering repair devices will be easy: cells naturally contain chemi-

cals that power nanomachinery. Nature also shows that repair machines

can be cooled: the cells in your body rework themselves steadily, and

young animals grow swiftly③

without cooking themselves. Handling heat

from a similar level of activity by repair machines will be no sweat—or at

least not too much sweat, if a week of sweating is the price of health.

5 . 5 Hea ling Body a nd Limb

The ability to herd cells and to perform molecular repairs and cell

surgery will open new vistas④

for medicine. These abilities apply on a

small scale, but their effects can be large scale.

5. 5. 1 Cor recting Chemical Signal Tra nsition

In many diseases, the body as a whole suffers from misregulation of

the signaling molecules that travel through its fluids. Many are rare:

Cushing’s disease, Grave ’s disease, Paget ’s disease, Addison ’s disease,

Conn’s syndrome, Prader-Willi syndrome. Others are common: millions of

older women suffer from osteoporosis, the weakening of bones that can ac-

company lowered estrogen⑤

levels.

·951·第五章 纳米医学

Page 165: Mysteries of the Nanotechnique

最大规模的修理工作也不可能比从头开始重建

一个细胞需要更多的工作了。但是天然分子机械在

细胞空间内的例行公事就是这样的工作, 在几十分

钟( 细菌内) 或几个小时( 哺乳动物中) 的时间内建

成一个新的细胞。这告诉我们占据细胞体积百分之

几的修理机械可以在合理的时间内———最多几天或

几周———完成即使是大规模的工作。细胞内能够提

供这样多的空间。甚至大脑细胞在被称为脂褐素的

废物( 显然是受到分子损伤时产生的) 占据了超过

10% 的体积时, 仍然能继续它的工作。

给修复机械提供能量并不困难: 细胞内当然含

有可以为纳米机械提供能量的化学物质。自然同样

显示了修复机械可以是凉爽的: 人体内的细胞有规

律地重新建筑自身,幼小的动物迅速地长大, 也没有

把自己变成烤肉。修复机械以相似的活动水平产生

热量不会引起出汗———或者如果作为治疗的代价需

要一周时间不时出汗的话, 至少不会大汗淋漓。

5 À. 5 肢体康复

放牧细胞、进行分子修复和细胞外科手术的能

力将展开医学的新景象。这些能力虽然是应用在

一个很小的尺度上, 但是它们的作用是巨大的。

5. 5. 1 修正人体的化学信号

在很多疾病中, 在人的体液内到处旅行的信号

分子的错误调节, 造成了整个人体的痛苦。许多这

样的病症是罕见的: 库欣病、格雷夫斯病( 突眼性甲

状腺肿) 、佩吉特病( 1. 变形性骨炎; 2. 乳晕和乳头

炎性癌变) 、艾迪生病 ( 肾上腺皮质功能减退) 、原

发性醛固酮过多症、普—威综合症。其他的比较常

见: 上百万老年妇女承受着骨质疏松的痛苦, 伴随

着雌激素水平的下降, 骨骼变得不坚硬。

① inert [ i�n��t ] adj.

not acting chemically

with other substance 惰

性的

② l ipofuscin 脂褐素

③ swift [ swift ] adj.

rapid, fast 快 捷 迅 速

④ vi sta [ �vist�] n . a

set of events s tretching

far into the future or

back into the past, as

seen in the imagination

前瞻 , 回顾 , 展望

⑤ est rogen

[ �i�str�d�( �) n ] ( =

oestrogen) 雌激素

·061· 纳米世界探秘

Page 166: Mysteries of the Nanotechnique

Diabetes kills frequently enough to rank in the top ten causes of

death in the United States; the number of individuals known to have it

doubles every fifteen years. It is the leading cause of blindness in the U-

nited States, with other complications①

including kidney damage, cata-

racts②

, and cardiovascular③

damage. Today’s molecular medicine tries

to solve these troubles by supplying missing molecules: diabetics inject

additional insulin. While helpful, this doesn’t cure the disease or elimi-

nate all symptoms④

. In an era of molecular surgery, physicians could

choose instead to repair the defective organ, so it can regulate its own

chemicals again, and to readjust the metabolic properties of other cells in

the body to match. This would be a true healing, far better than today’s

partial fix.

Only now are researchers making progress on another frequent prob-

lem of metabolic regulation: obesity⑤

. Once this was thought to have

one simple cause ( consuming excess calories ) and one main result

( greater roundness than favored by today’s aesthetics⑥

) , but both as-

sumptions proved wrong. Obesity is a serious medical problem, increas-

ing the risk of diabetes, osteoarthritis⑦

, degenerative diseases of the

heart, arteries, and kidneys, and shortening life expectancy. And the

supposed cause, simple overeating, has been shown to be incorrect—

something dieters had always suspected, as they watched thinner col-

leagues gorge⑧

and yet gain no weight.

The ability to lay in stores of fat was a great benefit to people once

upon a time, when food supplies were irregular, nomadism and maraud-

ing⑨

bands made food storage difficult and risky, and starvation was a

common cause of death. Our bodies are still adapted to that world, and

regulate fat reserves accordingly. This is why dieting often

·161·第五章 纳米医学

Page 167: Mysteries of the Nanotechnique

由于患有糖尿病死亡的事例频繁出现, 使糖尿

病已经列入了美国最主要的十大死亡原因; 已知的

患病人数每 15 年还要增加一倍。在美国, 糖尿病是

失明的最主要的原因,还引起其他的并发症, 比如肾

脏损伤、白内障以及心血管损伤。今天的分子医学

试图通过补充缺少的分子来解决问题, 给糖尿病人

注射额外的胰岛素。尽管有效, 但这并不能治愈疾

病或者清除所有的症状。在一个分子外科学的时

代, 医生们能够改为选择修复有缺损的器官, 这样就

能够重新调节自身的化学物质, 并重新调整体内其

他细胞的新陈代谢特征, 使之相匹配。这将是真正

的康复,远比现在的局部修复好得多。

直到现在研究人员才在另一种经常性的代谢

调节问题上取得进展, 这就是肥胖。肥胖曾经被

认为是由一个简单的原因 ( 摄入太多的热量) 引

起的, 以及产生一种主要的结果 ( 比现代审美观

期望的更丰满) , 但是这两点都被证明是错误的。

肥胖是一系列医学问题, 它增加了患糖尿病、骨关

节炎、心血管和肾脏退化性疾病的风险, 使预期寿

命缩短。同时这种假定的病因———只是进食过

多, 已经被显示为不正确的了。当节食者看到他

们苗条的同事狼吞虎咽却不增加体重时, 他们往

往对此感到疑惑。

这种储存脂肪的能力曾经一度对人类有极大

的好处: 在那个时代, 食物的供应还不能得到经常

性的保证, 游牧生活和掠夺小集团使得食物储存

变得困难和有风险, 饥饿还是常见的死亡原因。

我们的身体还在适应着那个世界, 以此为根据调

① complicat ion

[ k�mpli�kei�( �) n ]

n. a new i llness that a-

rises during the course

of another illness, thus

making treatment more

difficult 并发症② cataract

[ �k�t�r�kt ] n. a dis-

eased growth on the

eye causing a slow lose

of s ight by preventing

light from entering 白内障③ cardiovascular

[ kɑ�di�u�v�kjul�]

a dj. 心血管的④ symptom

[ �simpt�m ] n. a

change in body or mind

which shows disease or

disorder 病症 , 症状

⑤ obesity [ �u�bi�s�ti]

n . a condit ion charac-

terized by excessive

bodily fat 肥胖⑥ aesthetics

[ i�s��etiks ] n. the

study, science, or phi-

losophy of beauty,

esp. beauty in art 美学 , 审美观⑦ ost eoarthritis

[ �sti�uɑ���raitis ] 骨关

节炎⑧ gorge [ ���d�] v.

to eat greedily or to re-

pletion. 狼吞虎咽⑨ maraud [ m��r��d ]

v. ( of people or ani-

mals ) to move around

in search of something

to st eal , burn, orde-

st roy. 抢劫 , 掠夺

·261· 纳米世界探秘

Page 168: Mysteries of the Nanotechnique

has perverse effects. The body, when starved①

, responds by attempting

to build up greater reserves of fat at its next opportunity. The main effect

of exercise in weight reduction isn’t to burn up calories, but to signal the

body to adapt itself for efficient mobility.

Obesity therefore seems to be a matter of chemical signals within the

body, signals to store fat for famine or to become lean for motion. Nano-

medicine will be able to regulate these signals in the bloodstream, and to

adjust how individual cells respond to them in the body. The latter would

even make possible the elusive“ spot reduction program" to reshape the

distribution of body fat.

Here, as with many potential applications of nanotechnology, the

problem may be solved by other means first. Some problems, though,

will almost surely require nanomedicine.

5 . 5 . 2 New O rgans an d Limbs

So far we’ve seen how medical nanotechnology would be used in the

simpler applications outside tissues—such as in the blood—then inside

tissues, and finally inside cells. Consider how these abilities will fit to-

gether for victims of automobile and motorcycle accidents.

Nanomanufactured medical devices will be of dramatic value to

those who have suffered massive trauma②

. Take the case of a patient

with a crushed or severed spinal cord high in the back or in the neck.

The latest research gives hope that when such patients are treated

promptly after the injury, paralysis may be at least partially avoidable,

sometimes. But those whose injuries weren’t treated—including virtually

all of today’s patients—remain paralyzed③

. While research continues on

a variety of techniques for attempting to aid a spontaneous healing

process, prospects for reversing this sort of damage using conventional

medicine remain bleak.

·361·第五章 纳米医学

Page 169: Mysteries of the Nanotechnique

节脂肪的存储。这就是节食常常造成不正确效果

的原因。当饥饿的时候, 人体尽力在下一次进食机

会中建立更多的脂肪储备。运动在减肥中的主要

效应不是燃烧热量, 而是以信号通知人体使它自身

适应一种有效率的运动灵活性的要求。

因此肥胖似乎与人体内的化学信号传递有关

系, 信号决定了人体是储存脂肪还是变得更适合

运动。纳米机械将能够调整血流中的这些信号,

以及调节人体内单个细胞对于这些信号的反应。

后者可以重新调整人体脂肪的分布, 将使得难以

捉摸的“定点减肥计划”成为可能。

这里, 许多潜在的纳米技术的应用, 也许可以

先通过其他手段予以解决。但有的问题几乎肯定

需要纳米医学的帮助。

5 À. 5 . 2 新器官和新肢体

到目前为止我们已经看到了纳米技术在医学

中的一些较为简单的应用: 从组织以外———例如

在血液中———到组织中, 最后到细胞内。让我们

想想这些技术如何结合在一起来救助那些交通事

故的受害者吧。

纳米制造的医疗器械对那些遭受严重创伤的

人们有着重要的价值。以一个脊髓在背部或颈部

高位粉碎或断裂的病人为例, 最近的研究表明, 如

果这一类病人在受伤后立即得到治疗, 瘫痪至少

有可能被部分避免。但是那些伤情得不到治疗的

病人———实际上现在所有的病人均是如此———都

瘫痪了。虽然各种试图促进自我康复过程的技术

仍在继续研究中, 但是使用传统医药来回复这一

类损伤的希望仍然很渺茫。

① st arve [ s tɑ�v] v. to

( cause to) suffer from

great hunger ( 使 ) 饥

饿

② trauma [ �tr��m�]

n . a damage to the

mind caused by the

body having been

wounded, or by a sud-

den shock or terrible

experience 精神创伤

③ paralyze

[ �p�r�laiz] v. to cau-

se ( some or all of the

body muscles ) to be-

come uncontroll able or

st iff ( 使 ) 瘫痪

·461· 纳米世界探秘

Page 170: Mysteries of the Nanotechnique

With the techniques discussed above, it will become possible to re-

move scar tissue and to guide cell growth so as to produce healthy ar-

rangements of the cells on a microscopic scale. With the right molecular-

scale poking and prodding of the cell nucleus, even nerve cells of the

sorts found in the brain and spinal cord can be induced to divide. Where

nerve cells have been destroyed, there need be no shortage of replace-

ments. These technologies will eventually enable medicine to heal dam-

aged spinal cords, reversing paralysis.

The ability to guide cell growth and division and to direct the organ-

ization of tissues will be sufficient to regrow entire organs and limbs, not

merely to repair what has been damaged. This will enable medicine to

restore physical health despite the most grievous①

injuries.

If this seems hard to believe, recall that medical advances have

shocked the world before now. To those in the past, the idea of cutting

people open with knives painlessly would have seemed miraculous, but

surgical anesthesia is now routine. Likewise with bacterial infections and

antibiotics, with the eradication of smallpox②

, and the vaccine for poli-

o③

: Each tamed a deadly terror, and each is now half-forgotten history.

Our gut sense of what seems likely has little to do with what can and can-

not be done by medical technology. It has more to do with our habitual

fears, including the fear of vain hopes. Yet what amazes one generation

seems obvious and even boring to the next. The first baby born after

each breakthrough grows up wondering what all the excitement was a-

bout.

5 . 5 . 3 Fir st Aid

Throughout the centuries, medicine has been constrained to main-

tain functioning tissues, since once tissues stop functioning, they can’t

heal themselves. With molecular surgery to carry out the healing di-

·561·第五章 纳米医学

Page 171: Mysteries of the Nanotechnique

应用以上我们讨论过的技术, 消除疤痕组织,

引导细胞生长, 以及在微观尺度内生成细胞的健

康排列都将成为可能。通过分子水平上的对细胞

核的直接刺激, 即使是那些大脑和脊髓中的神经

细胞也能被诱导分裂。在神经细胞被损毁的部

位, 不再存在新细胞缺乏的问题。这些技术最终

将使医学修复损坏的脊髓, 治愈瘫痪。

这种引导细胞生长、分裂和组织形成的能力

足以使整个器官和肢体再生, 而不仅仅是修复损

坏的部分。这样, 医学将能使哪怕是最惨重的伤

者恢复生理健康。

如果这令人难以置信的话, 请您想想迄今为

止医学进展给世界带来的震惊吧。对生活在过去

的人来说,“无痛开刀”的想法是不可思议的, 但

外科麻醉现在是常规的方法。类似地, 细菌感染

和抗生素, 天花的扑灭, 小儿麻痹症的疫苗, 它们

都曾驯服了一个个致命的恐慌, 但现在已是逐渐

被人遗忘的历史。我们对“什么可能实现”的预

感, 与医学技术能否实现往往无关, 而与我们的习

惯性恐慌, 包括对空想的畏惧更有关系。使一代

人吃惊的东西, 对下一代人则是理所当然甚至是

枯燥无味的。在所有后纳米医学时代出生的第一

个婴儿长大后会感到疑惑,“这些医学突破带来

的兴奋是什么?”

5 À. 5 . 3 紧急抢救

几个世纪以来, 医学被限制在必须保留有功能

的人体组织, 一旦人体组织停止了正常的工作, 它

们就无法被治愈。当分子外科治疗直接地承

担了治疗功能后, 医学的首要准则发生了彻底的变

① grievous [ �gri�v�s ]

a dj. very seriously

harmful 严重伤害的

② smallpox

[ �sm��lp�ks] n. a se-

rious infectious disease

( esp. in former

times ) , causing spots

which leave marks on

the skin 天花

③ polio [ �p�uli�u] n.

a serious infectious dis-

ease of the nerves in

the backbone ( spine) ,

often resulting in a

lasti ng inability to

move certain muscles

小儿麻痹症

·661· 纳米世界探秘

Page 172: Mysteries of the Nanotechnique

rectly, medical priorities change drastically①—function is no longer ab-

solutely necessary. In fact, a physician able to use molecular surgery

would prefer to operate on nonfunctioning, structurally stable tissue than

on tissue that has been allowed to continue malfunctioning until its struc-

ture was lost.

Brain tumors②

are an example: They destroy the brain’s structure,

and with it the patient’s skills, memories, and personality. Physicians in

the future should be able to immediately interrupt this process, to stop

the functioning of the brain to stabilize the patient for treatment.

Techniques available today can stop tissue function while preserving

tissue structure. Greg Fahy, in his work on organ preservation at the A-

merican Red Cross, is developing a technique for vitrifying③

animal kid-

neys—making them into a low-temperature, crystal-free glass—with the

goal of maintaining their structure such that, when brought back to room

temperature, they can be transplanted. Some kidneys have been cooled

to - 30℃, warmed back up, and then functioned after transplantation.

A variety of other procedures can also stabilize tissues on a long-

term basis. These procedures enable many cells—but not whole tis-

sues—to survive and recover without help; advanced molecular repair

and cell surgery will presumably④

tip the balance, enabling cells, tis-

sues, and organs to recover and heal. When applied to stabilizing a

whole patient, such a condition can be called biostasis. A patient in bio-

stasis can be kept there indefinitely until the required medical help

arrives.

·761·第五章 纳米医学

Page 173: Mysteries of the Nanotechnique

革———功能不再是绝对必须的了。实际上, 使用

分子外科治疗的医生更愿意给具有稳定结构而丧

失了正常功能的组织做手术, 而不是那些直到组

织结构被破坏之前一直延续着错误功能的组织。

脑瘤就是一个这样的例子。它们损坏脑组织

的结构, 以及与此相关的病人的技能、记忆和性

格。将来的医生能够立即终止这一过程, 停止脑

的功能, 稳定病人以待治疗。

现代可以使用的技术能够在保留人体组织结

构的同时使组织停止发挥功能。格雷格·法伊在

美国红十字会研究器官保存时, 正在发展一种技

术, 以玻璃态保存动物的肾脏———把动物肾脏储

存在低温的、不形成晶体的玻璃态物质中———以

保持器官的组织结构, 当恢复到室温时可以用来

进行移植。一些肾脏被降温冷藏在 - 30℃, 再重

新升温回来, 在器官移植后仍然能发挥作用。

有多种其他方法也能在一个较长时期内稳定

组织。这些方法能使大多数细胞———而不是整个

组织———在没有其他帮助的情况下存活并恢复;

先进的分子修复和细胞外科手术将也许可以打破

平衡, 使细胞、组织和器官都能恢复和痊愈。当应

用于整个病人时, 这样一种条件被称为“生物停

滞”。处于生物停滞中的病人可以被保留不确定

的时间, 等待所需的医疗帮助到达。

① drast ic [ �dr�stik ]

a dj. strong, sudden,

and often violent or se-

vere 激烈的 , 猛烈的 ,

强烈的 , 急剧的

② tumor [ �tju�m�

( r) ] n . a mass of dis-

eased cells in the body

which have divided and

increased too quickly,

causing swelling and

illness 肿瘤

③ vitrify [ �vitrifai] v.

to ( cause to) change

into glass or a glass like

substance , by means of

heat ( 加 热 后 ) ( 使 )

玻璃化

④ presumable

[ pri�zju�m�b ( �) l ]

a dj. that may reasona-

bly be suppose to be

true; probable 可能的

·861· 纳米世界探秘

Page 174: Mysteries of the Nanotechnique

5 . 5 . 4 Rever sin g Biostasis

Imagine that a patient has expired because of a heart attack. Physi-

cians attempt resuscitation but fail, and give up on restoring vital func-

tions. At this point, though, the patient’s body and brain are just barely

nonfunctional—most cells and tissues, in fact, are still alive and metab-

olizing. Having made arrangements beforehand①

, the patient is soon

placed in biostasis to prevent irreversible dissolution and await a better

day.

Years pass. The patient changes little, but technology advances

greatly. Biochemists learn to design proteins. Engineers use protein ma-

chines to build assemblers, then use assemblers to build a broad-based

nanotechnology. With new instruments, biological knowledge explodes.

Biomedical engineers use new knowledge, automated engineering, and

assemblers to develop cell repair machines of growing sophistication.

They learn to stop and reverse aging. Physicians use cell repair technolo-

gy to resuscitate patients in biostasis—first those placed in biostasis by

the most advanced techniques, then those placed in biostasis using earli-

er and cruder techniques. Finally, after the successful resuscitation of

animals placed in biostasis using the old techniques of the 1980s, physi-

cians turn to our heart-attack patient.

In the first stage of preparation, the patient lies in a tank of liquid

nitrogen surrounded by equipment. Glassy protectant②

still locks each

cell’s molecular machinery in a firm embrace. This protectant must be

removed, but simple warming might allow some cell structures to move a-

bout prematurely③

.

Surgical devices designed for use at low temperatures reach through

the liquid nitrogen to the patient’s chest. There they remove solid plugs

of tissue to open access to major arteries and veins. An

·961·第五章 纳米医学

Page 175: Mysteries of the Nanotechnique

5 À. 5 . 4 从停滞中恢复生命

设想一个病人因为心脏病发作刚刚停止呼

吸。医生们尝试着抢救但是失败了, 于是放弃了

恢复这一重要生理功能的努力。但在这一时刻,

病人的身体和大脑才刚刚失去功能, 大部分细胞

和组织实际上还活着并进行着新陈代谢。由于事

先有了安排, 病人立刻被置于生物停滞状态, 以避

免不可逆转的组织分解, 等待某一天的来临。

几年过去了, 病人的身体没有发生什么变化,

但是医疗技术有了很大的进步。生物化学家学会

了设计蛋白质。工程师用蛋白质建立起集合体,

用集合体建立了有广泛基础的纳米技术。在这些

新仪器的帮助下, 生物学的知识爆炸般地增长。

生物医学工程师根据这些新知识, 以及自动控制

工程学和集合体技术, 建立起越来越复杂的细胞

修复机械。他们学会了停止和逆转衰老。医生们

用细胞修复机械来使生物停滞状态中的病人重新

获得生命———先是那些使用最先进技术的生物停

滞病人, 然后是那些用比较早和比较粗糙的技术

的病人。最后, 当 80 年代用陈旧的技术置于生物

停滞状态的动物成功地获得新生后, 医生们转向

我们的心脏病人。

在准备阶段的第一步, 病人躺在一个装满液

氮的冰柜中, 周围布满了各种仪器。玻璃样的保

护剂仍然将细胞中的每一个分子机械牢牢锁住。

这种保护剂应该被除去, 但是简单加热可能会使

得某些细胞结构过早地移动。

设计成适合低温使用的外科手术机械穿过液

氮伸到病人的胸部。在那里它们移走了固体的组

织栓塞, 打开了通向主动脉和静脉的通路。一支

① beforehand

[ bi�f��h�nd ] a dv. in

advance 预先

② prot ectant

[ pr�u�tekt�nt] 保护剂

③ premature

[ �prem�t�u�( r) ] adj.

developing, happen-

ing, ripening, or

coming before the natu-

ral or proper time 早熟

的 , 过早的

·071· 纳米世界探秘

Page 176: Mysteries of the Nanotechnique

army of nanomachines equipped for removing protectant moves through

these openings, clearing first the major blood vessels and then the capil-

laries . This opens paths throughout the normally active tissues of the pa-

tient’s body. The larger surgical machines then attach tubes to the chest

and pump fluid through the circulatory system. The fluid washes out the

initial protectant-removal machines ( later, it supplies materials to repair

machines and carries away waste heat) .

Now the machines pump in a milky fluid containing trillions of de-

vices that enter cells and remove the glassy protectant, molecule by mol-

ecule. They replace it with a temporary molecular scaffolding①

that leav-

es ample room for repair machines to work. As these protectant-removal

machines uncover biomolecules, including the structural and mechanical

components of the cells, they bind them to the scaffolding with temporary

cross-links. ( If the patient had also been treated with a cross-linking fix-

ative, these cross-links would now be removed and replaced with the

temporary links. ) When molecules must be moved aside, the machines

label them for proper replacement. Like other advanced cell repair ma-

chines , these devices work under the direction of on-site nanocomputers.

When they finish, the low-temperature machines withdraw.

Through a series of gradual changes in composition and temperature, a

water-based solution replaces the earlier cryogenic②

fluid and the patient

warms to above the freezing point. Cell repair machines are pumped

through the blood vessels and enter the cells. Repairs commence.

Small devices examine molecules and report their structures and po-

sitions to a larger computer within the cell. The computer identifies the

molecules, directs any needed molecular repairs, and identifies cell

·171·第五章 纳米医学

Page 177: Mysteries of the Nanotechnique

纳米机械的部队整装出发, 它们要通过这些开口移

走保护剂, 先是清理主要的血管, 然后是毛细血管。

这些开口穿过了病人身体的正常的、有生理活动的

组织。更大的外科手术机械将管子连接在病人胸

部, 通过循环系统泵入液体。这种液体将一开始的

保护剂清除机械清洗出来( 随后, 它还要给修理机

械供应材料, 带走多余的热量) 。

现在这个机械将一种乳白色的液体灌入人体,

液体中包含的上十亿个小装置将进入细胞, 一个分

子接一个分子地移走玻璃状的保护剂。它们用一

种临时性的分子脚手架代替保护剂分子, 留下足够

的空间让修理机械工作。当这些保护剂清除机械

使包括细胞的结构和机械组件等生物分子显露出

来时, 它们用临时的交叉连接将分子固定在脚手架

上。( 如果病人已经被交叉连接固定剂治疗过, 这

些旧的交叉连接将被清除, 代之以新的临时连接。)

当分子必须被移动一边时, 这些机械给分子做上标

记, 以便使之准确地复原。像其他高级的细胞修理

机械一样, 这些机械也在携带的纳米计算机的指导

下工作。

当它们完成工作时, 低温机械被缩回。经过

一系列组成和温度的逐渐变化, 一种基于水的溶

液代替了早先的低温液体, 病人被温暖到凝固点

温度之上。细胞修复机械被泵进人体中, 通过血

管进入细胞。修复开始了。

小的机械装置检查分子, 把它们的结构和位

置报告给细胞内的一台大一些的计算机。这台计

算机鉴别分子, 指导必要的分子修复, 通过分子的

① scaffolding

[ �sk���ldi�] n . poles

and boards ( to be )

buil t into a system of

scaffolds 搭 脚 手架 用

的支架 , 木板等材料

② cryogenic

[ �krai��d�enik ] 低 温

·271· 纳米世界探秘

Page 178: Mysteries of the Nanotechnique

structures from molecular patterns. Where damage has displaced struc-

tures in a cell, the computer directs the repair devices to restore the mol-

ecules to their proper arrangement, using temporary cross-links as nee-

ded. Meanwhile, the patient’s arteries are cleared and the heart muscle,

damaged years earlier, is repaired.

Finally, the molecular machinery of the cells has been restored to

working order, and coarser repairs have corrected damaged patterns of

cells to restore tissues and organs to a healthy condition. The scaffolding

is then removed from the cells, together with most of the temporary cross-

links and much of the repair machinery. Most of each cell’s active mole-

cules remain blocked, though, to prevent premature, unbalanced activi-

ty.

Outside the body, the repair system has grown fresh blood from the

patient’s own cells. It now transfuses①

this blood to refill the circulatory

system, and acts as a temporary artificial heart. The remaining devices

in each cell now adjust the concentration of salts, sugars, ATP, and oth-

er small molecules, largely by selectively unblocking each cell ’s own

nanomachinery. With further unblocking, metabolism resumes②

step by

step; the heart muscle is finally unblocked on the verge of③

contraction.

Heartbeat resumes, and the patient emerges into a state of anesthesia.

While the attending physicians④

check that all is going well, the repair

system closes the opening in the chest, joining tissue to tissue without a

stitch or a scar . The remaining devices in the cells disassemble one an-

other into harmless waste or nutrient molecules. As the patient moves in-

to ordinary sleep, certain visitors enter the room, as long planned.

At last, the sleeper wakes refreshed to the light of a new day—and

to the sight of old friends.

·371·第五章 纳米医学

Page 179: Mysteries of the Nanotechnique

模式识别细胞的结构。在被损坏改换了细胞结构

的地方, 计算机指导修复机械以它们正确的安排

方式使分子复原, 在必要的地方使用临时的交叉

连接。在这时, 病人的动脉被清理干净, 几年前造

成的心肌损伤也被修复。

最后, 细胞的分子机械被恢复到工作状态, 粗

略的修复已经把被破坏的细胞模式纠正过来, 组织

和器官恢复到健康的状态。接着, 脚手架、大部分

临时交叉连接和很多修复机械被从细胞中清理出

来, 尽管每个细胞中的大多数活性分子仍然被保持

在阻塞状态, 以避免太早的、不稳定的活动。

在体外, 修复机械已经从病人自身细胞中制

造出新鲜血液。它现在将血液输入人体, 重新充

满循环系统, 并作为一个临时的人工心脏工作。

每个细胞中遗留下来的纳米装置现在调整盐、糖、

三磷酸腺苷 ( ATP) 和其他小分子的浓度, 这主要

是通过有选择地解除施加在细胞自身的纳米机械

上的阻碍实现的。通过进一步地清除阻碍, 新陈

代谢逐步恢复; 心肌在心脏行将收缩的最后时刻

被解除阻塞。心跳恢复了, 病人进入一种麻醉状

态。当主治医生逐项检查确认一切正常无误之

后, 修复系统关闭病人胸部的开口, 使组织互相连

接, 既不用缝合, 也不留伤疤。剩余的纳米装置在

细胞内互相分解成为无害的废物或者有营养的分

子。当病人进入普通睡眠状态时, 几个访问者像

早已安排的那样走进房间。

最后, 沉睡者醒来, 精力充沛地面对新一天的

阳光———还有那些年老了的朋友的目光。

① t ransfuse

[ tr�ns�fju�z] v. to put

( the blood of one per-

son ) into the body of

another 将 ( 血 ) 输 入

另一人体内

② resume [ ri�zju�m ]

v. to beging ( some-

thing or doing some-

thing ) again after a

pause 重新开始 , 继续

③ on the verge of

[ v��d�] very near to

( the stated ( change

of ) condition or ac-

tion) 濒于 ( 某种状态

的改变、某种 行 为 ) ;

行将

④ attending phys ician

主治医生

·471· 纳米世界探秘

Page 180: Mysteries of the Nanotechnique

纳米, 大显身手

即使 20 世纪工业已经成为了过去, 它所造成的

恶果依然存在。借助于现有的技术来清除这些“残

渣余孽”已被证明是如此地昂贵和效率低下, 以至

于在这一领域的许多专家都望而却步, 不得不放弃

彻底根除它们的希望。那么, 后来居上的纳米技术

又将如何表现呢? ⋯⋯

Page 181: Mysteries of the Nanotechnique

Chapter 6 Healing and Protecting

the Earth Environment

The failure of Earth ’s biological systems to adapt to the industrial

revolution is also easy to understand. From deforestation to dioxin①

, we

have caused damage faster than evolution can respond. As we have

sought more food, goods, and services, our use of bulk②

technology has

forced us to continue such damage. The director of the Research Program

in Environment and Society at the State University of New York has even

observed,“Nanotechnologies have the potential to produce plentiful con-

sumer goods with much lower throughput of materials and much less pro-

duction of waste, thus reducing carbon dioxide buildup③

and reducing

global warming. They also have the potential to reduce waste, especially

hazardous waste, converting it to natural materials which do not threaten

life. " With future technology, we will be able to do more good for our-

selves, yet do less harm to the Earth. In addition, we will be able to

build planet-mending machines to correct damage already done. Cells

are not all we will want to repair.

Some wastes, such as dioxin, consist of dangerous molecules

made of innocuous atoms. Cleaning machines will render them harmless

by rearranging their atoms. Other wastes, such as lead④

and radioactive

isotopes⑤

, contain dangerous atoms. Cleaning machines will collect

these for disposal in any one of several ways. Lead comes from Earth ’s

rocks; assemblers could build it into rocks in the mines from which it

came. Radioactive isotopes could also be isolated from living things,

either by building them into stable rock or by more drastic means. Us-

ingcheap, reliable space transportation systems,

·471· 纳米世界探秘

Page 182: Mysteries of the Nanotechnique

第六章 保护地球生态环境

地球生态系统适应工业剧烈变革的失败是很

容易理解的。从乱砍乱伐到使用二恶英, 我们产

生的破坏大大快于进化的响应速度。当我们寻求

更多食品、货物和服务时, 我们使用的大量工业技

术使我们不得不持续这种破坏。纽约州立大学环

境与社会调研项目负责人曾经指出:“纳米工艺

有能力以更少的原材料和更少的浪费来生产丰富

的消费品, 因而能减少二氧化碳的形成、减轻全球

变暖的压力。它们也能够通过转化有害废物为无

碍生命健康的天然材料从而减少废物, 特别是有

害废物。”有了这些未来的技术, 我们将能做更多

有益自己而更少有害地球环境的事。更进一步

地, 我们将能建造行星修补机器来改善已造成的

破坏。毕竟细胞并不是我们想要修理的全部。

有一些废物, 比方说二恶英, 是由有害的分

子构成, 而这些分子是由无害的原子组成。负责

清理的机器通过重排它们的原子使之无害。其他

废物, 例如铅和放射性同位素, 包含了有毒的原

子。负责清理的机器以几种不同的方式收集并处

理之。铅来源于地壳岩石; 收集器能把它固化在

它所源自的岩石中。放射性同位素也能够与生命

体隔离开, 通过把其固化在坚硬的岩石中或用更

激烈的方式来处理它, 放射性同位素也能够与生

命体隔离开。 利用廉价且可靠的太空传送系统,

① dioxin [ dai��ks in ]

n. [ 化 ] 二 氧 ( 杂 ) 芑

( 又称二恶英 )

② bulk [ b�lk] n. the

main or greater part 大

批 , 大多数

③ buildup n. some-

thing produced by

building up 形成 , 组合

④ lead [ li�d ] n. 铅 ,

石墨 ,

⑤ radioactive i sotopes

放射性同位素

·571·第六章 保护地球生态环境

Page 183: Mysteries of the Nanotechnique

we could bury them in the dead, dry rock of the Moon. Using nanoma-

chines, we could seal them in self-repairing, self-sealing containers the

size of hills and powered by desert sunlight. These would be more secure

than any passive rock.

6 . 1 Ending Che mica l Pollution , Cutting Re sou rc e Consum ption

We’ve already seen how molecular manufacturing can provide clean

solar energy without paving over①

desert ecosystems, and how clean en-

ergy and common materials can be turned into abundant, efficient goods,

also cleanly. With care, sources of chemical pollution-even of excess

carbon dioxide—can, step by step, be eliminated. This includes the

pollutants responsible for acid rain, as well as ozone②—destroying ga-

ses, greenhouse gases, oil spills③

, and toxic wastes.

In each case, the story is about the same. Acid rain mostly results

from burning dirty fuels containing sulfur, and from burning cleaner fuels

in a dirty way, producing nitrogen oxides④

. We’ve seen how molecular

manufacturing can make solar cells cheap enough and rugged enough to

use as road surfaces. With green wealth, we can make clean fuels from

solar energy, air , and water; consuming these fuels in clean nanome-

chanical systems would just return to the air exactly the materials taken

from it, along with a little water vapor. Fuels are made, fuels are con-

sumed, and the cycle produces no net pollution. With cheap solar fuels,

coal and petroleum can be replaced, ignored, left in the ground. When

petroleum is obsolete, oil spills will vanish.

The greenhouse gas⑤

of greatest concern is carbon dioxide, and its

main source is the burning of fossil fuels. The above steps would

end this. The release of other gases, such as the chlorofluorocarbons⑥

( CFCs) used in foaming plastics⑦

, is often a side effect of primitive manu-

·671· 纳米世界探秘

Page 184: Mysteries of the Nanotechnique

facturing processes:

·771·第六章 保护地球生态环境

Page 185: Mysteries of the Nanotechnique

我们可以将它们深埋于月球干冷的岩石中。借助

纳米机器, 我们能够把它们密闭于以沙漠太阳能

为动力、能自我修复和自我封装的如小山大小的

集装箱中。这应该比被动的岩石深埋安全得多。

6 Ä. 1 结束化学污染, 截断资源消耗

我们已经看到分子制造技术如何提供洁净的

太阳能源而不以沙漠化为代价, 我们也看到洁净的

能源和普通的原材料如何无污染地转变为富有成

效的产品。应该注意到, 化学污染源———即使是过

量的二氧化碳———可以逐步地清除掉。这些化学

污染源包括形成酸雨的污染物, 还有破坏臭氧的气

体、温室效应气体、原油泄漏物和有害垃圾。

在每个例子, 情况是差不多的。酸雨大多源

自燃烧含硫的不纯燃料和因不洁净的燃烧方式引

起的一氧化氮。我们已经看到分子制造技术使得

太阳能电池足够便宜和粗糙以便用于道路表面。

有了这种“绿色财富”, 我们从太阳能、空气和水

合成洁净的能源; 在无污染的纳米机械系统中使

用这些能源将只是释放其原料, 同时伴随着一点

点水的蒸发。在这一循环中, 燃料被制造、被消

耗, 而且不产生任何污染。有了廉价的太阳能燃

料, 煤和原油可以被取代、被忽略、一直地留在地

底下。当原油不再被使用, 原油泄漏将会消失。

温室效应气体中最受关注的是二氧化碳气

体, 它的主要来源是化石燃料的焚烧。以上的步

骤将会终止它。其他气体的释放, 例如在泡沫塑

料中使用的氟氯烷烃( 氟利昂) , 通常是原始制造

① pave over v. 以 ⋯

为代价

② ozone [ ��uz�un ]

n. [ 化 ] 臭 氧 , 新 鲜

的空气

③ spill [ spil ] n .

throw off or out 溢出

④ nitrogen oxides n.

[ 化 ] 一氧化氮

⑤ greenhouse gas n.

[ 化 ] 温室效应气体

⑥ chlorofluorocarbons

n. [ 化 ] 氟 氯 烷 烃 ,

又称氟利昂

⑦ foaming plastic n.

[ 化 ] 泡沫塑料

·871· 纳米世界探秘

Page 186: Mysteries of the Nanotechnique

foaming plastic will hardly be a popular activity in an era of molecular

manufacturing. These materials can be replaced or controlled—and they

include the gases most responsible for ozone depletion.

The chief threats to the ozone layer are those same CFCs, used as

refrigerants and solvents. Molecular manufacturing will use solvents spar-

ingly ( mostly water) , and can recycle them without dumping any. CFC

refrigerants①

can be replaced even with current technology, at a cost;

with nanotechnology, that cost will be negligible.

Toxic wastes generally consist of harmless atoms arranged into nox-

ious molecules. With inexpensive energy and equipment able to work at

the molecular level, these wastes can be converted into harmless forms.

Other toxic wastes contain toxic elements, such as lead, mercury②

, ar-

senic③

, and cadmium④

. These elements come from the ground, and are

best returned to the location and condition in which they were found.

With nanotechnology, moreover, there will be little reason to dig them

up in the first place. Nanotechnology will be able to break materials

down to simple molecules and build them back up again.

It is fair to say that eliminating these sources of pollution would be a

major improvement. There doesn’t seem to be much more to say, aside

from the usual caveats⑤

: “ Not on a predictable schedule. " No one

wants to make and dump wastes; they want something else, and get

wastes as by-products.⑥

With a better way to get what people want,

dumping wastes can be stopped.

·971·第六章 保护地球生态环境

Page 187: Mysteries of the Nanotechnique

流程的副产物: 泡沫塑料将很难在分子制造技术

时代流行起来。这些材料可以被取代或是控制使

用———而且它们包括对臭氧层破坏起主要作用的

气体。

臭氧层的主要威胁是那些相同的氟氯烷烃,

被用于冷却剂和溶剂。分子制造技术将很少使用

溶剂( 即使使用也绝大多数是水) , 而且循环使用

它们而不产生任何废物。氟利昂致冷剂甚至可以

用现今的技术来取代, 当然要付出一定代价; 如果

借助纳米技术, 这种代价将会小得可以忽略不计。

有害垃圾通常是无害原子排列成的有害分

子。利用能在分子尺度工作的便宜的能源与装

置, 便可以将这些垃圾转化成为无害的形式。其

余的有毒垃圾包括有毒元素, 如铅、汞、砷、镉等。

这些元素从土地中来, 最好能回到它们出现的地

点和环境中去。况且, 利用纳米技术, 它们将首先

会有更少的原因被挖掘出来。纳米技术将能够把

材料打断成简单分子然后再将它们构建回去。

应该说, 去除这些污染源是主要的进步。似

乎除了通常的警告“不要预先订定时间表”之外,

就没有太多可说的。没有人希望制造和倾泻垃

圾, 他们想得到别的东西, 垃圾只是副产品。有了

更好的途径得到人们想要的东西, 垃圾的倾泻将

会停止。

① refrigerant

[ ri�frid��r�nt ] n. al-

laying heat or fever 制冷剂

② mercury

[ �m��kjun] n. a heavy

si lver-white poisonous

metallic element that is

liquid at ordinary tem-

peratures 水银 , 汞

③ arsenic [ ɑ��senik ]

n. a trivalent and pen-

tavalent solid poisonous

element that is com-

monly metall ic steel -

gray, crystalline , and

bri ttle [ 化 ] 砷 , 砒霜

④ cadmium

[ �k�dmi�m] n. a blu-

ish white malleable

ductile toxic bivalent

metallic element used

especially in protective

platings and in bearing

metals [ 化 ] 镉

⑤ caveat [ �k�vi�t ]

n . a warning enjoining

one from certain acts or

practices 警告 , 告诫

⑥ by-product

[ �baipr�d�kt ] n. 副产

·081· 纳米世界探秘

Page 188: Mysteries of the Nanotechnique

People will also be able to get what they want while reducing their

resource consumption. As materials grow stronger, they can be used

more sparingly. As machines grow more perfect-in their motors, bearing-

s①

, insulation②

, computers—they will grow more efficient. Materials

will be needed to make things, and energy will be needed to run them,

but in smaller amounts. What is more, nanotechnology will be the ulti-

mate recycling technology. Objects can be made extremely durable, de-

creasing the need for recycling; alternatively, objects can be made genu-

inely biodegradable, designed at the molecular level to decompose after

use, leaving humus③

and mineral grit; finally, even objects not designed

for recycling can be taken apart into simple molecules and recycled re-

gardless. Each approach has different advantages and costs, and each

makes current garbage④

problems go away.

6 . 2 Cle a ning Up the Twe ntie th Ce ntury Me s s

Still, even after twentieth-century industry is history, its toxic resi-

dues will remain. Cleaning up waste dumps with today’s technology has

proved so expensive and ineffective that many in the field have all but

given up hope of really solving the problem. What can be done with

post-breakthrough⑤

technologies?

6 . 2 . 1 C leansing Soil a nd W ater

Nanotechnology can help with the cleanup of these pollutants. Liv-

ing organisms clean the environment, when they can, by using molecular

machinery to break down toxic materials. Systems built with nanotechn-

ology will be able to do likewise, and to deal with compounds that aren’t

biodegradable.

·181·第六章 保护地球生态环境

Page 189: Mysteries of the Nanotechnique

人们能够在减少他们的资源消耗的同时得到

他们想要的东西。原料越持久耐用, 使用起来就

能越经济; 机械的发动机、轴承、离合器和控制系

统越好, 使用起来效率就会越高; 因而使原料成为

产品所需的能源也会更少。而且纳米技术会成为

最终可重复利用的技术。它能使物品极端耐用从

而减少重复利用的需要; 或是从分子尺度制成真

正的可降解材料, 使其用完只留下腐殖质和矿物

砂; 或者不可回收的物品最终能转化为简单分子

也就无需回收。每种方法都有不同的益处和所需

付出的代价, 而且每种方法都使得当前的工业垃

圾问题得到解决。

6 Ä. 2 清除 20 世纪的“残渣余孽”

即使 20 世纪工业已经成为了历史, 它的残渣

余孽依然保存着。借助于今天的技术水平来清除

垃圾废物已被证明是如此的昂贵和效率低下, 以

至于在这一领域的许多专家不得不放弃真正解决

这个问题的希望。那么, 这种后来居上的技术又

将如何表现呢?

6 . 2 . 1 净化土壤和水资源

纳米技术将有助于清除这些污染。活着的生

命体能够使用它们自己的“分子机器”降解有害

物质来净化环境。基于纳米技术的系统也能够这

样做, 而且可以处理那些生物体不可分解的化合

物。

① bearing [ b��ri�]

n . 轴承

② i nsulation

[ �insju�lei��n ] n. 绝

③ humus [ �hju�m�s ]

n. a brown or black

complex variable mate-

rial resulting from par-

tial decomposition of

plant or animal mat ter

and forming the organic

portion of soil 腐殖质

④ garbage [ �ga�bid�]

n . discarded or useless

material 垃圾 , 废物

⑤ post -breakthrough

a dj. 后来居上的

·281· 纳米世界探秘

Page 190: Mysteries of the Nanotechnique

Alan Liss is director of research for Ecological Engineering Associ-ates, a company that uses knowledge of how natural ecosystems functionto add-ress

①environmental problems such as wastewater treatment. He

explains how cleanup could work:“The more we learn about the ecosys-tem, the more we find that functions are managed by particular organismsor groups of organisms. Nanotech‘ managers ’ might be able to step inwhen the natural managers are not available, thereby having a particularecological activity occur that otherwise wouldn ’t have happened. A nano-tech manager might be used for remediation in a situation where toxicantshave destroyed some key members of a particular ecosystem—some man-agerial microbes

②, for example. Once the needed activities are reinitiat-

ed, the living survivors of the str-essed③

ecosystem can jump in④

andcontinue the ecosystem recovery effort. "

Figur e 5 Envir onmental Cleanup

By cha nging the wa y materia ls and products are ma de, molecularmanufacturing

⑤will free up land formerly used for industrial plants. Tox-

ic materials could be removed from contaminated soil using solar power asthe energy source, and the cleanup device and a ny collected residues could

·381·第六章 保护地球生态环境

Page 191: Mysteries of the Nanotechnique

la ter be carted a way⑥

.

·481· 纳米世界探秘

Page 192: Mysteries of the Nanotechnique

艾伦·立斯是生态工程协会所属研究项目的

负责人, 这一协会借助于关于生态系统如何运作

的知识来对付诸如污水处理之类的环境问题。他

解释净化怎样运作时说: “我们对生态系统了解

越多, 就越会发现生态系统的功能是被特定的生

命体和生命体群落所控制。当这些天然的‘操

纵者’不起作用时, 纳米‘操纵者’也许可以

介入, 因而会有某种生态活性行为意想不到地发

生。纳米‘操纵者’也许可以用于修复毒素已经

破坏了某一生态系统的一些关键因素———例如一

些调控微生物。一旦所需的活性行为被重新引

入, 受损生态系统的幸存者们会被激活并继续生

态系统恢复。”

[ 附图 5 说明文字 ] 通过改变原料和产品

的生产方式, 分子制造技术将会释放以前被工业

车间占用的土地。使用太阳能作为能量来源, 并

借助清除装置, 有害物质能够从被污染的土壤中

清除出来, 而后收集好的残渣会被装载运走。

① address [ ��dres ]

vt . deal with, treat 从

事 , 忙于

② microbe

[ �maikr�ub] n. micro-

organism germ 微 生

物 , 细菌

③ stressed a dj. to lay

st ress on 紧迫的

④ j ump in v. 投入

⑤ manufacturing

[ �m�nju�f�kt��ri�]

n . to make into a prod-

uct suitable for use 制

造业

⑥ cart away v. 装 载

运走

·581·第六章 保护地球生态环境

Page 193: Mysteries of the Nanotechnique

To see how nanomachines could be used to clean up pollution, i-

magine a device made of smart①

materials and roughly resembling a tree,

once it has been delivered and unfolded. Above ground are solar-collec-

ting panels; below ground, a branching system②

of rootlike tubes rea-

ches a certain distance into the soil. By extending into a toxic waste

dump, these rootlike structures could soak up toxic chemicals, using en-

ergy from the solar collectors to convert them into harmless compounds.

Rootlike structures extending down into the water table③

could do the

same cleanup job in polluted aquifers.

6 . 2 . 2 C leansing the Atmospher e

Most atmospheric pollutants are quickly washed out by rain ( turning

them into soil- and water-pollution problems) , but some air pollutants

are longer lasting. Among these are the chlorine④

compounds attacking

the ozone layer that protects the Earth from excessive ultraviolet radia-

tion. Since 1975 , observers have recorded growing holes in the ozone

layer: at the South Pole, the hole can reach as far as the tips of South A-

merica, Africa, and Australia. Loss of this protection subjects people to

an increased risk of skin cancer and has unknown effects on ecosystems.

The new technology base will be able to stop the increase in ozone-de-

stroying compounds, but the effects would linger for years. How might

this problem be reversed more rapidly?

·681· 纳米世界探秘

Page 194: Mysteries of the Nanotechnique

为了便于观察纳米机械如何用于清除污染,

我们可以想像一套由精巧材料制成的装置, 一旦

它被打开大体上类似一棵树。在地面上的是太阳

能收集面板; 在地面之下, 一个类根电子管的分支

系统伸至土壤的某一深度。通过延伸至有害污染

倾倒处, 这些类根结构可以吸收有害的化学物质,

并使用来自太阳能收集装置的能量将这些有害物

质转化为无害的化合物。深入到地下水位的类根

结构能够在受污染的蓄水层做同样的净化工作。

6 À. 2 . 2 净化大气

绝大多数大气污染物都被雨水迅速地冲刷掉

( 把它们变成土壤和水污染问题) , 但是一些大气

污染物会持续更长久些。它们之中的含氯化合物

损害臭氧层, 而臭氧层是保护地球免受过量紫外

线辐射的。自 1975 年以来, 观测者们已经记载臭

氧层中的空洞正在增长: 在南极, 空洞可以到达远

及南美洲、非洲和大洋洲的边缘地带。失去这一

保护屏障将使人们遭受皮肤癌不断增长的危险,

而且失去这一保护屏障会对生态系统产生无法预

计的后果。新的技术基础将可以阻止破坏臭氧层

的化合物的增长, 但是其效力将要拖后数年才能

显现。怎样这一问题才能更迅速地得到解决呢?

① smart [ smɑ�t ] adj.

witty clever 巧 妙 的 ,

聪明的

② branching system

n. 分支系统

③ water table n. 地下

水位

④ aquifer [ ��kwif�]

n . a water-bearing

st ratum of permeable

rock, sand, or gravel

含水土层 , 蓄水层

⑤ chlorine [ kl��ri�n ]

n. a halogen element

that is i solat ed as a

heavy greenish yellow

gas of pungent odor

and is used especially

as a bleach, oxidizing

agent , and disinfectant

in water purification

[ 化 ] 氯

·781·第六章 保护地球生态环境

Page 195: Mysteries of the Nanotechnique

Molecular manufacturing can also make products that will perform

some useful temporary function when tossed out①

into the environment.

Getting rid of ozone-destroying pollutants high in the stratosphere is one

example. There may be simpler approaches, without the sophistication of

nanotechnology, but here is one that would work to cleanse the strato-

sphere of chlorine: Make huge numbers of balloons, each the size of a

grain of pollen and light enough to float up into the ozone layer. In each,

place a small solar-power plant, a molecular-processing plant, and a mi-

croscopic grain of sodium②

. The processing plant collects chlorine-con-

taining compounds and separates out the chlorine. Combining this with

the sodium makes sodium chloride③—ordinary salt. When the sodium is

gone, the balloon collapses and falls. Eventually, a grain of salt and a

biodegradable speck fall to Earth, usually at sea. The stratosphere④

is

soon clean.

A larger problem ( with a ground-based solution) is climatic change

caused by rising carbon dioxide ( CO2 ) levels. Global warming, expec-

ted by most climatologists and probably under way today, is caused by

changes in the composition of Earth’s atmosphere. The sun shines on the

Earth, warming it. The Earth radiates heat back into space, cooling.

The rate at which it cools depends on how transparent the atmosphere is

to the radiation of heat. The tendency of the atmosphere to hold heat, to

block thermal radiation⑤

from escaping into space, causes what is called

the“ greenhouse effect⑥

. " Several gases contribute to this, but CO2

presents the most massive problem. Fossil fuels and deforestation both

contribute. Before the new technology base arrives, something like 300

billion tons of excess CO2 will likely have been added to the atmosphere.

·881· 纳米世界探秘

Page 196: Mysteries of the Nanotechnique

分子制造技术也可以生产出这种产品, 当其

投放到环境中它能够行使有用的短暂功效。在同

温层的高度上清除破坏臭氧层的大气污染物就是

一个实例。也许有更简便的方法, 用不着熟练掌

握纳米技术, 但是在这里展示的是一个将能够用

于清除干净同温层中含氯化合物的实例: 首先制

作大量的气球, 这种气球每一个差不多花粉颗粒

大小、重量足够漂浮到臭氧层上。

在每一个气球里放置一个微型太阳能车间、

一个分子操纵车间和一枚微观尺寸的钠颗粒。分

子操纵车间收集含氯化合物并将其中的氯分离出

来。然后使分离出来 的氯与钠化合生成氯化

钠———也就是通常所说的盐。当钠颗粒消耗殆尽

时, 气球于是坍塌并掉了下来。最后, 盐颗粒和生

物体可分解的灰尘残骸落到了地球上, 通常是落

到了海面上。同温层不久便干净了。

一个更大的问题 ( 借助于一个基于地面的解

决方案) 是气候变化, 这种气候变化是由于不断

增长的二氧化碳水平而导致的。全球变暖问题,

已被大多数气候学家们所预计而且现在可能正在

悄悄地变化中, 是由地球大气组成成分的变化引

起的。太阳照射在地球上, 不断地加热它。地球

把热量辐射回太空, 这样便使自己不至于过热。

这种冷却速率依赖于大气对于热量辐射的通透程

度。地球大气保存热量的趋势, 也就是阻滞逃逸

到太空的热量辐射, 导致了所谓的“温室效应”。

一些气体对此均有贡献, 但是二氧化碳占了主要

的份额。化石燃料和大肆采伐森林都会导致过多

的二氧化碳。在新的技术来临之前, 大概有 3000

亿吨的过量二氧化碳将被增加到大气中。

① t oss out v. 掷出

② sodium [ �s�udi�m]

n. a s ilver white soft

waxy ducti le element of

the alkali metal group

that occurs abundantly

in nature in combined

form and is very active

chemically [ 化 ] 钠

③ sodium chloride 氯

化钠

④ s tratosphere

[ �str�t�s fi�] n . the

part of the earth ’s at-

mosphere which ex-

tends from about 7 mi-

les ( 11 kilometers ) a-

bove the surface to 31

miles ( 50 kilometers )

and clouds rarely form

[ 气 ] 同温层

⑤ t hermal radiation 热

量辐射

⑥ greenhouse effect 温

室效应

·981·第六章 保护地球生态环境

Page 197: Mysteries of the Nanotechnique

Small greenhouses can help reverse the global greenhouse effect. By

permitting more efficient agriculture, molecular manufacturing can free

land for reforestation, helping to repair the devastation wrought by hun-

gry people. Growing forests absorb CO2 . If reforestation is not fast e-

nough, inexpensive solar energy can be applied to remove CO2 directly,

producing oxygen and glossy graphite①

pebbles. Painting the world ’s

roads with solar cells would yield about four trillion watts of power, e-

nough to remove CO2 at a rate of 10 billion tons per year. Temporarily

planting one-tenth of U. S. farm acreage with a solar cell“ crop" would

provide enough energy to remove 300 billion tons in five years; winds

would distribute the benefits worldwide. The twentieth century insult to

Earth’s atmosphere can be reversed by less than a decade of twenty-first

century repair work. Ecosystems damaged in the meantime are another

matter.

6 . 2 . 3 O rbita l W aste

The space near Earth is being polluted with small orbiting projec-

tiles, some as small as a pin. Most of the debris②

is floating fragments of

discarded rocket stages, but it also includes gloves and cameras dropped

by astronauts. This is not a problem for life on Earth, but it is a problem

as life begins its historic spread beyond Earth.

Orbiting objects travel much faster than rifle bullets, and energy in-

creases as the square of speed. Small fragments of debris in space can do

tremendous damage to a spacecraft③

, and worse—their impact on an

spacecraft can blast loose yet more debris. Each fragment is potentially

deadly to a spacefaring④

human crossing its path. Today, the tiny⑤

frac-

tion of space that is near Earth is increasingly cluttered.

·091· 纳米世界探秘

Page 198: Mysteries of the Nanotechnique

小范围的温室有助于逆转全球温室效应。通

过允许更多效率高的农业, 分子制造技术可以使

更多的土地空闲出来而用于重新造林, 这样便有

助于修复被处于温饱线的人们造成的破坏。增长

的森林吸收二氧化碳。如果重新造林的速度不能

足够快, 廉价的太阳能可以直接用于清除二氧化

碳, 将二氧化碳变成氧气和有光泽的石墨。在地

球的路面上涂上微型太阳能电池将产生大约四万

亿瓦特的动力, 这足够用于以每年百亿吨计的速

度来清除二氧化碳。用美国十分之一的农场面积

来临时种植太阳能“作物”将能提供五年内清除

三千亿吨二氧化碳的能量; 大气气流将会把这一

好处带到地球各个角落。20 世纪对地球大气的

损害可以通过 21 世纪少于 10 年的修复工作而逆

转。生态系统在这期间遭受的破坏则是另一个问

题。

6 À. 2 . 3 空间轨道的废物

接近地球的空间正受着那些环绕地球运动的

太空垃圾的污染, 其中有些小如针尖。大多数垃

圾残骸是已解体火箭舱的漂浮碎片, 这些垃圾残

骸也包括被宇航员遗弃的手套和照相机。这不是

一个对地球上生命有影响的问题, 但是自生命向

地球以外范围进行历史性探索的开始, 这些太空

垃圾便成为了问题。

那些环绕地球运动的太空垃圾要比来复枪的

子弹还运动得快, 而且其能量以速度的平方倍增

长。小的太空残骸碎片对太空船将造成巨大的破

坏, 更糟糕的是———它们对太空船的破坏会带来

更多的残骸。每一个碎片对经过它做着太空航行

的人们来说是潜在的致命危险。现今, 这些少量

的近地空间碎片正愈加混乱。

① graphite [ �gr�fait ]

n . a soft black lustrous

form of carbon that

conducts electricity and

is used in lead pencils

and electrolytic an-

odes, as a lubricant

and as a moderator in

nuclear reactors 石墨

② debris [ �deibri�]

n . the remains of

something broken down

or destroyed 碎 片 , 残

③ spacecraft

[ �spei skrɑ�ft ] n. 航 天

器 , 宇宙飞船

④ spacefaring 太空航

⑤ tiny [ �taini ] adj.

very small or diminu-

tive 很少的 , 微小的

·191·第六章 保护地球生态环境

Page 199: Mysteries of the Nanotechnique

This litter needs to be picked up. With molecular manufacturing, it

will be possible to build small spacecraft able to maneuver from orbit to

orbit in space, picking up one piece of debris after another. Small

spacecraft are needed, since it makes no sense to send a shuttle①

after a

scrap of metal the size of a postage stamp. With these devices, we can

clean the skies and keep them hospitable to life.

6 . 2 . 4 Nuclear W aste

We’ve spoken of waste that just needs molecular changes to make it

harmless, and toxic elements that came from the ground, but nuclear

technology has created a third kind of waste. It has converted the slow,

mild radioactivity of uranium②

into the fast, intense radioactivity of new-

ly created nuclei, the products of fission③

and neutron bombardment④

.

No molecular change can make them harmless, and these materials did

not come from the ground. The products of molecular manufacturing

could help with conventional approaches to dealing with nuclear waste,

helping to store it in the most stable, reliable forms possible-but there is

a more radical solution.

Even before the era of the nuclear reactor and the nuclear bomb,

experimenters made artificially radioactive elements by accelerating parti-

cles and slamming⑤

them into nonradioactive targets. These particles

traveled fast enough to penetrate the interior of an atom and reach the

nucleus, joining it or breaking it apart.

The entire Earth is made of fallout from nuclear reactions in ancient

stars. Its radioactivity is low because so much time has passed-many

half-lives, for most radioactive nuclei. “ Kicking" these stable nuclei

changes them, often into a radioactive state. But kicking a radioactive

nucleus has a certain chance of turning it into a stable one, destroying

the radioactivity. By kicking, sorting, and kick-ing again, an atom-

smashing machine could take in electrical power

·291· 纳米世界探秘

Page 200: Mysteries of the Nanotechnique

这些垃圾需要收集起来。借助分子制造技

术, 有可能建造小型太空船在太空中漫游于各个

轨道之间一个接一个地收集太空垃圾。小型太空

船是必须的, 因为发射一艘航天飞机去追逐邮票

大小的金属残余物, 这种做法是没有任何意义的。

借助小型太空船这种装置, 我们能够清洁天空使

其对太空航行的人们更加友善。

6 À. 2 . 4 核废料

我们已经讨论过那些仅需分子改造就可将其

变为无毒的废物, 还有来源于地底的有害元素, 但

是核技术已经产生了第三类废物。这一技术已经

将具有缓慢且温和辐射能力的铀原子变成了有快

速强烈放射性的新造的原子核, 这种新造原子核

正是核裂变和中子爆炸的产物。分子改造并不能

使它们变为无毒, 而且这些物质不是来源于地下。

分子制造技术的产物可以有助于常规的处理核废

料手段, 帮助将其尽可能保存在最坚固可靠的窗

体中———但是有一个更根本的解决方案。

即使在核反应堆和核弹头时代之前, 通过加

速粒子并令其轰击非放射性的靶子, 实验研究人

员得到了人工放射性元素。这些粒子运动得足够

快以至于钻入原子的内部并到达原子核, 然后与

原子核融合或者令原子核分裂。

整个地球是由远古时代星球核反应产生的辐射

微尘组成。因为如此多的时间已经过去了———差不

多是绝大多数放射性原子核的半衰期, 所以它们的

放射性很低。用加速的粒子“踢”出这些稳定的原子

核通常会把它们改变到有放射性的状态。然而“踢”

出有放射性的原子核同样有一个确定的几率将这

些原子核变成稳定的、没有放射性的状态。通过

踢出、分类、再踢出, 原子粉碎机械可以利用电能和

① shuttle [ ���t�l ] n .

a vehicle used in a

shuttle 航天飞机

② uranium

[ ju��reini�m] n. a sil-

very heavy radioactive

polyvalent metallic ele-

ment that is found es-

pecially in pitchblende

and uraninite and ex-

is ts naturally as a mix-

ture of three isotopes of

mass number 234 ,

235, and 238 in the

proportions of 0. 006

percent, 0 . 71 per-

cent, and 99. 28 per-

cent respectively 铀

③ fission [ �fi��n] n.

the splitting of an a-

tomic nucleus resul ting

in the release of large

amounts of energy

[ 原 ] 裂变

④ neutron bombard-

ment 中子爆炸

⑤ s lam [ sl�m] v. to

set or slap down vio-

lently or noisily 猛 力

抨击 , 冲击

·391·第六章 保护地球生态环境

Page 201: Mysteries of the Nanotechnique

and radioactive waste, and output nothing but stable, nonradioactive ele-

ments, identical to those common in nature. Don ’t recommend this to

your congressman①—it would be far too expensive, today—but it will

some day be practical to destroy the radioactivity of the twentieth-century

’s leftover nuclear waste.

Nanotechnology cannot do this directly, because molecular ma-

chines work with molecules, not nuclei. But indirectly, by making ener-

gy and equipment inexpensive, molecular manufacturing can give us the

means for a clean, permanent②

solution to the problem of wastes left over

from the nuclear era.

6 . 3 A We a lth of G a rba ge

Shortages often spur③

environmental damage. Faced with a food

shortage, herdsmen can graze grasslands down to bare dirt. Faced with

an energy shortage, industrial countries can approve destructive projects.

The growth of population and the consumption of resources by twentieth-

century industry have placed growing pressures on Earth’s ability to sup-

port us in the manner to which we have become accustomed④

.

The resource problem will look quite different in the twenty-first

century, with a new technology base. Today, we cut trees and mine iron

for our structures. We pump oil and mine coal for our energy. Even ce-

ment is born in the flames of burning fossil fuels. Almost everything we

build, almost every move we make, consumes something ripped from the

Earth. This need not continue.

·491· 纳米世界探秘

Page 202: Mysteries of the Nanotechnique

放射性废物, 仅仅产生稳定的、无放射性的元素,

这些元素和大自然中的物质是相同的。不要把这

个机器推荐给你们的国会议员———在今天这个机

器太昂贵了———但是终有一天它将能切实可行地

用于清除 20 世纪残留核废料的放射性。

纳米技术并不能直接做这些, 这是因为分子

机械只能操作分子, 而不能操作原子核。但是间

接地, 通过经济地使用能源和装置, 分子制造技术

为我们提供了一条洁净、永久解决核时代遗留下

来的核废料问题的途径。

6 Ä. 3 变废为宝

资源匮乏通常会加剧环境的破坏。面对食物

的缺乏, 牧民们会过度放牧直到草原成为荒漠。

面对能源的缺乏, 工业国家会批准破坏性的项目。

人口和 20 世纪工业资源消耗的增长已经导致了

越来越大的压力, 这种压力使得地球越来越难以

用我们所能接受和适应的方式来支持我们。

在 21 世纪资源问题将看上去相当不同于以

前, 这是因为有了新的技术基础。今天, 为了城镇

建设, 我们砍伐树木、开挖铁矿。为了获得能源,

我们开采油田和煤田。即使是水泥也是在燃烧燃

料的熊熊火焰中产生的。我们所建造的几乎每件

事物, 我们所进行的每次迁徙, 消耗的都是从地球

掠夺而来的。这种情形不应该再继续下去。

① congressman

[ �k���resm�n ] n. a

member of a congress

国会议员 , 众议 院议

② permanent

[ �p��m�n�nt] adj. co-

ntinuing or enduring

without fundamental or

marked change; s table

永久的 , 持久的

③ spur [ sp��] v. to

incite to action or ac-

celerated growth or de-

velopment; s timulate

刺激

④ accustomed

[ ��k�st�md] adj. of-

ten used or practiced

通常的

·591·第六章 保护地球生态环境

Page 203: Mysteries of the Nanotechnique

Our civilization uses materials for many things, but mainly to make

things with a certain size, shape, and strength. These structural uses in-

clude everything from fibers in clothing to paving in roads, and most of

the mass of furniture, walls, cars, spacecraft, computers—indeed, most

of the mass of almost every product we build and use. The best structural

materials use carbon, in forms like diamond and graphite. With elements

from air and water, carbon makes up the polymers of wool, polyester①

of

wood and nylon②

. A twenty-first-century civilization could mine the at-

mosphere for carbon, extracting over 300 billion tons before lowering the

CO2 concentration③

back to its natural, pre-industrial level. For a popu-

lation of 10 billion, this would be enough to give every family a large

house with lightweight but steel-strong walls, with 95 percent left over.

Atmospheric garbage is an ample source of structural materials, with no

need to cut trees or dig④

iron ore.

Plants show that carbon can be used to build solar collectors. Labo-

ratory work shows that carbon compounds can be better conductors than

copper. A whole power system could be built without even touching the

rich resources of metal buried in garbage dumps.

Carbon can make windows, of plastic or diamond. Carbon can

make things colorful with organic dyes. Carbon can be used to build

nanocomputers, and will be the chief component of high-performance

nanomachines of all kinds. The other components in all these materials

are hydrogen, nitrogen⑤

, and oxygen, all found in air and water. Other

elements are useful, but seldom necessary.

·691· 纳米世界探秘

Page 204: Mysteries of the Nanotechnique

我们的文明社会使用材料用于各种用途, 但

重要是生产有一定尺寸、形状和强度的产品。这

些在结构上的用途包括许多方面, 从布料中的纤

维到铺路用的石头, 以及制作家具、防护墙、汽车、

太空船和计算机的材料———实际上, 包括我们建

造和使用的所有产品所用的材料。最好的建筑材

料使用碳元素, 在形式上类似金刚石和石墨。利

用来自空气和水的元素, 碳元素拼凑成用于替代

羊毛织物的高分子聚合体、用于替代木材的高分

子聚酯和尼龙。21 世纪的文明社会能够开采空

气中的碳元素, 在把二氧化碳浓度降至自然的、前

工业时代水平之前, 可以从空气中提取超过 3000

亿吨。对于 100 亿人口来说, 这一产量足够提供

每一个家庭一幢轻量级但有钢铁坚固程度的住

宅, 而且这样做之后还有 95% 的富余。大气中的

垃圾是建筑材料的丰富源泉, 因而没有必要采伐

树木或者挖掘铁矿石。

植物表明碳可用于建造太阳能收集器。实验

室研究工作表明含碳化合物是比铜更好的导体。

这样整个动力系统甚至可以不要用到埋藏在垃圾

中的丰富金属资源就可以建立。

碳元素可制成可塑性的或极坚硬的玻璃。碳

元素可制成用有机染料染成五颜六色的物体。碳

元素可用于建造纳米计算机, 而且将会是各种高

性能纳米计算机的主要成分。原材料中的其他成

分是氢元素、氮元素和氧元素, 所有这些元素在空

气和水中都可以找到。其他元素是有用的, 但很

少情况下是必需的。

① polyester

[ p�li�est�] n . any of a

group of polymers that

consist basically of re-

peated units of an ester

and are used especially

in making fibers or

plastics 聚酯

② nylon [ nail�n ] n.

尼龙

③ concentration

[ k�ns�n�trei��n ] n.

the amount of a compo-

nent in a given area or

volume 浓度

④ dig [ dig] v. to hol-

low out or form by re-

moving earth 掘 , 挖

⑤ nitrogen

[ �naitr�d��n ] n. a

colorless tasteless odor-

less element that as a

diatomic gas is relative-

ly inert and constitutes

78 percent of the at-

mosphere by volume

and that occurs as a

constituent of all living

tissues [ 化 ] 氮

·791·第六章 保护地球生态环境

Page 205: Mysteries of the Nanotechnique

With a new technology base making recycling easy, there need be

no steady depletion①

of Earth ’s resources. The sketch just made shows

that recycling just one form of garbage—excess atmospheric CO2—can

provide most needs. Even 10 billion wealthy people would not need

to strip②

the Earth of resources. They could do with what we ’ve already

dug up and thrown away, and they wouldn’t even need all of that.

In short, a twenty-first-century civilization with a population of 10

billion could maintain a high standard of living using nothing but waste

from twentieth-century industry, supplemented with modest amounts of

air, water, and sunlight. This won ’t necessarily happen, yet the very

fact that it is possible gives a better sense of what the new technology

base can mean for the relationship between humanity, resources, and the

Earth.

6 . 4 Environme nta l Re s tora tio n

A central problem in environmental restoration is reversing environ-

mental encroachment. We tend to see land as being gobbled up③

by

housing, because the land where we live generally is. Farming, though,

consumes more land, and the variant of farming called“ forestry" con-

sumes still more. By rolling back④

our requirement for farmland, and for

wood and paper, nanotechnology can change the balance of forces be-

hind environmental encroachment. This should make it more practical,

politically and economically, for people to move toward environmental

restoration.

·891· 纳米世界探秘

Page 206: Mysteries of the Nanotechnique

借助新的技术基础会使得循环利用更加简

便, 且不需要持续损耗地球资源。前面陈述的草

图表明循环利用废物———大气中的过量二氧化碳

———可以满足人们绝大多数的需求。即使是 100

亿人口也不需要掠夺地球资源。以上循环利用废

物的做法可以处理我们人类已经挖掘的资源和我

们丢弃的废物, 而且他们将不需要借助所有这些

来完成。

总之, 一个拥有 100 亿人口的 21 世纪文明

社会能够维持高的生活标准, 且只利用 20 世纪

工业产生的废物, 同时需补偿适量的空气、水和

阳光。这未必会发生, 然而确实有可能对这一新

技术基础给人类、资源和地球环境之间关系带来

的意义提供一种更好的理解。

6 Ä. 4 恢复已破坏的环境

复原环境的中心问题是逆转环境的破坏。我

们注意到我们的土地正被住宅群所蚕食, 这是因

为我们居住的土地就是用于盖房子的。虽然农业

占用了更多的土地, 而且由农业变化来的所谓的

“林业”依然占用了更多的土地。通过把我们人

类对耕地、林地和用纸的需求压低到最低限制,

纳米技术可以改变在蚕食环境后面起作用的诸因

素的平衡。从政治和经济角度上, 这样做应该更

便于人们复原环境的实现。

① depletion

[ di�pli�f�n] n. to emp-

ty of a principal sub-

st ance 损耗

② st rip [ strip] vt. to

make bare or clear 剥 ,

剥去

③ gobble up vt. 蚕食

④ roll back v. to re-

duce ( as a commodity

pri ce ) to or toward a

previous level on a na-

tional scale 把 ⋯ 压 低

到标准水平

·991·第六章 保护地球生态环境

Page 207: Mysteries of the Nanotechnique

Restoring the environment means returning land to what it was-re-

moving what has been added and, where possible, replacing what has

been lost. We’ve seen how this can be done, in part, by removing pollu-

tants and some of the pressures for ploughing①

and paving. A more diffi-

cult problem, though, is restoring the ecological balance where the

changes have been biological. Much of Earth ’s biological diversity has

been a result of biological isolation, of islands, seas, mountains, and

continents. This isolation has been breached, and reversing the resulting

problems is one of the greatest challenges in healing the biosphere②

.

6 . 4 . 1 Imported Species

Human meddling with life in the biosphere has caused enormous ec-

ological disruptions. This hasn’t involved genetic engineering-by twisting

organisms to better serve human purposes, genetic engineering usually

leaves them less able to serve their own purposes, less able to survive

and reproduce in the wild. The great disruptions have come from a dif-

ferent source: from globe-traveling human beings taking aggressive,

well-adapted species from one part of the planet to another, landing them

on a distant island or continent to invade an ecosystem with no evolved

defenses. This has happened again and again.

Australia is a classic case. It had been isolated long enough to

evolve its own peculiar species quite unfamiliar elsewhere: kangaroos③

,

koalas④

, duck-billed platypuses⑤

. When humans arrived, they brought

new species. Whoever brought the first rabbits could not have guessed

that they, of all creatures, would be so destructive. They soon overran

the continent, destroying crops and grazing lands, unchecked by natural

competitors or predators. They were joined by invaders from the plant

kingdom: the prickly pear⑥

, and others.

·002· 纳米世界探秘

Page 208: Mysteries of the Nanotechnique

复原环境意味着让土地回复到原先的状

态———删除被附加上的部分而且在有可能的情况

下替换上已经失去的部分。我们已经看到复原环

境可通过清除污染和减轻耕作和铺路的压力来部

分实现。可是更困难的问题是生态系统先前的改

变已经成为该系统一部分, 而在这种情况下恢复

生态平衡。地球生物多样性大部分是由于岛屿、

海洋、山脉和陆地上的生物隔离造成的结果。这

种隔离已经被打破, 逆转这一既成的后果是复原

生态圈的一大挑战。

6 À. 4 . 1 外来物种问题

人类介入地球生态圈已经造成了巨大的生态

破坏。这还没有涉及生物遗传工程———通过扭曲

有机体使之更好地满足人类的需求, 生物遗传工

程通常使得这些生物体更不能满足它们自己的需

求, 也不能更好地在野生环境中生存和繁殖。大

的破坏来源于不同的方面: 来源于全球蔓延的人

类采取侵略性、适合从这个星球的一个区域到另

一个区域掠夺性扩张的政策, 他们在一个遥远的

岛屿上登陆, 侵略一个没有足够防御能力的生态

系统。这样的事情一而再、再而三地发生。

澳大利亚就是一个典型的例子。它被与世隔

绝了足够长的时间以至于能够进化出自己独特

的、相当不同于别的地方的物种: 比如袋鼠、树袋

熊、鸭嘴兽。当人类来到这片大陆, 他们带来了新

物种。无论是谁带来第一只兔子他都不会猜到这

些兔子将是多么大的灾难。因为没有天然的竞争

者和捕食者, 兔子们很快就蔓延到整个大陆, 毁坏

庄稼和牧场。它们和仙人掌果以及其他都被列入

植物王国侵略者的黑名册中。

① plough [ plau] v. to

turn, break up, or

work with a plow 耕 ,

犁耕

② biosphere

[ bai�usfi�] n . living

beings together with

their environment 生物

③ kangaroo

[ k�����ru�] n . any of

various herbivorous lea-

ping marsupial mam-

mals ( family Macropo-

didae ) of Australia,

New Guinea, and adja-

cent islands with a

small head, large ears ,

long powerful hind

legs, a long thick tail

used as a support and

in balancing, and rath-

er small forelegs not

used in progression

[ 动 ] 袋鼠

④ koala [ k�u�ɑ�l�]

n . called also koala

bear [ 动 ] 树袋熊 ( 澳

洲产 , 树栖无尾动物 )

⑤ duck-billed platy-

pus n. [ 动 ] 鸭嘴兽

⑥ prickly pear n.

[ 动 ] 仙人掌果

·102·第六章 保护地球生态环境

Page 209: Mysteries of the Nanotechnique

The Americas have suffered invasions, too: tumbleweed①

, a bane of

the rancher and farmer, is a relatively recent import from Central Asia.

Since 1956, Africanized bees have been spreading from Brazil and moving

north—but what they displace, in America, are European bees. Africa,

in turn, is being invaded by the American screw-worm fly②

, an insect

with larvae③

that enter an animal ’s wounds, including the umbilical④

wound of a newborn, and eat it alive. The story goes on and on.

People have sometimes tried, with a measure of success, to fight

fire with fire: to bring in parasitic species and diseases to attack the im-

ported species and keep its growth within some reasonable bounds. Aus-

tralia’s problem with prickly pear was tackled using an insect from Argen-

tina⑤

; the rabbits were cut back—with mixed results—using a viral dis-

ease called myxomatosis⑥

:“ rabbit pox⑦

. "

6 . 4 . 2 Ecosystem Protectors

In many parts of the world, native species have been driven to ex-

tinction by rats, pigs, and other imported species, and others are endan-

gered and fighting for their lives. Biological controls—fighting fire with

fire—have advantages: organisms are small, selective, and inexpensive.

These advantages will eventually be shared by devices made using molec-

ular manufacturing, which avoid the disadvantages of importing and re-

leasing yet more uncontrollable, spreading species. Alan Liss spoke of

using nanotechnological devices to help restore ecosystems at a chemical

level. A similar idea can be applied at a biological level.

The challenge—and it is huge—would be to develop insect-size or

even microbe-size devices that could serve as selective, mobile, me-

chanical flyswatters⑧

or weed pullers. These could do what biological

controls do, but would be unable to replicate and spread. Let’s call de-

vices of this sort“ ecosystem protectors. " They could keep aggressive

imported species out, saving native species from extinction.

·202· 纳米世界探秘

Page 210: Mysteries of the Nanotechnique

美洲也遭受了这类入侵: 风滚草, 这个牧场主

和农场主的宿敌, 正是前不久从中亚引进的。从

1956 年以来, 非洲蜂在巴西蔓延开来并向北发

展———在美国非洲蜂取代的是欧洲蜂。反过来,

非洲正被美国蝇蛹所侵袭, 这种昆虫幼虫能够进

入动物的伤口, 包括新生儿脐带伤口, 并蚕食活细

胞。这类故事在不断地继续下去。

人们有时也会用“以夷制夷”的方法, 并取得

了一定成功: 例如引入寄生虫和疾病来攻击外来的

物种使这些外来物种在一个合理的范围内发展。澳

大利亚仙人掌果问题借助于来自阿根廷的昆虫解

决; 野兔们被控制了———这是诸因素的综合结

果———使用一种叫做多发粘液瘤病的病菌:“兔瘟

疫”。

6 À. 4 . 2 生态系统的保护者

在地球的许多角落, 天然物种被老鼠、猪和其

他外来物种驱使得快要绝迹, 而剩下的物种也濒临

灭绝的危险正在为它们自己的生存而搏斗。生态

调节方法———也就是以夷制夷———有诸多好处: 引

入的生物体很小、有选择性而且并不昂贵。这些益

处最终将被使用分子制造技术制成的装置所分享,

分子制造技术避免了引入更加难以控制和广泛蔓

延的物种的危险。艾伦·立斯号称借助于纳米技术

装置可以有助于在化学水平上复原生态系统。一个

类似的想法可以用于在生态水平上复原生态系统。

挑战———而且是极大的挑战———是需要发展

昆虫大小或是微生物大小的装置, 这种装置能够

扮演有选择性且自动的苍蝇拍或除草器的角色。

这种装置可以达到生态调节方法所起的效果, 但

是它们不会复制和传播。让我们把这种装置称为

“生态系统保护者”。它们能够清除侵略性的外

来物种, 而且保护天然物种免受灭绝。

① tumbleweed n. a

plant ( as R ussian this-

tle or any of several

amaranths) that breaks

away from its roots in

the autumn and is driv-

en about by the wind

as a light rolling mass

[ 植 ] 风滚草

② screw-worm fly 蝇

③ larvae n. ( 复 数 )

幼虫

④ umbi lical adj. of or

relating to the cent ral

region of the abdomen

脐带的

⑤ Argentina n. 阿 根

廷 ( 南美洲南部国家 )

⑥ myxomatosis n.

[ 医 ] 粘液瘤 病变性 ,

多发粘液瘤病

⑦ pox n. a disastrous

evil; plague, gurse

[ 医 ] 疹 , 瘟疫

⑧ flyswatter n. 苍蝇拍

·302·第六章 保护地球生态环境

Page 211: Mysteries of the Nanotechnique

·402· 纳米世界探秘

Page 212: Mysteries of the Nanotechnique

To a human being or an ordinary organism, an ecosystem protector

would seem like just one more of the many billions of different kinds of

bugs and microbes in the ecosystem-small things going about their own

business, with no tendency to bite①

. They might be detectable, but only

if you sorted through a lot of dirt and looked at it through a microscope.

They would have just one purpose: to notice when they bumped into a

member of an imported species on the“not welcome here" list, and then

either to eliminate it or to ensure, at least, that it couldn’t reproduce.

Natural organisms are often very finicky②

about which species they

attack. These ecosystem protectors could be equally finicky about which

species they approach, and then, before attacking, could do a DNA a-

nalysis to be sure. It would be simplest ( especially in the beginning

while we ’re still learning) to limit each kind of defender to monitoring

only one imported species.

Each unit of a particular kind of ecosystem-defender device would

be identical, built with precision by a special-purpose molecular-manu-

facturing setup③

. Each would last for a certain time, then break down.

Each kind can be tested in a terrarium④

, then a greenhouse, then a trial

outdoors ecosystem, keeping an eye on their effects at each stage until

one gains the confidence for larger scale use.“ Larger scale " could still

be quite limited, if they aren’t designed to travel very far. This built-in

obsolescence⑤

limits both how long each device can operate and how far

it can move: getting control of the structure of matter includes making

nanomachines work where they’re wanted and not work elsewhere.

·502·第六章 保护地球生态环境

Page 213: Mysteries of the Nanotechnique

对于人类和通常的生命体来说, 生态系统保

护者乍看上去就像是地球生态系统中数以亿计的

小虫子和微生物———那些自顾不暇的小东西, 根

本没有时间去叮人。他们也许可被发现, 但只有

当你翻开泥土而后借助于显微镜来观察它, 这些

装置将只有一个目的: 当碰到外来物种时它们首

先注意到“不受欢迎者”名单中出现的物种, 然后

或者清除这一物种, 或者确保该物种不能复制。

天然生物体通常对于它们所要攻击的物种有

非常高的专一性。这些生态系统保护者同样对于

它们所要作用的物种有很高的专一性, 而且在攻

击之前保护者们可以借助 DNA 分析来确保这种

专一性。限制每一种保护者只是作用于一种外来

物种也许是最简单的( 特别是在我们依然处于学

习的开始阶段) 。

这种特定生态系统保护装置的每一部分是相

同的, 它们都是由特定功能的分子操纵装置精密

地搭建起来的。每一部分将会有一定的寿命, 然

后分解。每一种会在玻璃容器中测试, 然后在温

室中和户外实验生态体系中测试, 以便观察这些

装置在不同场所的效力, 直到可以确信它们能够

用于更广泛的范围。如果这些装置不是设计为能

作远程迁徙的话,“更广泛的范围”依然会有相当

的限制。这种装置内在设计的退化不仅限制了装

置起作用的时间, 而且限制了它能移动的范围: 控

制材料的内部结构包括了设定纳米机器在人们希

望的地方起作用, 而在别的地方不起作用。

① bite [ bait ] v. to

seize especially with

teeth or jaws so as to

enter, grip , or wound

咬 , 刺痛

② finicky [ �finiki ]

a dj. requiring much

care, precision, or at-

tentive effort 过分讲究

的 , 过分周到的

③ setup n. 机构

④ t errarium

[ te�r�ri�m] n. a usu-

ally transparent enclo-

sure for keeping or rai-

sing plants 玻璃容器

⑤ obsolescence

[ ��bs��les�ns ] n. the

process of becoming

obsolete or the condi-

tion of being nearly ob-

solete 荒废 , 退化

·602· 纳米世界探秘

Page 214: Mysteries of the Nanotechnique

The agricultural industry today manufactures and distributes many

thousands of tons of poisonous chemicals to be sprayed on the land, typi-

cally in an attempt to eliminate one or a few species of insect. Ecosystem

protectors could also be used to protect these agricultural monocultures,

field by field, with far less harm to the environment than today’s meth-

ods. They could likewise be used in the special ecosystems of intensive

greenhouse agriculture.

Unlike chemicals sprayed into the environment, these ecosystem

protectors would be precisely limited in time, space, and effect. They

neither contaminate the groundwater nor poison bees and ladybugs①

. In

order to weed out imported organisms and bring an ecosystem back to its

natural balance, ecosystem protectors would not have to be very com-

mon—only common enough for a typical imported organism to encounter

one once in a lifetime, before reproducing.

Even so, as the ecosystem protectors wear out②

and stop working,

they would present a small-scale problem of solid-waste disposal. With

the exercise of some clever design, all the machinery of ecosystem pro-

tectors might be made of reasonably durable yet biodegradable materials

or ( at worst) materials no more harmful than bits of grit and humus in

the soil. So their remains would be like the shells of diatoms③

, or bits of

lignin④

from wood, or like peculiar particles of clay or sand.

Alternatively, we might develop other mobile nanomachines to find

and collect or break down their remains. This strategy starts to look like

setting up a parallel ecosystem of mobile machines, a process that could

be extended to supplement the natural cleansing processes of nature in

many ways. Each step in this direction will require caution, but not par-

anoia⑤

: there need be no toxic chemicals here, no new

·702·第六章 保护地球生态环境

Page 215: Mysteries of the Nanotechnique

如今的农业工业化制造并散播了数以千吨计

的有毒化学品, 使之在陆地上泛滥成灾, 那些企图

删除一两种昆虫的作法更是这样。生态系统保护

装置也可以一块土地接一块土地保护这种农业单

一性种植, 而且比当今任何一种方法都要少得多

地危害环境。同样地, 它们可以用于温室农业的

独特生态系统中。

与化学品喷洒到环境中不同, 这些生态系统

保护者们可以精确地限制时间、地点和效力。它

们既不会污染地下水也不会毒害蜜蜂和瓢虫。为

了清除外来的生物体使生态系统重回天然的生态

平衡, 生态系统保护者们不必随处可见———只要

让保护者们在外来生物体在复制前能够遇上就行

了。

虽然如此, 当生态系统保护者们损坏并停止

工作时, 它们将给出一个小小的固体废物处理问

题。借助于一些灵巧的设计, 所有生态系统保护

者的机械是由经久耐用但生物可分解的材料或是

( 也是最坏的情况 ) 并不比土壤中的沙砾和腐殖

质更有害的材料制成。所以它们的残骸将类似硅

藻土、木头 中的木 质素和 黏土 颗粒或 沙砾一

样。

另外, 我们也可以发展其它的机动纳米机

械来寻找和收集 ( 或者分解 ) 保护装置的残

骸。这种策略看上去像建立一个类似的机动机

械生态系统, 这一过程能够扩展用于补充大自然

的天然清除程序。每一步将需要谨慎, 但也不

是杞人忧天: 这儿不会有害化学品, 不会有新的

① ladybug

[ �leidib��] n. called

also lady beetle, lady-

bird, ladybird beetle

瓢虫

② wear out v. 用坏 ,

消磨

③ diatom [ �dai�tom ]

n. any of a class ( Ba-

cillariophyceae) of mi-

nute planktonic unicel-

lular or colonial algae

with silicified skel etons

that form diatomite 硅

藻属

④ lignin [ �lignin] n.

an amorphous polymer

related to cellulose that

provides rigidity and

together with cellulose

forms the woody cell

walls of plants and the

cementing material be-

tween them [ 生化 ] 木

质素

⑤ paranoia

[ p�r��n�i�] n. a psy-

chosis characterized by

systematized delusions

of persecution or gran-

deur usually without

hal lucinations [ 心 ] 妄

想狂

·802· 纳米世界探秘

Page 216: Mysteries of the Nanotechnique

creatures to spread and run wild. If we decide that we don ’t like the

effects of some particular variety of ecosystem protector or cleanup ma-

chine, we could simply stop manufacturing that kind. We could even re-

trieve those that had already been made and dispersed in the environ-

ment, since their exact number is known.

If the making and monitoring of ecosystem protectors seems a lot of

trouble to go to just to weed out nonnative species, consider this example

of the environmental destruction such species can cause. Sometime be-

fore World War II, a South African species of fire ant was accidentally

imported into the United States. Today, infested areas can have up to

five hundred of these ants per square foot. The National Audubon Socie-

ty—a strong opponent of irresponsible use of pesticides—had to resort

to①

spraying its refuge islands near Corpus Christi②

when they found

these ants destroying over half the hatchlings of the brown pelican③

, an

endangered species.

In Texas, it’s been shown that the new ants are killing off native ant

species—reducing biodiversity. The USDA’s④

Sanford Porter states that,

“ Texas may be in the midst of a genuine biological revolution. " The ants

are heading west, and have established a beachhead⑤

in California.

Without ecosystem protectors or something much like them, ecologies a-

round the world will continue to be threatened by unnatural invasions.

Our species opened the new invasion routes, and it’s our responsibility to

protect native species made newly vulnerable by them.

6 . 4 . 3 Mending the land

Today, most people are far from the land, tied up in turning the

wheels of 20th century industry. In the years to come, those wheels will

be replaced by molecular systems that do most of their turning by them-

selves. The pressure to destroy the land will be less. Time available to

help heal the land will be greater . Surely more energy will flow in this di-

rection.

·902·第六章 保护地球生态环境

Page 217: Mysteries of the Nanotechnique

生物蔓延而不受限制。如果我们决定不需要某些

生态系统保护装置或清除机械的效力, 我们可以

简单地结束这种操作。我们甚至可以挽回那些已

经制造和扩散到环境中的装置, 因为它们的确切

数目是已知的。

如果你认为制作和管理这些生态系统保护装

置来清除非天然的物种似乎有许多的麻烦, 让我

们来看看这些非天然物种造成的环境破坏的例子

吧。在二次世界大战前夕, 一种南非洲火蚁被偶

然地引进到美国。今天, 在火蚁大批滋生的地区

能高达每平方英尺 500 只。国家鸟类协会———一

个强烈反对滥用杀虫剂的组织———当他们发现这

些火蚁破坏了一种濒危物种褐色鹈鹕近半数的幼

鸟时, 不得不采取喷洒他们反对的杀虫剂。

在得克萨斯州, 有迹象表明这些火蚁正在消

灭其他天然的蚂蚁物种———减少了生物多样性。

美国农业部的桑福德·波特宣称,“得克萨斯州

正处于生物进化的中期。”这些火蚁正在向西发

展, 而且已经在加利福尼亚建立了“滩头阵地”。

没有生态系统保护者或是类似的装置, 地球上的

生态系统将持续地遭到非天然入侵的威胁。我们

人类开辟了这些新的入侵途径, 所以我们有责任

保护天然物种免受这些新的非天然入侵的危害。

6 À. 4 . 3 修补土地

今天, 人们大多远离土地, 这些土地与 20 世

纪工业的车轮联系在一起。随着岁月的流失, 这

些历史车轮将被分子体系取代。破坏土地的压力

将减弱。可用于医治土地的时间将增加。可以相

信更多的人力和物力将投入这一方向。

① resort to v. 诉诸于 ,

采取

② Corpus Christi

[ �kri sti ] the Thursday

after Trinity observed

as a R oman Catholic

festi val in honor of the

Eucharist 圣体节

③ pelican [ �pelik�n ]

n. any of a genus

( Pelecanus ) of large

web-footed fish-eating

birds with a very large

bill and distens ible gu-

lar pouch [ 鸟 ] 鹈鹕

④ USDA ( = United

States Department of

Agriculture ) 美 国 农

业部

⑤ beachhead

[ �bi�t�hed]

n. foothold 滩头阵地

·012· 纳米世界探秘

Page 218: Mysteries of the Nanotechnique

To mend ruined①

landscapes will require skill and effort. Ecosystem

defenders can do flyswatting and weedpulling②

jobs no humans ever

could, but there will also be jobs of planting and nurturing③

. The land

has been torn by machines guided by hasty④

hands, almost overnight. It

can gradually be restored by patient hands.

The green wealth that can be brought by nanotechnology has raised

high hopes among some environmentalists. Again writing in Whole Ea rth

Review, Terence McKenna suggests it“ would tend to promote. . . a

sense of the unity and balance of nature and of our own human position

within that dynamic⑤

and evolving balance. " Perhaps people will learn

to value nature more deeply when they can see it more clearly, with eyes

unclouded by grief and guilt.

·112·第六章 保护地球生态环境

Page 219: Mysteries of the Nanotechnique

修补被破坏的土地将需要技巧和努力。生态

系统保护者能够做除蝇和除草的工作, 这些工作

是人类无法完成的。它们也可从事一些植被和土

地营养供给的工作。土地差不多在一夜之间就被

粗鲁的机械所破坏。它只有在细心的呵护下才能

逐渐地复原。

由纳米技术带来的无污染财富提升了环境学

家们的期望值。正如在《全球评论》中所提到的,

特伦斯· 麦克肯纳认为纳米技术“能够促进⋯⋯

理解自然的平衡统一以及我们人类在这一动态

的、进化的平衡中的位置。”当人们的眼睛在痛苦

和内疚下更清楚、更透彻地看到自然时, 也许他们

能学会更深入地评价自然。

① ruined [ �ruind ]

a dj. 毁灭的 , 荒废的

② weedpul ling n. 除

③ nurturing n. to sup-

ply with nourishment

养育

④ hasty [ �heisti ] a dj.

done or made in a hur-

ry 匆忙的 , 草率的

⑤ dynamic

[ dai�n�mik ] a dj. of

or relating to dynamics

动态的

·212· 纳米世界探秘

Page 220: Mysteries of the Nanotechnique

纳米, 太空探险的坚强后盾

自古以来, 空间探险一直是人类的梦想。一旦

纳米技术革命降临地球并将其建造成为一个完美的

天堂, 人类的改造和征服欲将驱使人们向最后的处

女地进发———太空移民。纳米技术将使这项冒险更

加便利和安全: 它借助分子制造技术提供了可靠的

能源保障和卓越的航空材料。

Page 221: Mysteries of the Nanotechnique

Chapter 7 Futur e Space Explor er

How will tiny machines on the nanometer①

scale propel the human

race to the scale of light years and beyond? Once the nanotechnology

revolution arrives and transforms the earth into a veritable paradise, hu-

mans may want to expand into the final frontier . Nanotechnology will

greatly ease this venture②

.

7 . 1 P owe rful Ene rgy S ource

First, we must shed the old-fashioned idea, dating back to Chinese

fireworks③

, that we must explore the solar system and beyond with fuel

burning rockets. Instead of thinking about powerful blasts propelling

spacecraft, consider smaller forces, such as sunlight, gradually pushing

a vehicle to increasing speeds, i. e. solar sails. Indeed, the idea of a

solar sail has already occurred to NASA④

space engineers, an idea that

will become a reality through nanotechnology.

Just as sailboats have traversed the seas for centuries carrying their

travelers to unknown lands using nothing but the power of wind, solar

sails will use the sun’s light energy to traverse space. However, instead

of the canvas that makes up our earthly sails, the light sails will be com-

posed of reflective panels. And rather than crossing distances on the

scale of hundreds of kilometers, these sails will cross interstellar⑤

dis-

tances! This would normally take thousands of years slowly accelerating,

but if we can give our sail a big push via an array of lasers driving a

beam to its surface, near light speeds and the stars can be reached ( a-

nalogous to a powerful“ wind”our explorer ancestors no doubt wished

for) . The high performance sails will resemble spider webs,

·212· 纳米世界探秘

Page 222: Mysteries of the Nanotechnique

第七章 未来的空间探险工具

纳米尺度的微型机器将如何推动人类向光年

尺度的距离及更远处进步? 一旦纳米技术革命抵

达地球并将其变成一个真正的天堂, 人类将会希

望能扩张到最后的边疆去。纳米技术将使这项冒

险容易许多。

7 Ä. 1 纳米技术, 强大的动力源泉

首先, 我们必须摆脱过时的观念, 即回溯到中

国的焰火, 那么我们必须乘燃烧燃料的火箭到太

阳系及外层空间去探险。先不考虑用强有力的气

流推进太空船, 而使用相对较小的力量, 比如太阳

光, 逐渐推进一个运输工具使其加速, 也就是说,

日光航行。的确, 日光航行的主意已经出现在美

国国家航空和宇宙航行局的太空机械师的脑海

中, 并将通过纳米技术得到实现。

就像几世纪以来帆船仅凭风的力量就能横穿

海洋, 将它们的乘客运送到未知的土地上一样, 日

光航行利用太阳能穿梭于太空, 但代替用来组成

地球航行的帆布的是, 由反射板组成的“日光

帆”。而且这些航行将通过星际间的距离, 而并

非穿越数百公里尺度的距离! 这通常需要数千年

的缓慢加速, 但如果我们通过将一列激光组成光

束推进它的表面, 从而接近于光速, 那么其他恒星

也就是可以到达的了 ( 类似于我们的冒险家祖先

必然期盼的强风) 。这种高性能帆将与蜘蛛网相

类似,

① nanometer n. one

billionth of a meter 十

亿分之一米 , 毫微米

② venture [ �vent��]

n . something ( as mon-

ey or property) at haz-

ard in a speculative

venture 冒险

③ firework n. a device

for producing a striking

display by the combus-

tion of explosive or

flammable compositions

焰火

④ NASA [ �n�s�]

( = National Aeronau-

tics and Space Admin-

is tration) ( 美国 ) 国家

航空和宇宙航行局

⑤ i nterstellar

[ int��stel�] a dj. loca-

ted, taking place, or

traveling among the

st ars especially of the

Milky Way galaxy 星际

·312·第七章 未来的空间探险工具

Page 223: Mysteries of the Nanotechnique

kilometers in diameter, made of graphite fiber strands bridged by reflec-

ting panels thinner than a soap bubble. Their fragile nature will require

them to be built in space, and this is where nanomachines will enter the

picture. Just as a leaf grows on earth, the sail will gradually take shape

as thousands of replicating assemblers use the sun ’s energy to build it,

filling in the gaps of the structure with raw materials brought up from

earth or mined from a nearby asteroid①

.

The space closely surrounding the earth, never mind journeys to the

stars, contains room enough for the human race to grow. Consider repli-

cating systems being able to build huge, rotating cylindrical②

worlds

filled with soil, streams, forests, and sunlight. With strong carbon-

based materials ( i. e. diamond) perhaps mined from some asteroid ( one

of these wandering mountains a kilometer-wide has enough precious met-

als worth several trillion dollars) , and ample water from one of the ice

moons of Saturn③

, Uranus④

, or Neptune⑤

, replicators could use the

sun’s energy to build projects on a truly mega scale! Imagine a sphere,

built by nanomachines, completely surrounding the solar system, taking

advantage of all the energy the sun puts out. Presently, 99.

999999955 % of this energy misses earth. Every second the“ Dyson

sphere" , named after Freeman Dyson who proposed that very advanced

civilizations might possess it, would collect 1, 000 times the energy every

second the human race produces in one year! The necessary material for

a sphere a few millimeters thick made of solar panels could be manufac-

tured using but one average sized asteroid. Nanomachines even have the

capability to let us see deeper into the universe, letting us build a tele-

scope of unprecedented⑥

size, and with unparalleled accuracy. Because

of nano-technology’s bottom-up, atom

·412· 纳米世界探秘

Page 224: Mysteries of the Nanotechnique

延伸数公里, 由石墨光纤做骨架, 之间是比肥皂泡

壁还要薄的反射板。它们易碎的性质要求它们在

太空中制造, 纳米技术正是在这里“登场”。只要

有一片在地球上长成, 数千个类似的复制品就会

利用太阳能逐渐形成这种帆, 各复制品之间的结

构空隙将由从地球送上去或从附近小行星挖掘的

原始材料填补。

紧密地包围着地球的太空, 有足够空间供人

类增长, 它从不介意那些飞向恒星的旅行。因为

复制系统能够构建巨大的旋转的、圆柱形的, 有土

壤、溪流、森林、阳光的世界。利用或许从某个小

行星( 这些蜿蜒一公里长的山脉中, 一座就有足

以值几万亿美元的贵金属) 挖掘出来的高强度碳

基材料( 也就是金刚石) , 和充足的由土星、天王星

或海王星的一个含冰卫星上来的水, 复制装置能利

用太阳能构造真正的上百万数量级的物体! 来想

像一个由纳米技术制造的球, 它完全包围着太阳

系, 获得太阳释放出的所有的能量。目前, 这种能

量的 99 Ü. 999999955% 都未达到地球。弗里曼·代

森曾提出一种非常先进的文明可能已经拥有的, 从

而以他的名字命名的“代森球”。这个球每秒钟能

收集 1000 倍于人类每秒钟都在产生的一年内产生

的能量。用于制造由几毫米厚的日光板组成的球

所必需的材料可以只用一个普通大小的小行星制

成。纳米机器甚至有能力让我们更深入地看宇宙,

它能让我们制造出空前的尺寸和无与伦比的精确

度的望远镜。因为纳米技术是“自底向上”的, 原

① asteroid

[ ��st�r�id] n. starfish

[ 天文 ] 小行星

② cylindrical

[ si�lindrik�l ] [ 计 ]

relating to or having

the form or properties

of a cylinder 圆柱的

③ Saturn [ �s�t�n] n.

[ 天 ] 土星

④ Uranus [ �ju�r�n�s ]

n. 天王星

⑤ Neptune

[ �neptju�n] n. [ 天 ] 海

王星

⑥ unprecedented

[ �n�presidentid ] adj.

having no precedent :

novel unexampled 空

前的

·512·第七章 未来的空间探险工具

Page 225: Mysteries of the Nanotechnique

by atom approach to construction, the telescope’s mirror could be built to

exact specifications, flawlessly.①

Since the mirror itself could contain ti-

ny nanocomputers in its structure, it could change shape in response to

the sun’s rays heating it unevenly,②

or perhaps repair itself if struck by

space debris!

Astronomy and space exploration will be revolutionized under nano-

technology’s influence. More humans will move onto“floating" worlds in

earth orbit, or onto colonies built on Mars or the moon. Launches into

space will become as commonplace as flying an airplane when molecular

manufacturing makes launch vehicles that are light and strong, and de-

velopments in“ smart" materials will lead to a rocket that can change its

aerodynamic③

shape upon launch and reentry for maximum efficiency.

As people from earth begin to fan out to the stars, many may well wonder

how so many people lived for so long without the benefits of nanotechnol-

ogy.

7 . 2 The Adva nce d Spa c e suit Arme d by Na note chnology

Since nanotechnology lends itself to making small things, consider

the smallest person-carrying spacecraft: the spacesuit. Forced to use

weak, heavy materials, engineers now make bulky, clumsy spacesuits.

A look at an advanced spacesuit will illustrate some of the capabilities of

nanotechnology.

Imagine that you are aboard a space station, spun④

to simulate

Earth’s normal gravity. After instruction, you have been given a suit to

try out: there it hangs on the wall, a gray, rubbery-looking thing with a

transparent helmet⑤

. You take it down, heft its substantial weight, and

step in through the open seam on the front.

·712·第七章 未来的空间探险工具

Page 226: Mysteries of the Nanotechnique

挨着原子构造起来, 望远镜的镜头能做成毫无瑕

疵的, 完全精确的分辨率。由于镜头本身能在结

构中包含微型纳米计算机, 它能不均匀地随着照

射它的太阳射线改变形状, 抑或在太空碎片将其

打破时自我修复完整!

天文学和太空探险将在纳米技术的影响下革

新。更多的人将搬到地球轨道上的“悬浮”的世

界里, 或到建在火星上、月球上的殖民地去。当分

子建筑制造出又轻又结实的发射运输工具, 并且

“智能化”材料的发展导致火箭能按照发射和回

归的需要改变它的空气动力学形状以获得最高的

效率时, 太空航行将像飞机飞行一样平常。当地

球人开始四面扩散到其他恒星系的时候, 许多人

很可能会感到疑惑: 没有纳米技术的帮助这么多

人如何能生存那么久。

7 Ä. 2 用纳米技术武装起来的高级宇航服

由于纳米技术能够制作出小的物体, 让我们

来看看那最小的载人“太空船”: 宇航服。因为被

限制在使用那些不结实且笨重的材料, 工程师们

只能制造出臃肿、笨拙的宇航服。简单地一瞥就

能够说明纳米技术的某些性能。

想象你正在空间站上作旅行, 这个空间站在

不停地旋转用以模拟一般的地球重力。接到指令

后, 你被要求去测试一套宇航服: 在舱壁上挂着一

个有着透明头盔的灰白色外观象橡胶的东西。你

取下它, 穿上并感受它的真实重量, 然后通过船头

的出口步入太空。

① flawlessly [ �fl��lis ]

a dj. no defect in phys-

ical s tructure or form

无瑕疵的

② unevenly a dv. 不均

衡地 , 不平坦地

③ aerodynamic

[ �e�r�udai�n�mik]

a dj. a branch of dy-

namics that deals with

the motion of air and

other gaseous fluids

and with the forces act-

ing on bodies in motion

relative to such fluids

空气动力学的

④ spun [ sp�n ] spin

的过去式和过去分词

⑤ helmet [ �helmit ]

n. any of various pro-

tective head coverings

usual ly made of a hard

material to resist im-

pact 头盔 , 钢盔

·812· 纳米世界探秘

Page 227: Mysteries of the Nanotechnique

The suit feels softer than the softest rubber, but has a slick①

inner

surface. It slips on easily and the seam seals at a touch. It provides a

skintight covering like a thin leather glove around your fingers. Behind

your shoulders, scarcely noticeable, is a small backpack②

. Around your

head, almost invisible, is the helmet. Below your neck the suits inner

surface hugs your skin with a light, uniform touch that soon becomes al-

most imperceptible③

.

You stand up and walk around, experimenting. You bounce on④

your toes and feel no extra weight from the suit. You bend and stretch

and feel no restraint, no wrinkling, no pressure points. When you rub

your fingers together they feel sensitive, as if bare—but somehow slightly

thicker. As you breathe, the air tastes clean and fresh. In fact, you feel

that you could forget that you are wearing a suit at all. What is more,

you feel just as comfortable when you step out into the vacuum of space.

The suit manages to do all this and more by means of complex activ-

ity within a structure having a texture almost as intricate as that of living

tissue. A glove finger a millimeter thick has room for a thousand mi-

cron⑤

-thick layers of active nanomachinery and nanoelectronics. A fin-

gertip-sized patch has room for a billion mechanical nanocomputers, with

99. 9 percent of the volume left over for other components.

In particular, this leaves room for an active structure. The middle

layer of the suit material holds a three-dimensional weave of diamond-

based fibers acting much like artificial muscle, but able to push as well

as pull. These fibers take up much of the volume and make the suit mate-

rial as strong as steel. Powered by microscopic electric motors and con-

trolled by nanocomputers, they give the suit material its supple strength,

making it stretch⑥

, contract, and bend as needed. When the suit felt soft

earlier,

·912·第七章 未来的空间探险工具

Page 228: Mysteries of the Nanotechnique

这套服装感觉起来比最软的橡胶还要软, 只

不过有一个光滑的内表面。它可以轻松地穿上而

且连接处只需轻轻接触即可密封。它紧紧地裹在

你身上, 就像薄的皮革手套裹着你的手指一样。

在你的肩膀后面, 不引人注意的地方, 是一个小的

背包。在你的头周围是头盔, 头盔几乎是看不见

的。在你的脖子下宇航服的内表面缠绕着你的皮

肤, 由于它的内表面是轻微、均匀地接触因此很快

你就感觉不到宇航服的存在。

你试探性地站着并四处走走。你蹦一蹦, 可

能感觉不到来自宇航服的额外重量。伸伸胳臂,

弯弯腿, 你也感觉不出来自宇航服的任何限制、褶

皱和受压。你相互摩擦你的手指, 你感觉它们好

像赤裸着一样敏感———当然, 比那样稍微粗些。

你吸一口气, 空气尝起来新鲜又干净。事实上, 你

感觉你完全可以忘记你穿着一件衣服。并且, 你

走到真空中也能感觉同样舒适。通过一些复杂的

方式, 通常是发生在与活体组织差不多有着同样

复杂质地结构中, 宇航服能够做到以上这些甚至

更多。一个毫米厚度的手套手指部分可以容纳一

千层微米厚度的纳米机械和纳米电子。一个指尖

大小的小块可以容纳十亿个纳米计算机, 而且还

留下 99 è. 9 % 的空间来容纳其他部件。

具体地说, 它给起作用的结构提供了可容纳

的空间。宇航服材料的中间层由光纤的三维织构

组成, 这些由钻石类物质构成的光纤行使类似人

工肌肉的功能, 能够推和拉。这些光纤占据了大

量的空间使得宇航服材料如钢铁一般坚固。由微

观尺寸电动马达提供动力并由纳米计算机控制,

它们给宇航服带来了柔韧性, 使宇航服可以随心

所欲地伸展、收缩和弯曲。当宇航服感觉比以前

① slick [ s lik ] adj.

having a smooth sur-

face; slippery 光滑的

② backpack

[ �b�kp�k] n. 背包

③ imperceptible

[ imp��sept�b�l ] adj.

not perceptible by a

sense or by the mind;

extremely sli ght, grad-

ual, or subtle 觉察 不

到的

④ bounce [ bauns] v.

( 使 ) 反跳 , 弹起

⑤ micron [ �maikr�n ]

n. a unit of length e-

qual to one millionth of

a meter 微米

⑥ stretch [ s tret�] v.

to extend ( as one ’ s

limbs or body) in a re-

clining posi tion 伸 展 ,

伸长

·022· 纳米世界探秘

Page 229: Mysteries of the Nanotechnique

this was because it had been programmed to act soft. The suit has no dif-

ficulty holding its shape in a vacuum; it has strength enough to avoid

blowing up like a balloon. Likewise, it has no difficulty supporting its

own weight and moving to match your motions, quickly, smoothly, and

without resistance. This is one reason why it almost seems not to be there

at all.

Your fingers feel almost bare because you feel the texture of what

you touch. This happens because pressure sensors①

cover the suit’s sur-

face and active structure covers its lining②

: the glove feels the shape of

whatever you touch—and the detailed pattern of pressure it exerts—and

transmits the same texture pattern to your skin. It also reverses the

process, transmitting to the outside the detailed pattern of forces exerted

by your skin on the inside of the glove. Thus the glove pretends that it

isn’t there, and your skin feels almost bare.

The suit has the strength of steel and the flexibility of your own

body. If you reset the suit’s controls, the suit continues to match your mo-

tions, but with a difference. Instead of simply transmitting the forces you

exert, it amplifies them by a factor of ten. Likewise, when something bru-

shes③

against you, the suit now transmits only a tenth of the force to the

inside. You are now ready for a wrestling match④

with a gorilla⑤

.

The fresh air you breathe may not seem surprising; the backpack in-

cludes a supply of air and other consumables. Yet after a few days outside

in the sunlight, your air will not run out: like a plant, the suit absorbs

sunlight and the carbon dioxide you exhale⑥

, producing fresh oxygen. Al-

so like a plant ( or a whole ecosystem) , it breaks down other wastes into

simple molecules and reassembles them into the molecular patterns of

fresh, wholesome food. In fact, the suit will keep you comfortable,

breathing, and well fed almost anywhere in the inner solar system.

·122·第七章 未来的空间探险工具

Page 230: Mysteries of the Nanotechnique

更柔软时, 这是因为它被设置了变软的程序。这

种宇航服在真空中能够毫不费力地保持形状; 它

有足够的强度来避免膨胀得像气球一样。同样

的, 它能够毫不费力地支撑它自己的重量并快速

平稳无阻力地迎合你的动作。这就是为什么它似

乎几乎根本不存在的原因之一。

你的手指感觉好像是赤裸的, 因为你感觉到

的是你所接触材料的质地。这一现象是因为压力

传感器覆盖在宇航服的表面, 起作用的结构遍布

在其衬里: 手套感觉你所接触物体的形状———它

施加的细节压力模式———然后把同样的质地模式

传递给你的皮肤。它也可以反转这一过程, 把被

在手套内部的你所施加力的细节模式传递给外

界。这样手套掩饰了它的存在, 使得你的手指感

觉好像是赤裸着的一般。

宇航服同时具有钢铁般的强度和可与人体相

媲美的柔性。如果你重新设置宇航服的控制方

式, 它仍然能和你的动作相匹配, 只是以一种不同

的方式。它并非仅仅将你施加的力传送出去, 而

是将其放大 10 倍。同样的, 当外力向你拂来, 宇

航服只将外力的十分之一传送到内部。穿上它,

你就可以和一只大猩猩摔跤了。

其实你呼吸到的新鲜空气也许没什么令人惊

奇的; 宇航服的背包里包括一个空气补给装置和

其他一些附件。但是你在日照下暴露几天之后, 空

气并不会被放出去; 宇航服就像植物一样吸收阳

光和你呼出的二氧化碳, 制造新鲜氧气。它还能像

植物( 或是一个完整的生态系统) 一样, 将其他废

物分解成为简单分子, 再将它们化合成新鲜的分

子形式, 即卫生的食品。事实上, 宇航服几乎无论

在太阳系内任何地方都能使你感觉舒适, 呼吸到

新鲜的空气以及供给充足的营养。

① sensor [ �sens�] n .

a device that responds

to a physical stimulus

and transmits a resul-

ting impulse 传感器

② lining [ �laini�] n .

material that lines or

that is used to line es-

pecially the inner sur-

face of something 加衬

里 , 内层 , 衬套

③ brush [ br��] vt. to

pass lightly over or

across : touch gently a-

gainst in passing 拂

④ wres tling match n.

[ 体 ] 摔跤比赛

⑤ gorilla [ ���ril�] n .

an anthropoid ape

( Gorilla gorilla ) of

western equatorial Afri-

ca related to the chim-

panzee but less erect

and much larger 大 猩

⑥ exhale [ ik�sheil] v.

to emit breath or vapor

呼气

·222· 纳米世界探秘

Page 231: Mysteries of the Nanotechnique

What is more, the suit is durable. It can tolerate the failure of nu-

merous nanomachines because it has so many others to take over the

load. The space between the active fibers leaves room enough for assem-

blers and disassemblers to move about and repair damaged①

devices.

The suit repairs itself as fast as it wears out②

.

·322·第七章 未来的空间探险工具

Page 232: Mysteries of the Nanotechnique

并且, 宇航服是很耐用的。由于有如此多的

“后备军”能接替它的任务, 所以它能容忍许多纳

米机器失灵。活性纤维之间的空隙给“装配工”

和“拆卸工”留下足够的空间让它们移动并修复

损坏的装置。宇航服几乎能在损坏的同时就能完

成自我修复。

① damaged a dj. to

cause damage to 被 损

坏的

② wear out v. 用 坏 ,

消磨

·422· 纳米世界探秘

Page 233: Mysteries of the Nanotechnique

纳米, 一场震撼全球政治经济的地震

纳米技术诞生了具有自我复制功能的机器, 由

此导致了一场工业、价值观和社会的巨变: 现今的工

业流程会成为“昨日黄花”; 消费商品会变得丰富、

廉价、精巧和耐用; 药物工业将跨出质的飞跃; 太空

旅行和移民将变得安全和便捷⋯⋯全球的生活时尚

将发生根本的变化, 并彻底地影响人类的行为。

Page 234: Mysteries of the Nanotechnique

Chapter 8 The Future Nanote-

chnology Society

8 . 1 The Na note c hnology Economy

Novel Economics of Self-Replicating Machinery

It’s not a matter of if. . . but when? If you own a business, time for

planning and perhaps selling a few white elephants before the competition

understands.

8 . 1 . 1 Industr ia list? Ma nufactur er ? Pr epa re for the Second Indus-

tr ial Revolution

“Still building cars when you could grow’em①

?"

Well, not for very long. . . Present economics are a product of first

wave industrialization. . . economics in the age of this second wave are a-

nalogous to medieval vs. 20th century and require considerable contem-

plation. Humanity will be faced with an industrial, monetary②

and social

quake as a result of molecular manufacturing—programed self assem-

bly③

.

In the near future, a team of scientists will succeed in constructing

the first nano-sized robot capable of self-replication. Within a few short

years, and five billion trillion nano-robots later, virtually all present in-

dustrial processes will be obsolete as well as our contemporary concept of

labor. Consumer goods will become plentiful, inexpensive, smart, and

durable. Medicine will take a quantum leap④

forward. Space travel and

colonization will become safe and affordable⑤

. For these and other rea-

sons, global life styles will change radically, drastically impacting hu-

man behavior.

·622· 纳米世界探秘

Page 235: Mysteries of the Nanotechnique

第八章 未来的纳米技术社会

8 Ä. 1 纳米技术时代的经济

基于自我复制机器的新型经济学

这并不是能否发生的问题⋯⋯而是什么时间

发生? 如果你在从事商业, 你应该随时准备做出

“惊人之举”。

8 . 1 . 1 实业家? 厂商? 准备第二次工业革命的

到来

“如果你能够让汽车自己长起来, 你还会生

产汽车吗?”

唔, 不用太长的时间⋯⋯当今的经济是第一

次工业化浪潮的产物⋯⋯第二次浪潮时代的经济

带来的变化与中世纪进化到 20 世纪相似, 这是非

常值得深思的。作为分子制造技术———程序化自

我组装的结果, 人类将面临一个工业、价值观和社

会的巨变。

在不远的未来, 一组科学家将会成功地建造

出第一个拥有自我复制功能的纳米机器人。这之

后很短的时间内, 也就是有 50 万亿亿个纳米机器

人后, 所有现今的工业流程将同现代劳动观念一

起过时。消费商品将变得丰富、廉价、精巧和耐

用。医药将朝前跨出质的飞跃。太空旅行和移民

将变得安全和可以接受。因为这些和其他的原

因, 全球的生活时尚将发生根本的变化, 并彻底地

影响人类的行为。

① grow’em ( = grow

them) 使⋯增长

② monetary

[ �m�nit�ri ] a dj. of or

relating to money or to

the mechanisms by

which it is supplied to

and circulates in the

economy 货 币 的 , 金

钱的

③ self assembly 自 我

组装

④ leap [ li�p ] n. a

sudden passage or tran-

si tion 跳跃 , 飞跃

⑤ affordable a dj. 可

提供的

·722·第八章 未来的纳米技术社会

Page 236: Mysteries of the Nanotechnique

What can my company do to survive?

The prudent corporation wishing not only to survive, but to prosper

in the first half of the twenty-first century, would do well to start research

projects now on how to utilize a nanotechnology based universal assemb-

ler when it arrives. Such a company should consider how to design the

products they make today, through this new technique.

Examine this simple, yet universally relevant, example: After the

first assemblers arrive there will still be demand for cotton bath towels①

until a superior product is engineered. A manufacturer should get a han-

dle on just what a bath towel physically looks like on a molecular level,

figure out②

what proportions of carbon, oxygen etc. are involved, and

start writing the software for their full line of towels with all their various

colors, weaves, and patterns. By determining in advance how to utilize

assemblers before they exist, a company would be able to start produc-

tion day one of availability by plugging in their pre-engineered software.

Such a company should examine today the sparkling numbers that appear

when the cost of cotton, synthetic dyes③

, machinery and most of their

labor is substituted with inexpensively available carbon black and atmos-

pheric gases ( and of course, the lease payment to Xerox④

for the assem-

bler) . Perhaps such a compainy should also consider designing soft ware

for a line of elegant Persian rugs as well!

8 . 1 . 2 Money in a Nanotech Futur e

“ If you thought the industrial revolution was good for a cquiring

wealth, it was. But it was only a rehearsal. Na notechnology will do for

industry what scientific notation did for math. " —Anonymous

·822· 纳米世界探秘

Page 237: Mysteries of the Nanotechnique

我的公司如何做才能生存下去呢?

这些抱着谨慎态度的公司希望不仅能够生

存, 而且可以在 21 世纪上半叶更加繁荣。它们将

会认为现在开展如何利用基于纳米技术通用组装

程序的研究是非常有利的。这种公司应该通过这

一新技术来考虑如何规划他们今天制造的产品。

让我们来审视一下这个相对简单但有密切联

系的例子: 在第一个组装机械问世后人们依然会

对棉质浴巾有很大的需求, 这种需求要持续到更

高级的产品出现为止。厂商应该致力于生产在分

子水平上的浴巾类似物, 计算出碳、氧等的比例,

并开始编写程序来设计有不同的颜色、编织法和

式样的浴巾线条。由于在组装机械问世之前就预

先决定了它们的使用方法, 公司将只须插入他们

预先编制好的程序就可以投入所需产品的生产。

当棉花、人工漂染、机器和劳动力的成本被廉价的

黑烟末和空气所取代时 ( 当然, 还有用于宣传组

装机械的施乐复印机的租金 ) , 公司应该检查这

些由此出现并引人注目的数字。也许这一公司也

应该考虑设计用于高雅波斯地毯的生产线的软

件。

8 À. 1 . 2 纳米未来时代的货币

有人说:“如果你认为这场工业革命有利于

获得财富, 确实是这样。但是这里只是一场预演。

纳米技术将会代替工业, 如同科学符号代替数学

一样。”

① bath towel n. 浴巾

② figure out v. discov-

er, determine 计算出

③ dye [ dai ] n. color

from dyeing 染色

④ Xerox 施 乐复印机

( 商标名称 )

⑤ Persi an adj. one of

the ancient Iranians

who under Cyrus and

his successors founded

an empire in southwest

Asia 波斯的

·922·第八章 未来的纳米技术社会

Page 238: Mysteries of the Nanotechnique

Will our contemporary concept of money be valid in a mature nano-

technology industrial future? When anyone can ask their computer for

self-assembling consumer goods, made overnight in the corner of their

garage and using free materials siphoned from the atmosphere, where

does the concept of cash come in?

Humanity lived millions of years without the concept of currency.

Then the Touch Stone①

was discovered in the Middle East and the purity

of gold could be determined. Coveted for its beauty and malleability②

,

gold fostered③

trade and led to the invention of paper money by the Chi-

nese. Today, almost everyone has some involvement with financial④

in-

stitutions dealing in paper.

Consumer goods self-assembled from atmospheric elements won ’t

wear out because atoms are virtually indestructible and totally recycla-

ble. Production will need very little human labor outside of software de-

sign. How will our concept of money evolve in the nanotechnology fu-

ture?

8 . 1 . 3 Econom ic Cha nges to Come

Like the buggy⑤

whip manufacturer at the dawn of the automobile,

contemporary manufacturing will become obsolete⑥

. The first day a nano

sized self-reproducing robot ( and its trillions of offspring) arrives, every

contemporary manufacturing process and all the required laborers will no

longer be necessary. So, industrialists, manufacturers, beware! Long-

term planning is needed to take on a whole new meaning during an in-

dustrial revolution!

What jobs can we imagine will be necessary in a nanotechnolgy fu-

ture? Well, there is one profession with a very bright future indeed! Sys-

tems Programming. In the nanotechnology world, almost everything will

be made of smart materials run by oodles⑦

of microscopic

·032· 纳米世界探秘

Page 239: Mysteries of the Nanotechnique

是否我们现代对待金钱的观念在成熟的纳米

工业的将来是正确的? 当人们可以要求他们的计

算机制造可自我装配的消费品( 这些消费品是在

库房的角落通宵达旦地利用源自空气的免费材料

生产出来的) , 现金的概念又如何能流行起来?

人类已经生活了数百万年并没有货币的概

念。后来试金石在中东发现, 黄金的纯度能够测

定。因为它的绚丽和柔韧性而倍受青睐, 黄金培

育了商品贸易并促使中华民族发明了纸币。今

天, 差不多每个人在用纸币交易时都或多或少与

金融机构发生关系。

从大气成分自我组装而来的消费品将不会损

耗, 因为原子是不可破坏的而且是可循环利用的。

生产过程除了软件设计之外将很少需要人类的劳

动。在未来的纳米时代, 我们现代对待金钱的观

念将如何发展呢?

8 À. 1 . 3 经济变革即将来临

就像在汽车工业黎明时的众多马鞭制造商一

样, 现代制造业将变得过时。纳米尺寸的自我复

制机器人( 和它的万亿计子孙们) 到的第一天, 所

有的现代制造工业流程和必需的劳动工人将不再

是必要的。因此, 实业家们, 厂商们, 注意了! 一

个长远的计划是必要的, 这一计划应能接纳工业

革命的全新方式。

在纳米未来时代哪些行业将是必需的呢? 唔,

确实有一个充满着灿烂前途的行业: 系统程序规划。

在纳米技术世界里, 差不多每一件东西将由受许

多精微计算机控制的灵巧材料做成, 而这些计算机

① Touch Stone 试 金

② malleability n. ca-

pable of being extend-

ed or shaped by beat-

ing with a hammer or

by the pressure of roll-

ers 柔韧性 , 有延展性

③ foster [ �f�s t�] vt .

to promote the growth

or development of; en-

courage 抚育 , 培养

④ financial

[ fai�n �7n��l ] adj. re-

lating to finance or fin-

anciers 财政的 , 金融

⑤ buggy [ �b��i ] adj.

臭虫成灾的

⑥ obsolete [ ��bs�li�t ]

a dj. 荒废的 , 陈旧的

⑦ oodle [ �u�dl ] n. 许

·132·第八章 未来的纳米技术社会

Page 240: Mysteries of the Nanotechnique

computers that will need software. Everything, did I mention everything,

will depend on software. You, the programmer, will be in bigger de-

mand than ever imagined today. This is truly one of the few professions

that will need to be“paid" , but with what?

Other professions will continue to be in demand. Nanotechnology

research will continue and advances in the sciences will create more re-

search opportunities. Rebuilding the ecology will call for geologists, ar-

cheologists, and ecologists alike. Creativity and self-actualization will

abound①

. Art, music, literature, indeed all the humanities, will thrive.

The fields of pyschiatry②

, pyschology③

, and sociology will have whole

new applications.

If history is a guide, more opportunities will exist in a nanotechnol-

ogy future —due to the abundance of applications and inventions to be i-

magined.

8 . 1 . 4 Inter national Relations in a P ost -Na notechnology W or ld

Nanotechnology—Future Quake to Rock Political Globe. Let us i-

magine:

When any country with a“ nano" assembler and the appropriate

software can make any consumer good, what happens to a mega④

manu-

facturer / exporter like Japan? . . .

When oil becomes practically worthless, where does OPEC⑤

get

off? . . .

When diamond is synthesized by the ton per minute for building ma-

terial and gold can be mined cheaply from the sea, how will South Africa

react? . . .

·232· 纳米世界探秘

Page 241: Mysteries of the Nanotechnique

将需要软件。每一件东西, 我所提到的所有物品,

将都依赖于软件。你, 一个程序规划员, 将会有比

今天所能想象的还大的需求。这个职业是少数几

个需要“付酬”的行业之一, 然而用什么来“付酬”

呢?

其他的行业将会继续有需求。纳米技术研究

将会继续发展, 这一科技的进展将创造出更多的

研究机遇。同样的, 重建生态系统会号召起地质

学家、考古学家和生态学家们。到处将充满创造

力和自我实现。艺术、音乐、文学、甚至所有的人

文学科将会繁荣起来。精神学、心理学和社会学

的众多领域将会有全新的应用。

如果历史老人是个向导, 更多的机会将会出

现在纳米技术时代的未来———由于丰富的可以想

象的应用实例和发明创造。

8 À. 1 . 4 后纳米技术世界的国际关系

纳米技术将会是未来撼动全球政治的一场地

震。让我们想象一下:

当任何一个国家都拥有纳米组装机械和相应

软件, 能够生产任何消费品, 这对于像日本那样的

大制造商和出口商将意味着什么? ⋯⋯

当原油变得几乎一文不名, 欧佩克组织将何

去何从? ⋯⋯

当钻石以每分钟数吨计的速度合成并用作建

筑材料, 黄金可以从海里廉价地开采, 南非又会如

何反应? ⋯⋯

① abound [ ��b�und ]

vi . to be present in

large numbers or in

great quantity; be prev-

alent 大量存在

② psychiatry

[ sai�kai�tri ] n . a

branch of medicine that

deals with mental , e-

motional, or behavioral

disorders 精 神 病 学 ,

精神病治疗法

③ psychology

[ sai�k�l�d�i ] n. 心 理

④ mega [ �me��] n . 百

万 , 大

⑤ OPEC [ ��upek ]

Organization of Petro-

leum Enporting Coun-

tries n. 石油输出国家

组织

·332·第八章 未来的纳米技术社会

Page 242: Mysteries of the Nanotechnique

When illegal contraband can be made in the home from the same ma-

chine providing lunch and a cappuccino. What happens to the zillion

dollar international underground ( black market) economy. How about the

world’s legal systems and their zillion①

dollar law enforcement agencies②

?

. . .

Shifting power in the post-nanotechnology world sets the stage for

accelerated geopolitical③

evolution. Keep in mind, this shift from the

technology of today to nanotechnology of tomorrow will probably happen

in less than half a generation. Nanotechnology, by its nature, will

spread like wild fire causing so much change in so little time, it’s diffi-

cult to imagine.

How about world security? Atomic weaponry④

will still be here, but

nonatechnology will give us even more destructive possibilities. Where

will the future“balance of power" lie?

Now add the migration of people made possible by nanotechnology

to the equation. With space colonization⑤

we could inevitable see decla-

rations of sovereignty resulting in independent“ space " states. How do

we structure their relationship with the Earth’s governments. You can bet

more than one international border, not to mention internal border, will

be redrawn within ten years of the first practical“nano" assembler .

8 . 2 Co nflict a nd De fe ns e in a n Age of Na note chnolo gy

8 . 2 . 1 The Develop ment of Nuclear Policy

The first idea in the new age of military thinking was that it was

possible to simultaneously launch enough missiles to destroy virtually all

of an enemy’s military capability, and that this would happen in a matter

of hours or even minutes. The enemy would have no time to organize a

response. This idea is called a first strike.

·432· 纳米世界探秘

Page 243: Mysteries of the Nanotechnique

当非法走私品能够在国内从提供午餐和热牛

奶咖啡的同样的机器中生产出来, 这对于无数国

际美元地下经济 ( 黑市 ) 产生什么影响? 全球的

法定体制和他们无数的美元政策实施结构又将如

何? ⋯⋯

后纳米技术时代的权力变更给激进的地缘政

治演变提供了舞台。要记住, 这种从今天的工艺

技术到明天的纳米科技的变迁将有可能发生在短

于半代人的时间。纳米技术, 依据其本性, 将会星

火燎原, 在如此短的时间内产生如此大的变化, 简

直难以想象。

世界和平又会怎样? 原子武器将依然存在,

但是纳米技术将带来甚至更大破坏程度的可能

性。未来的“权力制衡”点将在何处?

现在需要把由于纳米技术可能导致的移民因

素加入到平衡之中。随着空间移民的深入, 我们

会不可避免地看到独立“太空”国家的主权宣言

的出现。我们如何协调他们和地球上各政府之间

的关系? 可以确信, 在第一架实用纳米组装机器

问世的十年内, 国际间的边界将会重新划分, 更不

用说地区间的边界了。

8 Ä. 2 纳米技术时代的冲突与防御

8 . 2 . 1 核威慑战略的发展

新时代军事思想的首要观点是有可能同时发

射数量足够从实质上破坏敌人所有军事能力的导

弹, 这一切将发生在几小时甚至几分钟内, 而敌人

将没有时间作出反应。这个观点被称为“第一打

击”。

① zi llion [ �zili�n] n.

an indeterminately

large number ( 美口 )

庞大的数字

② agency [ �eid��ns i ]

n. the office or func-

tion of an agent 代 理

③ geopolitical adj. 地

理政治学的

④ atomic weaponry 原

子武器

⑤ colonization n. an

act or instance of colo-

nizing 殖 民 地 化 , 殖

·532·第八章 未来的纳米技术社会

Page 244: Mysteries of the Nanotechnique

Initially it seemed that whoever launched①

a first strike would be

the only survivor, and by default the victor. Each side therefore quickly

established a second-strike capability②

, or at least gave the convincing

impression that such a capability was in place. The thinking on second-

strike capability was that in the event of an opponent’s first strike, the

victim would have enough survivors and equipment remaining intact to

launch a substantial counter-attack③

.

The second strike was the beginning of deterrence: the opponent

would hesitate to launch a first strike, knowing that he would suffer the

effects of a second strike. As long as the opponent believed in your second

strike capability, and wanted badly enough to avoid being the victim of a

second strike, he would refrain④

from launching a first strike.

This policy of“ mutually assured destruction " was sufficient to

maintain the safety of the world for the forty remaining years of Soviet co-

hesion. The policy has had many critics, but its stability in the face of e-

normous military and politicial tensions is remarkable.

Deterrence worked for several reasons:

Neither side was suicidal⑤

. Neither side valued victory over surviv-

al.

Each side could understand the other’s thinking well enough to esti-

mate the other’s interpretation of various scenarios, and the other’s likely

response. Furthermore, neither side acted stupidly. It could be said that

the two sides were“mutually⑥

rational" ; each recognized the fundamen-

tal rationality of the other.

Neither side had an overwhelming advantage over the other. Either

side could launch a first strike or respond with a second strike, and nei-

ther side could defend itself against a first or second strike. The size of

one side’s nuclear arsenal⑦

might be greater or lesser than the other, but

·632· 纳米世界探秘

Page 245: Mysteries of the Nanotechnique

not by enough to give either side a decisive advantage.

·732·第八章 未来的纳米技术社会

Page 246: Mysteries of the Nanotechnique

最初, 似乎发射“第一打击”的人才能成为仅

有的幸存者, 即默认的获胜者。于是双方都迅速

地建立起“第二打击”能力, 或至少给人富有说服

力的印象说明这样一种能力存在。“第二打击”

能力的思想就是若对手发动了“第一打击”, 受害

方能有足够的幸存者和装备保持完整来发动实质

性的反攻。

“第二打击”是威慑力的起源: 敌人会犹豫是

否发动“第一打击”, 因为他知道他将承受“第二

打击”的影响。只要对方相信你有“第二打击”的

能力, 而且足够迫切地想避免成为“第二打击”的

受害者, 他就会不再发动“第一打击”。

“一损俱损”的政策足以维持苏维埃阵营剩

余 40 个国家的和平。这种政策受到许多的批判,

但它在庞大的军事和政治压力面前的稳定性是显

著的。

威慑力起作用的原因:

没有一方愿意自取灭亡。没有一方认为胜利

重于生存。

两方都明白对方有足够的思考能力估计到他

方对各种状况的解释及可能的反应, 而且没有一

方会愚蠢地行动。可以说两方“互认合理”, 而且

都认识到对方的基本合理性。

没有哪方对对方有压倒优势。任何一方都能

发动“第一打击”或是回应“第二打击”, 也没有哪

方能在第一或第二打击面前保全自己。某一方核

武器制造厂的规模可能大于或小于另一方, 但不

足以给任何一方提供决定性的优势。

① launch [ l��nt�] vt .

to make a start 使 发

动 , 发起

② second-strike capa-

bility 二次打击能力

③ counter-attack n. 反

击 , 反攻

④ refrain [ ri�frein ]

vi . curb 避免 , 制止

⑤ suicidal

[ su�i�saidl ] a dj. 自 杀

⑥ mutually

[ �mju�t�u�li ] a dv. 互

相地 , 互助

⑦ arsenal [ �ɑ�s�nl ]

n. 兵工厂 , 军械库

·832· 纳米世界探秘

Page 247: Mysteries of the Nanotechnique

More about Deterrence

There are variations on the idea of a second strike. One was the i-

dea of a“ doomsday①

machine " , a machine that would automatically

launch a second strike even if its builders did not survive their opponents

’ first strike. A doomsday machine need not launch missiles; it could do

anything that the opponent would find sufficiently threatening to prevent

the launch of a first strike. It could release biological weapons or huge a-

mounts of radioactive material that would render the planet uninhabita-

ble. The important characteristic of a doomsday machine is that the op-

ponent②

cannot disable it: once its builders are dead, its actions are un-

stoppable.

Deterrence is a funny business of conflicting motivations. As long as

the stalemate is the safest, stablest policy, you want to actively promote

it. For example, the Rosenbergs gave American military secrets to the So-

viets, believing that they were working to stabilize the Cold War stale-

mate③

. But if it appears that you can pursue your goals without commit-

ting suicide, you may be tempted to do so at the risk of destabilizing the

stalemate, and an example of that was the Cuban missile crisis④

.

There is probably some useful and interesting mathematical way to

represent the“ stability" of a stalemate, something like a potential ener-

gy surface. I’ll think about that more later. I bet von Neumann already

figured it out.

There’s a lot of poker-playing going on here. The deterrence stale-

mate is stable only if the other fellow’s second strike is perceived as likely

to work and your attempt to defend against it is perceived as unlikely to

work. Also, you periodically want to rattle⑤

your saber and test the other

fellow’s level of conviction. If you think that, in the pursuit of peace, he

might hesitate from launching a second strike before you’ve destroyed his

ability to do so, then you might want to launch your first strike.

·932·第八章 未来的纳米技术社会

Page 248: Mysteries of the Nanotechnique

关于威慑力的其他方面:

关于“第二打击”有各种思想, 一个是“世界

末日机器”的思想, 也就是即使机器的建造者没

能在“第一打击”中幸存下来, 它也会自动发动

“第二打击”。世界末日机器不需要发射导弹, 它

可以做任何使敌人认为足够有威胁性的事来阻止

敌人发动“第一打击”。它能放出生物武器或大

量有放射性的材料致使地球无法居住。世界末日

机器的一个重要特征就是敌人无法阻止它: 它的

建造者一死, 它的行动就无法停止。

威慑力是战争动机的一个有趣的交易。只要

相持是最安全的, 最稳定的政局, 你就想积极地促

进它。比如说, 卢森堡人将美国军事机密交给苏

联, 相信苏联人能使冷战相持更稳定。但如果你

似乎能不必自我毁灭而达到你的目标, 你可以冒

着使相持稳定性降低的风险试着这样做, 这里的

一个例子便是古巴导弹危机。

可能有些有用的、有趣的精确方法来描述一

个相持的“稳定性”, 类似于一个势能面。我以后

会更多地思考这个问题。我相信冯·纽曼已经将

它算出来了。

这里很像牌戏的游戏规则。威慑相持只有在

对方的“第二打击”较可能起作用, 而你对它的防

御尝试不太可能有用的时候才是稳定的。而且,

你定期地喋喋不休地宣传你的军事力量来试探对

方的信用水平。如果你这样想的话, 出于对和平

的追求, 对方可能在你破坏他这一能力之前不愿

再发动“第二打击”, 那么你就可能会想要发动你

的“第一打击”。

① doomsday

[ �du�mz�dei] n. a day

of final judgment 最后

审判日 , 世界末日

② opponent

[ ��p�un�nt ] n. one

that takes an opposite

position 对手

③ s talemate

[ �steilmeit ] n . a drawn

contest; deadlock 僵局

④ crisis [ �kraisis ] n.

an unstable or crucial

time or state of affairs

in which a decisive

change is impending

危机

⑤ rattle [ �r�7tl ] v. to

say, perform, or affect

in a brisk lively fashion

喋喋不休

·042· 纳米世界探秘

Page 249: Mysteries of the Nanotechnique

This poker-like aspect of Cold War policy made for a lot of fascinat-

ing fiction and movies. It was almost difficult to make a bad movie, giv-

en the ready availability in the culture of so many interesting ideas hav-

ing to do with duplicity①

and deception②

. Egads, I miss those days.

8 . 2 . 2 W ill Deter rence W or k for Nanotechnologica l Thr eats?

At first blush, deterrence looks like a good strategy for handling

nanotech threats. Like nuclear threats, they offer the possibility of a

devastating first strike, in which all or nearly all the victims are killed or

incapacitated③

. And, as with nuclear weapons, it may be possible to

build a second strike capability or a doomsday machine.

But deterrence was developed in the context of a bipolar world④

:

two principal superpowers, with the lesser powers of the world taking

sides. Nanotechnology would greatly reduce the“ entrance requirement"

for superpower equivalency. There might be thousands of“ superpow-

ers" , and the situation would be much more complex than the Cold

War.

There are a number of points on which the strategy of deterrence⑤

could break down:

Some parties may value victory over survival, or for that matter , o-

ver the survival of all humanity or all of life on earth. In short, some

parties might be suicidal.

Some parties may not understand the destructive potential of nano-

technological weapons, might not believe that they might destroy them-

selves and others, or might simply have incompetent people designing,

building, and deploying their weapons. In short, some parties might be

incompetent.

·142·第八章 未来的纳米技术社会

Page 250: Mysteries of the Nanotechnique

冷战政策与牌戏类似的特点为许多吸引人的

小说和电影提供了素材。有了这么多随时可得的

与奸诈和诡计有关的思想的文化, 你甚至很难拍

出差的电影。天哪, 我想念那个时候。

8 À. 2 . 2 威慑会对纳米技术威胁起作用吗?

从最初的印象看, 威慑看上去像是一个控制

纳米技术威胁的良好的策略。就像核威胁, 提供

了破坏性“第一打击”的可能性, 在这种打击中所

有的或几乎所有的受害者都会死亡或是残废。并

且利用核武器有可能建造一个“第二打击”能力

或是世界末日机器。

但威慑是在两极世界的环境里发展起来的:

两个主要的超级强权, 拥有其他较小的力量的支

持。纳米技术将大大降低到达超级强权的“入门

标准”。可能会有数千的“超级强权”, 国际形势

将比冷战要复杂得多。

以下几种情况的出现可能致使威慑战略被打

破:

一些参与者也许将胜利比生存看得更重, 或

者同样出于这个原因, 比全人类的生存甚至地球

上所有生命的生存看得更重。简单地说, 一些参

与者可能自我毁灭。

有些参与者或许不明白纳米技术武器的潜在

的破坏性, 他们不相信这些武器将毁灭他们自己

和其他人, 或只让不能胜任的人员设计、制造和部

署这些武器。一句话, 有些参与者或许不具有利

用它的能力。

① duplicity

[ dju��plisiti ] n . con-

tradictory doubleness of

thought, speech, or

action 口是心非

② deception

[ di�sep��n] n. the act

of deceiving 欺 骗 , 诡

③ incapacitated n. to

make legally incapable

or ineligible 残废

④ bipolar world 两 极

世界

⑤ deterrence

[ di�ter�ns] n. the act

or process of deterring

威慑

·242· 纳米世界探秘

Page 251: Mysteries of the Nanotechnique

With so many possible powers, coming from different cultural back-

grounds, it would be easy misunderstand one another’s motives and rea-

soning. If a party cannot recognize the fundamental rationality of another

party, it may be impossible to find a stable stalemate. In short, some

parties may not be mutually rational.

If there are thousands of different“ superpowers" , each with some

form of automatic second strike capacity or doomsday machine, it’s possi-

ble that at least one doomsday machine will go off accidentally. This is

another case of incompetence.

Deterrence requires that effective defense against an attack is im-

possible. If defense becomes possible, or even if it is only perceived as

such, parties lose the incentive to not launch a first strike.

Assuming that all parties are competent, non-suicidal, and mutual-

ly rational, deterrence can work as long as it is possible to launch a sec-

ond strike, and impossible to defend against a first or second strike. If

defense becomes feasible, the stalemate is substantially compromised.

An example of this was the Soviets’ agitation①

over Reagan’s proposal of

the Star Wars defense system②

.

8 . 2 . 3 W ill Defense Work ?

Deterrence and containment are both provisional③

and ultimately

unsafe policies. The only remaining policy ( that I can think of, any-

way) is defense.

It’s tough to reason about defense in the kinds of general terms I’ve

been using so far. Like tactical warfare, it depends on the specifics of

the situation: weapons, terrain④

, numbers, and all that. The complexi-

ties of defense on the molecular level are hinted at by the complexity of

the human immune system.

·342·第八章 未来的纳米技术社会

Page 252: Mysteries of the Nanotechnique

有这么多可能的强国, 具有各种不同的文化

背景, 就很容易误解别国的动机和理由。如果一

个参与者不能认识到其他参与者的基本合理性,

就不可能造成一个稳定的相持局面。总而言之,

某些参与者可能并非互相承认合理性。

如果存在数千个不同的“超级强权”, 每一个

都拥有某种形式的自动第二打击能力或者说世界

末日机器, 就有可能至少一个世界末日机器突然

失去作用。这是另一种无能。

威慑要求面对一次攻击的有效防御不能实

现。如果防御成为可能, 或甚至它只是被认为如

此, 参与者们将丧失不发动“第一打击”的动机。

假如所有的参与者都具有这一能力, 不会自

我毁灭, 并且互相承认合理性, 只要有可能发动

“第二打击”并且不可能防御第一或第二打击的

情况下, 威慑就能起作用。如果防御成为可能, 相

持就会受到极大威胁。这里一个例子便是苏联面

对里根星球大战防御系统的提议的躁动。

8 À. 2 . 3 防御会起作用吗?

威慑与牵制都是临时性的、最终是不安全的

政策。惟一剩余的政策 ( 总之我所能想到的) 就

是防御。

很难对我到目前为止用过的一般种类的防御

进行推理。就像谋略战争, 它依赖于具体形式: 武

器, 地形, 兵力和诸如此类的所有。分子水平防御

的复杂性可从人体免疫系统的复杂性中得到提

示。

① agitation

[ �7d�i�tei��n ] n. to

move with an irregular,

rapid, or violent action

煽动 , 搅动

② the Star Wars de-

fense system 星球大战

防御系统

③ provis ional

[ pr��vi��n�l ] adj.

serving for the time be-

ing; temporary 临时的

④ t errain [ te�rein] n.

the physical features of

a tract of land 地形

·442· 纳米世界探秘

Page 253: Mysteries of the Nanotechnique

But one question is of crucial importance: is an effective defense

possible at all? If it is, then it must be investigated, and when the time

comes , it must be employed. If it is not, then we need to start looking at

deterrence some more.

8 . 2 . 4 W e Need Defense

If complete destruction can be exercised by individuals or small

groups, and if defense against it is not possible, then we’re doomed. Mi-

gration into outer space does not solve the problem; we cannot move a-

part fast enough to escape one anothers ’ light cones①

. Besides, the re-

quirement that humanity divide into millions or billions of small groups

with minimal communication would be the end of normal society.

So we need defense.

The next question is how to ensure that the development of defen-

sive measures always outpaces the development of offensive measures.

Presumably②

this is a question of design and simulation, which of course

will depend heavily on computers. But soon after the advent of nanotech-

nology, everybody will have access to computers of essentially infinite

power. That means that it will be impossible, in the long term, to guar-

antee③

a computational advantage to people developing defensive rather

than offensive measures.

It may turn out in the long run that, even if we can give defense de-

velopment an advantage now, that offensive development is fundamental-

ly easier or quicker for some reason. If so, we’re hosed④

in the long run,

no matter what we do now. But our best bet for the present is to give de-

fense development as large a head-start⑤

as we can.

·542·第八章 未来的纳米技术社会

Page 254: Mysteries of the Nanotechnique

但有一个问题至关重要: 究竟有效的防御是

否可行? 如果答案为肯定, 应该对它进行考察, 并

在必要的时候应用它。如果答案为否定, 那么我

们需要观察更多的威慑力。

8 À. 2 . 4 我们需要防御

如果彻底的毁灭能由个人或小团体实现, 如

果对它的防御没有可能, 那么我们就注定要灭亡。

向外层空间的移民并不能解决这个问题, 我们不

能转移到足以逃脱别人的光线所及范围之外。此

外, 当人类分割成为数百万或数十亿互相联系极

少的小团体时, 正常的社会也就结束了。

所以我们需要防御。

下一个问题是如何保证防御标准的发展总能

快于进攻标准的发展。或许这是一个设计与模拟

的问题, 当然, 它很大程度上依赖于计算机。但是

纳米技术出现后不久, 每个人都会能够使用本质

上具有无限能力的计算机。这意味着从长期来讲

人类不可能保证防御标准的发展比进攻更加具有

计算优势。

最终的结果可能会是, 即使我们能够现在给

防御发展造成一种优势, 攻击的发展也会由于某

种原因而更容易和迅速。如果是这样的话, 无论

我们现在做什么, 最终都会被打垮。但我们现在

所能做的最好的事情就是给防御发展一个尽可能

大地“抢先一步”。

① cone [ k�un ] n.

[ 数、物 ] 锥 形物 , 圆

锥体

② presumably

[ pri�zju�m�b�li ] a dv.

by reasonable assump-

tion 推测起来 , 大概

③ guarantee

[ ��7r�n�ti�] vt. to as-

sert confidently 保 证 ,

担保

④ hose [ h�uz ] v.

[ 俚 ] 痛打 , 打垮

⑤ head-start v. 抢 先

一步

·642· 纳米世界探秘

Page 255: Mysteries of the Nanotechnique

8 . 2 . 5 Encour aging Defense Development

We can start by dedicating①

the best resources we have to the de-

velopment of defensive measures. In 1996, our best resources for this

purpose are designers and computers. According to something that

Danny Hillis said, one of our best options for creating complex designs or

programs is likely to be the use of genetic programming. So one good

thing we could do is to dedicate a lot of bright people and powerful com-

puters to an effort that uses genetic programming②

to design defensive

measures.

( Basically Hillis was saying that for any really enormously complex

program or design, we’ll need more-than-human intelligence to create it,

and he proposes that we should evolve such designs from a population of

candidates, using massively parallel computers. He claimed that he ’d

never want to ride an airplane that he wrote the software for, but would

feel much safer if that software had been evolved in some suitable envi-

ronment. )

It would of course be meaningless to attempt to design defensive

measures without simultaneously③

designing hypothetical offensive④

measures against which one is defending oneself. Accordingly, there

must be a parallel effort to design offensive measures, and hopefully to

second-guess all possible offensive measures that an independent attacker

might come up with. It would be desirable to keep these offensive de-

signs under wraps⑤

, at least until effective defensive designs to counter

them had already been widely distributed.

·742·第八章 未来的纳米技术社会

Page 256: Mysteries of the Nanotechnique

8 À. 2 . 5 倡导发展防御战略

我们可以从将最好的资源投入防御标准的发

展开始。1996 年, 我们用于这个目的的最好的资

源是设计师和计算机。正如丹尼·希里斯所说的

那样, 我们创造复杂的设计方案或程序最好的选

择很可能是使用遗传算法。所以我们能做的一件

好事就是将大批的高素质人才和功能强大的计算

机投入利用遗传算法设计防御标准的工作。

( 大致说来, 希里斯认为要想创造任何真正

庞大的复杂的程序或设计, 需要超越人类智慧以

外的东西, 他还建议我们应该利用大量并行的计

算机, 从众多候选方案中发展这样的设计。他声

称他从没想过坐上由他书写软件的飞机, 但如果

它的软件是从一些合适的环境中发展出来的, 他

会感觉安全得多。)

当然, 如果没有同时设计出自己希望防御的

那一方的假想的攻击标准, 那么试图设计防御标

准就是无意义的。因此, 必须有一个与之并行的

努力设计攻击标准, 而且最好能预见到独立的进

攻者可能采用的所有可能的攻击标准。很有必要

将这些攻击设计控制在掌握之中, 至少在对抗它

们的有效的防御设计广泛的配置好之前必须这样

做。

① dedicate

[ �dedikeit] vt. to com-

mit to a goal or way of

life 致力

② genetic program-

ming 遗传算法

③ s imultaneously

[ sim�l�teini�sli ] a dv.

existing or occurring at

the same time 同时地

④ offensive [ ��fens iv]

a dj. making attack 攻

击性的

⑤ wrap [ r�7p] n. re-

st raint 约束 , 限制

·842· 纳米世界探秘

Page 257: Mysteries of the Nanotechnique

纳米, 前途无量

今天, 纳米技术的研究领域不断取得令人振奋

的进展。虽然它为我们提供了诸多益处, 但我们也

不应该允许它潜在的破坏力危害人类。如果我们能

充分利用纳米技术的长处, 消弭其害处, 未来将会是

一个真正光明和富裕的世界。纳米技术正朝我们走

来⋯⋯

Page 258: Mysteries of the Nanotechnique

Chapter 9 Prospects: An

Unbound①

Futur e

Just how long will it take to make the advances this book speculates

on? With our current level of development, some of the ideas here could

take hundreds, maybe thousands of years, for humans to realize. How-

ever, this estimate neglects the growing power of artificial intelligence②

( AI) , an influence that will drastically change the way we think about

technical breakthroughs.

Today, advancements are being rapidly made in the area of machine

intelligence. Although computers have long been thought of as mere cal-

culating devices, only capable of performing repetitive tasks, AI re-

searchers argue that computers can be made smart, standing behind

computers that can beat chess grand masters③

. Machines with the hu-

man-like ability to learn and organize knowledge will become more and

more common, and automated engineering will speed the development of

newer nanomachines faster than a human engineering team ever could. It

will come to the point where computers will be designing computers,

building increasingly better systems with each generation. Eventually,

the ultimate goal of building a computer to resemble the human brain it-

self will be attempted. Just as a photocopier can transfer words from pa-

per to paper without understanding them, neurobiologists④

will copy the

brain’s structure without understanding its overall organization. The ad-

vanced nanomachines and nanoelectronics will mimic the behavior of the

synapses⑤

, only a million times faster. Because each synapse of the

brain is much more than just an on-off

·052· 纳米世界探秘

Page 259: Mysteries of the Nanotechnique

第九章 展望: 一个前途

无量的未来

只是需要花多长时间能进步到这本小册子所

推测的那样? 用我们现有的发展水平, 这里的有

些想法将会花上人类上百年, 或许上千年时间, 才

能变为现实。然而, 这个估计忽略了不断增长的

人造智慧。

今天, 机械智能的研究领域不断迅速取得进

步。虽然计算机长期以来仅仅被当作计算装置, 只

能实施重复性劳动, 但站在能打败国际象棋大师

的计算机身后的人工智能研究人员表明计算机可

以做得很“聪明”。拥有像人一样的学习和系统化

知识的能力的机器会越来越普遍, 而自动工程师

将比人工工程师队伍竭尽全力所能达到的更快地加

速新的纳米机器的发展。随着每一代计算机能建造

出更卓越的系统, 这将会到达一个重大的事实: 计算

机可以设计计算机。最后,建造计算机来模拟人脑本

身的最终目标将会实现。就像影印机可以从文件到

文件地传递字符而不用理解它们一样, 神经生物学

家们将能够复制人脑的结构而不用理解它的整个结

构。先进的纳米机器和纳米电子学可以模拟神经原

突触的行为, 只是比这些突触快了一百万倍。因为

每一个大脑神经原突触比一般的开关复杂得多, 它

① unbound

[ �n�baund ] adj. not

fastened : not confined

已自由的

② artifici al intelli-

gence 人工智能

③ grand master n. 高

段棋手之 尊号 ; 在任

何方面有特殊成就者

④ neurobiologist n . a

branch of the life sci-

ences that deals with

the anatomy, physiolo-

gy, and pathology of

the nervous system 神

经生物学家

⑤ synapse [ �sain�7ps]

n. the point at which a

nervous impulse passes

from one neuron to an-

other [ 解 ] 神经 原突

触 , 神经原的神 经线

连接

·152·第九章 展望: 一个前途无量的未来

Page 260: Mysteries of the Nanotechnique

switch , actually changing its structure in the learning process, each arti-

ficial synapse will be surrounded with nanocomputers telling nanomach-

inery how to modify the switch for each response. And although 1 cubic

centimeter seems extremely small for a computer of this complexity, con-

sider that this is 1012 times larger in volume than the cubic micron nano-

computer!

Although it may seem like nanotechnology offers such a cornucopi-

a①

of benefits, the human race must not let its potential destructive pow-

ers obliterate all that might be gained. The implications of using nano-

technology for aggressive purposes are far more foreboding than previous

weapons, and must always be checked. Molecular manufacturing makes

it possible to build weapons at a much faster rate than is now possible,

but a more frightening prospect is the development of dangerous program-

mable“germ"②

nanomachines for warfare. The possibility of accidental

world destruction also exists, if one thinks about the implications of es-

caped replicating machines eating organic materials throughout the earth.

Indeed, nanotechnology in the wrong hands could have disastrous③

con-

sequences, but even those responsible for its beneficial use must be wary

of the potential dangers.

At first, nanotechnology will be more technically challenging than

other weapons. Nanoterrorism will not be possible for many years to

come, until the knowledge on how to build replicating assemblers be-

comes more available. However, to stop powerful nations from using

nanotechnology’s destructive④

power, some regulations will have to be

made. If enough time is allowed for all the peaceful developments to suc-

ceed, then hopefully we will be capable of averting any aggressive ac-

tions. To prevent accidents, such as the replicators on the loose scenar-

io⑤

, safeguards can be made and built into all replicators. Drexler,

·252· 纳米世界探秘

Page 261: Mysteries of the Nanotechnique

们实际上通过学习流程改变自己的结构, 每一个

人工的神经原突触将被指导纳米机器修改不同反

应的纳米计算机所环绕着。尽管一平方厘米对于

这种复杂度的计算机来说是非常的小, 但是这在

体积上已经比立方微米大小的纳米计算机大了

1012 倍。

虽然似乎纳米技术为人类提供如此丰富的益

处, 人类不应该允许它潜在的破坏能力抵消掉所

有利用它所赢得的一切。将纳米技术用于侵略目

的, 比使用以前的武器有更明显的预兆, 这是必须

一直加以约束的。分子建筑使人们有可能以比现

在可能达到的最快速度还要快得多的速度制造武

器, 但一个更加可怕的前景是, 用于战争的非常危

险的可程序化细菌纳米机器的发展。如果我们想

到, 能吃掉地球上所有有机物的自我复制的机器

可能会失去控制的话, 就会明白世界偶然毁灭的

可能性也是存在的。当然, 纳米技术被错误应用

时会带来灾难性的影响, 但即使是那些负责使它

用于有益用途的人也应警惕它的潜在危险。

首先, 纳米技术将比其他武器更具技术挑

战性。直到关于如何制造能自我复制的组装体

的知识更加实用之前, 在未来许多年内, 纳米暴

力主义还不大可能。然而, 要想阻止强大的国家

使用纳米技术的破坏力, 需要做一些约束。如果

时间允许所有的国家能够成功地和平发展, 那

么我们将有希望能够扭转任何侵略行为。为了

防止意外事故, 比如复制器失去了控制, 安全措

施将会被写入到所有的复制器中。例如, 德瑞克

斯拉曾建议: “我们决不应造出一种能使用丰裕

① cornucopia

[ k��nju�k�upi�] n . an

inexhaustibl e store; a-

bundance 丰富 , 丰饶

② germ [ d���m] n.

microorganism 微生物 ,

细菌

③ disastrous

[ di�za�str�us] a dj. at-

tended by or caus ing

suffering or disaster;

calamitous 悲伤的

④ destructive

[ di�str�ktiv] adj. de-

signed or tending to de-

st roy 破坏 ( 性 ) 的

⑤ scenario

[ si�nɑ�ri�u ] n. an

outline or synopsis of a

play 剧 本 , 或 是 某 一

特定情节

·352·第九章 展望: 一个前途无量的未来

Page 262: Mysteries of the Nanotechnique

for example, proposes①

that we must“never make a replicator that can

use an abundant natural compound as fuel. " If we can control the power

of nanotechnology, there is much to hope for.

If we succeed in wisely using nanotechnology’s potential, the future

will be a bright and rich one indeed. The science fiction of today will be-

come tomorrow’s reality, The end of the world as we know it approaches,

with the new world of nanotechnology visible on the horizon②

. Let the

nanotechnology race begin!

Sources:

[ AU the materials used in the book is from:

http: / / wwww. foresight. org /

http: / / wwww. nanomedicine. com /

http: / / wwww. zyvex. com/

and other web sites and books. ]

·452· 纳米世界探秘

Page 263: Mysteries of the Nanotechnique

的自然界化合物作为燃料的复制器。”如果我们

能够控制纳米技术的力量, 那还是很有希望的。

如果我们在精明地利用好纳米技术的潜力上

取得成功, 未来将会是一个真正光明和富裕的世

界。今天的科幻小说将成为明天的现实, 我们所

知的“世界末日”同已出现在地平线上的纳米技

术新世界一起, 正在向我们走来。让纳米技术竞

赛开始吧!

① propose [ pr��p�uz]

vt . to form or put for-

ward a plan or inten-

tion 计划 , 建议

② hori zon [ h��raiz�n]

n. the apparent junc-

tion of earth and sky 地

平线

·552·第九章 展望: 一个前途无量的未来